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Abstract 

Artificial neural networks are increasingly popular in today’s business fields. They have been hailed as the 
greatest technological advance since the invention of transistors. The purpose of this paper is to answer hvo of the 
inost frequently asked questions: “What are neural networks?” “ Why are they so popular in today’s business 
fields?” The paper reviews the common characteristics of neural networks and discusses the feasibility of neural-net 
applications in business fields. It then presents four actual application cases and identifies the limitations of the 
current neural-net technology. 
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1. Introduction 1.1. What is an artificial neural network? 

Recently, applications of artificial neural net- 
works have been increasing in business. More and 
more development tools have emerged on the 
market. Many neural-net systems have been 
shown to work well in identifying intricate pat- 
terns, learning from experience, reaching some 
conclusions, and making predictions. According 
to J. Clarke Smith, executive vice president of 
Sears Mortgage Corporation, neural-net systems 
have already been at work for over 10 years in the 
finance world. Today, they are widely applicable 
to risk management and forecasting [24]. Since 
the various neural-net systems now in use are 
implemented with mathematically sound princi- 
ples, they hold out promise for future applica- 
tions. 

An artificial neural network (ANN) does not 
emulate the thought processes and if/ then logic 
of the human brain as done by an expert system. 
It mimics certain aspects of the information pro- 
cessing and physical structure of the brain with a 
web of neural connections (see Figure 1). There- 
fore, some writers classified it as a “microscopic”, 
“white-box” system and an expert system as a 
“macroscopic”, “black-box” system. An ANN 
consists of a large number of simple processing 
elements that are interconnected and layered. 
The biological neuron looks like a tree, except 
that between the trunk and the branches there is 
a large polygon shape which is the body of the 
cell, called the “soma”. The soma is enclosed by 
a cell wall called “membrane”. The tree branches 
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Fig. 1. The physical structure of a biological neuron. 

are the “dendrites”, which form a star shape and 
the tip of the branches are the “synapses”. The 
tree trunk is the “axon” and the point of connec- 
tion of the axon to the soma is the “hillock”. 
Finally, the tree trunk extends to the root 
branches which are the “boutons”. Synapses are 
areas of electrochemical contact between neu- 
rons. Through the synapses, the dendrites receive 
signals from other cells and transmit them to the 
soma. The soma adds up the incoming signals 
over time and at some level will respond to the 
inputs. When a neuron fires, the impulses are 
generated at the hillock, pass down the axon, and 
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Fig. 2. The functions of an artificial neuron. 

reach the boutons, then are sent on to the other 
neurons [25]. 

Similar to its biological counterpart, an ANN 
(see Figure 2) has each processing element (the 
neuron> receiving inputs from the other elements, 
the inputs are weighted and added, the result is 
then transformed (by a transfer function) into the 
output. The transfer function may be a step, 
sigmoid, or hyperbolic tangent function, among 
others. 

In effect, ANNs are primitive learning devices. 
Their implementation may be in the form of 
hardware or software. In either case, the underly- 
ing concept is to assemble many single simple 
processors which interact through a dense web of 
interconnections. This network architecture, also 
known as “connectionism” [l], is unlike the con- 
ventional architecture of computer systems. 

2. Characteristics of artificial neural networks 

Conventionally, a computer operates through 
sequential linear processing technologies. They 
apply formulas, decision rules, and algorithms 
instructed by users to produce outputs from the 
inputs. Conventional computers are good at nu- 
merical computation. But ANNs improve their 
own rules; the more decisions they make, the 
better the decisions may become. 

There are six main characteristics of ANN 
technology: the network structures, the parallel 
processing ability, the distributed memory, the 
fault tolerance ability, the collective solution, and 
the learning ability. 

