
Int J Flex Manuf Syst (2006) 17:227–250

DOI 10.1007/s10696-006-8820-8

Reverse simulation for collaborative commerce:
A study of integrating object-oriented database
technology with object-oriented simulator

Timon C. Du · Eldon Y. Li · Hsin Rau ·
Guan-Yuan Lian

C© Springer Science + Business Media, LLC 2006

Abstract Collaborative commerce has been used for communication, design, plan-
ning, information sharing, and information discovery in business-to-business (B2B)
applications. The collaboration between buyers and sellers enhances product qual-
ity and customer satisfaction. However, most effort currently focuses on information
sharing with customers and suppliers instead of joint product development or manu-
facturing. Moreover, traditional analytical methods have limited capability in solving
problems. This study presents a framework for doing reverse simulation, where de-
signers can reuse past experiments and change system parameters in manufacturing
system for collaborative commerce. The framework integrates the object-oriented sim-
ulator and the object-oriented database. In this framework, the object-oriented database
records the whole experiment scenarios and allows multiple planners with different
expertise to involve concurrently and collaboratively. Then, simulations of advanced
planning and scheduling in a product manufacturing environment that involves several
planners working collaboratively are used for demonstration.

Keywords Collaborative commerce · Reverse simulation · Object-oriented database

T. C. Du (�)
Department of Decision Sciences and Managerial Economics,
The Chinese University of Hong Kong, Hong Kong
e-mail: timon@cuhk.edu.hk

E. Y. Li
Department of Management Information Systems,
National Chengchi University, Taipei 11605, Taiwan

H. Rau· G.-Y. Lian
Department of Industrial Engineering,
Chung Yuan Christian University, Taiwan

Springer

228 T. C. Du et al.

1. Introduction

Collaborative commerce is a kind of business-to-business (B2B) application being
used for communication, design, planning, information sharing, and information dis-
covery (Turban, 2003; Li, 2005). These collaborative activities are usually performed
between supply chain partners as well as within an organization. For example, the
world largest semiconductor manufacturer, Taiwan Semiconductor Manufacturing
Company, adopts “virtual fab” concepts by allowing customers to track all infor-
mation and business transactions ranging from technology selection and collaborative
design to post-sales services (www.tsmc.com/english/default.htm). Other examples in-
clude GE (www.geis.com/index.jsp) and Adaptec (www.adaptecconnect.com/). The
adoption of collaborative commerce can improve communication between buyers and
sellers. In addition, the interactive and collaborative relationship can enhance product
quality and customer satisfaction. However, most collaborative effort focuses on shar-
ing information with customers and suppliers. The degree of participation from either
buyers or suppliers toward the manufacturer is limited since a production schedule
is mostly controlled by the dominant manufacturer. Therefore, it can be considered
a breakthrough if the degree of manufacturing planning can be more open to part-
ners. For example, if both parties can perform manufacturing simulation together and
propose a better production schedule, customer satisfaction can be further improved.

The complexity of manufacturing systems has increased as the degree of automation
has increased. The traditional numerical analysis tools, e.g., operations research and
queueing theory may have limited capabilities in solving some complex problems
when uncertain factors are involved. Therefore, simulation can be another option to
perform system analysis. Simulation has been used in various areas such as scheduling,
inventory management, distribution, and forecasting. However, a primary drawback
is that simulation experiments are time consuming and costly to develop and run.
On the other hand, object-oriented technology is a software technology capable of
modeling a one-to-one relationship between real-world objects and system objects.
This technology has the advantages of program reusability and extensibility (Du and
Wu, 2001). Therefore, if a simulation model could integrate with object-oriented
technology, it could be reused and extended. Furthermore, a database system could be
used to maintain a significant amount of data generated from simulation experiments.
Most simulators use relational databases to store data. This data could be used for
statistical analysis and parameter evaluation.

Given the aforementioned advantages of object-oriented technology, this study
proposes an object database simulator that integrates an object simulator with an object
database. This approach has a unique data structure and the whole simulation scenario
can be recorded into a database. Moreover, a version management of an object-oriented
database can maintain several versions of simulation experiments. The planners can
return to old scenarios to branch new experiments or to involve other experts. In this
case, the higher flexibility and better concurrency can be provided to the collaborative
partners in uncertain environment.

A designer can set up several different checkpoints and a database can record an
experiment at those checkpoints. The checkpoints should be set when (1) significant
progress needs to be recorded or backtracked; (2) temporary agreements are reached;
(3) acceptable results are found; (4) significant system loading has reached; and/or

Springer

Reverse simulation for collaborative commerce 229

(5) periodical system logging is preferred. A designer can return to old scenarios
with checkpoints preset and change the parameters or precede new experiments if
needed.

The remaining contents of this article are as follows. Section 2 reviews the litera-
ture. Section 3 presents the integrated classes of both an object-oriented simulator and
an object-oriented database. Reverse simulation is discussed in Section 4. Section 5
demonstrates reverse simulation for advanced planning and scheduling in a collabora-
tive manufacturing environment using an object-oriented database (ObjectStore), an
object-oriented language (C++), and a modeling tool (UML).

2. Literature review

This section reviews simulation languages and database technologies. The integration
of a database and a simulator is the focal point. Then, collaborative commerce is
presented.

2.1. The simulation language

In the 1950s, simulation models were written in third-generation programming lan-
guage such as Fortran or C (Banks, 1996). In the 1960s, simulation languages with
statistical analysis functions were developed, such as GPSS, SIMSCRIPT (Law, 1991),
GASP IV (Pritsker, 1986). Most simulation languages provide mechanisms for ran-
dom number generator, model building, data collection, statistical analysis, and event
scheduler. Normally, designers can use block diagrams, similar to flow charts, to assist
the development of a simulation model.

In 1967 the concept of objects was introduced in SIMULA67 (Henderson-Sellers,
1991) allowing a simulation model to be composed of objects instead of procedure.
This approach increased the speed of building a simulation model. Therefore, SIM-
ULA67 could be considered as a pioneer of object-oriented programming.

In the 1980s, simulation languages had easier and faster functions to transfer be-
tween concepts and models. Examples include SLAM and SIMAN (Pegden, 1995).
SLAM enhanced GASP IV by having not only an event scheduler, but also procedure-
oriented and continuous simulation. SIMAN included modeling in material handling
functions, such as conveyor and transporter.

In the 1990s, Windows-based simulators began to prevail. GPSS and SIMAN were
modified into ProModel and Arena with graphic-user-interfaces. The interfaces al-
lowed designers to create simulation model in drag-and-drop icons without spending
too much time on writing programs.

Recently, object-oriented simulators have appeared. Object-C was used by (McGre-
gor, 1994) to develop a Windows-based, object-oriented simulator. Another popular
object-oriented simulator, Simple++, was designed by AESOP GmbH using C++.
Simple++ is a simulator with model reuse capability. Mize (1992) compared the
differences between conventional simulators and an object-oriented simulator and
showed the advantages of an object-oriented simulator. Moreover, object-oriented
modeling and simulation are also used for reactive system development (Barcio, 1997)
and process planning and production scheduling (Zhang, 1999).

Springer

230 T. C. Du et al.

The terminology of reverse simulation was presented by McGreevy (1988). At
that time, the reverse simulation used Monte Carlo simulation for chemical, electro-
chemical, and physical energy engineering. It mainly focused on the observation of
the reverse process of materials heat treatment. The same terminology, reverse sim-
ulation, can also be found in finding stable system designs (Wild, 1994), where the
reverse simulation stands for implementing simulation reversely. That is, the simula-
tion determines outputs of the performance measures first, and then uses the designated
performance outputs to find the variable values satisfying the performance measures.
It is worth noting that reverse simulation in this study is different from the two earlier
approaches. In this study, reverse simulation means that the designer can return to any
checkpoint in the simulation process since multiple versions of simulation experiments
are maintained by an object-oriented database.

