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ABSTRACT 

For more than a decade, metrics of software complexity has been an intriguing topic 
for discussion. Many metrics have been proposed. Among them, the cyclomatic 
complexity metric is the easiest to understand and compute. In this paper, the 
cyclomatic complexity metric and its extensions are reviewed. The strengths and 
weaknesses of the cyclomatic metric are identified. One of the major weaknesses of 
the cyclomatic metric as well as its extensions is that they are insensitive to the level 
of nesting within various constructs. To remove this shortcoming, a "nesting" com­
plexity metric is proposed. The process of deriving this new metric is described in 
this paper. This new metric is proved to be superior to the cyclomatic metric in 
reflecting program complexity. 
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INTRODUCTION 

Since the emergence of structured programming concepts, 
program complexity has received tremendous attention from 
researchers in software engineering. "Program complexity" 
may be classified into two categories: computational complex­
ity and psychological complexity.1 Computational complexity 
refers to the difficulty of deriving expected output and of 
verifying an algorithm's correctness, and psychological com­
plexity refers to the characteristics of software which make it 
difficult to understand and work with. Both types of complex­
ity are not easily measured or described, and are often ignored 
during the system planning process. "But when this complex­
ity exceeds certain unknown limits, frustration ensues. Com­
puter programs capsize under their own logical weight, or 
become so crippled that maintenance is precarious and modi­
fication is impossible.,,2 Based on Mills's observation, it seems 
wise to apply the "divide-and-conquer" principle to program 
design by decomposing the entire program into modules and 
submodules. Each module and submodule will have much less 
complexity and will, in turn, be much easier for programmers 
and users to comprehend and maintain. 

Numerous metrics have been proposed to measure program 
complexity. Excellent reviews of these measures are provided 
by Fitzsimmons and Love/ Mohanty,4 and Berlinger. 5 Several 
empirical studies have applied some selected metrics to 
measure program complexity and correlate such complexity 
with the number of errors occurring in the measured modules. 
It was found that the occurrence of program errors corre­
lates significantly with the complexity of the target pro­
gram.3•6.7.8.9.10.11.12.13.14 This finding supports the popular hy­
pothesis that program complexity is a major factor influencing 
the quality of computer programming. 

Among various current complexity measures, the cyclo­
matic metric15 is the easiest to understand and calculate. It is 
also the only one that lends itself to determining a minimum 
test set for program testing. In this paper, we review the 
cyclomatic metric and its extensions. The strengths and weak­
nesses of cyclomatic metric is identified as well. Further, a 
new metric to reflect the levels of nesting is proposed. 

THE CYCLOMATIC COMPLEXITY METRIC 

The cyclomatic complexity metric was proposed by McCabe. 15 
His metric is based on the decision structure of a program and 
the cyclomatic number16 (also called the cycle rank,17 or the 
nullity18) of the classical graph theory. The cyclomatic com­
plexity metric, V(G), as defined by McCabe, is 

V(G)=E-N+2P 

where E is the number of edges (or arcs), N is the number of 
vertices (or nodes), and P is the number of connected compo­
nents. A component is a subgraph representing an external 
module that either is calling or is being called by another 
module. For example, consider a main program M and two 
called subroutines A and B having a control structure shown 
in Figure 1. 

The total graph in Figure 1 is said to have three connected 
components and each subgraph has only one connected com­
ponent (itself). Therefore, the cyclomatic complexity num­
bers are: 

V(M) = 3 - 4 + 2(1) = 1, 
V(A) = 2 - 2 + 2(1) = 2, 
V(B) = 4 - 4 + 2(1) = 2, 

and 
V(M + A + B) = 9 -10 + 2(3) = 5. 

It can be easily shown that V(M + A + B) = V(M) + 
V(A) + V(B). 

McCabe further demonstrates two alternate ways of finding 
the complexity number V. One is to count the number of both 
inner and outer regions on the plane control graph. Notice 
there should be one outer region for each subgraph. In fact, 
if we form a closed subgraph by drawing an imaginary arc 
from the exit node to the entry node for each subgraph in 
Figure 1, and count all the inner regions afterward, we would 
yield the same number. We believe that the latter approach is 
less confusing than the former. For example, Figure 2 shows 
the closed sub graphs derived from Figure 1. By counting the 
inner regions (11 through 15)' we get a V(G) of 5. 

M: A: 0 B: 0CD I \ 
0 0 0' ~! \10 0 

! 
0 

Figure I-A graph with three connected components 

B:M: A:0., 
~ \ 

( 11) 
~ /'
0-...... 