(1) Network structures: An ANN may have 
either a recurrent or nonrecurrent structure. A 
recurrent network [9,10] is a feedback network 
(see Figure 3a) in which the network calculates its 
outputs based on the inputs and feeds them back 
to modify the inputs. For a stable recurrent net- 
work, this process normally produces smaller and 
smaller output changes until the output become 
constant. If this process would not end, the net- 
work is unstable and is known as a chaotic system 
[2,7] - a system in which many Wall Street ex- 
perts believe it can predict stock prices 120,281. 
To create a stable network, the weight matrix 
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must be symmetrical with zeros on its main diago- 
nal [5]. Moreover, the outputs may be fed back to 
middle layers to adjust the weights [S], similar to 
unsupervised learning. As for the nonrecurrent 
networks (see Figure 3b), data will flow in one 
direction, from input layer to output layer with- 
out any feedback loop: they are also called feed- 
forward networks. This type of networks has ac- 
counted for most existing ANN applications. 

(2) Parallel processing ability: Each neuron in 
the ANN is a processing element similar to a 
Boolean logical unit in a conventional computer 
chip, except that a neuron’s function is pro- 
grammable. Computations required to simulate 
ANNs are mainly matrix ones, and the parallel 
structure of the interconnection between neurons 
facilitates such calculations. Figure 4 shows the 
calculations corresponding to each layer of a 
three-layer, one-middle-layer ANN. For simplic- 
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Fig. 3. Recurrent and nonrecurrent ANN structures. 

ity, a single input vector is used. Each element in 
the vector is equivalent to one data point of the 
input variables which in reality should have multi- 
ple data points. Such matrix calculations require 
rapid computation, possible with neural-net chips 
now commercially available from Intel, Neural 
Semiconductor, and Bell Laboratories. 

(3) Distributed memory: The network does not 
store information in a central memory. Informa- 
tion is stored as patterns throughout the network 
structure. The state of neurons represents a 
short-term memory as it may change with the 
next input vector. The values in the weight matrix 
(the connections) form a long-term memory and 
are changeable only on a longer time basis [27]. 
Gradually, short-term memory will move into 
long-term memory and modify the network as a 
function of the input experience. 

(4) Fault tolerance ability: The network’s par- 
allel processing ability and distributed memory 
make it relatively fault tolerant. In a neural com- 
puter, the failure of one or more parts may de- 
grade the accuracy but it does not break the 
system. A system failure occurs only when all 
parts fail at the same time. This provides a mea- 
sure of damage control. 

(5) Collective solution: A conventional com- 
puter processes programmed instructions sequen- 
tially and one at a time. If a program is stopped 
in the middle of its execution, one can obtain a 
sensible answer which reflects exactly the compu- 
tations that have been done so far. However, such 
a partial solution is meaningless with an ANN 
computer; it relies on the collective outputs of all 
the connected neurons. If the solution process is 
stopped before it is completed, the “partial an- 
swer” is probably nonsense to the user. 

(6) Learning (or training) ability: An ANN, 
especially the nonrecurrent feed-forward one, is 
capable of applying learning rules to develop 
models of processes, while adapting the network 
to the changing environment and discovering use- 
ful knowledge implicit in received responses 
and/or stimuli. There are three possible learning 
methods: supervised, unsupervised, and rein- 
forcement learning. In the first, the desired out- 
put for a set of training inputs is provided to the 
network; thus it learns by example. This is used 
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to train a network for a specific task. Unsuper- 
vised learning is conducted when there is no 
evaluation of performance provided to the net- 
work. Reinforcement learning is a hybrid method, 
the network is given a scalar evaluation signal 
instead of being told the desired output, and 
evaluations can be made intermittently instead of 
with every training input. 

3. Examples of learning methods 

Most business applications of ANN today use 
supervised learning method. To train a network, 
there must be a training set (containing inputs 
and target outputs) and a learning rule. Among 
the many rules, the most popular is the backprop- 
agation algorithm [21] which is based on partial 
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Fig. 4. Matrix calculations in a one-middle-layer neural network. 
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Fig. 5. Learning in a feed-forward neural network. 

derivatives with momentum to approximate the 
direction of weight change that gives the most 
improvement in the output error. The inputs and 
outputs can be either discrete or continuous. Each 
input vector in the training set is matched with its 
desired output vector to form a training pair. 
During the learning process (see Figure 51, the 
training pairs are fed into the network one by 
one. The initial values of the connection weights 
are set randomly to small numbers. The network 
derives its responses and compares them with the 
desired ones. If there is an error, the system 
adjusts (increases or decreases) the weights by a 
small amount in the direction identified by the 
predefined learning rule. These adjustments are 
continued until the error begins to increase or is 
reduced to an acceptable level. Then, the weights 
are frozen alone and the training is completed. In 
effect, the supervised network is equivalent to a 
multivariate system of equations that maps input 
data to required output data. 

