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Abstract 

In classification or prediction tasks, data imbalance problem is frequently observed when most of 

samples belong to one majority class. Data imbalance problem has received a lot of attention in 

machine learning community because it is one of the causes that degrade the performance of 

classifiers or predictors. In this paper, we propose geometric mean based boosting algorithm (GM-

Boost) to resolve the data imbalance problem. GM-Boost enables learning with consideration of both 

majority and minority classes because it uses the geometric mean of both classes in error rate and 

accuracy calculation. We have applied GM-Boost to bankruptcy prediction task. The results indicate 

that GM-Boost has the advantages of high prediction power and robust learning capability in 

imbalanced data as well as balanced data distribution. 
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1 INTRODUCTION 

Data imbalance problem is frequently observed in various classification and prediction tasks when 

most of training samples belong to one majority class. Although most classification algorithms are 

trained under the assumption that the ratio of the classes is almost equal, in real classification, this 

assumption is frequently violated. Data imbalance problem is reported in a wide range of classification 

tasks, such as oil spill detection (Kubat et al. 1998), response modeling (Shin & Cho 1997), remote 

sensing (Bruzzone & Serpico 1997), and scene classification (Yan et al. 2003). It is also pervasive in 

business applications including card fraud detection (Fawcett & Provost 1997) and credit rating 

(Kwon et al. 1997).   

Recently, data imbalance problem has received a lot of attention in the machine learning community 

because it is one of the main causes that degrade the performance of machine learning algorithms in 

classification tasks. There are two main reasons why data imbalance causes degradation in 

performance of machine learning algorithms (Kang & Cho 2006; Kotsiantis et al. 2007; Wang & 

Japkowicz 2009).  

The first reason is associated with the objective function of classification algorithms. One of widely 

used objective functions for classification algorithms is the arithmetic mean based accuracy (hereafter, 

arithmetic accuracy) which is a ratio of the number of correctly classified instances over the number of 

total instances. However, in the presence of data imbalance, arithmetic accuracy can be inappropriate 

because the accuracy is highly dependent on the classification accuracy of majority class samples. For 

example, bankruptcy is a very rare event. Credit rating agencies such as Moody's anticipate long term 

average bankruptcy rates of Korean audited companies to be about three to five percent. If all of 

audited companies are used as a training data set, then arithmetic accuracy of the generated classifier 

will tend to be abnormally high due to the high accuracy for majority class samples (non-bankrupt 

companies) despite the low accuracy for minority class samples (bankrupt companies). More 

specifically, in very imbalanced domains, most standard classifiers will tend to learn how to predict 

the majority class. While these classifiers can obtain higher predictive accuracies than those that also 

try to consider the minority class more, this seemingly good performance can be argued as being 

meaningless (Wang & Japkowicz 2009). 

Recently there have been research works to apply receiver operating characteristic (ROC) curve or 

geometric mean based accuracy (hereafter, geometric accuracy) in measuring performance, because 

these measures have advantages of reflecting both the accuracy on the majority and minority classes at 

the same time (Fawcett 2006; Kubat et al. 1997). 

The second reason for the degradation in performance is the distortion of decision boundaries resulting 

from imbalanced distribution of the classes. As the imbalance of data is getting severe, the decision 

(classification) boundary of majority class tends to invade the decision boundary of the minority class, 

so that the decision boundary of majority class is gradually expanded while the decision boundary of 

minority class is gradually reduced. This problem eventually causes the decrease in the accuracy for 

minority class.  

For the alternatives to solve this problem, various methods have been proposed including under-

sampling, over-sampling, cost adaptive strategies, and boosting algorithms. Under-sampling method 

decreases the number of samples from majority class to that of minority class in order to make the 

number of both classes the same. Over-sampling method, which is opposite to under-sampling method, 

increases the number of samples in minority class to meet the number of samples in majority class. In 

cost adaptive strategies, the penalty is assigned to misclassified instances from minority class. Cost 

adaptive strategies have a merit that they do not distort data distribution, while their effects are 

marginal when data imbalance is severe. Recently, various boosting algorithms have been proposed as 

alternatives for data imbalance problems including SMOTEBoost (Chawla et al. 2003) and RUSBoost 

(Seiffert et al. 2008). In particular, SMOTEBoost is an application of boosting techniques to over-



sampled data generated by synthetic minority over-sampling technique (SMOTE) (Chawla 2002). 