Figure 2-A graph with three closed subgraphs 
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The other way of calculating V is to count the number of 
predicate conditions in the program. Then the cyclomatic 
complexity is: 

V(G) = Number of predicate conditions + 1. 

The attractive aspect of this method is that one can find the 
V(G) directly from the program text without arduously con­
structing a flow graph. For example, consider the following 
PU1 program: 19 

M: PROCEDURE(A,B,X); 

IF ((A> 1) & (B = 0)) THEN DO; 


X=XIA; 

END; 


IF ((A = 2) I (X> 1)) THEN DO; 

X=X +1; 


END; 

END; 


Notice that each "IF" statement in procedure M has two 
conditions in its predicate. This type of "IF" statement is 
called a compound "IF" construct. In contrast, an "IF" state­
ment with only one condition is called a simple "IF" construct, 
hereafter. Since each condition in procedure M contributes 
one cyclomatic complexity count, the complexity number is 
thus V(M) = 4 + 1 = 5. 

Figure 3(a) shows that the flow graph corresponds to pro­
cedure M. Notice that it reflects the compound predicate by 
placing an extra exit edge for the second condition on each 
alternation node. For the convenience of counting, we substi­
tute a traditional decision symbol for each alternation node 
and create Figure 3(b). It can be seen that Figure 3(b) is more 
readable and understandable than Figure 3(a). Therefore, we 
highly recommend adopting a decision symbol in flow-graph 
construction because it not only helps in counting the number 
of predicates but it also improves substantially the readability 
of the flow graph. 

THE ANOMALY AND THE EXTENSIONS OF THE 
CYCLOMATIC COMPLEXITY METRIC 

One of the anomalies of cyclomatic complexity measure is 
that it does not accurately reflect the complexity of various 
"IF" structures; namely, simple "IF," compound "IF," and 
nested "IF." Myers20 recommends an interval measure having 
one plus predicate counts as the lower bound, and one plus 
condition counts as the upper bound for the complexity level. 
Myers clearly demonstrates that this new metric can accu­
rately reflect the complexity of various "IF" structures. How­
ever, the measure does not lend itself to quantitative analysis 
due to its "interval" data representation. 

Hansen21 indicates that the cyclomatic complexity metric 
does not reflect "expression" complexity. In other words, "a 
program with more operators is simply bigger ... (and) ... 
more complex" and thus [has a] higher expression complex­
ity . 21 He proposes two measures in a pair to measure both 
control flow complexity and expression complexity. The 
former is measured by one plus predicate counts (including 

(a) 	 (b) 
Figure 3-A control graph with compound predicates 

repetitive construct), the latter operator counts in the pro­
gram. However, Hansen's metric suffers the same deficiency 
as Myers's; that is, it does not lend itself to quantitative analy­
sis due to its "interval" data representation. Moreover, it is 
somewhat difficult to compute and can be applied only to 
program text. 

Another major weakness of the cyclomatic complexity met­
ric is its insensitivity to the level of nesting within various 
constructs. For example, three "WHILE" loops in succession 
result in metric values similar to those for three nested 
"WHILE" loops. This anomaly was brought forward by Cur­
tis, Sheppard, Milliman, Borst, and Love,l but they did not 
offer any solution to it. Inspired by this anomaly, we examine 
various structures and propose a new metric to accurately 
reflect their complexity levels. 

STRENGTHS AND WEAKNESSES OF THE 
CYCLOMATIC COMPLEXITY METRIC 

Although the cyclomatic complexity measure has many anom­
alies, it has several strengths. We summarize its strengths and 
weaknesses in this section. 

Strengths 

1. 	It is easy to compute from the program text and the flow 
graph. 

2. 	 It supports a top-down development process to control 
module complexity in the design phase, that is, before 
actual coding takes place. 

3. 	It lends itself to determining the maximum set of inde­
pendent test paths. 

4. 	It can be used to control the complexity of program 
modules. (McCabe recommends that an upper bound of 
10 should be used as a guide to control the complexity of 
program modules. This recommendation is endorsed by 
Schneidewind and Hoffmann13 and Walsh.22) 

5. 	It can be used to evaluate alternate program design to 
find the simplest possible program structure. 

http:Walsh.22
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6. 	 It serves to partition a program structure into high or low 
error occurrence according to its value. 

7. 	 It serves to partition a program structure into high or low 
error finding and removing times according to its value. 