In a situation where training pairs are difficult, 
if not impossible, to obtain, unsupervised learning 
[13] is necessary. The training set for this process 
consists solely of input vectors. The training algo- 
rithm modifies the connection weights to produce 
output vectors that are consistent. The technique 
extracts the statistical properties of the training 
vectors and groups them into classes in which 
each produces the same pattern of output. An 

unsupervised network can be used to train robotic 
arm movement. In this application, the network 
can develop patterns of transformations to orient 
the robotic arm through a training session con- 
ducted by a human operator. The equations of 
such complex inverse transformations do not need 
to be derived or programmed. Natural or unfore- 
seen changes in the robot motion will automati- 
cally be incorporated in the network, allowing 
robots to learn to move in less precisely mapped 
environments - a task far too complex to be 
programmed algorithmically for general cases [ 121. 

Another more complex application of unsuper- 
vised learning was reported by McDonnell Dou- 
glas in training aircraft’s automatic flight control 
system. The company let top pilots fly a F-15 
Eagle plane with simulated damage. The neural- 
net based flight controller learned to reconfigure 
the aircraft by taking notes on how top pilots 
react to emergency situations and how the air- 
craft responds. As the pilot completed the mis- 
sion and landed the disabled aircraft, the network 
use its notes to come up with a model of its own. 
Next time around, the network would be able to 
compensate for the damages, letting the pilot 
guide the damaged plane as if nothing happened 

[31. 

4. Feasibility of business applications 

ANNs can be applied to many problems that 
are solved conventionally by statistical and man- 
agement science techniques. In fact, the common 
characteristics enable ANNs to solve these prob- 
lems better and faster than conventional tech- 
niques, even without human intervention. More- 
over, they make it possible to model very complex 
decision tasks so easily and simply that little 
theoretical knowledge is required of the ANN 
users. 

ANN tasks can be classified into the following 
categories: 

(1) Approximation: To determine the weights 
that minimize the (least-square or absolute) error 
distance between the produced output and the 
target output [151. This is somewhat equivalent to 
regression analysis in statistics, using an analytical 
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procedure to solve the normal equations and to 
find the regression coefficients (the equivalent to 
the connection weights of a trained network). 

(2) Optimization: To determine the optimal 
solution to an NP-complete (nondeterministic 
polynomial) problem, such as the travelling sales- 
person problem [ll]. This is equivalent to linear 
and integer programming in management sci- 
ences, where the objective functions are opti- 
mized using a heuristic search procedure. 

(3) Classification: To classify an object charac- 
terized by its input vector into one of different 
categories or groups. The input vector may have 
continuous or discrete values. This is similar to 
discriminant analysis in nonparametric multivari- 
ate statistics. 

(4) Prediction: To predict the output values 
from the input values. While the input values may 
be continuous or discrete, the output values are 
continuous; this makes it different from a classifi- 
cation task, being equivalent to making predic- 
tions and forecasts in multivariate statistics. How- 
ever, the characteristics of an ANN allow it to 
represent a prediction or forecasting model, such 
a process is far too complex for a human decision 
maker. 

(5) Generalization: To analyze the association 
between and within input attributes to extract 
statistical properties of the training set and to 
develop generalized patterns into which the ob- 
jects are classified. Once the patterns are devel- 
oped using error-free input data, noisy input pat- 
terns can be recognized and corrected; this makes 
the outputs of the classification and prediction 
tasks much more accurate than those produced 
by conventional techniques. 

(6) Relation: To analyze how the input data 
are clustered into different groups and the rela- 
tionships between and within input attributes in 
each group. This is comparable to factor analysis 
and cluster analysis in statistics, except that non- 
linear relationships are allowed. 