SMOTE effectively creates a new synthetic minority class sample by combining a certain sample with 

k similar minority class observations multiplied by Gaussian random distances where k is the number 

of the nearest neighbours, while boosting algorithm proceeds training on over-sampled data through 

repetitive sampling process which focuses on misclassified observations. In this way, SMOTEBoost 

can reinforce the training over samples from minority class to be likely misclassified. However, the 

boosting algorithm can be inappropriate as for over-fitting problem because its objective function is 

still measured in terms of arithmetic accuracy and arithmetic errors. New minority class samples, 

which are generated from SMOTE, are likely to have the higher similarity than majority data samples. 

Most standard learning algorithms will tend to generate classifiers focusing on samples with higher 

similarity because that strategy is helpful to maximize the objective function, i.e. arithmetic accuracy. 

This drawback might increase generalization errors when classifiers are applied to new validation data 

set which is not trained. 

This paper proposes geometric mean based boosting (GM-Boost) which is a novel boosting algorithm 

applying the concept of geometric accuracy to AdaBoost algorithm (Freund and Schapire 1997). It has 

the advantage of enabling balanced learning against both majority and minority classes. The proposed 

GM-Boost algorithm is applied to bankruptcy prediction task which is one of the typical data 

imbalance problems in business domains. Two different data samples are constructed to verify the 

performance of GM-Boost algorithm. At the first stage, five sample groups is constructed according to 

different data balance rates (1:1(denoted as A), 1:3(B), 1:5(C), 1:10(D), and 1:20(E)) and perform 

classification experiments using AdaBoost and GM-Boost for performance verification in imbalanced 

data. 

At the second stage, SMOTE algorithm is applied to generate new bankrupt company data sets for B, 

C, D, and E of the first stage, and thus bankrupt companies to normal companies are in the ratio of 1:1. 

We apply the newly sampled sets to AdaBoost and to GM-Boost experiments for the performance 

verification of GM-Boost in balanced data.   

Experimental results show that GM-Boost has the advantages of high prediction power and robust 

learning capability in imbalanced data distribution as well as in balanced data distribution. 

This paper is organized as follows. The problems of data imbalance and the previous methods to solve 

these problems are briefly described in section two. Three algorithms including SMOTE, AdaBoost 

and GM-Boost, which are used in this research, are explained in section three. In section four, we 

explain the processes of data collection and experimental design. Experimental results are presented in 

section five. We conclude with future research directions in section six. 

 

2 DATA IMBALANCE PROBLEM IN BINARY CLASSIFICATION 

PROBLEMS 

In this section, we will describe data imbalance problems and then previously proposed methods to 

resolve data imbalance problem. 

2.1 Data Imbalance Problem 

Kang and Cho (2006) constructed six sample groups according to different data balance rates (1:1, 1:3, 

1:5, 1:10, 1:30, and 1:50) in order to analyze the effects of data imbalance on classification accuracy 

of SVM. Their experimental results show that for the two sample groups with little or no data 

imbalance problem (1:1, and 1:3), the sizes of decision boundary areas of the two classes are similar to 

each other. However, for the sample groups with serious data imbalance problems (1:5, and 1:10), the 

area of minority class is reduced because the area of the majority class invades the area of minority 

class, and thus the classification accuracy for minority class samples gets degraded. Especially, for the 



sample groups with extreme data imbalance (1:30, and 1:50), it is reported that the decision boundary 

area for minority class is excessively small, which makes the classification for minority class 

meaningless. Also, they reported that, as the data imbalance is getting severe, arithmetic accuracy over 

total samples steadily increases due to the high accuracy over samples of majority class, while the 

arithmetic accuracy for minority class is dramatically reduced, and thereby geometric accuracy over 

total samples gradually decreases. They argued that these results demonstrate that arithmetic accuracy 

is not a suitable objective function for imbalanced data.  

