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Preface

The first edition of our book was published just two years ago, in 
2014. Why the need for a new edition when the first edition has 

been out only 2 years?
At the time we wrote the first edition, we were confident the 

interest in partial least squares structural equation modeling (PLS-
SEM) was increasing, but even we did not anticipate hot interest in 
the method would explode! Applications of PLS-SEM have grown 
exponentially in the past few years, and two journal articles we 
published before the first edition provide clear evidence of the 
popularity of PLS-SEM. The two articles have been the most widely 
cited in those journals since their publication—our 2012 article in the 
Journal of Academy of Marketing Science, “An Assessment of the Use 
of Partial Least Squares Structural Equation Modeling in Marketing 
Research,” cited more than 800 times according to Google Scholar, 
has been the number one highest impact article published in the top 
20 marketing journals, according to Shugan’s list of most cited 
marketing articles (http://www.marketingscience.org; e.g., Volume 2, 
Issue 3). It has also been awarded the 2015 Emerald Citations of 
Excellence award. Moreover, our 2011 article in the Journal of 
Marketing Theory and Practice, “PLS-SEM: Indeed a Silver Bullet,” 
has surpassed more than 1,500 Google Scholar citations.

During this same timeframe, PLS-SEM has gained widespread 
interest among methods researchers as evidenced in a multitude of 
recent research papers that offer novel perspectives on the method. 
Very prominent examples include the rejoinders to Edward E. Rigdon’s 
(2012) Long Range Planning article by Bentler and Huang (2014); 
Dijkstra (2014); Sarstedt, Ringle, Henseler, and Hair (2014); and  
Rigdon (2014b) himself. Under the general theme “rethinking partial 
least squares path modeling,” this exchange of thoughts represents the 
point of departure of the most important PLS-SEM developments we 
expect to see in the next few years. Moreover, Rönkkö and Ever-
mann’s (2013) paper in Organizational Research Methods offered an 
excellent opportunity to show how uninformed and blind criticism of 
the PLS-SEM method leads to misleading, incorrect, and false 



conclusions (see the rejoinder by Henseler et al., 2014). While this 
debate also nurtured some advances of PLS-SEM—such as the new 
heterotrait-monotrait (HTMT) criterion to assess discriminant valid-
ity (Henseler, Ringle, & Sarstedt, 2015)—we believe that it is impor-
tant to reemphasize our previous call: “Any extreme position that 
(often systematically) neglects the beneficial features of the other 
technique and may result in prejudiced boycott calls, is not good 
research practice and does not help to truly advance our understand-
ing of methods and any other research subject” (Hair, Ringle, & 
Sarstedt, 2012, p. 313).

Research has also brought forward methodological extensions of 
the original PLS-SEM method, for example, to uncover unobserved 
heterogeneity or to assess measurement model invariance. These 
developments have been accompanied by the release of SmartPLS 3, 
which implements many of these latest extensions in highly user-
friendly software. This new release is much more than just a simple 
revision. It incorporates a broad range of new algorithms and major 
new features that previously had to be executed manually. For 
example, SmartPLS 3 runs on both Microsoft Windows and Mac 
OSX and includes the new consistent PLS algorithm, advanced 
bootstrapping features, the importance-performance map analysis, 
multigroup analysis options, confirmatory tetrad analysis to 
empirically assess the mode of measurement model, and additional 
segmentation techniques. Furthermore, new features augment data 
handling (e.g., use of weighted data) and the graphical user interface, 
which also includes many new options that support users running 
their analyses and documenting the results. In light of the developments 
in terms of PLS-SEM use, further enhancements, and extensions of the 
method and software support, a new edition of the book is clearly 
timely and warranted.

As noted in our first edition, the global explosion of data, often 
referred to as the “Age of Big Data,” is pushing the world toward 
data-driven discovery and decision making. The abundance of data 
presents both opportunities and challenges for scholars, industry, 
and government. While more data are available, there are not 
enough individuals with the analytical skills to probe and under-
stand the data. Analysis requires a rigorous scientific approach 
dependent on knowledge of statistics, mathematics, measurement, 
logic, theory, experience, intuition, and many other variables affect-
ing the situational context. Statistical analysis is perhaps the most 
important skill. While the other areas facilitate better understanding 



of data patterns, statistics provides additional substantiation in the 
knowledge-developing process. User-friendly software makes the 
application of statistics in the process efficient and cost-effective, in 
both time and money.