(7) Abstraction: To filter noise out of imper- 
fect inputs, thereby increasing its integrity. This is 
somewhat similar to exploratory data analysis; 
outliers and items not significantly related to the 
target outputs are identified and removed. 

(8) Adaptiveness: To adjust the connection 

weights in the network automatically as soon as a 
new training vector is fed into the network. This 
makes the network adaptive to an ever-changing 
dynamic environment. Conventionally, additional 
effort must be devoted to make such adaptive 
processes happen automatically. Human inter- 
vention in still often required. 

Given the above capabilities, there is no doubt 
that ANNs are feasible for business applications. 
Many phenomena that are difficult to describe 
can be modeled by ANNs, if carefully designed. 

5. Examples of business applications 

There are many applications of ANNs in to- 
day’s business. Financial institutions are improv- 
ing their decision making by enhancing the inter- 
pretation of behavioral scoring systems and devel- 
oping superior ANN models of credit card risk 
and bankruptcy [14,22]. Securities and trading 
houses are developing and improving their fore- 
casting techniques and trading strategies with 
ANNs. Insurance companies are managing risk 
better by using ANNs to develop a model of top 
underwriters and using this as a training and 
evaluation tool for other underwriters. Manufac- 
turers are improving their product quality through 
predictive process control systems using ANNs 
[18]. Oil and gas corporations are learning more 
from their data by using ANNs to interpret seis- 
mic signals and sub-surface images to improve 
their exploration effort. Four actual ANN appli- 
cations are now described. 

5.1. Airline security control 

With the increasing threat of terrorism, airline 
passengers’ bags in international airports such as 
New York, Miami, and London go through an 
unusually rigorous inspection before being loaded 
into the cargo bay [4]. In addition to using metal 
detector and x-ray station to detect metal weap- 
ons, these airports use ANNs to screen for plastic 
explosives. They use a detection system which 
bombards the luggage with neutrons and moni- 
tors the gamma rays that are emitted in response. 
The network then analyzes the signal to decide 
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whether the response predicts an explosive. The 
purpose of this operation is to detect explosives 
with a 95 percent probability, while minimizing 
the number of false alarms. 

Detecting explosive using gamma rays is not 
simple since different chemical elements release 
different frequencies. Explosive materials are rich 
in nitrogen, but so are some benign substances, 
including protein-rich materials, such as wool and 
leather. Though an abundance of gamma rays at 
nitrogen’s frequency raises some suspicion, it is 
difficult to make a distinction. To minimize the 
classification error, supervised training was con- 
ducted. The ANN was fed with a batch of instru- 
ment reading as well as the information on 
whether explosives were indeed present. The 
trained network were able to achieve its intended 
purpose. The entire security system can handle 
600 to 700 bags per hour and the network raises 
false alarms on only 2 percent of the harmless 
bags at the 95 percent detection point. This re- 
duction in false alarms translates into many less 
bags that must be opened and examined each 
day. In turn, it reduces the cost of airport opera- 
tions, increases the efficiency of the check-in 
process, and improves the satisfaction of cus- 
tomers. 

5.2. Inr:estment management and risk control 

Neural Systems Inc. [171 makes use of a super- 
vised network to mimic the recommendations of 
money managers on the optimal allocation of 
assets among Treasury instruments. The applica- 
tion demonstrated how well an ANN can be 
trained to recognize the shape and evolution of 
the interest-yield curve and to make recommen- 
dations as to long or short positions in the US 
Treasury market. 

The network was trained on measured and 
calculated economic indicators, such as the evolu- 
tion of interest rates, price changes, and the 
shape and speed of the change of the yields 
curves. The network could then determine the 
optimal allocation among segments in various 
Treasury instruments being measured against a 
benchmark or comparator performance index. It 
could determine also the dynamic relationship 

between different variables in portfolio manage- 
ment and risk control. Consequently, it allowed 
more active control of portfolio’s level of cer- 
tainty. Based on the experience gained with this 
application, another ANN with a higher level of 
complexity was subsequently developed. 

