
A measure of program nesting complexity

by ELDON Y. LI
California Polytechnic State University
San Luis Obispo, California

ABSTRACT

For more than a decade, metrics of software complexity has been an intriguing topic
for discussion. Many metrics have been proposed. Among them, the cyclomatic
complexity metric is the easiest to understand and compute. In this paper, the
cyclomatic complexity metric and its extensions are reviewed. The strengths and
weaknesses of the cyclomatic metric are identified. One of the major weaknesses of
the cyclomatic metric as well as its extensions is that they are insensitive to the level
of nesting within various constructs. To remove this shortcoming, a "nesting" com­
plexity metric is proposed. The process of deriving this new metric is described in
this paper. This new metric is proved to be superior to the cyclomatic metric in
reflecting program complexity.

531

•

A Measure of Program Nesting Complexity 533

INTRODUCTION

Since the emergence of structured programming concepts,
program complexity has received tremendous attention from
researchers in software engineering. "Program complexity"
may be classified into two categories: computational complex­
ity and psychological complexity.1 Computational complexity
refers to the difficulty of deriving expected output and of
verifying an algorithm's correctness, and psychological com­
plexity refers to the characteristics of software which make it
difficult to understand and work with. Both types of complex­
ity are not easily measured or described, and are often ignored
during the system planning process. "But when this complex­
ity exceeds certain unknown limits, frustration ensues. Com­
puter programs capsize under their own logical weight, or
become so crippled that maintenance is precarious and modi­
fication is impossible.,,2 Based on Mills's observation, it seems
wise to apply the "divide-and-conquer" principle to program
design by decomposing the entire program into modules and
submodules. Each module and submodule will have much less
complexity and will, in turn, be much easier for programmers
and users to comprehend and maintain.

Numerous metrics have been proposed to measure program
complexity. Excellent reviews of these measures are provided
by Fitzsimmons and Love/ Mohanty,4 and Berlinger. 5 Several
empirical studies have applied some selected metrics to
measure program complexity and correlate such complexity
with the number of errors occurring in the measured modules.
It was found that the occurrence of program errors corre­
lates significantly with the complexity of the target pro­
gram.3•6.7.8.9.10.11.12.13.14 This finding supports the popular hy­
pothesis that program complexity is a major factor influencing
the quality of computer programming.

Among various current complexity measures, the cyclo­
matic metric15 is the easiest to understand and calculate. It is
also the only one that lends itself to determining a minimum
test set for program testing. In this paper, we review the
cyclomatic metric and its extensions. The strengths and weak­
nesses of cyclomatic metric is identified as well. Further, a
new metric to reflect the levels of nesting is proposed.

THE CYCLOMATIC COMPLEXITY METRIC

The cyclomatic complexity metric was proposed by McCabe. 15
His metric is based on the decision structure of a program and
the cyclomatic number16 (also called the cycle rank,17 or the
nullity18) of the classical graph theory. The cyclomatic com­
plexity metric, V(G), as defined by McCabe, is

V(G)=E-N+2P

where E is the number of edges (or arcs), N is the number of
vertices (or nodes), and P is the number of connected compo­
nents. A component is a subgraph representing an external
module that either is calling or is being called by another
module. For example, consider a main program M and two
called subroutines A and B having a control structure shown
in Figure 1.

The total graph in Figure 1 is said to have three connected
components and each subgraph has only one connected com­
ponent (itself). Therefore, the cyclomatic complexity num­
bers are:

V(M) = 3 - 4 + 2(1) = 1,
V(A) = 2 - 2 + 2(1) = 2,
V(B) = 4 - 4 + 2(1) = 2,

and
V(M + A + B) = 9 -10 + 2(3) = 5.

It can be easily shown that V(M + A + B) = V(M) +
V(A) + V(B).

McCabe further demonstrates two alternate ways of finding
the complexity number V. One is to count the number of both
inner and outer regions on the plane control graph. Notice
there should be one outer region for each subgraph. In fact,
if we form a closed subgraph by drawing an imaginary arc
from the exit node to the entry node for each subgraph in
Figure 1, and count all the inner regions afterward, we would
yield the same number. We believe that the latter approach is
less confusing than the former. For example, Figure 2 shows
the closed sub graphs derived from Figure 1. By counting the
inner regions (11 through 15)' we get a V(G) of 5.