Wu and Chang (2003) asserted that data imbalance leads to skewing the boundaries of SVM. Firstly, 

the decision boundary area of majority class is expanded and the decision boundary area of minority 

class is reduced, as the data imbalance is getting severe. This problem causes the distortion of decision 

boundary area. Secondly, data imbalance induces that samples of minority class do not reside in the 

decision boundary area of minority class, as the decision boundary area of minority class is getting 

small. Consequently, the possibility becomes very high that the classifier will classify a sample as a 

majority class. 

 

2.2 The Approaches to Resolve Performance Measure Problem 

 Predicted category 

Positive Negative 

Actual class True True Positive (TP) False Negative (FN) 

False False Positive (FP) True Negative (TN) 

Table 1. Confusion Matrix. 

 

Let us assign minority class as positive and majority class as negative in order to explain the concept 

of accuracy. Simple arithmetic mean based accuracy which is widely used is calculated as 

(TP+TN)/(TP+FN+FP+TN) as shown in the confusion matrix as of Table 1. As described before, 

arithmetic accuracy is a proper performance measure for classifiers in balanced data set. However, 

under data imbalance, it is not a proper performance measure anymore because it is highly influenced 

by the classification accuracy of majority class (Kang & Cho 2006; Kotsiantis et al. 2007; Wang & 

Japkowicz 2009).  

Geometric accuracy and ROC analysis are proposed to resolve this problem. The geometric accuracy 

is calculated as a square root of sensitivity multiplied by specificity where sensitivity and specificity 

are TP/(TP+FN) and TN/(FP+TN) respectively (Kubat et al. 1997).  

In ROC analysis, we usually plot and connect each sample to generate a polyline ordered by their 

classification score in two dimensional Cartesian coordinate system where x axis denotes 1- specificity 

and y axis denotes sensitivity. The accuracy of the classifier is calculated as an area under the ROC 

curve (AUROC). AUROC is 1.0 in a perfect model and AUROC is 0.5 in a random guess model. Most 

models generally have AUROC which is higher than 0.5 and lower than 1.0. As AUROC becomes 

closer to 1.0, the model is regarded as more accurate (Fawcett 2006). 

 

2.3 The Approaches to Resolve Data Distribution Problem 

The previously proposed methods to resolve data imbalance can be divided into twofold: data 

sampling and the assignments of weights (penalties) to misclassified instances (Kang & Cho 2006).  

There have been two types of data sampling strategies, under-sampling and over-sampling, which is 

generally used to resolve data imbalance problems. Data sampling balances the class distribution in 

the training data by either removing examples from the majority class or adding examples to the 



minority class. Under-sampling removes a portion of majority class samples in accordance with the 

number of minority class samples. The primary drawback of under-sampling is the loss of information 

associated with deleting examples from the training data. However, it has the benefit of decreasing the 

time required to train models since the training dataset size is reduced (Seiffert et al. 2008). It can also 

successfully resolve data imbalance problems when adequate rules to select and remove samples are 

adopted (Japkowicz & Stephen 2002; Kubat et al. 1998;  Laurikkala 2002). 

Over-sampling uses techniques of data duplication or data generation to increases the number of 

minority class samples (Chawla et al. 2003; Japkowicz & Stephen 2002). Over-sampling, on the other 

hand, does not result in the loss of information. However, it can lead to over-fitting (Drummond & 

Holte 2003) and increased model training times due to increased training dataset size (Japkowicz & 

Stephen 2002; Kubat et al. 1998; Laurikkala 2002; Seiffert et al. 2008). 

In weights assignments methods, cost adaptive learning strategies are generally used to impose 

different penalties on misclassified patterns. That is, the higher penalty is imposed on the 

misclassification when a sample in minority class is misclassified than the penalty is when a sample in 

majority class is misclassified (Elkan 2001; Provost & Fawcett 2001). This method has a merit that it 

can avoid the problems like as information loss of under-sampling or generalization error of over-

sampling, while it can cause to generate unstable classifiers due to the excessive sensitivity about the 

samples.  

Recently, a variety of hybrid data sampling/boosting algorithms such as SMOTEBoost (Chawla et al. 

2003), RUSBoost (Seiffert et al. 2008), etc. have been applied to data imbalance problem and have 

shown successful results. Both SMOTEBoost and RUSBoost introduce data sampling into the 

AdaBoost algorithm. SMOTEBoost using an over-sampling technique called SMOTE which creates 

new minority class examples by extrapolating between existing examples. RUSBoost applies random 

under-sampling (RUS), a technique which randomly removes examples from the majority class. 

