
Volume 4, Number 2 April 1990

EDITORIAL BOARD

BOARD CHAIRMAN:

Wayne Smith, CQA, Applied Information, Inc.

BOARD MEMBERS:

Shirley Gordon, CQA, Consultant

Charles Hollocker, CQA, Northern Telecom, Inc.

John W. Horch, CQA, Horch & Associates

Harry Kalmbach, COA, McDonnell Douglas Corp.

Peggy Myles, COA, Contel Service Corp.

Nancle L. SlII, COA, The Coca-Cola Company

Rebecca Staton-Reinstein, CQA, New York Life

Insurance Co.

Linda T. Taylor, CQA, Taylor & Zeno Systems, Inc.
Eldon V. LI, Ph.D., DPIM, CDE, California

Polytechnic State University

Wllllam E. Perry, CQA, Quality Assurance
Institute, Managing Editor

Donna Baum, Production Editor
Martha Platt, Quality Assurance Institute,

Assistant Editor

COLUMN EDITORS
Auditing-Keagle W. Davis, CPA, QAI Audit Division Quality Assurance Surveys-Willlam E. Perry, COA,
Doing it Right the First Time-Jerome B. Quality Assurance Institute

Landsbaum, CQA, Monsanto Company Quality at Work-Rebecca Staton-Reinstein, CQA,
Education and Chapter News-William E. Perry, New York Life Insurance Co.

COA, Quality Assurance Institute Speaking Out on Quality-lrv Brownstein, Consultant
The Lighter Side of Quality Assurance-WlIliam H. Standards-l<enneth J. Muth, Target Stores

Walraven, COA, United Telecommunications Testing-Harry Kalmbach, CQA, McDonnell Douglas
Quality Assurance Case Studies-Shlrley Gordon, Aerospace Information Services Co.

COA, Consultant

[JUI1L~TY [) a9Ta9 PflO~ESS~ ~[j (Copyright C1990) Is published quarterly by Ouality Assurance Institute
(QAI) with editorial and executive offices at Suite 350, 7575 Dr. Phillips Blvd., Orlando, FL 32819 [(407) 363-1111].

QAI members receive four Issues per year at no additional cost, but may order additional subscriptions at $43 each;
subscription price to nonmembers Is $50; larger quantities available at reduced rates.

Individual copies of back Issues are available at $10 eaCh; write or call QAI.
Reprints of 500 or more of articles appearing in the journal are available at low cost. Requests for reprints or permission

to reproduce may be made by writing or phoning CAl.
Articles,letters to the editor, advertising, and suggestions are welcome. Address correspondence to QAI offices.

Published 4 times per year by Quality Assurance Institute. Copyright e 1990, Quality Assurance institute.

2 • Quality Data Processing

TflflLE []f L[]~TE~T~

THE ROLE OF SOFTWARE QUALITY ASSURANCE
MANAGERS AS EPIDEMIOLOGISTS

Wayne Madsen, Computer Security Specialist, ISE, Inc.
Calling computer viruses dangerous, and on the increase, the
writer warns that heightened software security is essential,
citing that when computers are used in diagnostics, human
health can also be affected.

EMERGING TECHNOLOGIES ENRICH OPPORTUNITIES FOR
SOFTWARE QUALITY IMPROVEMENTS

Joseph R. Schofield, Jr.
Sandia National Laboratories
This computer consultant offers a new slant on up's and q's"
and the "three R's" in improving software quality and in
halting software mismanagement.

STRUCTURAL SOFTWARE TESTING: THE
COMPLEXITY-BASED APPROACH

Eldon Y. LI
California Polytechnic State University
Li differentiates between "functional" and "structural" software
testing techniques, and puts forth the complexity-based
technique (while noting its weaknesses) as the most easy-to­
use and effective technique.

STARTING A QUALITY ORGANIZATION
Ed Showalter
Manager Quality and Standards, Unlsys
Noting that ·starting out can strike fear in the hearts of the
bravest people," the author says experience has shown him
that starting a "quality organization" is actually easier than
orie might think.