M: A: 0 B: 0CD I \
0 0 0' ~! \10 0

!
0

Figure I-A graph with three connected components

B:M: A:0.,
~ \

(11)
~ /'
0-......

Figure 2-A graph with three closed subgraphs

http:7.8.9.10.11.12.13.14

-
534 National Computer Conference, 1987

The other way of calculating V is to count the number of
predicate conditions in the program. Then the cyclomatic
complexity is:

V(G) = Number of predicate conditions + 1.

The attractive aspect of this method is that one can find the
V(G) directly from the program text without arduously con­
structing a flow graph. For example, consider the following
PU1 program: 19

M: PROCEDURE(A,B,X);

IF ((A> 1) & (B = 0)) THEN DO;

X=XIA;

END;

IF ((A = 2) I (X> 1)) THEN DO;

X=X +1;

END;

END;

Notice that each "IF" statement in procedure M has two
conditions in its predicate. This type of "IF" statement is
called a compound "IF" construct. In contrast, an "IF" state­
ment with only one condition is called a simple "IF" construct,
hereafter. Since each condition in procedure M contributes
one cyclomatic complexity count, the complexity number is
thus V(M) = 4 + 1 = 5.

Figure 3(a) shows that the flow graph corresponds to pro­
cedure M. Notice that it reflects the compound predicate by
placing an extra exit edge for the second condition on each
alternation node. For the convenience of counting, we substi­
tute a traditional decision symbol for each alternation node
and create Figure 3(b). It can be seen that Figure 3(b) is more
readable and understandable than Figure 3(a). Therefore, we
highly recommend adopting a decision symbol in flow-graph
construction because it not only helps in counting the number
of predicates but it also improves substantially the readability
of the flow graph.

THE ANOMALY AND THE EXTENSIONS OF THE
CYCLOMATIC COMPLEXITY METRIC

One of the anomalies of cyclomatic complexity measure is
that it does not accurately reflect the complexity of various
"IF" structures; namely, simple "IF," compound "IF," and
nested "IF." Myers20 recommends an interval measure having
one plus predicate counts as the lower bound, and one plus
condition counts as the upper bound for the complexity level.
Myers clearly demonstrates that this new metric can accu­
rately reflect the complexity of various "IF" structures. How­
ever, the measure does not lend itself to quantitative analysis
due to its "interval" data representation.

Hansen21 indicates that the cyclomatic complexity metric
does not reflect "expression" complexity. In other words, "a
program with more operators is simply bigger ... (and) ...
more complex" and thus [has a] higher expression complex­
ity . 21 He proposes two measures in a pair to measure both
control flow complexity and expression complexity. The
former is measured by one plus predicate counts (including

(a) 	 (b)
Figure 3-A control graph with compound predicates

repetitive construct), the latter operator counts in the pro­
gram. However, Hansen's metric suffers the same deficiency
as Myers's; that is, it does not lend itself to quantitative analy­
sis due to its "interval" data representation. Moreover, it is
somewhat difficult to compute and can be applied only to
program text.

Another major weakness of the cyclomatic complexity met­
ric is its insensitivity to the level of nesting within various
constructs. For example, three "WHILE" loops in succession
result in metric values similar to those for three nested
"WHILE" loops. This anomaly was brought forward by Cur­
tis, Sheppard, Milliman, Borst, and Love,l but they did not
offer any solution to it. Inspired by this anomaly, we examine
various structures and propose a new metric to accurately
reflect their complexity levels.

STRENGTHS AND WEAKNESSES OF THE
CYCLOMATIC COMPLEXITY METRIC

Although the cyclomatic complexity measure has many anom­
alies, it has several strengths. We summarize its strengths and
weaknesses in this section.

Strengths

1. 	It is easy to compute from the program text and the flow
graph.

2. 	 It supports a top-down development process to control
module complexity in the design phase, that is, before
actual coding takes place.

3. 	It lends itself to determining the maximum set of inde­
pendent test paths.

4. 	It can be used to control the complexity of program
modules. (McCabe recommends that an upper bound of
10 should be used as a guide to control the complexity of
program modules. This recommendation is endorsed by
Schneidewind and Hoffmann13 and Walsh.22)

5. 	It can be used to evaluate alternate program design to
find the simplest possible program structure.

http:Walsh.22

535 A Measure of Program Nesting Complexity

6. 	 It serves to partition a program structure into high or low
error occurrence according to its value.

7. 	 It serves to partition a program structure into high or low
error finding and removing times according to its value.