The increasing reliance on and acceptance of statistical analysis 
as well as the advent of powerful computer systems have facilitated 
the analysis of large amounts of data and created the opportunity for 
the application of more advanced next-generation analysis tech-
niques. SEM is among the most useful advanced statistical analysis 
techniques that have emerged in the social sciences in recent decades. 
SEM is a class of multivariate techniques that combines aspects of 
factor analysis and regression, enabling the researcher to simultane-
ously examine relationships among measured variables and latent 
variables (assessment of measurement theory) as well as between 
latent variables (assessment of structural theory).

Considering the ever-increasing importance of understanding 
latent phenomena, such as consumer perceptions, expectations, atti-
tudes, or intentions, and their influence on organizational perfor-
mance measures (e.g., stock prices), it is not surprising that SEM has 
become one of the most prominent statistical analysis techniques 
today. While there are many approaches to conducting SEM, the most 
widely applied method since the late 1970s has been covariance-based 
SEM (CB-SEM). Since its introduction by Karl Jöreskog in 1973, CB-
SEM has received considerable interest among empirical researchers 
across virtually all social sciences disciplines. For many years, the 
predominance of LISREL, EQS, and AMOS, among the most well-
known software tools to perform this kind of analysis, led to a lack 
of awareness of the composite-based PLS-SEM approach as a very 
useful alternative approach to SEM. Originated in the 1960s by the 
econometrician Herman Wold (1966) and further developed in the 
years after (e.g., Wold, 1975, 1982, 1985), PLS-SEM has become an 
increasingly visible method in the social science disciplines.

Figure 1 summarizes the application of PLS-SEM in the top jour-
nals in the marketing and strategic management disciplines, as well as 
MIS Quarterly, the flagship journal in management information sys-
tems research. PLS-SEM use has increased exponentially in a variety 
of disciplines with the recognition that PLS-SEM’s distinctive meth-
odological features make it an excellent alternative to the previously 
more popular CB-SEM approach. Specifically, PLS-SEM has several 
advantages over CB-SEM in many situations commonly encountered 
in social sciences research such as when sample sizes are small or 



Note: PLS-SEM studies published in MIS Quarterly were only considered from 
1992 on.
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when complex models with many indicators and model relationships 
are estimated. However, PLS-SEM should not be viewed simply as a 
less stringent alternative to CB-SEM but rather as a complementary 
modeling approach to SEM. If correctly applied, PLS-SEM indeed can 
be a silver bullet in many research situations.

PLS-SEM is evolving as a statistical modeling technique, and 
while there are several published articles on the method, until our first 
edition, there was no comprehensive book that explained the funda-
mental aspects of the method, particularly in a way that could be 
comprehended by individuals with limited statistical and mathemati-
cal training. This second edition of our book updates and extends the 
coverage of PLS-SEM for social sciences researchers and creates 

1For the selection of journals and details on the use of PLS-SEM in the three disci-
plines, see Hair, Sarstedt, Ringle, and Mena (2012); Hair, Sarstedt, Pieper, and Ringle 
(2012a); and Ringle, Sarstedt, and Straub (2012). Results for the most recent years 
have been added to the figure for the same selection of journals.



awareness of the most recent developments in a tool that will enable 
them to pursue research opportunities in new and different ways.

The approach of this book is based on the authors’ many years 
of conducting and teaching research, as well as the desire to com-
municate the fundamentals of the PLS-SEM method to a much 
broader audience. To accomplish this goal, we have limited the 
emphasis on equations, formulas, Greek symbols, and so forth that 
are typical of most books and articles. Instead, we explain in detail 
the basic fundamentals of PLS-SEM and provide rules of thumb that 
can be used as general guidelines for understanding and evaluating 
the results of applying the method. We also rely on a single software 
package (SmartPLS 3; http://www.smartpls.com) that can be used 
not only to complete the exercises in this book but also in the 
reader’s own research.

As a further effort to facilitate learning, we use a single case study 
throughout the book. The case is drawn from a published study on 
corporate reputation and we believe is general enough to be under-
stood by many different areas of social science research, thus further 
facilitating comprehension of the method. Review and critical think-
ing questions are posed at the end of the chapters, and key terms are 
defined to better understand the concepts. Finally, suggested readings 
and extensive references are provided to enhance more advanced 
coverage of the topic.