5.3. Prediction of thrift failures 

Professor Linda M. Salchenberger and her col- 
leagues at the Loyola University of Chicago have 
developed an ANN to predict the financial health 
of savings and loan associations [22]. They identi- 
fied many possible inputs to the network. Through 
stepwise regression analyses, 5 significant vari- 
ables were identified (out of 291. These variables 
were the ratios of: net worth/ total assets, repos- 
sessed assets/ total assets, net income/ gross in- 
come, net income/ total assets, cash plus securi- 
ties/total assets. They ratios were selected to 
measure, respectively, capital adequacy, asset 
quality, management efficiency, earnings, and li- 
quidity. 

After identifying the input variables, they con- 
ducted some experiments and selected a single 
middle layer, feed-forward, backpropagation net- 
work consisting of 5 input nodes, 3 middle layer 
nodes, and one output node (see Figure 6). The 
output node was interpreted as the probability 
that an institution was classified as failed or sur- 
viving. 

To train the network, supervised learning was 
conducted with training sets consisting of the five 
financial ratios and the corresponding failed or 
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T6Friiz- Middle 

Layer 

Net income 
Gross income 

Net income 

Total assets Failed or 
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Fig. 6. Neural network for predicting thrift failures. 
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surviving result from 100 failures and 100 surviv- 
ing S and L institutions between January, 1986 to 
December, 1987. The result showed the three- 
layer ANN gained more predictive power over 
logit model. The latter is equivalent to a two-layer 
(no middle-layer) network. 

5.4. Prediction of stock price index 

With limited knowledge about the stock mar- 
ket and with only data available from a public 
library, Ward Systems Group, Inc. [261 created an 
example showing how one might set up an ANN 
application to predict stock market behavior. The 
first step was to decide what to predict or classify 
(i.e., the target outputs). Obviously there are many 
possible outputs that could be predicted, such as 
turning points, market direction, etc. For this 
application, the next month’s average Standard 
and Poor’s stock price index was selected. 

The next step was to consider which input 
facts or parameters are necessary or useful for 
predicting the target outputs. In this case, the 
stock price index for the current month was cho- 
sen because it should be an important factor in 
predicting next month’s index. In addition, nine 
other publicly available economic indicators were 
selected: unadjusted retail sales, average three 
month Treasury bill rate, total U.S. Government 
securities, industrial production index, New York 
gold price, outstanding commercial paper and 
acceptances, Swiss Franc value, U.S. Government 
receipts, and U.S. Government expenditures (see 
Figure 7). 

Next, the case characteristics for the problem 
were entered into the system. These included the 
defining characteristics (the names of the input 
parameters) and the classifying characteristics 
(the names of the output results). Finally, exam- 
ples of previous results were entered in order to 
train the network. These case histories contain 
information for all the months in the years of 
1974 to 1979. The goal is to see if the system 
could predict the monthly stock price indexes in 
1980. 

After several hours of training, the network 
was able to predict the next month’s stock price 
index for all of 1980. The result has shown that 
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Layer 
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Average three month 

rate of Treasury bille 

Total 
U.S. Gov. securities 

Industrial 

production index 

New York gold price 

Outstanding commercial 
paper & acceptances 

Swiss Franc value 

U.S. Gov. receipts 

Output 
Layer 

=)I 

US. Gov. expenditures + 
0’ 

Fig. 7. A neural network for predicting stock price. 

such neural system can produce the first 8 month 
predictions with less than 3.2% average absolute 
error and the entire 12 month predictions with 
only 4% average error. Therefore, through a 
carefully designed ANN, it is possible to predict 
the volatile stock market. 

6. Limitations of artificial neural networks 

Artificial neural network is undoubtedly a 
powerful tool for decision making. But there are 
several weaknesses in its use. 