THE LIGHTER SIDE OF QUALITY ASSURANCE
Lyvla M. Garsys, QA Section
MCCDPA
In an untitled poem, Garsys good-naturedly exposes a few
things that one often "te"s the folks at QA".

CERTIFICATION OF INFORMATION SYSTEMS
PROFESSIONALS

David Nlckollch, CDP, CSP
Development Center Institute, Inc.
The writer discusses the value of certification and receiving
designations in validating a person's abilities and experience.

BOOK REVIEW COLUMN
HAVE FUN AT WORK
by William L. Livingston
The journal reviews HAVE FUN AT WORK, a new, and lively
book by William L. Livingston, who spares no one in his
assessment of failure and success.

•

29

31

34

38

40

41

43

April 1990 • 5

I TEET~~[j

•

STRUCTURAL SOFTWARE

TESTING: THE

COMPLEXITY-BASED APPROACH

Eldon Y. Li, California Polytechnic State University

INTRODUCTION
Software testing techniques are traditionally classi­

fied into "functional" and "structural" techniques based
on their methods of deriving test cases [Adrion, Bran­
stad and Cherniavsky, 1982]. The functional testing
techniques derive the test cases from the requirements
definition or the external (design) specification, while the
structural techniques derive them from the program
logic in the source code or internal design specification.
The former techniques focus on the functions of the
program/system being tested, the latter, on the struc­
ture. Therefore, they are also known respectively as the
"black-box" and the "white-box" techniques [Myers,
1979, pp. 8-9]. Among the existing structural tech­
niques, the complexity-based coverage technique de­
veloped by McCabe [1976] was deemed superior [U,
1988]. Yet, there are still weaknesses to be rectified.
This paper reviews the complexity-based test tech­
nique, and discusses the strengths and weaknesses of
the technique.
COMPLEXITY-BASED TESTING
TECHNIQUE

In his landmark paper, Thomas J. McCabe [1976]
proposed the use of the "cyclomatic number" [Berge,
1973] (also called "cycle rank" [Harary, 1969] or "nullity"
[Deo, 1974]) in the graph-theory literature to measure
the control-flow complexity of a program. Such a meas­
ure is known as the "cyclomatic complexity metric." In
the same paper, he further proposed two other metrics.
One measures the "unstructuredness" of a program,
and the other indicates the number of independent paths
actually executed by a program running on a test data
set. The former is called the "essential complexity met­
ric" while the latter is the "actual complexity metric." The
cyclomatic complexity metric V(G) of a program was
defined as one plus the number of conditions in the
program [McCabe, 1976; Li, 1987]. The essential com­
plexity metric was defined as the cyclomatic complexity
minus the number of proper subgraphs with unique entry
and exit nodes. McCabe [1976] demonstrated that every
structured program can be reduced to a program of unit
cyclomatic complexity; Le., the "essential complexity"
equals to one. He further proved that the cyclomatic
complexity of an unstructured program is at least three.
This is, any program whose cyclomatic complexity
equals two is, or can be modified into, a structured

program.
According to McCabe, the cyclomatic metric deter­

mines the minimal set of required test paths. Each test
path represents a test case. The program under test
must have a single entry and a single exit. The actual
complexity should be maintained as close to the cyclo­
matic complexity as possible. This latter objective may
be attained by finding test data which covers more paths,
or by restructuring the program into a program with less
complexity (Le., eliminating the unnecessary decision
conditions in a program) and reducing portions of the
program to in-line code. To maintain the testability of a
program, McCabe suggested that the cyclomatic num­
ber of a program should have an upper bound of 10
[McCabe, 1976, p. 314]. Otherwise, the number of
possible paths of the program may easily become