Another technique that can be used to improve classification performance is boosting. While data 

sampling is designed to resolve the class imbalance problem, boosting is a technique that can improve 

the performance of any weak classifier (whether or not the data is imbalanced). The most common 

boosting algorithm is AdaBoost (Freund & Schapire 1997). AdaBoost sequentially generate ensemble 

of classifiers. It assigns higher weights to misclassified observations than to correctly classified 

observations for each iteration. In the next iteration, AdaBoost leads to more learning opportunity to 

misclassified observations with higher weights because it selects training samples from the sample of 

the previous iteration according to the weights assigned to observations. Upon completion, all 

constructed classifiers participate in a weighted vote to classify untrained samples. In this way, 

AdaBoost has a merit that it can strengthen learning on minority class samples with the high 

probabilities of misclassification.  

 

3 GM-BOOST ALGORITHM 

In this section, we will explain SMOTE, AdaBoost, and GM-Boost algorithms which are used in this 

research. 

3.1 The Approaches to Resolve Data Distribution Problem 

SMOTE algorithm is used to generate new samples for minority class data. SMOTE algorithm 

combines a certain observation with k similar minority class samples to generate a new sample 

according to the following calculation:            (   )  (    ) where Xnew, X, and Xn 

respectively means newly generated sample, the original sample, and the nearest k samples to the 

original sample. SMOTE algorithm consists of three steps as followings; Firstly, the nearest k samples 

to the original sample is chosen, secondly the distances of the original sample and k samples is 



multiplied by a random number between zero and one, and finally, the average of the multiplied 

distances is added to the original sample in order to generate a new sample. In this way, we repeat 

SMOTE sampling to increase the samples of minority class until both the numbers of the minority 

class and majority class become same. 

 

3.2 AdaBoost Algorithm 

AdaBoost algorithm is one of the most widely used boosting algorithms in binary classification among 

ensemble learning algorithms, and has been proposed by Freund and Schapire (1997). Basically, 

boosting is an algorithm that generates a strong learner that is highly accurate by linearly combining 

multiple weak learners which is more accurate than random guess. In boosting, a new classifier is 

generated based on the result of the previously generated classifiers focusing on misclassified samples. 

To explain AdaBoost, we assume an ensemble   {          } composed of K base classifiers 

from n training samples. Then the error rate for k
th
 base classifier (ek) is calculated as an arithmetic 

mean, which is as follows. 
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Note that xi is a vector of predictor variables for i
th
 observation, yi is a category of i

th
 observation, and 

Ck(xi) is a classification result of k
th
 classifier on the predictor variable vector xi. For the (k+1)

th
 

classifier, the weight for i
th
 observation is adjusted as follows, which impose higher weights on 

misclassified observations. 
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Note that    is conceptually interpreted as an importance or accuracy of the classifier, and calculated 

as    
 

 
  ((    )   ). When the training samples are constructed for (k+1)

th
 classifier, since 

higher weights are assigned to misclassified observations, the boosting algorithm can proceed training 

focused on misclassified observations. The ensemble learning algorithm stops when ek > 0.5. The 

classification result of the ensemble for i
th
 observation is a weighted mean of base classifiers' 

classification expressed as follows:  
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Having an advantage of providing learning opportunity to minority class samples, various boosting 

algorithms based on AdaBoost are frequently applied to data imbalance problem as an alternative 

solution. As data imbalance is more severe, the error rate for minority class is higher whereas the error 

rate for majority class is lower. Since higher weights are assigned to minority class samples in the 

process of constructing training samples for new classifier, the new classifier will strengthen its 



learning for minority class. In this way, although learning algorithm is concentrated on majority class 

samples in the beginning stage of ensemble learning, gradually there become more learning 

opportunities for minority class samples. Upon such characteristic, AdaBoost has an advantage of 

yielding robust learning performance even under data imbalance.  