We are excited to share with you the many new topics we have 
included in this edition. These include the following:

•• An overview of the latest research on composite-based mod-
eling (e.g., distinction between composite and causal indica-
tors), which is the conceptual foundation for PLS-SEM

•• Consideration of the recent discussion of PLS-SEM as a 
composite-based method to SEM

•• More on the distinction between PLS-SEM and CB-SEM and 
the model constellations, which favor the use of PLS-SEM

•• Introduction of a new criterion for discriminant validity 
assessment: the HTMT ratio of correlations

•• Discussion of the concept of model fit in a PLS-SEM context, 
including an introduction of the following model fit measures: 
standardized root mean square residual (SRMR), root mean 
square residual covariance (RMStheta), and the exact fit test



•• Introduction of several methods for constructing bootstrap 
confidence intervals: percentile, studentized, bias corrected 
and accelerated, and two double bootstrap methods

•• Revision and extension of the chapter on mediation, which 
now covers more types of mediation, including multiple 
mediation

•• Extended description of moderation (e.g., orthogonalizing 
approach for creating the interaction term, measurement 
model evaluation)

•• Inclusion of moderated mediation and mediated moderation

•• Brief introduction of advanced techniques: importance-
performance map analysis, hierarchical component models, 
confirmatory tetrad analysis, multigroup analysis, latent class 
techniques (FIMIX-PLS, REBUS-PLS, PLS-POS, PLS-GAS, 
PLS-IRRS), measurement invariance testing in PLS-SEM 
(MICOM), and consistent PLS

•• Consideration of the latest literature on PLS-SEM

All examples in the edition are updated using the newest version 
of the most widely applied PLS-SEM software—SmartPLS 3. The 
book chapters and learning support supplements are organized around 
the learning outcomes shown at the beginning of each chapter. More-
over, instead of a single summary at the end of each chapter, we present 
a separate topical summary for each learning outcome. This approach 
makes the book more understandable and usable for both students 
and teachers. The SAGE website for the book also includes other sup-
port materials to facilitate learning and applying the PLS-SEM method.

We would like to acknowledge the many insights and sugges-
tions provided by the reviewers: Maxwell K. Hsu (University of  
Wisconsin), Toni M. Somers (Wayne State University), and Lea Witta 
(University of Central Florida), as well as a number of our colleagues 
and students. Most notably, we thank Jan-Michael Becker (Univer-
sity of Cologne), Adamantios Diamantopoulos (University of 
Vienna), Theo Dijkstra (University of Groningen), Markus Eberl 
(TNS Infratest), Anne Gottfried (University of Southern Mississippi), 
Verena Gruber (University of Vienna), Siegfried P. Gudergan  
(University of Newcastle), Karl-Werner Hansmann (University of 
Hamburg), Jörg Henseler (University of Twente), Lucas  
Hopkins (Florida State University), Ida Rosnita Ismail (Universiti 



Kebangsaan Malaysia), Marcel Lichters (Harz University of Applied 
Sciences), David Ketchen (Auburn University), Gabriel Cepeda  
Carrión (University of Seville), José Luis Roldán (University of 
Seville), Lucy Matthews (Middle Tennessee State University), Roger 
Calantone (Michigan State University), Arthur Money (Henley Busi-
ness School), Christian Nitzl (Universität der Bundeswehr München), 
Arun Rai (Georgia State University), Sascha Raithel (Freie Univer-
sität Berlin), Edward E. Rigdon (Georgia State University), Phillip 
Samouel (University of Kingston), Rainer Schlittgen (University of 
Hamburg), Manfred Schwaiger (Ludwig-Maxmillians University, 
Munich), Donna Smith (Ryerson University), Detmar W. Straub 
(Georgia State University), Sven Wende (SmartPLS GmbH), and 
Anita Whiting (Clayton State University) for their helpful remarks. 