Accept integer's A,B,C

If A>O l 8>0 l C>O

If A·C

Repeat another test (R.Y)?
q

END
ripre 1: ~ COIlt:nl-rlow Craph for the Tri.aD&le hosraa

Continued

34 • Quality Data Processing

TESTING Continued------------------­
unmanageable. Later, in 1983, he demonstrated a five­
step structured process for deriving the test cases
directly from the control-flow graph of the intended pro­
gram [McCabe, 1983, pp. 29-30]. If the cyclomatic
complexity of a program is N, the process will generate
N distinct independent paths which traverse every edge
in the program graph. This structured process will be
demonstrated with several modifications made by the
author, using the control-flow graph adapted from Li
[1988] as shown in Figure 1. This graph, representing
the triangle program adapted from Myers [1979, p. 1],
was drawn by McCabe's [1983] convention which uses
multiple branches to represent the true/false outcomes
of a decision with multiple conditions. For example,
decision 1 in Figure 1has one "Y" (true) branch and three
"N" (false) branches. The former branch represents the
outcome "TTT," while the latter three represent the
outcomes "F**," "TF*," and "TTF." The "*" sign indicates
that the outcome of a condition can be either true or false
because it does not affect the outcome of the entire
decision. Each decision branch in Figure 1 is labeled
with an alphabet, starting at "a" and then "b" through "z."
Each decision node is labeled with an integer starting at
"1" and then "2" through "0." All outcome branches of
each decision should be labeled consecutively. If the
upper bound of the cyclomatic number was closely
observed, a program should not have more than 9
decision nodes or 18 decision branches. Therefore, this
labeling convention should provide enough labels for all
the decision nodes and branches in a program. In fact,
it provides 10 labels for the decision nodes and 26 for the
decision branches.
STRUCTURED PROCESS FOR
COMPLEXITY-BASED TESTING
Step 1

Pick a functional "baseline" path through the program
which represents a legitimate function and not just an
error exit. The key is to pick a path that performs the
major full function provided in the program and inter­
sects a maximal number of decisions in the graph, as
opposed to an error path that results in an error message
or recovery procedure. For example, path 1 d2h3i4k6p7r
is a possible baseline. Note that our path expression is
somewhat different than that of McCabe [1983] in which
the decision number does not appear.
Step 2

Identify the second path by locating the first decision
on the baseline and flipping its outcome while simultane­
ously holding the maximum number of the original
baseline decisions unchanged. The word "flip" means to
change the decision outcome (or branch) from one value
to another, i.e., to take on another decision branch. If the
decision has multiple conditions, each condition should
be flipped one at a time. This process is likely to produce
a second path which is minimally different from the
baseline path. The result yields three paths: 1a7r,
.... 1b7r, and 1c7r. We use the symbol ".... "to indicate that
the decision behind the symbol has been flipped.

Step 3
Set back the first decision to its original value before

the flipping, identify the second decision in the baseline
path, and flip its outcome while holding all other deci­
sions to their baseline values. This process, likewise,
should produce a third path which is minimally different
from the baseline path. The result yields another three
paths: 1d.... 2e7r, 1d.... 2f7r, and 1d.... 2g7r.
Step 4

Repeat the above procedure until one has gone
through every decision on the baseline and has flipped
it from the baseline value while holding the other deci­
sions to their original baseline values. After flipping the
third decision, we have the path 1d2h.... 3j5m7r. Flipping
the fourth decision yields the path 1d2h3i 417r; the sixth
decision yields the path 1d2h3i4k.... 607r; the seventh
decision yields 1 d2h3i4k6p(.... 7q1 d2h3i4k6p)7r. The
parenthesized segment on the last path represents the
boundary and the interior decisions of the loop. Note that
McCabe did not provide any guideline for selecting the
path inside the loop. Yet, he did indicate one should
avoid picking an error path that results in an error
message or recovery procedure unless there is no other
choice, and that the baseline path plus the paths result­
ing from flipping all the decisions in a program graph
should equal the cyclomatic number. Based on these
rules, the author decided that:

1) the baseline path 7q1 d2h3i4k6p should be taken
when the loop decision 7 was flipped,

2) if the path encounters a new loop inside a loop, all
new decisions (including the new loop decision)
inside the new loop should be flipped, and

3) any decision which has been flipped completely
should not be flipped again; otherwise, the total
number of paths generated will be larger than the
cyclomatic number.

Step 5 .
Repeat the above procedure for any unflipped deci­

sion which is not on the baseline. Once all the decisions
have been flipped, the process is then completed. In this
case, the fifth decision encountered in Step 4 must be
flipped. Flipping the fifth decision yields the path
1d2h 3j 5n7r.