2.2. Object-oriented database

The database system manages data for multiple users. The most implemented database
system is the relational data model. The relational database has a simple and uniform
data structure that provides advantages of solid theoretical foundation. However, the
relational database has the shortcomings of (1) incapability in supporting simple data
types, (2) decomposing real-world objects into instance pieces and recomposing them
again when needed, (3) maintaining relationships using functions (e.g., triggers and
constraints), and (4) having low extensibility after completing the schema design (Du,
1997).

The object-oriented database can be considered as an integration of a database
system and the object-oriented technology (Khoshafian, 1993). The object-oriented
technology includes the abstract data type, inheritance, polymorphism, and object
identity, while the database functions are persistence, concurrent control, recovery,
query, integrity, and security (Elmasri, 1994; Kim, 1991). Moreover, because of the
integration, the object-oriented database has the functions of version management,
schema evolution, and long transaction management (Bertino, 19991; Elmasri, 1994).

2.3. The integration between simulation and database

Current approaches to storing objects on a database are the object relational database
and the object-oriented database. The examples of object relational databases are Ora-
cle 8 and Informix. This approach uses object technology to encapsulate complex data,
but the internal data structure is still relational. Therefore, the encapsulated data cannot
be queried. The object-oriented databases include O2, GemStone, ONTOS, ORION,
Iris, POSTGRES, Versant, and ObjectStore. Regarding the simulators, they can be dis-
tinguished into procedure simulators and object-oriented simulators. Currently, three
combinations are being used (Mize, 1992; Eum and Minoura, 1996):

(1) Simulator without database. This approach does not have interfaces to store the
simulation data into the database. Normally, data are maintained in data files. A
designer needs to transfer or input data between simulators and data files. It is a
time consuming process, and the designer needs to know the location and format
of the data files very well.

Springer

Reverse simulation for collaborative commerce 231

Table 1 The comparison of different strategies in integrating simulators and database systems

Simulator Procedure Database

without simulator language OO simulator OO simulator

database with RDB with RDB with RDB with OODB

Model construction difficult difficult very difficult easier easier

Model reuse none none none yes yes

Model expansion difficult difficult very difficult easier easier

Difficulty of integration very difficult difficult median median median

Format transform many times need no interfaces simulator-defined none

interfaces interfaces

Experiment reuse none very difficult difficult very difficult easier

(2) Procedure simulator with relational database. This approach stores the data gen-
erated in the process of simulation experiments into a relational database. If the
simulator is written in a format different from the database, a common interface,
i.e. ODBC, is used for transformations. Some simulators provide designated in-
terfaces to transfer data between the simulator and database.

(3) Object-oriented simulator with relational database. This approach can have the
advantages of the object-oriented simulator, i.e. object reuse and flexible expan-
sion, and the relational database, i.e., uniform data structure and data management
functions. However, the difference of data structure between these two systems
requires format transformation back and forth. In addition, the concept of encap-
sulation in the object-oriented technology conflicts with the data management of
the relational database. If this approach uses the object relational database instead
of the relational database, the limitation remains the same as that of the relational
database . That is, the encapsulated data cannot be accessed other than through
designated interfaces, and the objects need to be decomposed into table format.

Considering the drawbacks of the three current approaches, this study combines
the object-oriented simulator and object-oriented database by integrating a portion of
simulation classes with the object-oriented database. This approach has the common
data structure for both simulator and database, and has the advantages of both. The
simulator retrieves models from the database without format transforming, and the
simulation experiments are recorded by the database. The old scenario can be repeated,
using version management. Table 1 shows the comparison of different integration
strategies.

2.4. Collaborative commerce

As it has been well known, B2B is different to business-to-consumer (B2C) in the way
that both parties are business organizations. Normally, the organizations have formal
contract and maintain long-term relationship. The relationship sometimes further ex-
tends into a supply-chain relationship. Several entities are involved in the supply-chain
relationship, such as sellers, buyers, intermediaries and deliverers. Browne et al. (1995)
pointed out that manufacturing systems have faced various sources of stresses and must
link through the supplier chain and customer chain. There are various collaborative

Springer

232 T. C. Du et al.

formats. For examples, the long-term enterprise relationships across the value chain
is considered as extended enterprise (Jagdev, 1998; Childe, 1998) while the virtual
enterprise suggests a relatively short-term relationships among companies or depart-
ments within a company (Browne, 1999). The main objective of this relationship is to
share information with partners. The information sharing can be done through Intranet
(Gupta, 1998), Extranet (Turban, 2003), and workflow (Kumar, 2002). Through the
information sharing, organizations expect to cut cycle time and cost, reduce adminis-
trative errors, increase productivity, and eventually boost revenue. It is clear that this
relationship encourages collaboration. The collaboration triggers a new focal point,
called collaborative commerce (Li, 2005; Turban, 2003) or collaborative business
(Deitel, 2001). The activities of collaborative commerce are varied, ranging from joint
design to forecasting. For example, Wal-Mart joins with P&G to form a collaborative
forecasting and replenishment (Chopra, 2001) and Zacharia designs a collaborative
reputation mechanism to predict reliabilities (Zacharia, 2000). Other studies include
content management (Gupta, 2001), collaborative design (Huang, 2002), collabora-
tive engineering (Contero, 2002), collaborative decision-making (Raghu, 2001), and
collaborative forecasting (Aviv, 2001).

There are many collaborative models can be adopted in the collaborative com-
merce. For example, sales force automation (SFA), continuous replenishment pro-
grams (CRP), and vendor-managed inventory (VMI) that allows the suppliers to man-
age the inventory for the buyers (Chopra, 2001). Advanced planning and scheduling
develops the detailed production schedules on what, where, when, how and who
to make products by considering materials availability, plant capacity, and other
business objectives (Kuroda, 2002). Moreover, collaborative planning, forecasting,
replenishment (CPFR) model further integrates production, purchasing planning,
demand forecasting, and inventory replenishment (Fliedner, 2003). Although the
collaboration can happen in any stages of business transactions, the proposed re-
verse simulation for collaborative commerce focuses on the collaborative planning
of manufacturing process. In the design, both parties from collaborating compa-
nies can interact with each other to generate a mutually agreed plan. The plan can
produce the most satisfactory profits while balancing the manufacturing capacity.
This provides the possibility of building profound relationship among supply chain
partners.

3. An integrated architecture of object database simulator

The object-oriented simulation language develops models in the structure of classes,
which generate program objects rapidly. Similar to the object-oriented simulator,
the object-oriented database maintains data and applications in classes. Classes are
the common ground of both object-oriented simulator and object-oriented database.
Therefore, a plausible approach is to build an integrated architecture that uses object-
oriented simulator to proceed simulation operation and an object-oriented database to
maintain both data and experiments. Figure 1 presents the architecture. The integrated
class library stands between the object-oriented simulator and the object-oriented
database. The simulator generates program objects from the integrated class library,
and the database system creates database schemas based on the class library. Other

Springer

Reverse simulation for collaborative commerce 233

Simulation
Object A

Simulation
Object B

Database Database
Object A

2
Object A

2

Simulation
Object D1

Simulation
Object C

Simulation System

Model

Database
Object B

Database
Object C

Database
Object C

Object AObject AObject A
Database Database Database

Fig. 1 The architecture of an object database simulator

than the schemas for simulation purpose, the object-oriented database also maintains
external data, which are discussed in Section 3.1.