8. 	 It can be used as a guide for allocating testing resources. 

Weaknesses 

1. 	 It measures the psychological complexity, not the 
computational complexity. 

2. 	 It views all predicates as contributing the same amount 
of complexity. 

3. 	 It is insensitive to the level of nesting within various 
constructs. 

4. 	 It is insensitive to the frequency and the types of input 
and output activity. 

5. 	 It is insensitive to the size of purely sequential pro­
grams. 

6. 	 It is insensitive to the number of variables in the pro­
gram. 

7. 	 It is insensitive to the intensiveness of data operations 
(i.e., the number of operators and operands) in the 
program. 

8. 	 It is insensitive to the dependency of control flows on 
foregoing data operations. (See, for example, the pro­
gram listed on page 43 of Myers. 19) 

9. 	 It is insensitive to a situation in which one condition is 
"masked" or "blocked" by another within a nesting 
construct. (See, for example, the program listed on 
page 43 of Myers. 19) 

10. 	It is insensitive to the program style and the use of 
"GOTO" statements. 

11. 	It measures neither the types and levels of module in­
teraction, nor the levels of module invocation. 

DERIVATION OF THE NESTING 
COMPLEXITY METRIC 

The purpose of our new complexity metric is to reflect the 
level of nesting within various constructs while keeping the 
computation process as easy as possible. Bearing these two 
objectives in mind, a new metric called "nesting complexity 
metric," L(G), is formulated. 

Consider the six structured programming control flow 
constructs23 depicted in Figure 4. The "sequence" construct 
has a complexity V of unity while the "IF," the "WHILE," 
and the "UNTIL" constructs each has a V of 2, but the 
"CASE" construct of n branches has a V equal to n - 1 nested 
"IF" statements. That is, a "CASE" statement with two 
branches is equivalent to a simple "IF" statement. The rela­
tionship of the complexities of various constructs is thus: 

sequence < (simple IF) = (simple WHILE) 
= (simple UNTIL) = (two-branch CASE). 

This relationship, along with our belief that nesting increases 
program complexity, are the premises of our metric to be 
derived subsequently. 

0 <> 	 <> 
~ 	 I \ 
0 	 0 0 

\ 	 I• 	 <1
0 0 	 0 

(a) 	 Concatenation (b) IF-THEN (c) IF-THEN-ELSE 

o<> 	 <>... \ 
0 	 0 0(P 6' 

~ 	 \U 
o o 	 0 

(d) 	 WHILE-DO (e) REPEAT-UNTIL (f) CASE-OF 

Figure 4--Structured programming control flow constructs 

Now, consider the following structured programming state­
ments: 

A: 	IF (X = 0) THEN a 

ELSEb 


B: 	 IF (X = 0) AND (Y = 0) THEN a 

ELSEb 


C: 	 IF (X = 0) THEN IF (Y =0) THEN a 

ELSEb 


D: 	IF (X = 0) AND (Y = 0) AND (Z = 0) THEN a 

ELSEb 


E: 	 IF (X = 0) THEN IF (Y = 0) THEN 
IF (Z =0) THEN a 


ELSE b 

F: 	 WHILE (X = 0) DO a 
G: 	WHILE (X = 0) AND (Y = 0) DO a 
H: 	 WHILE (X = 0) DO WHILE (Y = 0) DO a 
I: 	 WHILE (X = 0) AND (Y = 0) AND (Z = 0) DO a 
J: 	 WHILE (X = 0) DO WHILE (Y = 0) DO WHILE 

(Z =0) DO a 
K: 	 REPEAT a UNTIL (X = 0) 
L: 	 REPEAT a UNTIL (X = 0) AND (Y = 0) 
M: 	 REPEAT REPEAT a UNTIL (Y =0) UNTIL (X =0) 
N: 	 REPEAT a UNTIL (X = 0) AND (Y = 0) 


AND (Z =0) 

0: 	REPEAT REPEAT REPEAT a UNTIL (X = 0) 


UNTIL (Y = 0) UNTIL (Z = 0) 

P: 	 CASEXOF 

O:a 
Q: 	 CASEXOF 

0: CASE YOF 
O:a 

R: 	 CASEXOF 
0: CASE YOF 

0: CASE Z OF 
O:a 

S: 	 IF (X =0) THEN a 

IF (X =1) THEN b 


T: 	 IF (X = 0) THEN a 

IF(X=1) THENb 

IF (X =2) THEN c 


U: 	 IF (X =0) THEN a 

ELSE IF (X = 1) THEN b 
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V: IF (X = 0) THEN a 
ELSE IF (X = 1) THEN b 