In total, this process generated the 12 test paths listed
below. These 12 paths cover all possible combinations
of condition outcomes in each decision, as well as all
pOint of entry in aprogram, therefore meeting the criteria
for the "multiple-condition coverage" [Myers, 1979, p.
42].

1) 1 d2h3i4k6p7r (baseline)
2) 1a7r
3) 1b7r
4) 1c7r
5) 1d.... 2e7r
6) 1d.... 2f7r
7) 1d.... 2g7r
8) 1d2h.... 3j5m7r

Continued

April 1990 • 35

TESTING Continued------------------­

•

b

:r1&ure Z: ne Control-:rlow Craph8 for '1'wo Other bDlplaa

9) 1 d2h3i-417r
10) 1 d2h3i4k-607r
11) 1d2h3i4k6p(-7q1 d2h3i4k6p)7r
12) 1d2h-3j-5n7r

SOME OTHER EXAMPLES
Two other examples will be demonstrated below. The

first example is based on the graph G1 of Figure 2. This
graph was adapted from McCabe [1983, pp. 23-24].
Applying the above process to this graph, one may
identify the following five paths:

1) 1 a2c(3g)2d (baseline)
2) -1b4e
3) 1a-2d
4) 1a2c-3h
5) -1 b-4f
Alternatively, another five paths may look like:
1) 1 a2d (baseline)
2) -1b4e
3) 1a-2c3h
4) -1b-4f
5) 1a-2c(-3g)2d
Note that in both cases, decision 2 appeared twice in

one of the five generated paths. Only the first decision 2 .
was flipped in each case.

Similarly, one may find four paths for the second
graph, G2, in Figure 2 as follows. This graph was adapted
from Schneidewind [1979, p. 990].

1) (1 a)1 b2d3e (baseline)
2) -1b2d3e
3) (1a)1b-2c
4) (1 a)1 b2d-3f

36 • Quality Data Processing

or alternatively,
1) 1 b2c (baseline)
2) (-1a)1b2c
3) 1b-2d3e
4) 1b-2d-3f

DISCUSSION
Note that the above process does not yield one

unique set of test paths. Different testers might choose
different baselines to start the process, therefore pro­
ducing different sets of test paths. Such differences
typically lie in the different combinations of condition
outcomes between the decisions in a program. More­
over, to avoid selecting an impossible path (a path that
is not executable because some decisions on the path
are masked by another decision or by some foregoing
(nondecision) program segments), one must annotate
the program graph with the program source code or
pseudocode. Yet, this requirement is unique to the
complexity-based technique; it is common to all other
structural testing techniques.

Although the complexity-based testing technique can
be applied to a program (or pseudocode) of any size and
any programming style, it is more effective if the target
program has a cyclomatic number of no more t,han 1 0
and is coded in a structured-programming style. By
limiting the cyclomatic number of a program at 10, at
most 10 test paths will be generated by the complexity­
based process, making the generation of test cases and
test data more manageable. By coding a program in a
structured-programming style, the cyclomatic number
will equal the number of independent paths in the pro­
gram, making the testing more complete. Due to the fact
that an unstructured program usually gives a lower
cyclomatic number than what it really has, the author
would like to caution all prospective users of the com­
plexity-based testing technique to closely observe the
structured programming principles, such as: 1) single
entry and exit; 2) no GOTO branch; 3) the use of
structured constructs; 4) modularization; etc. [Bohm and
Jacopini, 1966; Dijkstra, 1968, 1970; Mills, 1972;
McCabe, 1976]. Otherwise, the test paths generated by
the complexity-based process might not cover all the
independent paths of the intended program.

"THE MAJOR STRENGTH OF THE COM­
PLEXITY-BASED TECHNIQUE LIES IN ITS
WELL-STRUCTURED AND EASY-TO-PER­
FORM PROCESS OF DERIVING TEST
PATHS AS DESCRIBED."