8. 	 It can be used as a guide for allocating testing resources.

Weaknesses

1. 	 It measures the psychological complexity, not the
computational complexity.

2. 	 It views all predicates as contributing the same amount
of complexity.

3. 	 It is insensitive to the level of nesting within various
constructs.

4. 	 It is insensitive to the frequency and the types of input
and output activity.

5. 	 It is insensitive to the size of purely sequential pro­
grams.

6. 	 It is insensitive to the number of variables in the pro­
gram.

7. 	 It is insensitive to the intensiveness of data operations
(i.e., the number of operators and operands) in the
program.

8. 	 It is insensitive to the dependency of control flows on
foregoing data operations. (See, for example, the pro­
gram listed on page 43 of Myers. 19)

9. 	 It is insensitive to a situation in which one condition is
"masked" or "blocked" by another within a nesting
construct. (See, for example, the program listed on
page 43 of Myers. 19)

10. 	It is insensitive to the program style and the use of
"GOTO" statements.

11. 	It measures neither the types and levels of module in­
teraction, nor the levels of module invocation.

DERIVATION OF THE NESTING
COMPLEXITY METRIC

The purpose of our new complexity metric is to reflect the
level of nesting within various constructs while keeping the
computation process as easy as possible. Bearing these two
objectives in mind, a new metric called "nesting complexity
metric," L(G), is formulated.

Consider the six structured programming control flow
constructs23 depicted in Figure 4. The "sequence" construct
has a complexity V of unity while the "IF," the "WHILE,"
and the "UNTIL" constructs each has a V of 2, but the
"CASE" construct of n branches has a V equal to n - 1 nested
"IF" statements. That is, a "CASE" statement with two
branches is equivalent to a simple "IF" statement. The rela­
tionship of the complexities of various constructs is thus:

sequence < (simple IF) = (simple WHILE)
= (simple UNTIL) = (two-branch CASE).

This relationship, along with our belief that nesting increases
program complexity, are the premises of our metric to be
derived subsequently.

0 <> 	 <>
~ 	 I \
0 	 0 0

\ 	 I• 	 <1
0 0 	 0

(a) 	 Concatenation (b) IF-THEN (c) IF-THEN-ELSE

o<> 	 <>... \
0 	 0 0(P 6'

~ 	 \U
o o 	 0

(d) 	 WHILE-DO (e) REPEAT-UNTIL (f) CASE-OF

Figure 4--Structured programming control flow constructs

Now, consider the following structured programming state­
ments:

A: 	IF (X = 0) THEN a

ELSEb

B: 	 IF (X = 0) AND (Y = 0) THEN a

ELSEb

C: 	 IF (X = 0) THEN IF (Y =0) THEN a

ELSEb

D: 	IF (X = 0) AND (Y = 0) AND (Z = 0) THEN a

ELSEb

E: 	 IF (X = 0) THEN IF (Y = 0) THEN
IF (Z =0) THEN a

ELSE b

F: 	 WHILE (X = 0) DO a
G: 	WHILE (X = 0) AND (Y = 0) DO a
H: 	 WHILE (X = 0) DO WHILE (Y = 0) DO a
I: 	 WHILE (X = 0) AND (Y = 0) AND (Z = 0) DO a
J: 	 WHILE (X = 0) DO WHILE (Y = 0) DO WHILE

(Z =0) DO a
K: 	 REPEAT a UNTIL (X = 0)
L: 	 REPEAT a UNTIL (X = 0) AND (Y = 0)
M: 	 REPEAT REPEAT a UNTIL (Y =0) UNTIL (X =0)
N: 	 REPEAT a UNTIL (X = 0) AND (Y = 0)

AND (Z =0)

0: 	REPEAT REPEAT REPEAT a UNTIL (X = 0)

UNTIL (Y = 0) UNTIL (Z = 0)