3.1. Class library of object database simulator

In this study, the class library of an object database simulator includes three levels of
classes: (1) object-oriented simulator, (2) object-oriented database, and (3) integrated
class library. The object-oriented simulator has several fundamental functions such
as clocks of simulation process, random number generators, and subject components
in order to create simulation environments. These functions can be grouped into two
packages: Simulation Control and Simulation Component. A package is an UML ter-
minology that groups similar classes for clear identification. The Simulation Control
package has simulation clocks and distribution generators. Since these functions in-

Springer

234 T. C. Du et al.

teract with other class modules at all times, they should defined as global variables.
Two classes are defined in this package: Simulation Event and Random Variable. The
other package, Simulation Component, contains classes of subject components such
as parts, buffers, operation centers, machines, etc. Two basic classes are provided:
Active and End. If simulation objects are related to the time factor, e.g., machines,
parts, etc., they are inherited from the Active class. On the other hand, if objects are
irrelevant to time, e.g., buffer size, they are inherited from the End class.

The object-oriented database is a database that maintains not only external data, e.g.,
information of products and machines, but also operational data, which are generated
during the simulation process. In this study, a package, Simulation Data Stored, has
classes A, B, and C to maintain information of both external data and operational data.
The schemas are defined in Schema.cpp, as follows in ObjectStore format:

#include “A.hh”

#include “B.hh”

#include “C.hh”

void dummy() {
OS MARK SCHEMA TYPE(A);

OS MARK SCHEMA TYPE(B);

OS MARK SCHEMA TYPE(C);}
Note that the attributes and behaviors of classes A, B, and C are defined in file A.hh,
B.hh, and C.hh, respectively, and OS MARK SCHEMA TYPE() is the predefined key-
word for defining schemas in ObjectStore.

The integrated class library is the connector between the simulator and database. The
connection between the simulator and database is the package Simulation Component,
since it contains the data of simulation subjects. In this case, the database has pack-
ages of Simulation Data Stored and Simulation Component. The package Simula-
tion Control is the collection of temporary objects. A temporary object will be removed
after completing simulation.

3.2. The object-oriented database and simulation

The object-oriented database management system can both store and manage objects.
The following operations can assist the construction of simulation models:

(1) Collection. A collection is an object that is composed of other objects. For exam-
ple, a buffer can be a collection if the buffer retains work-in-process parts. On the
other hand, the parts are the elements of a collection. The elements in a collection
should be of the same type but have different identification numbers. There are four
kinds of collections in the ObjectStore: set, bag, list, and array. The set collection
has unordered and unrepeated elements while the bag collection allows repeated
elements. The list and array collections are similar to set and bag, respectively,
but the sequence of elements is maintained. Note that, the declaration and opera-
tions (insertion and removal) of collections are predefined in the object-oriented

Springer

Reverse simulation for collaborative commerce 235

database system. In simulation, the collection can be used to model buffers, or
machine groups.

(2) Query. A database management system not only stores data but also manages data
for querying. Theoretically speaking, the object-oriented technology encapsulates
data into objects, and only through designated predefined methods can the data be
accessed. This constraint decreases the query performance. A commercial object-
oriented database such as ObjectStore provides structured query language (SQL)
to create, delete, query, and modify objects. This hastens the simulation operations.
For example, a planner can query the sequence of machining parts in the input
queue to decide whether or not to change the dispatching rules.

(3) Index. In the relational database, indices are set on attributes to enhance the query
operations. Similarly, the object-oriented database can have indices on the same
type of objects to increase query performance. Applying indexing to the simulation
environment, we can have an index on parts in queue based on the dispatching
rule. This approach enables quick retrieval of next part for machining.

3.3. Reuse of simulation

In the object-oriented simulation, the system is modeled in objects. Since the object-
oriented database is the storage for keeping objects, the whole simulation environment
can be retained. Unlike the conventional database, which records data only, the sim-
ulation environment is also recorded in this study. Note that the maintenance of envi-
ronmental information by the object-oriented database has the advantage of scenario
reuse.

As stated before, the package Simulation Data Stored is used to store external data
and the objects that are generated from experiments. In the package,

• class Simulation Data Stored Schema is created to keep object schemas and class
Simulation Data Object Stored stores the objects.

• Simulation Component retains the simulation objects using classes Simulation
Component Schema and Simulation Component Object Stored. Class Simulation
Component Schema defines the schemas of simulation objects and all the scenario
objects are kept in the class, Simulation Component Object Stored.

• Package Simulation Control is used for simulation control and generates objects
when needed. Therefore, it is not stored in the database.

Note that the objects in the database can be retrieved repetitively. When the objects
are retrieved, the simulation returns to the old scenario. This can be considered as
simulation experiment reuse.

4. Using object-oriented database in reverse simulation

This study uses the version management technique of the object-oriented database to
build reverse simulation model. Section 4.1 discusses the issues of version manage-
ment and the reverse simulation is presented in Section 4.2. The concern of setting
checkpoints is covered in Section 4.3.

Springer

236 T. C. Du et al.

4.1. Version management

In the transaction processing, the database needs to maintain the atomicity, consistency,
isolation, and durability of data. Normally, placing locks on data is a common approach
for sharing data among multiple users. However, data cannot be locked for too long,
or else system performance will decrease. The object-oriented database uses version
management to process long transactions so that multiple users can share the data
and have independent controls. The version management is implemented through two
functions: configuration and workspace.

Since the object-oriented database represents data as objects, a configuration can
be considered as a container to store objects. The configuration is the basic unit of
versioning. That is, when different versions of objects are recorded, the object-oriented
database uses different configurations to keep track of these versions.

The workplace is a working area where a designer checks out objects from the
database and modifies them. The checkout process is a long transaction that uses
the configuration as a unit. The workspace consists of the global workspace and
the personal workspace. The personal workspace is a private place, and will not
be accessed by other users. On the other hand, the global workspace is a public
place from which users can share information with each other. In the example of
this study, a global workspace is created to share information, and three personal
workspaces are used to operate simulation. The configuration of objects is checked
out from the global workspace to the personal workspace. When the given experiment
is finished, objects are checked back into the global workspace and new versions are
created.

4.2. Reverse simulation

In the traditional simulation process, experiments begin after the simulation models
are constructed. The experiments change the seed of random variables to average
the effect of abnormal values. Each experiment selects a set of parameters of the
model and repeats several runs. Each run changes the seed and collects observation
values. After each run, the experiment selects another set of parameters, repeating
the process until satisfied parameters are found. In this situation, many simulation
runs can be executed only on the same set of parameters. It is difficult to adjust the
parameters dynamically. In contrast, the integrated architecture in this study uses the
object-oriented database to record the entire simulation environment, and applies the
function of version management to maintain different scenarios. This is achieved
by setting different checkpoints (the setting of checkpoints is discussed later). In
each checkpoint, one version of the most current scenario is recorded. In the future,
the recorded scenario is traced back to observe the simulation results of a specific
parameter set. The advantage is that the parameters can be changed at any checkpoint,
when necessary, and a new simulation experiment can proceed from that checkpoint.
After checking the experiment back to the global workspace, a new version (a new
branch) of the simulation is created. The newly-created branch can also have different
versions and branches. Since the simulation experiment can return to any past scenario,
it is called the reverse simulation.