STRENGTHS AND WEAKNESSES OF
COMPLEXITY-BASED TESTING

The major strength of the complexity-based tech­
nique lies in its well-structured and easy-to-perform
process of deriving test paths as described above. This

Continued

TESTING Continued------------_______

process can generate a set of test paths/cases which
functionally meets the criteria required by the multiple­
condition coverage. Yet, complexity-based coverage is
superior to the multiple-condition coverage because the
former further explores some (but not all) possible
combinations of condition outcomes between any pair of
serial decisions (one follows the other) while the latter
does not.

A weakness of the complexity-based technique is that
it does not meet all the criteria for testing a loop required
by a method proposed by Howden [1975], known as the
"boundary-interior" method. This method requires that
every loop in a program be tested with 0 entry (Le., skip
the loop), exactly 1 entry (Le., no iteration), and 2 or more
entries (Le., 1 or more iterations). The complexity-based
technique only covers the first two criteria, but not the
last one. This weakness may be attributed to the under­
lying assumption of the cyclomatic metric in which a loop
construct is considered to have the same complexity as
an "IF" construct given they both have the same number
of conditions in their decisions. Furthermore, the tech­
nique does not fully cover the boundary values of each
condition in a decision. For example, given the decision
"IF A=B," the process will only cover the two outcomes
of "A=B" and "A~B," rather than the three outcomes of
"A=B," "A<B," and "A>B." The latter coverage is known
as the "boundary-value analysis" [Myers, 1979, pp. 50­
55]. As indicated by McCabe, the complexity-based
process would only identify the minimal number of
independent paths that should be tested; there are often
additional paths to test [McCabe, 1976, p. 318]. Often
more than one test must be performed on a path
[McCabe, 1983, p. 29] to fully cover all the functional
requirements. Recently, Li [1988] demonstrated thatthe
test paths/cases derived by the complexity-based proc­
ess may not perfectly match those derived by a func­
tional technique, therefore suggesting the complexity­

" ... BEFORE AN IMPROVED METHOD IS
PROPOSED, THE COMPLEXITY-BASED
TECHNIQUE IS BY FAR THE MOST EASY TO
USE AND EFFECTIVE TECHNIQUE AMONG
THE EXISTING STRUCTURAL TESTING
TECHNIQUES."

based technique be supplemented by the functional
techniques such as equivalence partitioning, boundary
value analysis, and cause-effect graphing [Myers, 1979,
pp.44-73].
CONCLUSION

The complexity-based testing technique provides a
structured process to derive test paths and a measure of
testability (or complexity) to enforce structured-pro­
gramming practices. By following the process provided
V (the cyclomatic number) distinct independent paths
will be generated. These paths will traverse each and
every edge (branch) in the program graph at least once

•

(Le., each and every statement in the program will be
executed at least once). And, each and every condition
in a decision will take on its true-false outcomes at least
once. The result therefore conforms to the criteria for
structural test coverage as recommended by Miller
[1977] and Myers [1979].

However, there are several major weaknesses of
complexity-based techniques which call for further
improvement of this technique. These weaknesses are
as follows:

1) There may be several sets of test paths generated
by the process.

2) The path-finding process does not explore all the
possible combinations of condition outcomes be­
tween every pair of serial decisions.

3) It does not meet the "boundary-interior" criteria for
loop testing.

4) It does not fully cover the boundary values of each
condition in a decision.

5) It only identifies the minimal number of independ­
ent paths that should be tested. No guideline has
been provided to derive additional test paths to
fully cover all the functional requirements.

Yet, given the above weaknesses, and before an
improved method is proposed, the complexity-based
technique is by far the most easy to use and effective
technique among the existing structural testing tech­
niques.
REFERENCES

Adrion, W.R., Branstad, M.A., and Cherniavsky, J.C.
- "Validation, Verification, and Testing of Computer
Software," ACM Computing Surveys, Volume 14,
Number 2, June 1982, pp. 159-192.

Berge, C. - Graphs and Hypergraphs, North-Holland,
Amsterdam, The Netherlands, 1973, pp. 15-17.

Bohm, C., and Jacopini, G. - "Flow Diagrams, Turing
Machines and Languages With Only Two Formation
Rules," Communications of the ACM, Volume 9, Num­
ber 5, May 1966, pp. 366-371.