However, the boosting algorithms can exhibit the over-fitting and generalization problems because 

they try to maximize arithmetic accuracy. The error rate of the classifier ek and the performance of the 

classifier, ɑk, are measures based on arithmetic mean. As mentioned before, measures based on 

arithmetic accuracy might not be valid as a useful objective function because the objective function 

based on arithmetic measures tends to generate a strongly biased classification function towards 

majority class or class with high similarity among samples. Especially, when the boosting algorithms 

are applied after SMOTE algorithm, which generates a new data sample from a group of adjacent data 

samples weighted with their inter-distances, it will increase the inductive bias due to the increased 

similarity among the group of data samples and will eventually aggravate the over-fitting effects. The 

notion of geometric accuracy, which can consider predictive performances of both majority class and 

minority class, is introduced to alleviate these problems. 

 

3.3 GM-Boost Algorithm 

In addition to the aforementioned assumptions for AdaBoost algorithm, we assume that, out of n 

training samples, n
+
 samples are in minority class and n

-
 samples are in majority class. Let   

  be the 

error rate for minority class of k
th
 classifier and   

  be the error rate for majority class of k
th
 classifier. 

Then the geometric mean based error rate ek, can be defined as follows: 
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Accordingly,    which means classification accuracy of the classifier is calculated as a geometric 

mean based accuracy of classification accuracies of minority class and majority class.  
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Note that   is a weighting degree that controls the weight value multiplied to each instance. Following 

AdaBoost, the weight imposed on the samples for (k+1)
th
 classifier is calculated as follows:  
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And the final classification result for i
th
 observation is calculated as a linear combination of ensemble 

results and   .  
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Since GM-Boost algorithm is based on AdaBoost algorithm, it has an advantage of having more 

opportunities to strengthen its learning for minority class. Moreover, since it is based on geometric 

mean based error rate and geometric mean based accuracy, it can carry on its learning with 

consideration of both majority class and minority class. Figure 1 concisely depicts the procedure of 

GM-Boost algorithm.  

 

 

Figure 1. GM-Boost algorithm  

 

4 RESEARCH DESIGN  

The experimental data used for this research is given from a Korean commercial bank. The bankrupt 

companies are 500 audited manufacturing companies during year 2002 to year 2005, while the non-

bankrupt companies are 2,500 audited manufacturing companies during 2002-2005. We collected 

10,000 firm-year financial statements of the non-bankrupt companies during 2001-2004. In this way, 

we collected a total of 10,000 financial statements based on firms-year standard, and the average 

bankrupt rate for the four years is about five percent, which falls in the expected range of bankruptcy 

rate (three to five percent) estimated by professional credit rating agencies.  

As for the financial ratios for bankruptcy prediction, we collected thirty financial ratios, which have 

been usefully applied in the previous corporate bankruptcy prediction researches. The collected ratios 

are divided into seven financial ratio groups including profitability, debt coverage, leverage, capital 

structure, liquidity, activity, and size. Consequently, the seven final input variables, each of which has 

the highest AUROC in each group, are selected. The original thirty financial ratios and the seven 

selected financial ratios are described in the Table 2.  

 

Variables AUROC 
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1. Initialize weights   (  )  
 
 ⁄           . 

2. Repeat generating classifiers              until the stopping criterion(ek >0.5) is satisfied  

a) Learn classifiers   (  )  {    } based on the training data and their weights 

b) Calculate geometric mean based error rates: 
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c) Calculate geometric mean based accuracies: 

d) Adjust the weights: 

3. Generate the final result: 

  (  )      (∑     (  )
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Profitability 

Ordinary income to total assets* 

Net income to total assets 

Financial expenses to sales 

Financial expenses to total debt 

Net financing cost to sales 

Ordinary income to sales 

Net income to sales 

Ordinary income to capital 

Net income to capital 

51.7 

44.7 

49.0 

47.3 

49.2 

44.5 

49.1 

47.2 

47.1 

Debt Coveraage 

EBITDA to Interest expenses* 

EBIT to Interest expenses 

Cash operating income to interest expenses 

Cash operating income to total debt 

Cash flow after interest payment to total debt 

Cash flow after interest payment to total debt 

Debt repayment coefficient 

51.2 

48.2 

47.5 

47.1 

50.5 

50.1 

48.8 

Leverage 
Total debt to total assets* 

Current assets to total assets 

50.9 

50.3 

Capital Structure  
Retained earning to total assets* 

Retained earning to total debt 

Retained earning to current assets 

52.5 

51.7 

50.1 

Liquidity 
Cash ratio* 

Quick ratio 

Current assets/current Liabilities 

45.5 

45.1 

42.2 

Activity 
Inventory to sales* 

Current liabilities to sales 

Account receivable to sales 

30.5 

28.3 

27.2 

Size 
Total assets* 

Sales 

Fixed assets 

24.2 

21.4 

22.6 

Table 2. Area under the ROC curve (AUROC) values of the 31 financial ratios. * Note that the 