Springer

Reverse simulation for collaborative commerce 237

In the reverse simulation, a simulator may change corresponding parameters at each
checkpoint or between the checkpoints. When parameter changing is at the checkpoint,
the simulation creates a new version. However, if the parameter is changed between
the checkpoints, the closest scenario of the checkpoint right before it is adopted, and
the simulation experiment runs from the checkpoint and changes the parameters at
the designated checkpoint. Figure 2 presents the differences between conventional
simulation and reversed simulation. In Fig. 2(b), the reverse simulation has several
checkpoints. The object-oriented database records scenarios as different versions, i.e.
v1 t1, v1 t2, v1 t3, v1 t4, v1 end, for the parameter set k. If the experiment cannot
produce satisfactory results, the designer can trace back to any scenario, e.g. checkpoint
t1, change the parameter set into k + k1, and a new branch is created. Similarly,
branches k + k2 and k + k1 + k3 are created at checkpoints t2 and t3, respectively.
Notice that the reverse simulation can return to any checkpoint, the parameters are
changed at that checkpoint when needed, and a new branch is created accordingly.
In addition, a branch can have new branches. Therefore, the version with the best
performance is adopted.

It is worth noticing that simulation experiments are time consuming. The ver-
sion management has another advantage in processing long transactions in differ-
ent personal workspaces. The personal workspaces are independent and can share
experiment results through the global workspace. The reverse simulation takes ad-
vantage of the version management to allow experiments in different workspaces.
Specifically, designers can perform experiment in their own workspaces by check-
ing out objects from the global workspace and then checking the objects back into
the global workspace after completing the analysis. This approach increases the
system performance. Figure 3 shows the reverse simulation in three workspaces:
User1 workspace, User2 workspace, and User3 workspace. The version v1 t2 is
checked-out from User1 workspace to User2 workspace, and User3 workspace and
the parameter set is changed from k to k + k2 and k + k4. Each workspace
proceeds with its own experiment and generates different versions. All versions
are checked back into the global workspace (not shown) and shared between
workspaces.

Based on the previous discussions, the reverse simulation has several advantages:

(1) Through the reverse simulation, a designer can return to previous scenarios, and
change the parameters if original parameters are not satisfied.

(2) New branches can adopt the past experiment scenario, resulting in a shortened
computation time, i.e. the computation time before the checkpoint is not needed.

(3) The reverse simulation provides better flexibility in that the designer can choose
a set of parameters at a specific checkpoint and proceed with new experiments.

(4) The experiment results can be operated in different workspaces and shared among
designers through the global workspace. This approach allows designers to work
collaboratively.

4.3. The setting of checkpoints

Since the reverse simulation can return to the scenarios from the checkpoints, the
setting of checkpoints is very important. A simulation experiment can return to more

Springer

238 T. C. Du et al.

Conventional Simulation

Time Start

Time End

Reverse Simulation with Branches

Time Start

Time End

Check Point t
1

Check Point t
2

Check Point t
3

Check Point t
4

parameter =

k

parameter =

k

parameter =

k+k1

parameter =

k+k2

parameter =

k+k1+k3

Check Point

t
1

Check Point

t2

Check Point

t
3

Time Start

Time End

parameter =

k

Reverse Simulation

Check Point

t4

(c)

v1_t0

v1_t1

v1_t2

v1_t3

v1_t4

v1_end

v1_t1

v1_t2

v1_t3

v1_t4

v1_end

v2_t3

v2_t4

v2_end

v3_t2

v3_t3

v3_t4

v3_end

v4_t4

v4_end

(a)

(b)

Fig. 2 The comparison between conventional simulation and reverse simulation

Springer

Reverse simulation for collaborative commerce 239

Time Start

Time End

Check
Point t

1

Check
Point t

2

Check
Point t

3

Check
Point t

4

parameter =

k

parameter =
k+k1

parameter =
k+k2

parameter =
k+k1+k3

parameter =
k+k4

User1_WorkSpace
for Planner 1

User2_WorkSpace
for Planner 2

User3_WorkSpace
for Planner 3

v1_t1

v1_t2

v1_t3

v1_t4

v1_end

v4_t2

v2_t3

v2_t4

v2_end v3_endv4_endv5_end

v3_t3

v3_t4

v4_t3

v4_t4v5_t4

v1_t0

Fig. 3 Apply reverse simulation in different workspaces

scenarios if more checkpoints are set originally. However, the more checkpoints, the
more database storage is required. In addition, the checkout and check-in operations
are costly. On the other hand, too few checkpoints also decrease the flexibility of
adjusting parameters.

A checkpoint is a snapshot in the continuous process of simulation experiments. In
a simulation, the time span is continuous and the elapse is based on either next-event
or fixed-time span. Because an observation is a system change during time movement,
a meaningful scenario should be based on some event happening rather than being
located at a fixed-time span.

The setting of checkpoints could be determined by specific quantities, performance
index, or output quantities. When the designated event appears (e.g., manufacture every
500 parts), a checkpoint operation is triggered. The checkpoint holds the simulation
process, downloads the whole environment into a database, and then proceeds with
the experiment until the next event appears. As has been stated, the operation of
checkpoint is costly, but provides high system flexibility. Unfortunately, an appropriate
number of checkpoints is determined by specific problems, systems, and performance
requirements and cannot be pre-determined.

5. System demonstration

This section demonstrates how collaborative commerce is possible by using reverse
simulation in a collaborative manufacturing environment. A simple version for an

Springer

240 T. C. Du et al.

advanced planning and scheduling function is built to demonstrate reverse simulation
using classes as discussed in session 3. The demonstration is a simplified model of
collaborative commerce for illustrating the proposed architecture. The scenario simu-
lates the planning process involved three parties: a final assembler (planner 1) and two
suppliers (planners 2 and 3). The manufacturing environment has six machine groups,
and each machine group has several machines of the same type. Three planners work
together to simulate the manufacturing process. Note that in the proposed scenario, the
planners can be belonged to different companies in the supply chain or an expended
enterprise that involves various partnerships among departments. By using the reverse
simulation, the simulation process is allowed to go back to old simulation parameters
and results since different versions of simulation runs are maintained by the object-
oriented database. In this case, the planners can choose different designs based their
needs.

5.1. Object-oriented classes for the simulation of manufacturing planning

The manufacturing classes include class packages Simulation Control,
Simulaition Component and Simulation Data Stored. Since the Siumlation

Control package should be accessed by other classes, it is defined as global variables.
Siumlation Control has classes for moving time series (SimulaEvent), generating

random variables (RandomVar), and assigning dispatching rules (DispatchRule). The
classes are only used during experiments, i.e., the information is created only for
temporary purposes. Therefore, the object-oriented database does not contain these
classes.

Simulaition Component has classes of facilities such as queues (Queue), machines
(Machine), machine groups (MachineGroup), machine group set (MDB), materials
handling machines (MHS), plants (Plant), and arrival parts (Arrival) (please refer
to Fig. 4). Since each simulation experiment has several runs, another class (Run) is
created to contain several identical plants. Each run is equal to the generated simulated
data for a plant. The relationships between classes, i.e. generation, aggregation, and
association are included. Classes Machine, MHS, and Arrival are related to time and
are therefore inherited from class Active. Since class Queue is irrelevant to time but
is relevant to quantities, it is inherited from class End. Class Machine and Queue are
aggregated into class MachineGroup, and machine-group set MDB has several machine
groups. Also, a plant class, Plant, is aggregated from classes Arrival, MDB, and MHS.
Note that the relationships between classes can be considered as the message passing.
For example, when class Arrival generates a product, the input queue of one machine
group should increase. Since different types of products have different sequences of
operations, the Arrival informs MDB, and the predefined method of MDB increases the
input queue of the machine group based on the product type and operational sequence.