P: 	 CASEXOF

O:a
Q: 	 CASEXOF

0: CASE YOF
O:a

R: 	 CASEXOF
0: CASE YOF

0: CASE Z OF
O:a

S: 	 IF (X =0) THEN a

IF (X =1) THEN b

T: 	 IF (X = 0) THEN a

IF(X=1) THENb

IF (X =2) THEN c

U: 	 IF (X =0) THEN a

ELSE IF (X = 1) THEN b

536 National Computer Conference, 1987

V: IF (X = 0) THEN a
ELSE IF (X = 1) THEN b

ELSE IF (X = 2) THEN c
W: CASEXOF

O:a
I : b

X: CASEXOF
O:a
I:b
~:c

Y: CASEXOF
O:a
I:b

ELSE: c

Z: CASEXOF
O:a
1 : b
~:c
ELSE: d

Based on the foregoing premise, we begin ranking the com­
plexity of the constructs one pair at a time. Finally, the follow­
ing complexity ordering is derived:

A =F=K =P,

B =G =L,

C=H=M,

D=I=N,

C=D,

E=J=O,

H=I,

M=N,

Q=C,

R=E,

S=W=Y,

T=X=Z,

U=C,

V=E,

and

A<B<D,

B<C,

D<E,

C<E,

F<G <1,
G<H,

1<J,

H<J,

K<L <N,
L<M,

N<O,

M<O,

P < Q<R,

S<T,

U<V,

S<U,

T<V,

W<X,

Y<Z,

P<W,
P<Y,

W<Q,
Y<Q,

X<R,
Z<R.

Therefore, the final relationship is

{A,F,K,P} < {B,G,L,S, W, Y}
< {C,D,H,l,M,N,Q, T,U,X,Z} < {E,J,O,R, V}.

In contrast, the relationship from McCabe's cyc!omatic metric
is

{A,F,K,P} < {B,C,G,H,L,M,Q,S,U,W,Y}
< {D,E,l,J,N,O,R, T, V,X,Z},

which does not reflect the proper complexity ordering de­
picted above.

After comparing both relationships illustrated above, ten
constructs--C, E, H, J, M, 0, Q, R, U, V, which were ranked
differently by the authors and McCabe's metric-are identi­
fied. All of these constructs are nested. We decided to in­
crease the complexity number of any nested construct by one
less the number of its nested levels. This practice consequently
allows us to derive the following process of calculating the
nesting complexity metric.

PROCESS OF CALCULATING THE NESTING
COMPLEXITY METRIC

The final relationship derived in the last section is the premise
of our proposed metric. Since the purpose of our new com­
plexity metric is to reflect the level of nesting within various
constructs while keeping the computation process simple, we
have formulated the process of calculating the "nesting com­
plexity metric," L(G), from the program text as follows:

1. 	 Count and mark all the Boolean logical operators,
"AND," "OR," and "XOR," in the program and assign
one unit of complexity to each occurrence. However, do
not count "NOT."

2. 	 Count and mark keywords "IF," "WHILE," "UNTIL,"
and "CASE" at the first level of nesting within each flow
construct. Once again, assign each occurrence with one
unit of complexity. Note that if a control statement has
at least one branch which leads directly to the program
exit, any immediately following control statement
should be considered to be at the first level of a new
nested construct.

3. 	 Count and mark all the remaining "IF," "WHILE,"
"UNTIL," and "CASE" keywords and assign two units
of complexity to each occurrence.

4. 	 Count and mark all but the first and the "ELSE" condi­
tions in each "CASE" statement, and assign each occur­
rence with one unit of complexity. Remember to ignore
the first and the "ELSE" conditions, otherwise each

-

level of the construct will be unnecessarily inflated by
two units of complexity.

5. 	 Sum up all the complexity units derived by the previous
four steps and then add one into it. The total is our new
complexity measure, L(G).

Alternately, we can obtain L(G) from the following two­
step process:

1. 	 Find the cyc10matic complexity measure, V(G), using
McCabe's approach.

2. 	 Identify the second, the third, the fourth, and subse­
quent levels of nesting constructs and assign each occur­
rence with one unit of complexity. Do not forget that if
a control statement has at least one branch which leads
directly to the program exit, any immediately following
control statement should be considered to be at the first
level of a new nested construct.

Notice that the new nesting metric, L (G), possesses all but
one of the strengths and weaknesses of the cyc10matic metric,
V(G). It exchanges a weakness of V(G) for one of its own
strengths; namely, the L (G) is now sensitive to the level of
nesting but no longer is able to determine the maximum num­
ber of independent test paths. Three characteristics of the
L(G) metric are worth mentioning. First, the L(G) metric
assumes that nested constructs are more complex than simple
constructs, but a nested control statement having one branch
directing to the end of the program does not contribute addi­
tional complexity. Second, the L(G) penalizes the excessive
use of nested constructs and encourages substituting the
"CASE" statement for the nested "ELSE IF" construct.
Third, the L (G) converges to the cyc10matic complexity met­
ric if there is no nested construct in the program text.

