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THE ROLE OF SOFTWARE QUALITY ASSURANCE 
MANAGERS AS EPIDEMIOLOGISTS 

Wayne Madsen, Computer Security Specialist, ISE, Inc. 
Calling computer viruses dangerous, and on the increase, the 
writer warns that heightened software security is essential, 
citing that when computers are used in diagnostics, human 
health can also be affected. 

EMERGING TECHNOLOGIES ENRICH OPPORTUNITIES FOR 
SOFTWARE QUALITY IMPROVEMENTS 

Joseph R. Schofield, Jr. 
Sandia National Laboratories 
This computer consultant offers a new slant on up's and q's" 
and the "three R's" in improving software quality and in 
halting software mismanagement. 

STRUCTURAL SOFTWARE TESTING: THE 
COMPLEXITY-BASED APPROACH 

Eldon Y. LI 
California Polytechnic State University 
Li differentiates between "functional" and "structural" software 
testing techniques, and puts forth the complexity-based 
technique (while noting its weaknesses) as the most easy-to­
use and effective technique. 

STARTING A QUALITY ORGANIZATION 
Ed Showalter 
Manager Quality and Standards, Unlsys 
Noting that ·starting out can strike fear in the hearts of the 
bravest people," the author says experience has shown him 
that starting a "quality organization" is actually easier than 
orie might think. 

THE LIGHTER SIDE OF QUALITY ASSURANCE 
Lyvla M. Garsys, QA Section 
MCCDPA 
In an untitled poem, Garsys good-naturedly exposes a few 
things that one often "te"s the folks at QA". 

CERTIFICATION OF INFORMATION SYSTEMS 
PROFESSIONALS 

David Nlckollch, CDP, CSP 
Development Center Institute, Inc. 
The writer discusses the value of certification and receiving 
designations in validating a person's abilities and experience. 

BOOK REVIEW COLUMN 
HAVE FUN AT WORK 
by William L. Livingston 
The journal reviews HAVE FUN AT WORK, a new, and lively 
book by William L. Livingston, who spares no one in his 
assessment of failure and success. 
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STRUCTURAL SOFTWARE 

TESTING: THE 


COMPLEXITY-BASED APPROACH 

Eldon Y. Li, California Polytechnic State University 

INTRODUCTION 
Software testing techniques are traditionally classi­

fied into "functional" and "structural" techniques based 
on their methods of deriving test cases [Adrion, Bran­
stad and Cherniavsky, 1982]. The functional testing 
techniques derive the test cases from the requirements 
definition or the external (design) specification, while the 
structural techniques derive them from the program 
logic in the source code or internal design specification. 
The former techniques focus on the functions of the 
program/system being tested, the latter, on the struc­
ture. Therefore, they are also known respectively as the 
"black-box" and the "white-box" techniques [Myers, 
1979, pp. 8-9]. Among the existing structural tech­
niques, the complexity-based coverage technique de­
veloped by McCabe [1976] was deemed superior [U, 
1988]. Yet, there are still weaknesses to be rectified. 
This paper reviews the complexity-based test tech­
nique, and discusses the strengths and weaknesses of 
the technique. 
COMPLEXITY-BASED TESTING 
TECHNIQUE 

In his landmark paper, Thomas J. McCabe [1976] 
proposed the use of the "cyclomatic number" [Berge, 
1973] (also called "cycle rank" [Harary, 1969] or "nullity" 
[Deo, 1974]) in the graph-theory literature to measure 
the control-flow complexity of a program. Such a meas­
ure is known as the "cyclomatic complexity metric." In 
the same paper, he further proposed two other metrics. 
One measures the "unstructuredness" of a program, 
and the other indicates the number of independent paths 
actually executed by a program running on a test data 
set. The former is called the "essential complexity met­
ric" while the latter is the "actual complexity metric." The 
cyclomatic complexity metric V(G) of a program was 
defined as one plus the number of conditions in the 
program [McCabe, 1976; Li, 1987]. The essential com­
plexity metric was defined as the cyclomatic complexity 
minus the number of proper subgraphs with unique entry 
and exit nodes. McCabe [1976] demonstrated that every 
structured program can be reduced to a program of unit 
cyclomatic complexity; Le., the "essential complexity" 
equals to one. He further proved that the cyclomatic 
complexity of an unstructured program is at least three. 
This is, any program whose cyclomatic complexity 
equals two is, or can be modified into, a structured 