chosen seven financial ratios are in boldface and are denoted with ‘*’. 

 

Although multicollinearity test is not directly related to model’s predictive power, it is a check-point 

of the model. Variance inflation factor (VIF) analysis is performed to check for multicollinearity 

among the seven financial ratios. Generally, it is suspected that multicollinearity will present if VIF 

lies between four and ten, and there is very severe multicollinearity if VIF is higher than ten. Table 3 

shows that the chosen variables do not exhibit any substantial multicollinearity because all the VIFs 

are below four.   

 
Variables VIF 

Ordinary income to total assets 1.36 

EBITDA to Interest expenses 2.11 

Total debt to total assets 1.77 

Retained earning to total assets 2.53 

Cash ratio 1.34 

Inventory to sales 1.59 

Total assets 1.31 

Table 3. The result of variance inflation factor analysis on the chosen variables. 

 



5 EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we summarize and present the overall performance evaluation results of GM-Boost in 

imbalanced data distribution as well as balance data distribution. Sequential minimal optimization 

(SMO) is used as a SVM base classifier and the radial basis function (RBF) is used as a kernel 

function. There are two parameters in RBF kernels: acceptable error C and kernel parameter 2. We 

made up various configurations of the two parameters: varying C from 1 to 250, and 2 from 1 to 200. 

In order to compare and analyze the performance of classifiers from different learning algorithms 

under data imbalance, we prepared samples through two stages. At the first stage, we chose samples 

from the total of 10,500 cases, with the ratio of bankrupt companies to normal companies as 1:1(A), 

1:3(B), 1:5(C), 1:10(D), and 1:20(E). Then we set 60% of each of them as training samples, and the 

rest 40% of each of them as test samples. Table 4 shows these configurations of samples in the 

experiment. We repeated these steps of the first stage fifty times to generate fifty training sample sets 

and fifty test sample sets for each of the five configurations (A, B, C, D, and E).  

 

Set 
Training  Validation  

Bankrupt Normal Total Bankrupt Normal Total 

A 1:1 300 300 600 200 200 400 

B 1:3 300 900 1,200 200 600 800 

C 1:5 300 1,500 1,800 200 1,000 1,200 

D 1:10 300 3,000 3,300 200 2,000 2,200 

E 1:20 300 6,000 6,300 200 4,000 4.200 

Table 4. Configurations of imbalanced data samples. 

 

At the second stage, we used SMOTE algorithm, where k is set to five, to generate new bankrupt 

companies, so that we obtained the number of bankrupt companies same with that of normal 

companies. Table 5 shows these configurations of samples. We repeated the same sampling process 

fifty times to generate fifty training sample sets and fifty test sample sets for each of four 

configurations (B, C, D, and E).  

 

Set 
Training  Validation  

Bankrupt Normal Total Bankrupt Normal Total 

A 1:1 300 300 600 200 200 400 

B 1:3 900 900 1,200 200 600 800 

C 1:5 1,500 1,500 1,800 200 1,000 1,200 

D 1:10 3,000 3,000 3,300 200 2,000 2,200 

E 1:20 6,000 6,000 6,300 200 4,000 4.200 

Table 5. Configurations of balanced data samples. 