After applying the counting procedure to the constructs A
through R of the previous section, we have four groups of
complexity:

1. 	Complexity of 2: {A,F,K,P},
2. 	 Complexity of 3: {B,G,L},
3. Complexity of 4: {C,D,H,l,M,N,Q},

and

4. 	 Complexity of 6: {E,J,O,R}.

The relationship established earlier is therefore preserved.
In contrast, McCabe's V(G) gives the following three

groups of complexity:

1. 	Complexity of 2: {A,F,K,P},
2. Complexity of 3: {B,C,G,H,L,M,Q,S,U, W,Y},

and

3. 	 Complexity of 4: {D,E,I,J,N,O,R,T, V,X,Z}.

Those constructs that have different metric values between
L(G) and V(G) are shown in Table I.

APPLICATIONS OF THE NESTING
COMPLEXITY METRIC

To validate the L (G) metric, four algorithms from Kernighan
and Plauge~ were measured. A comparison of the outcomes

A Measure of Program Nesting Complexity 537

TABLE I-Value of L(G) versus V(G) under the same construct

Construct L{G) 	 V{G)

C 4 3

E 6 4

H 4 3

J 6 4

M 4 3

0 6 4

Q 4 3

R 6 4

U 4 3

V 6 4

TABLE II-Comparison of the outcomes of four complexity
metrics

Algorithm from Kernighan
and PI auger [24] McCabe Myers Hansen L(G)

A checkers move generator:
([24], pp. 41-42)

Original version 17 (17: 17) (15,60)* 25

Improved version 17 (10:17) (10,46) 17

Jul i an to Gregori an date
convers ion:
([24], pp. 43-46)

Original version 19 (17: 19) (17 ,85) 30

Improved version #1 10 (5: 10) (5,25) 11

Improved vers i on #2 11** (6: 11)** (6,25)** 13

Merge two 1 i sts:
([24], pp. 18-19)

Original version (5:5) (8,10)***

Improved version (3 :5) (3,16)

Computer dating service:
([24], pp. 21-22)

Original version (7:7) (7,10)

Improved vers ion #l (3:6) (3,12)

Improved vers i on #2 (3:3) (3,6)

* Computed GOlO construct is regarded as CASE construct in this case.

** One 	 unit of complexity is introduced by an additional OO-WHIlE
construct.

*** 	Arithmetic IF construct is counted as twice the complexity of logical
IF's in this case.

of applying four different complexity metrics is illustrated in
Table II. After scrutinizing the outcomes of these metrics,
four major findings are notable:

538 National Computer Conference, 1987

1. 	 The difference between the two elements in Myers's
metric indicates the number of logical compound oper­
ators, that is, "AND," "OR," and "XOR."

2. 	The first element of Hansen's and Myers's metrics are
the same if the program contains no "CASE" construct.

3. The only metric that does not reflect program improve­
ment correctly is McCabe's metric. Although program
improvement might introduce more operators, the con­
trol flow complexity should definitely be reduced.

4. 	 The difference between L(G) and V(G) metrics indi­
cates the number of nested levels. When L(G) equals
V(G), the program contains no nested construct.

CONCLUSION

We have reviewed the cyclomatic complexity metric and its
extensions, and have discussed strengths and weaknesses of
the metric. An extension of the cyclomatic complexity metric,
the "nesting complexity metric," has been proposed herein to
remove the weakness of being insensitive to the level of nest­
ing. Although the "nesting complexity metric," L(G), is no
longer able to directly determine the maximum number of
independent test paths, it is superior to the cyclomatic com­
plexity metric because it is now able to reflect the level of
nesting structure and to penalize the excessive use of nested
constructs thus encouraging the practice of substituting the
"CASE" statement for the nested "ELSE IF" construct.
Therefore, the nesting metric L (G) is better than the cyclo­
matic metric V(G) in measuring program complexity.
However, we highly recommend using a pair metric of
(V(G),L(G» because is supplies more information than the
L(G) alone. Besides, the V(G) number is readily obtained
since it is a by-product of finding the L (G) value. .