ELSE IF (X = 2) THEN c 
W: CASEXOF 

O:a 
I : b 

X: CASEXOF 
O:a 
I:b 
~:c 

Y: CASEXOF 
O:a 
I:b 

ELSE: c 


Z: CASEXOF 
O:a 
1 : b 
~:c 
ELSE: d 

Based on the foregoing premise, we begin ranking the com­
plexity of the constructs one pair at a time. Finally, the follow­
ing complexity ordering is derived: 

A =F=K =P, 

B =G =L, 

C=H=M, 

D=I=N, 

C=D, 

E=J=O, 

H=I, 

M=N, 

Q=C, 

R=E, 

S=W=Y, 

T=X=Z, 

U=C, 

V=E, 


and 

A<B<D, 

B<C, 

D<E, 

C<E, 


F<G <1, 
G<H, 


1<J, 

H<J, 


K<L <N, 
L<M, 


N<O, 

M<O, 


P < Q<R, 

S<T, 


U<V, 

S<U, 


T<V, 

W<X, 

Y<Z, 


P<W, 
P<Y, 

W<Q, 
Y<Q, 

X<R, 
Z<R. 

Therefore, the final relationship is 

{A,F,K,P} < {B,G,L,S, W, Y} 
< {C,D,H,l,M,N,Q, T,U,X,Z} < {E,J,O,R, V}. 

In contrast, the relationship from McCabe's cyc!omatic metric 
is 

{A,F,K,P} < {B,C,G,H,L,M,Q,S,U,W,Y} 
< {D,E,l,J,N,O,R, T, V,X,Z}, 

which does not reflect the proper complexity ordering de­
picted above. 

After comparing both relationships illustrated above, ten 
constructs--C, E, H, J, M, 0, Q, R, U, V, which were ranked 
differently by the authors and McCabe's metric-are identi­
fied. All of these constructs are nested. We decided to in­
crease the complexity number of any nested construct by one 
less the number of its nested levels. This practice consequently 
allows us to derive the following process of calculating the 
nesting complexity metric. 

PROCESS OF CALCULATING THE NESTING 
COMPLEXITY METRIC 

The final relationship derived in the last section is the premise 
of our proposed metric. Since the purpose of our new com­
plexity metric is to reflect the level of nesting within various 
constructs while keeping the computation process simple, we 
have formulated the process of calculating the "nesting com­
plexity metric," L(G), from the program text as follows: 

1. 	 Count and mark all the Boolean logical operators, 
"AND," "OR," and "XOR," in the program and assign 
one unit of complexity to each occurrence. However, do 
not count "NOT." 

2. 	 Count and mark keywords "IF," "WHILE," "UNTIL," 
and "CASE" at the first level of nesting within each flow 
construct. Once again, assign each occurrence with one 
unit of complexity. Note that if a control statement has 
at least one branch which leads directly to the program 
exit, any immediately following control statement 
should be considered to be at the first level of a new 
nested construct. 

3. 	 Count and mark all the remaining "IF," "WHILE," 
"UNTIL," and "CASE" keywords and assign two units 
of complexity to each occurrence. 

4. 	 Count and mark all but the first and the "ELSE" condi­
tions in each "CASE" statement, and assign each occur­
rence with one unit of complexity. Remember to ignore 
the first and the "ELSE" conditions, otherwise each 



-

level of the construct will be unnecessarily inflated by 
two units of complexity. 

5. 	 Sum up all the complexity units derived by the previous 
four steps and then add one into it. The total is our new 
complexity measure, L(G). 

Alternately, we can obtain L(G) from the following two­
step process: 

1. 	 Find the cyc10matic complexity measure, V(G), using 
McCabe's approach. 

2. 	 Identify the second, the third, the fourth, and subse­
quent levels of nesting constructs and assign each occur­
rence with one unit of complexity. Do not forget that if 
a control statement has at least one branch which leads 
directly to the program exit, any immediately following 
control statement should be considered to be at the first 
level of a new nested construct. 

Notice that the new nesting metric, L (G), possesses all but 
one of the strengths and weaknesses of the cyc10matic metric, 
V(G). It exchanges a weakness of V(G) for one of its own 
strengths; namely, the L (G) is now sensitive to the level of 
nesting but no longer is able to determine the maximum num­
ber of independent test paths. Three characteristics of the 
L(G) metric are worth mentioning. First, the L(G) metric 
assumes that nested constructs are more complex than simple 
constructs, but a nested control statement having one branch 
directing to the end of the program does not contribute addi­
tional complexity. Second, the L(G) penalizes the excessive 
use of nested constructs and encourages substituting the 
"CASE" statement for the nested "ELSE IF" construct. 
Third, the L (G) converges to the cyc10matic complexity met­
ric if there is no nested construct in the program text. 