program. 
According to McCabe, the cyclomatic metric deter­

mines the minimal set of required test paths. Each test 
path represents a test case. The program under test 
must have a single entry and a single exit. The actual 
complexity should be maintained as close to the cyclo­
matic complexity as possible. This latter objective may 
be attained by finding test data which covers more paths, 
or by restructuring the program into a program with less 
complexity (Le., eliminating the unnecessary decision 
conditions in a program) and reducing portions of the 
program to in-line code. To maintain the testability of a 
program, McCabe suggested that the cyclomatic num­
ber of a program should have an upper bound of 10 
[McCabe, 1976, p. 314]. Otherwise, the number of 
possible paths of the program may easily become 

Accept integer's A,B,C 

If A>O l 8>0 l C>O 

If A·C 

Repeat another test (R.Y)? 
q 

END 
ripre 1: ~ COIlt:nl-rlow Craph for the Tri.aD&le hosraa 
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TESTING Continued------------------­
unmanageable. Later, in 1983, he demonstrated a five­
step structured process for deriving the test cases 
directly from the control-flow graph of the intended pro­
gram [McCabe, 1983, pp. 29-30]. If the cyclomatic 
complexity of a program is N, the process will generate 
N distinct independent paths which traverse every edge 
in the program graph. This structured process will be 
demonstrated with several modifications made by the 
author, using the control-flow graph adapted from Li 
[1988] as shown in Figure 1. This graph, representing 
the triangle program adapted from Myers [1979, p. 1], 
was drawn by McCabe's [1983] convention which uses 
multiple branches to represent the true/false outcomes 
of a decision with multiple conditions. For example, 
decision 1 in Figure 1has one "Y" (true) branch and three 
"N" (false) branches. The former branch represents the 
outcome "TTT," while the latter three represent the 
outcomes "F**," "TF*," and "TTF." The "*" sign indicates 
that the outcome of a condition can be either true or false 
because it does not affect the outcome of the entire 
decision. Each decision branch in Figure 1 is labeled 
with an alphabet, starting at "a" and then "b" through "z." 
Each decision node is labeled with an integer starting at 
"1" and then "2" through "0." All outcome branches of 
each decision should be labeled consecutively. If the 
upper bound of the cyclomatic number was closely 
observed, a program should not have more than 9 
decision nodes or 18 decision branches. Therefore, this 
labeling convention should provide enough labels for all 
the decision nodes and branches in a program. In fact, 
it provides 10 labels for the decision nodes and 26 for the 
decision branches. 
STRUCTURED PROCESS FOR 
COMPLEXITY-BASED TESTING 
Step 1 

Pick a functional "baseline" path through the program 
which represents a legitimate function and not just an 
error exit. The key is to pick a path that performs the 
major full function provided in the program and inter­
sects a maximal number of decisions in the graph, as 
opposed to an error path that results in an error message 
or recovery procedure. For example, path 1 d2h3i4k6p7r 
is a possible baseline. Note that our path expression is 
somewhat different than that of McCabe [1983] in which 
the decision number does not appear. 
Step 2 

Identify the second path by locating the first decision 
on the baseline and flipping its outcome while simultane­
ously holding the maximum number of the original 
baseline decisions unchanged. The word "flip" means to 
change the decision outcome (or branch) from one value 
to another, i.e., to take on another decision branch. If the 
decision has multiple conditions, each condition should 
be flipped one at a time. This process is likely to produce 
a second path which is minimally different from the 
baseline path. The result yields three paths: .... 1a7r, 
.... 1b7r, and .... 1c7r. We use the symbol ".... "to indicate that 
the decision behind the symbol has been flipped. 