In Fig. 4, some classes have function parameters such as os database∗ and
os configuration∗. The function parameters are the declaration of configuration ob-
jects of version management in ObjectStore. Based on the grammar of ObjectStore,
they are defined in classes. The attribute os Set<A∗>B is the definition of collection
provided by ObjectStore, where the object information generated from class A∗ is
retained in collection B, to hasten the query operation.

Springer

Reverse simulation for collaborative commerce 241

Active

NextEvent :
float

End

Number : float

AddNumber()
GetNumber()

1..*

1..*

1

1

1

1..*

Queue

NumberDelay : float
Area : float
Total : float
Last : float
os_Set<Order*>DB

Queue()
Add(Production*)
Reduce(Production*)
Update(Production*)
AverageDelay()
AverageNumber()
Selection(float)

1

1..*

Machine

Status : int
Mean : double
ProductionTemp : Production*
Area : float
Last : float

Machine(double)
Work(Queue*,int)
Depart(Queue*)
Update()
Process(Queue*,Queue*,float,int)
Utilization()

1..*

1..*

1

1..* 1 *
Production

(from Simulation_Data_Stored)

1

1

1

1

1

1

1

1

1

1

1

MachineGroup

Id : int
Rule : int
Number : int
input : Production*
output : Production*
os_Set<Machine*>DB

MachineGroup(os_database*,int,int)
MachineGroup(os_configurion*,init,int)
GerId()
GetRule()
Process(float)
InputAverageDelay()
InputAverageNumber()
OutputAverageDelay()
OutputAverageNumber()
Utilization()

1

1..*

1

1..*

1

1

MDB

Number : int
os_Set<MachineGroup*>DB

Set(MachineGroup*)
Selection(int)
GetNumber()

1

1..*

1

1

1

1

ProductionDB

(from Simulation_Data_Stored)

1..*

1

1

1

MHS

Status : int
Flag : int
Originid : int
Startid : int
Destinationid : int
ProductionTemp :
Production*
MoveTime : float

SearchAllQueue(MDB*)
Find(MDB*)
GoStart()
GoDestination()
Arrive(MDB*)

1

1

1

Run

Number : int
plantnumber : int
plant : Plant*
os_Set<Plant*>DB

Run(os_database*)
Run(os_configuration*)
Process(os_database*,ProductTypeDB*,float)
Process(os_configuration*,ProductType
DB*,float)
ChangeRule()

1..*

1

Arrival

Mean : float

Arrival(int)
Process(os_database*,ProductTypeDB*,Production
DB*,MDB*,int)

1

1

1

1

1

1

Plant

number : int
endtime : float
Seed : int
Stastictime : float
e : SimulaEvent
a : Arrival*
mhs : MHS*
mdb : MDB*
machinegrouptemp : MachineGroup*
Productiondb : ProductionDB*

Plant(os_database*,int)
Plant(os_cocnfiguration*,int)
Process(os_database*,ProductTypeDB*)
Process(os_configuration*,ProductTypeDB*)
Process(os_database*,ProductTypeDB*,float)
Process(os_configuration*,ProductTypeDB*,float)
ChangeRule(int,int)

1

1

1

1

1

1

1

1

1

1

1

1..*

1

ProductTypeDB

(from Simulation_Data_Stored)

1

1

1

1

Fig. 4 The class diagram of Simulation Component class package

Simulation Data Stored has classes of external data such as products (Product-
Type), product types collection (ProductTypeDB), production information (Produc-
tion), and production information for analysis (ProductionDB) (please refer to Fig. 5).
The relationship between classes Production and ProductType is 1 to 1. Classes Pro-
ductTypeDB and ProductionDB are the collection of classes ProductType and Produc-
tion, respectively.

The previous classes are defined in the class library Simula.hh. ObjectStore can
include the head file and declare the schema directly. To coordinate the simulation
operation of classes, a common interface function Process() is designed to perform
simulation. For example, in machine class, obtaining part is done by calling Work()
and returning is done by Release(). In C++, the method is defined as:

Machine::Process()

{

Machine::Release();

Mahcine::Work();

}
Springer

242 T. C. Du et al.

1

ProductionDB

Number : int
os_Set<Order*>DB

GetNumber()
Set(Order*)
Selection(float)
WIP()
NowWIP()
ProductionRate(int)

1..*

1

ProductTypeDB

Number : int
os_Set<ProductType*>DB

Set(ProductType*)
Selection(int)

1..*

1

Production

DueDate : float
ProdcutionNumber : int
P : ProductType*
ArrivalTime : float
StartTime : float
FlowTime : float
NowRout : int
NowProductType : int

Production(ProductType*,float,int)
SetArrivalTime()
GetArrivalTime()
NextWork()
NextProcessTime()
NowWork()
NowProcessTime()
Work()
AddWork()
End()
GetNowProduction()

1

1..*

1

ProductType

Id : int
Rout[11] : int
ProcessTime[11] : float

GetId()
Total()
GetWork(int)
GetProcessTime(int)
ProductType()

1

1..*

11

Fig. 5 The class diagram of Simulation Data Stored class package

5.2. The demonstration of reverse simulation

To demonstrate the object database simulator, this section develops a simple advanced
planning and scheduling process for collaborative manufacturing environment using
ObjectStore 4.0.2 and Visual C++. The advanced planning and scheduling schedules
N jobs on M machines where finding an optimal sequence is considered as a complex
search procedure, and therefore is suitable to solve with simulation. The manufacturing
environment has six machine groups and one handling vehicle to deliver parts between
machine groups. The operational settings are: (1) each machine group represents one
machining process; (2) each machine group has several machines of the same type;
(3) each machine group has both input and output queues; (4) each machine group has
its own dispatching rules to assign jobs; and (5) each machine can manufacture one
part at a time. In the environment, each part has 6 or less operations and will not go
through the same machine group twice. The operational sequence and time of parts

Springer

Reverse simulation for collaborative commerce 243

Table 2 The machining procedure of six products for demonstration case

Product Operation 1 Operation 2 Operation 3 Operation 4 Operation 5 Operation 6

1 Sequence 1 2 3 4 5 –

Time∗ 900 450 300 300 750 –

2 Sequence 2 5 6 1 – –

Time 450 600 450 300 – –

3 Sequence 6 4 1 3 – –

Time 450 600 150 1200 – –

4 Sequence 4 5 – – – –

Time 1200 300 – – – –

5 Sequence 5 4 1 – – –

Time 300 450 300 – – –

6 Sequence 2 3 5 4 6 1

Time 300 600 300 600 300 450

7 Sequence 2 4 5 3 1 –

Time 600 150 300 150 900 –

8 Sequence 4 3 2 1 – –

Time 1200 300 450 1200 – –

9 Sequence 5 6 3 – – –

Time 150 300 300 – – –

10 Sequence 6 4 – – – –

Time 600 900 – – – –

∗Unit of time is one second

are fixed (shown at Table 2). For example, the machining sequence of product 6 is
operations 2, 3, 5, 4, 6, 1, and the machining time are 300, 600, 300, 600, 300, 450
sec, respectively. This information is stored in the database.