Also, we thank the team of doctoral student and research fellows 
at Hamburg University of Technology and Otto-von-Guericke-Univer-
sity Magdeburg—namely, Kathi Barth, Doreen Neubert, Sebastian 
Lehmann, Victor Schliwa, Katrin Engelke, Andreas Fischer, Nicole 
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LEARNING OUTCOMES

1. Understand the meaning of structural equation modeling (SEM) 
and its relationship to multivariate data analysis.

2. Describe the basic considerations in applying multivariate data 
analysis.

3. Comprehend the basic concepts of partial least squares structural 
equation modeling (PLS-SEM).

4. Explain the differences between covariance-based structural equa-
tion modeling (CB-SEM) and PLS-SEM and when to use each.

CHAPTER PREVIEW

Social science researchers have been using statistical analysis tools for 
many years to extend their ability to develop, explore, and confirm 
research findings. Application of first-generation statistical methods 
such as factor analysis and regression analysis dominated the research 
landscape through the 1980s. But since the early 1990s, second- 
generation methods have expanded rapidly and, in some disciplines, 
represent almost 50% of the statistical tools applied in empirical 
research. In this chapter, we explain the fundamentals of 

C H A P T E R  1

An Introduction to 
Structural Equation 

Modeling



2      A Primer on Partial Least Squares

second-generation statistical methods and establish a foundation that 
will enable you to understand and apply one of the emerging second-
generation tools, referred to as partial least squares structural equa-
tion modeling (PLS-SEM).

WHAT IS STRUCTURAL EQUATION MODELING?

Statistical analysis has been an essential tool for social science 
researchers for more than a century. Applications of statistical meth-
ods have expanded dramatically with the advent of computer hard-
ware and software, particularly in recent years with widespread 
access to many more methods due to user-friendly interfaces with 
technology-delivered knowledge. Researchers initially relied on uni-
variate and bivariate analysis to understand data and relationships. 
To comprehend more complex relationships associated with current 
research directions in the social science disciplines, it is increasingly 
necessary to apply more sophisticated multivariate data analysis 
methods.

Multivariate analysis involves the application of statistical meth-
ods that simultaneously analyze multiple variables. The variables 
typically represent measurements associated with individuals, compa-
nies, events, activities, situations, and so forth. The measurements are 
often obtained from surveys or observations that are used to collect 
primary data, but they may also be obtained from databases consist-
ing of secondary data. Exhibit 1.1 displays some of the major types of 
statistical methods associated with multivariate data analysis.

Primarily Exploratory Primarily Confirmatory

First-
generation 
techniques

•	 Cluster analysis

•	 Exploratory factor 
analysis

•	 Multidimensional 
scaling

•	 Analysis of variance

•	 Logistic regression

•	 Multiple regression

•	 Confirmatory factor 
analysis

Second-
generation 
techniques

•	 Partial least squares 
structural equation 
modeling (PLS-SEM)

•	 Covariance-based 
structural equation 
modeling (CB-SEM)

Exhibit 1.1 Organization of Multivariate Methods
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The statistical methods often used by social scientists are typically 
called first-generation techniques (Fornell, 1982, 1987). These tech-
niques, shown in the upper part of Exhibit 1.1, include regression-
based approaches such as multiple regression, logistic regression, and 
analysis of variance but also techniques such as exploratory and 
confirmatory factor analysis, cluster analysis, and multidimensional 
scaling. When applied to a research question, these methods can be 
used to either confirm a priori established theories or identify data 
patterns and relationships. Specifically, they are confirmatory when 
testing the hypotheses of existing theories and concepts and explora-
tory when they search for patterns in the data in case there is no or 
only little prior knowledge on how the variables are related.

It is important to note that the distinction between confirmatory 
and exploratory is not always as clear-cut as it seems. For example, 
when running a regression analysis, researchers usually select the 
dependent and independent variables based on a priori established 
theories and concepts. The goal of the regression analysis is then to 
test these theories and concepts. However, the technique can also be 
used to explore whether additional independent variables prove valu-
able for extending the concept being tested. The findings typically 
focus first on which independent variables are statistically significant 
predictors of the single dependent variable (more confirmatory) and 
then which independent variables are, relatively speaking, better pre-
dictors of the dependent variable (more exploratory). In a similar 
fashion, when exploratory factor analysis is applied to a data set, the 
method searches for relationships between the variables in an effort 
to reduce a large number of variables to a smaller set of composite 
factors (i.e., combinations of variables). The final set of composite 
factors is a result of exploring relationships in the data and reporting 
the relationships that are found (if any). Nevertheless, while the tech-
nique is exploratory in nature (as the name already suggests), research-
ers often have a priori knowledge that may, for example, guide their 
decision on how many composite factors to extract from the data 
(Sarstedt & Mooi, 2014). In contrast, the confirmatory factor analysis 
allows testing and substantiating an a priori determined factor and its 
assigned indicators. 