REFERENCES

1. 	Curtis, B., S.B. Sheppard, P. Milliman, M.A. Borst, and T. Love. "Mea­
suring the Psychological Complexity of Software Maintenance Tasks With
the Halstead and McCabe Metrics." IEEE Transactions on Software En­
gineering, SE-5 (1979) 2, pp. 96-104.

2. 	Mills, H.D. "Mathematical Foundations for Structured Programming."
FSC 72-6012, Gaithersburg, MD.: IBM Federal System Division, 1972.

3. Fitzsimmons, A.B. and L.T. Love. "A Review and Evaluation of Software
Science." ACM Computing Surveys, 10 (1978) 1, pp. 3-18.

4. 	Mohanty, S.N. "Models and Measurements for Quality Assessment of
Software." ACM Computing Surveys, 11 (1979) 3, pp. 251-275.

5. 	Berlinger, E. "An Information Theory Based Complexity Measure."
AFIPS Proceedings of the National Computer Conference, VoL 49, 1980,
pp.773-779.

6. 	Bulut, N. and M.H. Halstead. "Impurities Found in Algorithm
Implementation." Technical Report CSD-TR-111, Computer Sciences De­
partment, Purdue University, 1974.

7. Cornell, L. and M.H. Halstead. "Predicting the Number of Bugs Expected
in a Program Module." Technical Report CSD-TR-205, Computer Sciences
Department, Purdue University, 1976.

8. 	Elshoff, J.L. "Measuring Commercial PU1 Programs Using Halstead's
Criteria." ACM SIGPLAN Notices, 11 (1976) 5, pp. 38-46.

9. 	Fitzsimmons, A.B. "Relating the Presence of Software Errors to the The­
ory of Software Science." Presented to the 11th Hawaii International Con­
ference of Systems Sciences, January 1978.

10. 	Funami, Y. and M.H. Halstead. "A Software Physics Analysis of Akiya­
ma's Debugging Data." Technical Report CSD-TR-l44, Computer Sci­
ences Department, Purdue University, 1975.

11. 	Halstead, M.H. "An Experimental Determination of the "Purity" of a
Trivial Algorithm." Technical Report CSD-TR-73, Computer Sciences De­
partment, Purdue University, 1972.

12. 	Love, L.T. and A.B. Bowman. "An Independent Test of the Theory of
Software Physics." ACM SIGPLAN Notices, 11 (1976) 11, pp. 42-49.

13. 	Schneidewind, N.F. and H.-M. Hoffmann. "An Experiment in Software
Error Data Collection and Analysis." IEEE Transactions on Software En­
gineering, SE-5 (1979) 3, pp. 276-286.

14. 	Sunohara, T., A. Takano, K. Uehara, and T. Ohkawa. "Program Complex­
ity Measure for Software Development Management." Proceedings of the
Fifth Internatinal Software Engineering Conference, San Diego, California,
1981, pp. 100-106.

15. 	McCabe, T.J. "A Complexity Measure." IEEE Transactions on Software
Engineering, SE-2 (1976) 4, pp. 308-320.

16. 	Berge, C. Graphs and Hypergraphs, Amsterdam, The Netherlands: North­
Holland, 1973.

17. Harary, F. Graph Theory, Reading, Massachusetts: Addison-Wesley, 1969.
18. 	Chan, S.-P. Introductory Topological Analysis of Electrical Networks, New

York: Holt, Rinehart and Winston, 1969.
19. 	Myers, G.J. The Art of Software Testing, New York: Wiley-Interscience,

1979.
20. 	Myers, G.J. "An Extension to the Cyclomatic Measure of Program Com­

plexity." ACM SIGPLAN Notices, 12 (1977) 10, pp. 61-64.
21. Hansen, W.J. "Measurement of Program Complexity 	by the Pair (Cy­

clomatic Number, Operator Count)." ACM SIGPLAN Notices, 13 (1978)
3, pp. 29-33.

22. Walsh, T.J. 	"A Software Reliability Study Using a Complexity Measure."
AFIPS Proceedings of the National Computer Conference, VoL 48, 1979,
pp. 761-768.

23. 	Ledgard, H.F. and M. Marcotty. "A Genealogy of Control Structures."
Communications of the ACM, 18 (1975) 11, pp. 629-639.

24. Kernighan, B.W. and P.J. Plauger. 	The Elements of Programming Style,
New York: McGraw-Hill, 1974.