The part enters the machine groups one at a time; each part has the same probability
to enter the system. The arrival of parts is at the exponential distribution and the mean
value is 150 sec. The materials handling vehicle takes 30 sec to move parts from one
station to another. In the experiment, several performance indices are observed: (1)
the average utilization of each machine in the machine group; (2) the average waiting
time of parts in queue; (3) the average number of parts in queue; (4) the average
work-in-process (WIP); and (5) the average output rate of parts (output amount/input
amount). Table 3 summarizes the variables of the experiment environment.

During the simulation process, using an advanced planning and scheduling scenar-
ios for illustration, the final assembler (planner 1) first selects checkpoints. Checkpoints
are set based on both time and quantity perspectives. Experiment A uses time frame for
the checkpoints, and Experiment B uses quantity as the checkpoints. Although more
checkpoints can provide more choices for planners to return from current versions
to previous versions, each experiment was assigned with four checkpoints to prevent
system overload. To simplify the problems, the checkpoints have equal duration. Each
experiment has ten runs. The collection of simulation data starts after 30 min.

In Experiment A, the total observation duration is 24 h, i.e. 86400 sec. Since the
span between checkpoints is equal, the checkpoints are set at 21600, 43200, 64800,
and 86400 sec. Including the initial setting at 0 sec, five recording points are located. In
Experiment B, the total monitor quantity is 200. Therefore, the checkpoints are set at

Springer

244 T. C. Du et al.

Table 3 The variables of the experiment environment

Variable type Descriptions

Performance measures The average utilization of each machine in the machine group

The average waiting time of parts in queue

The average number of parts in queue

The average work-in-process (WIP)

The average output rate of parts (output amount/input amount)

Input parameters Each part has the same possibility to be processed

The due date is the current system time plus the exponential

distribution with mean value equals to total machining time

The arrival of parts is at the exponent distribution and the mean

value is 150 sec

The materials handling vehicle takes 30 sec to move parts

from one station to another

Checkpoints of:

Experiment A 0, 21600, 43200, 64800

Checkpoints of

Experiment B 50, 100, 150, and 200

50, 100, 150, and 200. Figure 6 presents this idea. Planner 1 simulates the experiments
and returns the versions v0 t0, v0 t21600, v0 t43200, v0 t64800, and v0 t86400.

Assuming the initial dispatching rule for machine groups is shortest processing time
(SPT), which has the characteristics of high machine utilization, low part waiting time,
and low average waiting quantities. However, when the bottleneck machine applies
the SPT rule, the high utilization will cause a long waiting line if the machine capacity
is insufficient for the load. In this case, other dispatching rules are expected. Table 4
shows the simulation results and throughput of machine group 4. From the high uti-
lization, it is noticed that machine group 4 is the bottleneck machine group, and the
average delay and average number (quantity) in the input queue are increasing. In
addition, the output of product 4 and 8 are much lower than other product types. This
indication reveals that the dispatching rule SPT is not appropriate in this machine
group.

Since there are several combinations of parameters, and the same parameter may
have a different performance at different checkpoints, the simulation experiments can
have versions like a tree. Each branch represents experiments of a set of parameters.
From the database point of view, every experiment is a long transaction. That means
that the data have to be locked by the transaction for long periods.

The version management of the object-oriented database shows another advantage
from this perspective. A version of objects can be checked out from global workspace
to a personal workspace and experiments can be conducted independently. This allows
planners of different organizations in the collaborative network to work together. After
the experiment, the objects can be checked back into the global workspace, and a new
version of objects is created. This behavior can also be observed in Fig. 6.

Planner 1 completes the experiment and generates versions of v0 t0, v0 t21600,
v0 t43200, v0 t64800, and v0 t86400. The planner can change the dispatching rules
from shortest processing time (SPT) to first-come first-serve (FCFS), or earliest due

Springer

Reverse simulation for collaborative commerce 245

T
im

e
=

0
N

um
be

r=
0

T
im

e
=

21
60

0
N

um
be

r=
50

U
se

r1
_W

or
kS

pa
ce

fo
r

P
la

nn
er

 1
U

se
r2

_W
or

kS
pa

ce
fo

r
P

la
nn

er
 2

U
se

r3
_W

or
kS

pa
ce

fo
r

P
la

nn
er

 3

v0
_t

0
n0

_n
0

T
im

e
=

43
20

0
N

um
be

r=
10

0

T
im

e
=

64
80

0
N

um
be

r=
15

0

T
im

e
=

86
40

0
N

um
be

r=
20

0

v0
_t

21
60

0
n0

_n
50

v0
_t

43
20

0
n0

_n
10

0

v0
_t

64
80

0
n0

_n
15

0

v0
_t

86
40

0
n0

_n
20

0

v1
_t

43
20

0
n1

_n
10

0

v1
_t

64
80

0
n1

_n
15

0

v1
_t

86
40

0
n1

_n
20

0

v3
_t

64
80

0
n3

_n
15

0
v5

_t
64

80
0

n5
_n

15
0

v3
_t

86
40

0
n3

_n
20

0
v5

_t
86

40
0

n5
_n

20
0

v1
_t

21
60

0
n1

_n
50

v5
_t

43
20

0
n5

_n
10

0
v2

_t
43

20
0

n2
_n

10
0

v2
_t

64
80

0
n2

_n
15

0

v2
_t

86
40

0
n2

_n
20

0

v2
_t

21
60

0
n2

_n
50

v4
_t

64
80

0
n4

_n
15

0

v4
_t

86
40

0
n4

_n
20

0

v6
_t

64
80

0
n6

_n
15

0

v6
_t

86
40

0
n6

_n
20

0

v6
_t

43
20

0
n6

_n
10

0

T
im

e
S

ta
rt

C
h

ec
k

 P
o

in
t

C
h

ec
k

 P
o

in
t

C
h

ec
k

 P
o

in
t

T
im

e
E

n
d

E
xp

er
im

en
t A

E
xp

er
im

en
t B

E
xp

er
im

en
t A

E
xp

er
im

en
t B

T
h

e
V

er
si

o
n

 N
am

e
o

f
E

x
p

er
im

en
t A

 a
n

d
 B

C
h

ec
k

 P
o

in
ts

 o
f

E
x

p
er

im
en

t A
 a

n
d

 B

: P
er

so
n

al
 W

o
rk

S
p

ac
e

F
ig

.6
T

h
e

si
m

u
la

ti
o

n
v
er

si
o

n
s

an
d

w
o

rk
sp

ac
e

in
th

e
re

v
er

se
si

m
u

la
ti

o
n

Springer

246 T. C. Du et al.

Table 4 The simulation results and throughput of machine group 4 in Experiment A

v0 t v0 t v0 t v0 t v1 t v2 t V3 t V4 t v5 t v6 t
Version 21600 43200 64800 86400 86400 86400 86400 86400 86400 86400

Run time 21600 43200 64800 86400

Average utilization 0.986 0.993 0.995 0.996 0.99 0.99 0.99 0.99 0.99 0.99

Average delay in 2964 5820 8877 11873 19610 18480 16005 15553 18702 17457

input queue

Average number 6.5 13.3 20.8 27.9 50.2 46.8 41.5 39.3 48.4 44.7

in input queue

Average delay in 1189 2458 3717 5062 2562 2821 3323 3546 2730 3051

output queue

Average number 1.7 3.9 6.1 8.4 3.2 3.7 4.1 4.7 3.4 4.1

in output queue

Average WIP 21.3 39.2 57.6 75.3 78.2 75.7 80.0 77.5 77.6 76.4

Average yield :