(1) ANN is not a general-purpose problem 
solver. It is good at complex numerical computa- 
tion for the purposes of solving system of linear 
or non-linear equations, organizing data into 
equivalent classes, and adapting the solution 
model to environmental changes. However, it is 
not good at such mundane tasks as calculating 
payroll, balancing checks, and generating in- 
voices. Neither is it good at logical inference - a 
job suited for expert systems. Therefore, users 
must know when a problem could be solved with 
an ANN. 
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(2) There is no structured methodology avail- 
able for choosing, developing, training, and veri- 
fying an ANN [23]. The solution quality of an 
ANN is known to be affected by the number of 
layers, the number of neurons at each layer, the 
transfer function of each neuron, and the size of 
the training set. One would think that the more 
data in the training set, the better the accuracy of 
the output. But, this is not so. While too small a 
training set will prohibit the network from devel- 
oping generalized patterns of the inputs, too large 
a one will break down the generalized patterns 
and make the network sensitive to input noise. In 
any case, the selection of these parameters is 
more of an art than a science. Users of ANNs 
must conduct experiments (or sensitivity analyses) 
to identify the best possible configuration of the 
network. This calls for easy-to-use and easy-to- 
modify ANN development tools that are gradu- 
ally appearing on the market. 

(3) There is no single standardized paradigm 
for ANN development. Because of its interdisci- 
plinary nature, there have been duplicating ef- 
forts spent on ANN research. For example, the 
backpropagation learning algorithm was inde- 
pendently developed by three groups of re- 
searchers in different times: Werbos [29], Parker 
1191, and Rumelhart, Hinton, and Williams [21]. 
To resolve this problem, the ANN community 
should establish a repository of available para- 
digms to facilitate knowledge transfer between 
researchers. 

Moreover, to make an ANN work, it must be 
tailored specifically to the problem it is intended 
to solve. To do so, users of ANN must select a 
particular paradigm as the starting prototype. 
However, there are many possible paradigms. 
Without a proper training, users may easily get 
lost in this. Fortunately, most of the ANN devel- 
opment tools commercially available today pro- 
vide scores of sample paradigms that work on 
various classes of problems. A user may follow 
the advice and tailor it to his or her own needs. 

(4) The output quality of an ANN may be 
unpredictable regardless of how well it was de- 
signed and implemented. This may not be the 
case for finding the solution to a problem with 
linear constraints in which the solution, if found, 

is guaranteed to be the global optimum. How- 
ever, many problems have a non-linear region of 
feasible solutions. A solution to a non-linear 
problem reached by the ANN may not be the 
global optimum. Moreover, there is no way to 
verify that an ANN is correct unless every possi- 
ble input is tried: such exhaustive testing is im- 
practical, if not impossible. In a mission-critical 
application, one should develop ANN solutions in 
parallel with the conventional ones for direct 
comparison. Both types of systems should be run 
for a period of time, long enough to make sure 
that the ANN systems are error-free before they 
are used in real situations. 

(5) Most ANN systems are not able to explain 
how they solve problems. The current ANN im- 
plementations are based primarily on random 
collectivity between processing elements (the in- 
dividual “neurons”). As a result, the user may be 
able to verify a network’s output but not to trace 
a system’s flow of control [161. Recently, S.I. 
Gallant [6] demonstrated that an explanation 
ability can be incorporated into an ANN. Further 
development of this is bound to attract more 
prospective users into the ANN bandwagon. 

7. Conclusion 

The field of ANN went through a dormant 
period during the 1970’s, because the early sin- 
gle-layer models were fundamentally flawed. Soon 
after, some multi-layer and trainable ANN mod- 
els emerged in the early 1980’s. Despite having 
some inherent limitations, ANNs have been in- 
creasingly popular since then. They are feasible 
for those business applications which require the 
solution of very complex system of equations, 
recognizing patterns from imperfect inputs, and 
adapting decisions to changing environment. 

Philip D. Wasserman of ANZA Research, Inc. 
envisions “artificial neural networks taking their 
place alongside of conventional computation as 
an adjunct of equal size and importance” [27]. 
Indeed, digital computers will always be needed 
to compute payrolls, manage inventory, and 
schedule production. As ANN software packages 
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become increasingly user-friendly, they will at- 
tract more and more novice users. 
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