Step 3 
Set back the first decision to its original value before 

the flipping, identify the second decision in the baseline 
path, and flip its outcome while holding all other deci­
sions to their baseline values. This process, likewise, 
should produce a third path which is minimally different 
from the baseline path. The result yields another three 
paths: 1d.... 2e7r, 1d.... 2f7r, and 1d.... 2g7r. 
Step 4 

Repeat the above procedure until one has gone 
through every decision on the baseline and has flipped 
it from the baseline value while holding the other deci­
sions to their original baseline values. After flipping the 
third decision, we have the path 1d2h.... 3j5m7r. Flipping 
the fourth decision yields the path 1d2h3i .... 417r; the sixth 
decision yields the path 1d2h3i4k.... 607r; the seventh 
decision yields 1 d2h3i4k6p( .... 7q1 d2h3i4k6p)7r. The 
parenthesized segment on the last path represents the 
boundary and the interior decisions of the loop. Note that 
McCabe did not provide any guideline for selecting the 
path inside the loop. Yet, he did indicate one should 
avoid picking an error path that results in an error 
message or recovery procedure unless there is no other 
choice, and that the baseline path plus the paths result­
ing from flipping all the decisions in a program graph 
should equal the cyclomatic number. Based on these 
rules, the author decided that: 

1) the baseline path .... 7q1 d2h3i4k6p should be taken 
when the loop decision 7 was flipped, 

2) if the path encounters a new loop inside a loop, all 
new decisions (including the new loop decision) 
inside the new loop should be flipped, and 

3) any decision which has been flipped completely 
should not be flipped again; otherwise, the total 
number of paths generated will be larger than the 
cyclomatic number. 

Step 5 . 
Repeat the above procedure for any unflipped deci­

sion which is not on the baseline. Once all the decisions 
have been flipped, the process is then completed. In this 
case, the fifth decision encountered in Step 4 must be 
flipped. Flipping the fifth decision yields the path 
1d2h .... 3j .... 5n7r. 

In total, this process generated the 12 test paths listed 
below. These 12 paths cover all possible combinations 
of condition outcomes in each decision, as well as all 
pOint of entry in aprogram, therefore meeting the criteria 
for the "multiple-condition coverage" [Myers, 1979, p. 
42]. 

1) 1 d2h3i4k6p7r (baseline) 
2) .... 1a7r 
3) .... 1b7r 
4) .... 1c7r 
5) 1d.... 2e7r 
6) 1d.... 2f7r 
7) 1d.... 2g7r 
8) 1d2h.... 3j5m7r 

Continued 
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9) 1 d2h3i-417r 
10) 1 d2h3i4k-607r 
11) 1d2h3i4k6p(-7q1 d2h3i4k6p)7r 
12) 1d2h-3j-5n7r 

SOME OTHER EXAMPLES 
Two other examples will be demonstrated below. The 

first example is based on the graph G1 of Figure 2. This 
graph was adapted from McCabe [1983, pp. 23-24]. 
Applying the above process to this graph, one may 
identify the following five paths: 

1) 1 a2c(3g)2d (baseline) 
2) -1b4e 
3) 1a-2d 
4) 1a2c-3h 
5) -1 b-4f 
Alternatively, another five paths may look like: 
1) 1 a2d (baseline) 
2) -1b4e 
3) 1a-2c3h 
4) -1b-4f 
5) 1a-2c(-3g)2d 
Note that in both cases, decision 2 appeared twice in 

one of the five generated paths. Only the first decision 2 . 
was flipped in each case. 

Similarly, one may find four paths for the second 
graph, G2, in Figure 2 as follows. This graph was adapted 
from Schneidewind [1979, p. 990]. 