 

5.1 Results on Imbalanced Data 

We run fifty validations per each configuration, since we have fifty different pairs of training sample 

sets and test sample sets per each configuration. Table 6 shows the results of average accuracy of fifty 

validations. The second and third column of Table 6 show average accuracy for majority and minority 

class, and the fourth and fifth column show prediction accuracy based on arithmetic and geometric 

mean, respectively. In case of AdaBoost, as the data imbalance is getting severe, arithmetic accuracy 

over total samples is steadily increased due to the high accuracy over samples of majority class, while 

the arithmetic accuracy for minority class is dramatically reduced, and thereby geometric accuracy 



over total samples is gradually decreased. In particular, average accuracy for minority class of sample 

groups C, D, and E is 7%, 4.5%, and 3.5%, respectively. It indicates that the classification for minority 

class is meaningless and that arithmetic accuracy cannot be a suitable performance measure for 

imbalanced data. Those results are caused by arithmetic error and accuracy calculation of AdaBoost. 

Comparing to AdaBoost, however, GM-Boost shows stable arithmetic accuracy for minority class and 

geometric accuracy over total samples. The arithmetic accuracy for minority class lies between 0.420 

and 0.780 and geometric accuracy lies between 0.619 and 0.800. T-test is performed to analyze the 

difference of geometric accuracy between both boosting algorithms for the five configurations (A, B, 

C, D, and E). The results of T-test show that the prediction accuracy between two training algorithms 

for sample group A is significantly different at 5% level and for sample group B, C, D, and E is 

different at 1% level, respectively. The difference in geometric accuracies becomes higher, as the data 

imbalance becomes more severe. These results imply that GM-Boost successfully balances minority 

category and majority category. It reduces distortion of decision boundary and thus enhances decision 

support.   

 

Set 
AdaBoost GM-Boost 

t-value 
Majority Minority Arithmetic Geometric Majority Minority Arithmetic Geometric 

A 0.820 0.755 0.788 0.787 0.820 0.780 0.800 0.800** 1.851* 

B 0.960 0.330 0.803 0.563 0.893 0.630 0.828 0.750* 2.435** 

C 0.990 0.070 0.837 0.263 0.891 0.610 0.844 0.737* 2.704** 

D 0.999 0.045 0.912 0.212 0.916 0.505 0.879 0.680* 3.291** 

E 0.998 0.035 0.952 0.187 0.912 0.420 0.889 0.619* 3.557** 

Table 6. Prediction accuracy and the t-test for the five configurations of imbalanced data 

samples. ** and * represent significance levels at 1% and 5%, respectively. 

 

5.2 Results on Balanced Data 

We apply the final sampled sets generated from SMOTE to AdaBoost and GM-Boost experiments. 

Table 7 shows the results of average accuracy of fifty validations. Comparing to classification 

accuracy shown in Table 6, more robust classifiers can be driven from balanced data set through 

SMOTE than those from imbalanced data set. 

 

Set 
AdaBoost GM-Boost 

t-value 
Majority Minority Arithmetic Geometric Majority Minority Arithmetic Geometric 

A 0.830 0.765 0.798 0.797 0.820 0.780 0.800 0.800 0.552 

B 0.750 0.750 0.750 0.750 0.747 0.770 0.753 0.758 1.301* 

C 0.775 0.720 0.766 0.747 0.808 0.745 0.798 0.776** 1.685** 

D 0.755 0.720 0.751 0.737 0.775 0.765 0.774 0.770* 2.423*** 

E 0.775 0.695 0.771 0.734 0.776 0.785 0.776 0.780* 2.997*** 

Table 7. Prediction accuracy and the t-test for the five configurations of balanced data samples. 

***, **, and * represent significance levels at 1%, 5%, and 10%, respectively. 

 

As noted, the higher is the proportion of new generated samples in minority class, the higher is the 

similarity among minority class samples. SVM, the base classifier of AdaBoost, will tend to learn 

focusing on minority samples with high similarity because this strategy is helpful maximizing 

arithmetic accuracy. Boosting algorithms also try to modify the weight of each instance based on 

misclassification, but do not try to balance majority class error and minority class error. This problem 

leads to over-fitting problem and deteriorates the performance of SMOTEBoost in the perspectives of 

generalization and prediction for novel samples. 