Rate of product 1 0.41 0.55 0.54 0.56 0.38 0.48 0.32 0.46 0.37 0.46

Rate of product 2 0.64 0.70 0.60 0.70 0.82 0.82 0.78 0.79 0.78 0.79

Rate of product 3 0.54 0.54 0.63 0.65 0.40 0.40 0.40 0.40 0.41 0.40

Rate of product 4 0.23 0.19 0.16 0.14 0.51 0.49 0.55 0.49 0.52 0.49

Rate of product 5 0.68 0.79 0.72 0.80 0.49 0.51 0.45 0.79 0.48 0.50

Rate of product 6 0.41 0.41 0.46 0.50 0.33 0.42 0.27 0.39 0.35 0.41

Rate of product 7 0.45 0.61 0.63 0.55 0.42 0.42 0.42 0.42 0.43 0.45

Rate of product 8 0.16 0.10 0.08 0.065 0.41 0.36 0.44 0.39 0.42 0.35

Rate of product 9 0.79 0.80 0.74 0.75 0.87 0.86 0.89 0.87 0.84 0.83

Rate of product 10 0.64 0.69 0.79 0.81 0.52 0.54 0.51 0.53 0.48 0.50

date (EDD) for machine group 4, creating two new branches, such as branch of
v1 t21600, v1 t43200, v1 t64800, v1 t86400, and branch of v2 t21600, v2 t43200,
v2 t64800, v2 t86400. In contrast, in the conventional simulation approach, the plan-
ner goes back to 0 sec, changes parameters, and proceeds with another experiment.

Supplier 1 (planner 2) can check out objects to a personal workspace,
User2 Workspace, at 43200 sec, and can change parameters thereafter. Similarly, sup-
plier 2 (planner 3) can checkout objects to User3 Workspace at 21600 sec. In this case,
the planners are allowed to determine the production plans together by considering
various material availabilities, plant capacities, inventory planning, and available-to-
promise (ATP). Table 4 shows the comparison among versions v1 t86400, v2 t86400,
v3 t86400, v4 t86400, v5 t86400, and v6 t86400. If the requirements of the average
product type outputs cannot lower than 0.35, lowest average delay time, and lowest
delay quantities, version v4 t86400 is a satisfied setting. Therefore, the answer is the
branch of v0 t0, v0 t21600, v0 t43200, v4 t64800, and v4 t86400. SPT is used before
43200 sec, and EDD is used after it.

Experiment set B uses quantities as the checkpoints. The mainstream of versions is
n0 n0, n0 n50, n0 n100, n0 n150, and n0 n200. Similar to Table 4, the simulation
results and throughput of machine group 4 is presented in Table 5. Since machine
group 4 is the bottleneck machine group, the SPT dispatching rule causes the output
of product types 4 and 8 to be much lower than other product types. Similar to the
approach in experiment set A, dispatching rules of FCFS and EDD are tested, and

Springer

Reverse simulation for collaborative commerce 247

Ta
bl

e
5

T
h

e
si

m
u

la
ti

o
n

re
su

lt
s

an
d

th
ro

u
g

h
p

u
t

o
f

m
ac

h
in

e
g

ro
u

p
4

in
E

x
p

er
im

en
t

B

V
er

si
o

n
n0

n5
0

n0
n1

00
n0

n1
50

n0
n2

00
n1

n2
00

N
2

n2
00

n3
n2

00
n4

n2
00

n5
n2

00
n6

n2
00

R
u

n
ti

m
e

2
7

3
1

6
5

1
5

1
1

7
7

4
1

2
1

0
1

9
3

5
1

0
8

1
9

7
1

0
7

2
8

4
1

1
0

1
7

4
10

61
78

1
0

9
9

7
1

1
0

7
0

6
1

A
v
er

ag
e

u
ti

li
za

ti
o

n
0

.9
9

0
.9

9
0

.9
9

0
.9

9
0

.9
9

0
.9

8
0

.9
9

0.
99

0
.9

9
0

.9
9

A
v
er

ag
e

d
el

ay
in

in
p

u
t

q
u

eu
e

3
7

8
8

7
4

2
0

1
0

5
9

8
1

3
9

9
8

2
4

6
8

0
2

4
4

5
6

2
0

1
5

9
18

87
8

2
3

6
0

2
2

0
8

0
4

A
v
er

ag
e

n
u

m
b

er
in

in
p

u
t

q
u

eu
e

1
0

.1
1

7
.5

2
6

.1
3

4
.4

6
5

.4
6

1
.0

5
6

.7
52

.7
6

7
.3

6
1

.5

A
v
er

ag
e

d
el

ay
in

o
u

tp
u

t
q

u
eu

e
1

0
3

8
2

5
5

3
4

0
0

8
5

4
8

9
2

8
9

0
3

4
1

4
3

7
3

6
38

04
2

6
8

1
3

0
6

4

A
v
er

ag
e

n
u

m
b

er
in

o
u

tp
u

t
q

u
eu

e
1

.7
4

.1
7

.1
9

.6
3

.7
4

.3
5

.0
5.

3
3

.7
4

.6

A
v
er

ag
e

W
IP

2
4

.4
4

4
.3

6
5

.6
8

6
.1

1
9

5
.0

9
5

.8
9

5
.6

90
.6

9
4

.9
9

0
.0

A
v
er

ag
e

y
ie

ld
:

R
at

e
o

f
p

ro
d

u
ct

1
0

.4
7

0
.5

1
0

.5
3

0
.5

3
0

.3
9

0
.4

3
0

.3
1

0.
45

0
.3

7
0

.4
2

R
at

e
o

f
p

ro
d

u
ct

2
0

.6
7

0
.6

8
0

.7
0

0
.6

7
0

.8
3

0
.7

8
0

.7
8

0.
80

0
.7

9
0

.8
2

R
at

e
o

f
p

ro
d

u
ct

3
0

.6
6

0
.6

1
0

.6
4

0
.6

9
0

.4
4

0
.4

5
0

.4
3

0.
41

0
.4

2
0

.3
8

R
at

e
o

f
P

ro
d

u
ct

4
0

.1
6

0
.1

2
0

.1
1

0
.1

1
0

.4
8

0
.5

0
0

.5
4

0.
46

0
.5

0
0

.4
6

R
at

e
o

f
P

ro
d

u
ct

5
0

.7
2

0
.8

2
0

.7
7

0
.7

7
0

.4
5

0
.5

2
0

.4
7

0.
52

0
.4

8
0

.5
2

R
at

e
o

f
P

ro
d

u
ct

6
0

.5
3

0
.5

4
0

.5
2

0
.5

6
0

.3
7

0
.4

4
0

.3
4

0.
44

0
.3

7
0

.4
7

R
at

e
o

f
P

ro
d

u
ct

7
0

.5
7

0
.6

4
0

.5
8

0
.5

9
0

.4
3

0
.4

1
0

.4
1

0.
47

0
.4

1
0

.4
4

R
at

e
o

f
p

ro
d

u
ct

8
0

.0
8

0
.1

0
0

.0
8

0
.0

7
0

.4
3

0
.3

6
0

.4
5

0.
37

0
.4

6
0

.3
7

R
at

e
o

f
P

ro
d

u
ct

9
0

.7
6

0
.7

6
0

.8
1

0
.8

2
0

.8
8

0
.9

0
0

.8
8

0.
88

0
.9

0
0

.8
8

R
at

e
o

f
p

ro
d

u
ct

1
0

0
.6

2
0

.7
4

0
.7

7
0

.7
9

0
.5

2
0

.4
8

0
.5

0
0.