First-generation techniques have been widely applied by social 
science researchers. However, for the past 20 years, many researchers 
have increasingly been turning to second-generation techniques to 
overcome the weaknesses of first-generation methods (Exhibit 1.1). 
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These methods, referred to as structural equation modeling (SEM), 
enable researchers to incorporate unobservable variables measured 
indirectly by indicator variables. They also facilitate accounting for 
measurement error in observed variables (Chin, 1998).

There are two types of SEM: covariance-based SEM (CB-SEM) 
and partial least squares SEM (PLS-SEM; also called PLS path mod-
eling). CB-SEM is primarily used to confirm (or reject) theories (i.e., 
a set of systematic relationships between multiple variables that can 
be tested empirically). It does this by determining how well a pro-
posed theoretical model can estimate the covariance matrix for a 
sample data set. In contrast, PLS-SEM is primarily used to develop 
theories in exploratory research. It does this by focusing on explaining 
the variance in the dependent variables when examining the model. 
We explain this difference in more detail later in the chapter.

PLS-SEM is evolving as a statistical modeling technique, and  
while there are numerous introductory articles on the method (e.g., 
Chin, 1998; Chin, 2010; Haenlein & Kaplan, 2004; Hair, Ringle, & 
Sarstedt, 2011; Henseler, Ringle, & Sarstedt, 2012; Henseler, Ringle, 
& Sinkovics, 2009; Mateos-Aparicio, 2011; Rigdon, 2013; Roldán & 
Sánchez-Franco, 2012; Tenenhaus et al., 2005; Wold, 1985) and its 
use across a variety of disciplines (do Valle & Assaker, in press; Hair, 
Sarstedt, Pieper, & Ringle, 2012; Hair, Sarstedt, Ringle, & Mena, 
2012; Lee et al., 2011; Nitzl, 2016; Peng & Lai, 2012; Richter,  
Sinkovics, Ringle, & Schlägel, in press; Ringle, Sarstedt, & Straub, 2012; 
Sarstedt, Ringle, Smith, Reams, & Hair, 2014), until the first edition of 
this book, there was no comprehensive textbook that explains the 
fundamental aspects of the method, particularly in a way that can be 
comprehended by the nonstatistician. This second edition of our book 
expands and clarifies the nature and role of PLS-SEM in social sciences 
research and hopefully makes researchers aware of a tool that will 
enable them to pursue research opportunities in new and different ways. 

CONSIDERATIONS IN USING STRUCTURAL 
EQUATION MODELING

Depending on the underlying research question and the empirical 
data available, researchers must select an appropriate multivariate 
analysis method. Regardless of whether a researcher is using first- or 
second-generation multivariate analysis methods, several considera-
tions are necessary in deciding to use multivariate analysis, 
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particularly SEM. Among the most important are the following five 
elements: (1) composite variables, (2) measurement, (3) measure-
ment scales, (4) coding, and (5) data distributions.

Composite Variables

A composite variable (also referred to as a variate) is a linear 
combination of several variables that are chosen based on the research 
problem at hand (Hair, Black, Babin, & Anderson, 2010). The process 
for combining the variables involves calculating a set of weights, mul-
tiplying the weights (e.g., w1 and w2) times the associated data obser-
vations for the variables (e.g., x1 and x2), and summing them. The 
mathematical formula for this linear combination with five variables 
is shown as follows (note that the composite value can be calculated 
for any number of variables):

Composite value = w1 · x1 + w2 · x2 + . . . + w5 · x5,

where x stands for the individual variables and w represents the 
weights. All x variables (e.g., questions in a questionnaire) have 
responses from many respondents that can be arranged in a data 
matrix. Exhibit 1.2 shows such a data matrix, where i is an index that 
stands for the number of responses (i.e., cases). A composite value is 
calculated for each of the i respondents in the sample.