In our case, since data set E has the higher proportion of new generated samples and the higher 

similarity among data samples than any other data sets, it is likely to show the lower prediction 

performance for novel samples. Hence, while the accuracy of AdaBoost for majority class samples 

consistently lies on the interval between 0.750 and 0.830, its accuracy for minority class samples 

becomes lower as the degree of data imbalance is higher. Thus, arithmetic accuracy of AdaBoost 

stably lies between 0.750 and 0.798, but geometric accuracy continues to deprecate from 0.797 to 

0.734. On the contrary, GM-Boost, that employs geometric accuracy, systematically avoids this over-

fitting problem because it considers both accuracies of majority class category and minority class 

category. Consequently, GM-Boost exhibits more robustness and generalization than AdaBoost does 

for novel test samples.  

T-test is performed to compare the prediction accuracy between AdaBoost and GM-Boost for the five 

configurations (A, B, C, D, and E). The results show that significant difference between two 

algorithms in classification accuracies for all configurations except the configuration A. 

As for the analysis of the results presented in the Table 6 and 7, it is worth noting the following 

observations. Firstly, the classification accuracies between AdaBoost and GM-Boost for imbalanced 

data samples are significantly different. Especially, as the data imbalance becomes more severe, the 

difference in classification accuracies becomes higher. Those results are caused by the difference in 

the objective function between both boosting algorithms. Most boosting algorithms including 

AdaBoost try to focus on arithmetic accuracy when they update the weight distribution of instances, 

but GM-Boost focuses on geometric accuracy.   

Secondly, GM-Boost algorithm shows significant difference with AdaBoost in terms of classification 

accuracies for all configurations which are data-imbalanced except the configuration A which is data-

balanced. The T-test results also indicate that there is a significant difference between two algorithms. 

Consequently, these results indicate that GM-Boost algorithm has highly accurate and robust learning 

capability in imbalanced data distribution as well as in balanced data distribution.  

 

6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

Data imbalance problem has received a lot of attention in machine learning community because it is 

one of the causes that degrade the performance of classifiers or predictors. In our research, we 

proposed GM-Boost algorithm to resolve data imbalance problem. The proposed GM-Boost algorithm 

is applied to bankruptcy prediction task which is one of typical data imbalance problems in business 

domains. Two different data samples are constructed to verify the performance of GM-Boost 

algorithm. At the first stage, five sample groups are constructed according to different data balance 

rates (1:1, 1:3, 1:5, 1:10, and 1:20) and classification experiments using AdaBoost and GM-Boost are 

performed against those imbalanced data sets. At the second stage, SMOTE algorithm is used to 

generate new bankrupt company data sets and the newly sampled sets are applied to AdaBoost and 

GM-Boost experiments for the performance verification of GM-Boost in balanced data. Experimental 

results show that GM-Boost has the advantages of high prediction power and robust learning 

capability in imbalanced data distribution as well as balanced data distribution. These results on actual 

bankruptcy data mean that the usefulness of GM-Boost is promising on broader range of real-world 

problems of decision making.   

We expect the following future researches to be conducted to cope with the limitations of GM-Boost.  

Firstly, boosting algorithms have drawbacks that degrade classification accuracy when outliers are 

included in the learning samples or when there is high correlation between the classifiers in the 

ensemble. Various methods have been proposed to compensate these shortcomings (Cover & Thomas 

1991; Darbellay 1999; Maia 2008), and we plan to conduct researches to develop algorithms coupled 

with those methods.  



Secondly, the ensemble algorithm we propose in this research is a modification of a boosting 

algorithm to solve data imbalance problem. However, it can be possible to solve the data imbalance 

problem by combining our results with SVM kernel management (Hong 2007; Wu & Chang 2005), so 

we anticipate future researches in this direction.  

Thirdly, we note that our GM-Boost algorithm can be applied to multi-class classification tasks which 

can have severe data imbalance problem. Especially, credit rating is one of typical multi-class 

classification tasks in financial area, so we plan to extend our research to this task.  

Fourthly, in this research we have applied GM-Boost algorithm to bankruptcy prediction task. We plan 

to apply GM-Boost algorithm to broader range of more real-world applications such as intrusion 

detection data (Cieslak et al. 2006), Healthcare data (Joshi et al. 2010), etc. to further verify GM-Boost 

algorithms.  

Finally, we will test GM-Boost algorithm for an experimental setting with under-sampling method 

(Seiffert et al. 2008) to analyze the performance of different sampling methods when they are used 

with GM-Boost and other boosting algorithms.  
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