1) (1 a)1 b2d3e (baseline) 
2) -1b2d3e 
3) (1a)1b-2c 
4) (1 a)1 b2d-3f 
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or alternatively, 
1) 1 b2c (baseline) 
2) (-1a)1b2c 
3) 1b-2d3e 
4) 1b-2d-3f 

DISCUSSION 
Note that the above process does not yield one 

unique set of test paths. Different testers might choose 
different baselines to start the process, therefore pro­
ducing different sets of test paths. Such differences 
typically lie in the different combinations of condition 
outcomes between the decisions in a program. More­
over, to avoid selecting an impossible path (a path that 
is not executable because some decisions on the path 
are masked by another decision or by some foregoing 
(nondecision) program segments), one must annotate 
the program graph with the program source code or 
pseudocode. Yet, this requirement is unique to the 
complexity-based technique; it is common to all other 
structural testing techniques. 

Although the complexity-based testing technique can 
be applied to a program (or pseudocode) of any size and 
any programming style, it is more effective if the target 
program has a cyclomatic number of no more t,han 1 0 
and is coded in a structured-programming style. By 
limiting the cyclomatic number of a program at 10, at 
most 10 test paths will be generated by the complexity­
based process, making the generation of test cases and 
test data more manageable. By coding a program in a 
structured-programming style, the cyclomatic number 
will equal the number of independent paths in the pro­
gram, making the testing more complete. Due to the fact 
that an unstructured program usually gives a lower 
cyclomatic number than what it really has, the author 
would like to caution all prospective users of the com­
plexity-based testing technique to closely observe the 
structured programming principles, such as: 1) single 
entry and exit; 2) no GOTO branch; 3) the use of 
structured constructs; 4) modularization; etc. [Bohm and 
Jacopini, 1966; Dijkstra, 1968, 1970; Mills, 1972; 
McCabe, 1976]. Otherwise, the test paths generated by 
the complexity-based process might not cover all the 
independent paths of the intended program. 

"THE MAJOR STRENGTH OF THE COM­
PLEXITY-BASED TECHNIQUE LIES IN ITS 
WELL-STRUCTURED AND EASY-TO-PER­
FORM PROCESS OF DERIVING TEST 
PATHS AS DESCRIBED." 

STRENGTHS AND WEAKNESSES OF 
COMPLEXITY-BASED TESTING 

The major strength of the complexity-based tech­
nique lies in its well-structured and easy-to-perform 
process of deriving test paths as described above. This 

Continued 
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process can generate a set of test paths/cases which 
functionally meets the criteria required by the multiple­
condition coverage. Yet, complexity-based coverage is 
superior to the multiple-condition coverage because the 
former further explores some (but not all) possible 
combinations of condition outcomes between any pair of 
serial decisions (one follows the other) while the latter 
does not. 

A weakness of the complexity-based technique is that 
it does not meet all the criteria for testing a loop required 
by a method proposed by Howden [1975], known as the 
"boundary-interior" method. This method requires that 
every loop in a program be tested with 0 entry (Le., skip 
the loop), exactly 1 entry (Le., no iteration), and 2 or more 
entries (Le., 1 or more iterations). The complexity-based 
technique only covers the first two criteria, but not the 
last one. This weakness may be attributed to the under­
lying assumption of the cyclomatic metric in which a loop 
construct is considered to have the same complexity as 
an "IF" construct given they both have the same number 
of conditions in their decisions. Furthermore, the tech­
nique does not fully cover the boundary values of each 
condition in a decision. For example, given the decision 
"IF A=B," the process will only cover the two outcomes 
of "A=B" and "A~B," rather than the three outcomes of 
"A=B," "A<B," and "A>B." The latter coverage is known 
as the "boundary-value analysis" [Myers, 1979, pp. 50­
55]. As indicated by McCabe, the complexity-based 
process would only identify the minimal number of 
independent paths that should be tested; there are often 
additional paths to test [McCabe, 1976, p. 318]. Often 
more than one test must be performed on a path 
[McCabe, 1983, p. 29] to fully cover all the functional 
requirements. Recently, Li [1988] demonstrated thatthe 
test paths/cases derived by the complexity-based proc­
ess may not perfectly match those derived by a func­
tional technique, therefore suggesting the complexity­