Measurement

Measurement is a fundamental concept in conducting social sci-
ence research. When we think of measurement, the first thing that 
comes to mind is often a ruler, which could be used to measure some-
one’s height or the length of a piece of furniture. But there are many 
other examples of measurement in life. When you drive, you use a 

Case x1 x2 . . . x5 Composite Value

1 x11 x21 . . . x51 v1

. . . . . . . . . . . . . . . . . .

i x1i x2i . . . x5i vi

Exhibit 1.2      Data Matrix
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speedometer to measure the speed of your vehicle, a heat gauge to 
measure the temperature of the engine, and a gauge to determine how 
much fuel remains in your tank. If you are sick, you use a thermom-
eter to measure your temperature, and when you go on a diet, you 
measure your weight on a bathroom scale.

Measurement is the process of assigning numbers to a variable 
based on a set of rules (Hair, Celsi, Money, Samouel, & Page, 2016). 
The rules are used to assign the numbers to the variable in a way that 
accurately represents the variable. With some variables, the rules are 
easy to follow, while with other variables, the rules are much more dif-
ficult to apply. For example, if the variable is gender, then it is easy to 
assign a 1 for females and a 0 for males. Similarly, if the variable is age 
or height, it is again easy to assign a number. But what if the variable is 
satisfaction or trust? Measurement in these situations is much more 
difficult because the phenomenon that is supposed to be measured is 
abstract, complex, and not directly observable. We therefore talk about 
the measurement of latent (i.e., unobservable) variables or constructs.

We cannot directly measure abstract concepts such as satisfaction 
or trust. However, we can measure indicators or manifestations of 
what we have agreed to call satisfaction or trust, for example, in a 
brand, product, or company. Specifically, when concepts are difficult 
to measure, one approach is to measure them indirectly with a set of 
indicators that serve as proxy variables. Each item represents a single 
separate aspect of a larger abstract concept. For example, if the  
concept is restaurant satisfaction, then the several proxy variables that 
could be used to measure this might be the following:

	 1.	 The taste of the food was excellent.

	 2.	 The speed of service met my expectations.

	 3.	 The wait staff was very knowledgeable about the menu items.

	 4.	 The background music in the restaurant was pleasant.

	 5.	 The meal was a good value compared with the price.

By combining several items to form a scale (or index), we can 
indirectly measure the overall concept of restaurant satisfaction. Usu-
ally, researchers use several items to form a multi-item scale, which 
indirectly measures a concept, as in the restaurant satisfaction exam-
ple above. The several measures are combined to form a single 
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composite score (i.e., the score of the variate). In some instances, the 
composite score is a simple summation of the several measures. In 
other instances, the scores of the individual measures are combined to 
form a composite score using a linear weighting process for the sev-
eral individual measures. The logic of using several individual vari-
ables to measure an abstract concept such as restaurant satisfaction is 
that the measure will be more accurate. The anticipated improved 
accuracy is based on the assumption that using several items to mea-
sure a single concept is more likely to represent all the different 
aspects of the concept. This involves reducing measurement error, 
which is the difference between the true value of a variable and the 
value obtained by a measurement. There are many sources of mea-
surement error, including poorly worded questions on a survey, mis-
understanding of the scaling approach, and incorrect application of a 
statistical method. Indeed, all measurements used in multivariate 
analysis are likely to contain some measurement error. The objective, 
therefore, is to reduce the measurement error as much as possible.

Rather than using multiple items, researchers sometimes opt for 
the use of single-item constructs to measure concepts such as satisfac-
tion or purchase intention. For example, we may use only “Overall, 
I’m satisfied with this restaurant” to measure restaurant satisfaction 
instead of all five items described above. While this is a good way to 
make the questionnaire shorter, it also reduces the quality of your 
measurement. We are going to discuss the fundamentals of mea
surement and measurement evaluation in the following chapters.

Measurement Scales

A measurement scale is a tool with a predetermined number of 
closed-ended responses that can be used to obtain an answer to a 
question. There are four types of measurement scales, each repre-
senting a different level of measurement—nominal, ordinal, interval, 
and ratio. Nominal scales are the lowest level of scales because they 
are the most restrictive in terms of the type of analysis that can be 
carried out. A nominal scale assigns numbers that can be used to 
identify and classify objects (e.g., people, companies, products, etc.) 
and is also referred to as a categorical scale. For example, if a survey 
asked a respondent to identify his or her profession and the catego-
ries are doctor, lawyer, teacher, engineer, and so forth, the question 
has a nominal scale. Nominal scales can have two or more 
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categories, but each category must be mutually exclusive, and all 
possible categories must be included. A number could be assigned to 
identify each category, and the numbers could be used to count the 
number of responses in each category, or the modal response or 
percentage in each category.