53
0

.4
7

0
.5

0

Springer

248 T. C. Du et al.

results are shown in Table 5. The conclusion can be that the satisfactory version is
located at n4 n200, and branch n0 n0, n0 n50, n0 n100, n4 n150, and n4 n200 is
the answer. The SPT is adopted before quantities 100, and EDD is used after that.

As it was demonstrated, through the use of reverse simulation, the collaborative
parties (one final assembler and two suppliers in this scenario) can work together on
determining various production factors based on preset performance indexes. This
allows collaborators to participate and contribute to various stages of collaborative
commerce.

6. Conclusion and future study

This study presented the process of using reverse simulation for advanced planning
and scheduling in a collaborative commerce environment by developing an integrated
architecture of the object-oriented database and the object-oriented simulator. The
integrated architecture has a unique data structure between database and simulator.
In this architecture, the version management records experimental parameters and
results for doing reverse simulation. Specifically, the database manages objects and
provides collection, query, and indexing functions. In addition, the simulation models
can be reused, and returning to the old scenario becomes possible. The scenarios
are recorded as branches in the database when the checkpoints are set. The reverse
simulation uses different parameters at different checkpoints. This approach provides
a mechanism to modify parameters easily and dynamically. Each branch has new
versions of objects maintained in checkpoints. A branch can have another branch
going out; thus the simulation experiment looks like a tree. Instead of restarting from
the beginning at each experiment, the reverse simulation allows planner to begin with
any existing versions. This approach also has the advantage of the reuse experiment
scenario, which decreases the computation time. Given all these features, multiple
planners can do the experiment independently, interactively, and collaboratively in
different personal workspaces, and the experiment results can be shared through global
workspace.

As the information technology advances and the global competition intensifies,
more and more collaborations between businesses are emerging. This study presented a
concept of collaborative planning using the technology of reverse simulation. It should
be noted that collaboration could also appear in many other applications such as de-
sign, engineering, knowledge sharing, decision-making, and supply chains. Moreover,
issues such as security, legality, and ethics are worth further exploiting. For example,
how could the product demand data be shared among the planners who work on the
same advanced and planning project but belonged to different companies? Especially,
the demand may include sensitive information of the competitors of the collaborators.
How could a company take advantage of knowing the proprietary knowledge of a
collaborator and use it to improve it’s own product. These issues remain to be further
explored.

Acknowledgements This work is supported in part by National Science Council of Republic of China
under the grant NSC 89-2213-E-033-028.

Springer

Reverse simulation for collaborative commerce 249

References

Aviv Y (2001) The effect of collaborative forecasting on supply chain performance. Man Sci 47(10):1326–
1343

Banks J, Aviles E, McLaughlin JR, Yuan RC (1991) The simulator: New member of the simulation family.
Interfaces 21(2):76–86

Banks J, Carson JS, Nelson BL, Nicol DM (2000) Discrete-event system simulation, 3rd edn. Prentice-Hall,
Englewood Cliffs, NJ

Barcio B, Ramaswamy S, Barber S (1997) An object-oriented modeling and simulation environment for
reactive systems development. Int J Flex Manuf Syst 9(1):51–80

Bertino E, Martino L (1991) Object-oriented database management systems: Concepts and issues. IEEE
Comput 24(4):33–47

Browne J, Zhang J (1999) Extended and virtual enterprises—Similarities and differences. Int J Agile Manag
Syst 1(1):30–44

Browne J, Sackett PJ, Wortmann JC (1995) Future manufacturing systems—Towards the extended enter-
prise. Comput Ind 25:235–254

Chopra S, Meindl P (2001) Supply chain management: Strategy, planning and operation. Prentice-Hall,
New Jersey

Childe SJ (1998) The extended concept of co-operation. Prod Plan & Cont 9(4):320–327
Contero M, Company P, Vila C, Aleixos N (2002) Product data quality and collaborative engineering. IEEE

Comp Graph Appli 22(3):32–42
Deitel HM, Deitel PJ, Steinbuhler K (2001) e-Business and e-commerce for managers. Prentice-Hall, New

Jersey
Eum DD, Minoura T (1996) Structural active object system for mixed-mode simulation. IEICE Trans Inform

Syst E79-D(6):855–865
Du T, Wolfe P (1997) An implementation perspective of applying object-oriented database technologies.

IIE Trans 29:733–742
Du T, Wu JL (2001) Developing an evolutional vehicle routing system in object-oriented paradigm. Comp

Ind 44:229–249
Elmasri R, Navathe SB (1994) ‘Object-oriented database,’ in Fundamentals of database systems, 2 edn.

Benjamin-Cummings, California pp.663–701
Fliedner G, (2003) CPFR: An emerging supply chain tool. Industrial Man Data Syst 103(1):14–21
Gupta A, Stahl DO, Whinston AB (1998) Managing computing resources in intranets: An electronic com-

merce perspective. Dec Supp Syst 24(1):55–69
Gupta VK, Govindarajan S, Johnson TM (2001) Overview of content management approaches and strate-

gies. Electro Mkts 11(4):281–287
Henderson-Sellers B (1991) A book of object-oriented knowledge. Prentice-Hall, New Jersey
Huang GQ (2002) Web-based support for collaborative product design. Comp Ind 48:71–88
Jagdev HS, Browne J (1998) The extended enterprise-a context for manufacturing. Prod Plan Contr

9(3):216–229
Kim W (1991) Object-oriented database systems: strengths and weaknesses. J Obj-Ori Progr 4(4):21–29
Kumar A, Zhao JL (2002) Workflow support for electronic commerce applications. Dec Supp Syst

32(3):265–278
Kuroda M, Shin H, Zinnohara A (2002) Robust scheduling in an advanced planning and scheduling

environment. I J Prod Res 40(15):3655–3668
Law AM, Kelton WD (2000) Simulation modeling and analysis, 3rd edn. McGraw-Hill, New York
Li Eldon, Du T (2005) Advances in electronic business, vol I: Collaborative Commerce. IGI Press, Hershey,

Pennsylvania
McGreevy RL, Pusztai L (1982) Reverse Monte Carlo Simulation: A new technique for the determination

of disordered structure. Mol Simu 1(6):359–367
McGregor DR, Randhawa SU (1994) ENTs: An interactive object-oriented system for discrete simulation

modeling. J Obj-Ori Prog 5(8):21–29
Mize JH, Bhuskute, Pratt, HCDB, Kamath M (1992) Modeling of integrated manufacturing systems using

an object-oriented approach. IIE Trans 24(3):14–26
Pegden CD, Shannon RE, Sadowski RP (1995) Introduction to simulation using SIMAN, 2nd edn. McGraw-

Hil, New York
Pritsker AAB (1986) An introduction to simulation and SLAM II, 3rd edn. Wiley-Interscience, New York

Springer

250 T. C. Du et al.

Raghu TS, Ramesh R, Chang A-M, Whinston A (2001) A collaborative decision making: A connectionist
paradigm for dialectical support. Inform Syst Rest 12(4):363–383

Turban E, King D (2003) Introduction to e-commerce. Prentice-Hall, New Jersey
Wild R, Pignatiello J (1994) Finding stable system designs: A reverse simulation technique. Comm ACM

37(10):87–98
Zacharia G, Moukas A, Maes P (2000) Collaborative reputation mechanisms for electronic marketplaces.

Dec Supp Syst 29(4):371–388
Zhang D, Zhang HC (1999) A simulation study of an object-oriented integration testbed for process planning

and production scheduling. Int J Flex Manuf Syst 11:19–35

Springer