" ... BEFORE AN IMPROVED METHOD IS 
PROPOSED, THE COMPLEXITY-BASED 
TECHNIQUE IS BY FAR THE MOST EASY TO 
USE AND EFFECTIVE TECHNIQUE AMONG 
THE EXISTING STRUCTURAL TESTING 
TECHNIQUES." 

based technique be supplemented by the functional 
techniques such as equivalence partitioning, boundary 
value analysis, and cause-effect graphing [Myers, 1979, 
pp.44-73]. 
CONCLUSION 

The complexity-based testing technique provides a 
structured process to derive test paths and a measure of 
testability (or complexity) to enforce structured-pro­
gramming practices. By following the process provided 
V (the cyclomatic number) distinct independent paths 
will be generated. These paths will traverse each and 
every edge (branch) in the program graph at least once 

• 

(Le., each and every statement in the program will be 
executed at least once). And, each and every condition 
in a decision will take on its true-false outcomes at least 
once. The result therefore conforms to the criteria for 
structural test coverage as recommended by Miller 
[1977] and Myers [1979]. 

However, there are several major weaknesses of 
complexity-based techniques which call for further 
improvement of this technique. These weaknesses are 
as follows: 

1) There may be several sets of test paths generated 
by the process. 

2) The path-finding process does not explore all the 
possible combinations of condition outcomes be­
tween every pair of serial decisions. 

3) It does not meet the "boundary-interior" criteria for 
loop testing. 

4) It does not fully cover the boundary values of each 
condition in a decision. 

5) It only identifies the minimal number of independ­
ent paths that should be tested. No guideline has 
been provided to derive additional test paths to 
fully cover all the functional requirements. 

Yet, given the above weaknesses, and before an 
improved method is proposed, the complexity-based 
technique is by far the most easy to use and effective 
technique among the existing structural testing tech­
niques. 
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STARTING A QUALITY 

ORGANIZATION 


Ed Showalter 

Manager Quality and Standards, Unisys 


Starting Out is Hard to Do 
I have read that once started, any task is half done. I 

don't know the author so I can't give credit. Many times 
it is true; however, the starting out can strike fear in the 
hearts of the bravest people. 

It is very easy to ignore or procrastinate doing some­
thing before you've started. However, when your boss 
has given you a task or you've accepted a new pOSition 
you cannot just pull the cover over your head and go 
back to sleep. 

One position that many people have accepted and are 
struggling with today is starting a "quality organiza­
tion." They are finding that "starting out is hard to do." 

Having been in this predicament three times, in differ­
ent environments, and each time starting a successful 
organization, I have learned that starting out is actually 
easier than it is made out to be. 

Now before you throw this in the wastebasket and view 
me as just another snake oil salesman with one of those 
cure-all schemes, read on a few more paragraphs and 
just maybe you will gain a little insight that will make your 
starting out (or continuing on) easier. 
Let's Start 

Regardless of what your task is, you will first want to 
determine the part of your company you can influence 

• 

and where that part of the company reports. As an 
example, if your boss is the director of the information 
systems department that reports to the vice president of 
finance (see Figure 1), then your sphere of influence is 
the information systems department. Once the reporting 
structure is understood, there are only two other things 
you need to know before starting this part of your 
company toward producing a better product. The rest of 
this article will deal with these two issues. 

I won't be like a Reader's Digest sweepstakes letter 
and make you read this entire article to find the secret 
information. The two things you will need to know are 
"what's broke?" and "who cares?". 
What's Broke? 

By this, I mean determining the top few most critical 
quality problems that face your organization. This list 
should contain no more than three or four issues. 
Remember, you cannot solve all the problems of the 
world overnight, and the bigger the list the more difficult 
it is to remain objective about where you want to go. 

Have you planned vacations filled with all of the fun 
things you like to do, then ended up miserable or totally 
exhausted because you tried to do far too much? You 
then found yourself more concerned about finishing the 
current activity so you could get on to the next one. You 
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