After applying the counting procedure to the constructs A 
through R of the previous section, we have four groups of 
complexity: 

1. 	Complexity of 2: {A,F,K,P}, 
2. 	 Complexity of 3: {B,G,L}, 
3. Complexity of 4: {C,D,H,l,M,N,Q}, 


and 

4. 	 Complexity of 6: {E,J,O,R}. 

The relationship established earlier is therefore preserved. 
In contrast, McCabe's V(G) gives the following three 

groups of complexity: 

1. 	Complexity of 2: {A,F,K,P}, 
2. Complexity of 3: {B,C,G,H,L,M,Q,S,U, W,Y}, 


and 

3. 	 Complexity of 4: {D,E,I,J,N,O,R,T, V,X,Z}. 

Those constructs that have different metric values between 
L(G) and V(G) are shown in Table I. 

APPLICATIONS OF THE NESTING 
COMPLEXITY METRIC 

To validate the L (G) metric, four algorithms from Kernighan 
and Plauge~ were measured. A comparison of the outcomes 
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TABLE I-Value of L(G) versus V(G) under the same construct 

Construct L{G) 	 V{G) 

C 4 3 

E 6 4 

H 4 3 

J 6 4 

M 4 3 

0 6 4 

Q 4 3 

R 6 4 

U 4 3 

V 6 4 

TABLE II-Comparison of the outcomes of four complexity 
metrics 

Algorithm from Kernighan 
and PI auger [24] McCabe Myers Hansen L(G) 

A checkers move generator: 
([24], pp. 41-42) 

Original version 17 (17: 17) (15,60)* 25 

Improved version 17 (10:17) ( 10,46) 17 

Jul i an to Gregori an date 
convers ion: 
([24], pp. 43-46) 

Original version 19 (17: 19) (17 ,85) 30 

Improved version #1 10 (5: 10) (5,25) 11 

Improved vers i on #2 11** (6: 11)** (6,25)** 13 

Merge two 1 i sts: 
([24], pp. 18-19) 

Original version (5:5) (8,10)*** 

Improved version (3 :5) (3,16) 

Computer dating service: 
([24], pp. 21-22) 

Original version (7:7) (7,10) 

Improved vers ion #l (3:6) (3,12) 

Improved vers i on #2 (3:3) (3,6) 

* Computed GOlO construct is regarded as CASE construct in this case. 

** One 	 unit of complexity is introduced by an additional OO-WHIlE 
construct. 

*** 	Arithmetic IF construct is counted as twice the complexity of logical 
IF's in this case. 

of applying four different complexity metrics is illustrated in 
Table II. After scrutinizing the outcomes of these metrics, 
four major findings are notable: 
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1. 	 The difference between the two elements in Myers's 
metric indicates the number of logical compound oper­
ators, that is, "AND," "OR," and "XOR." 

2. 	The first element of Hansen's and Myers's metrics are 
the same if the program contains no "CASE" construct. 

3. The only metric that does not reflect program improve­
ment correctly is McCabe's metric. Although program 
improvement might introduce more operators, the con­
trol flow complexity should definitely be reduced. 

4. 	 The difference between L(G) and V(G) metrics indi­
cates the number of nested levels. When L(G) equals 
V(G), the program contains no nested construct. 

CONCLUSION 

We have reviewed the cyclomatic complexity metric and its 
extensions, and have discussed strengths and weaknesses of 
the metric. An extension of the cyclomatic complexity metric, 
the "nesting complexity metric," has been proposed herein to 
remove the weakness of being insensitive to the level of nest­
ing. Although the "nesting complexity metric," L(G), is no 
longer able to directly determine the maximum number of 
independent test paths, it is superior to the cyclomatic com­
plexity metric because it is now able to reflect the level of 
nesting structure and to penalize the excessive use of nested 
constructs thus encouraging the practice of substituting the 
"CASE" statement for the nested "ELSE IF" construct. 
Therefore, the nesting metric L (G) is better than the cyclo­
matic metric V(G) in measuring program complexity. 
However, we highly recommend using a pair metric of 
(V(G),L(G» because is supplies more information than the 
L(G) alone. Besides, the V(G) number is readily obtained 
since it is a by-product of finding the L (G) value. . 
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