Deo, N. - Graph Theory With Applications to Engi­
neering and Computer Science, Prentice-Hall, Engle­
wood Cliffs, NJ, 1974, pp. 55-58.

Dijkstra, E.W. - "Go To Statement Considered
Harmful," Communications of the ACM, Volume 11,
Number 3, March 1968, pp. 147-148.

Dijkstra, D.W. - "Structured Programming," Software
Engineering Techniques, Report on a conference spon­
sored by the NATO Science Committee, Rome, Italy,
April 1970, pp. 84-88.

Harary, F. - Graph Theory, Addison-Wesley, Read­
ing, MA, 1969, pp. 37-40.

Howden, W.E. - "Methodology for the Generation of
Program Test Data," IEEE Transactions on Computers,
Volume C-24, Number 5, May 1975, pp. 554-559.

Li, E.Y. - "Software Testing Techniques for the Infor­
mation Systems Professional: A Curriculum
Perspective," Proceedings of the International Confer­

Continued

April 1990 • 37

STARTING A QUALITY

ORGANIZATION

Ed Showalter

Manager Quality and Standards, Unisys

Starting Out is Hard to Do
I have read that once started, any task is half done. I

don't know the author so I can't give credit. Many times
it is true; however, the starting out can strike fear in the
hearts of the bravest people.

It is very easy to ignore or procrastinate doing some­
thing before you've started. However, when your boss
has given you a task or you've accepted a new pOSition
you cannot just pull the cover over your head and go
back to sleep.

One position that many people have accepted and are
struggling with today is starting a "quality organiza­
tion." They are finding that "starting out is hard to do."

Having been in this predicament three times, in differ­
ent environments, and each time starting a successful
organization, I have learned that starting out is actually
easier than it is made out to be.

Now before you throw this in the wastebasket and view
me as just another snake oil salesman with one of those
cure-all schemes, read on a few more paragraphs and
just maybe you will gain a little insight that will make your
starting out (or continuing on) easier.
Let's Start

Regardless of what your task is, you will first want to
determine the part of your company you can influence

•

and where that part of the company reports. As an
example, if your boss is the director of the information
systems department that reports to the vice president of
finance (see Figure 1), then your sphere of influence is
the information systems department. Once the reporting
structure is understood, there are only two other things
you need to know before starting this part of your
company toward producing a better product. The rest of
this article will deal with these two issues.

I won't be like a Reader's Digest sweepstakes letter
and make you read this entire article to find the secret
information. The two things you will need to know are
"what's broke?" and "who cares?".
What's Broke?

By this, I mean determining the top few most critical
quality problems that face your organization. This list
should contain no more than three or four issues.
Remember, you cannot solve all the problems of the
world overnight, and the bigger the list the more difficult
it is to remain objective about where you want to go.

Have you planned vacations filled with all of the fun
things you like to do, then ended up miserable or totally
exhausted because you tried to do far too much? You
then found yourself more concerned about finishing the
current activity so you could get on to the next one. You

Continued

TESTING Continued------------------­

ence on Information Systems, 1988.
McCabe, T.J. - "A Complexity Measure," IEEE Trans­

actions on Software Engineering, Volume SE-2, Num­
ber 4, April 1976, pp. 308-320.

McCabe, T.J. - "A Testing Methodology Using the
McCabe Complexity Metric," in T.J. McCabe (ed), Struc­
tured Testing, IEEE Computer Society Press, Silver
Spring, MD, 1983, pp. 19-47.

Miller, E.F., Jr. - "Program Testing: Art Meets Theory,"
Computer, Volume 10, Number 7, July 1977, pp. 42-51.

Mills, H.D. - "Mathematical Foundations for Struc­
tured Programming," FSC 72-6012, IBM Federal Sys­
tem Division, Gaithersburg, MD, 1972.

Myers, G.J. - The Art of Software Testing, Wiley­
Interscience, New York, NY, 1979, pp. vii, 1-11, and 36­
76.

Schneidewind, N.F. - "Software Metrics for Aiding
Program Development and Debugging," AFIPS Pro­
ceedings of the National Computer Conference, 1979,
pp. 989-994. IIAI

38 • Quality Data Processing