The next higher level of scale is called ordinal. If we have a vari-
able measured on an ordinal scale, we know that if the value of that 
variable increases or decreases, this gives meaningful information. For 
example, if we code customers’ use of a product as nonuser = 0, light 
user = 1, and heavy user = 2, we know that if the value of the use vari-
able increases, the level of use also increases. Therefore, something 
measured on an ordinal scale provides information about the order 
of our observations. However, we cannot assume that the differences 
in the order are equally spaced. That is, we do not know if the differ-
ence between “nonuser” and “light user” is the same as between “light 
user” and “heavy user,” even though the differences in the values (i.e., 
0 – 1 and 1 – 2) are equal. Therefore, it is not appropriate to calculate 
arithmetic means or variances for ordinal data.

If something is measured with an interval scale, we have precise 
information on the rank order at which something is measured and, 
in addition, we can interpret the magnitude of the differences in val-
ues directly. For example, if the temperature is 80°F, we know that if 
it drops to 75°F, the difference is exactly 5°F. This difference of 5°F is 
the same as the increase from 80°F to 85°F. This exact “spacing” is 
called equidistance, and equidistant scales are necessary for certain 
analysis techniques, such as SEM. What the interval scale does not 
give us is an absolute zero point. If the temperature is 0°F, it may feel 
cold, but the temperature can drop further. The value of 0 therefore 
does not mean that there is no temperature at all (Sarstedt & Mooi, 
2014). The value of interval scales is that almost any type of mathe-
matical computations can be carried out, including the mean and 
standard deviation. Moreover, you can convert and extend interval 
scales to alternative interval scales. For example, instead of degrees 
Fahrenheit (°F), many countries use degrees Celsius (°C) to measure 
the temperature. While 0°C marks the freezing point, 100°C depicts 
the boiling point of water. You can convert temperature from Fahrenheit 
into Celsius by using the following equation: Degrees Celsius (°C) = 
(degrees Fahrenheit (°F) – 32) · 5 / 9. In a similar way, you can convert 
data (via rescaling) on a scale from 1 to 5 into data on a scale from  
0 to 100: ([data point on the scale from 1 to 5] – 1) / 4 · 100. 
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The ratio scale provides the most information. If something is 
measured on a ratio scale, we know that a value of 0 means that a 
particular characteristic for a variable is not present. For example, if 
a customer buys no products (value = 0), then he or she really buys no 
products. Or, if we spend no money on advertising a new product 
(value = 0), we really spend no money. Therefore, the zero point or 
origin of the variable is equal to 0. The measurement of length, mass, 
and volume as well as time elapsed uses ratio scales. With ratio scales, 
all types of mathematical computations are possible.

Coding

The assignment of numbers to categories in a manner that facili-
tates measurement is referred to as coding. In survey research, data 
are often precoded. Precoding is assigning numbers ahead of time to 
answers (e.g., scale points) that are specified on a questionnaire. For 
example, a 10-point agree-disagree scale typically would assign the 
number 10 to the highest endpoint “agree” and a 1 to the lowest 
endpoint “disagree,” and the points between would be coded 2 to 9. 
Postcoding is assigning numbers to categories of responses after data 
are collected. The responses might be to an open-ended question on a 
quantitative survey or to an interview response in a qualitative study.

Coding is very important in the application of multivariate analy-
sis because it determines when and how various types of scales can be 
used. For example, variables measured with interval and ratio scales 
can always be used with multivariate analysis. However, when using 
ordinal scales such as Likert scales (which is common within an SEM 
context), researchers have to pay special attention to the coding to 
fulfill the requirement of equidistance. For example, when using a 
typical 5-point Likert scale with the categories (1) strongly disagree, 
(2) disagree, (3) neither agree nor disagree, (4) agree, and (5) strongly 
agree, the inference is that the “distance” between categories 1 and 2 
is the same as between categories 3 and 4. In contrast, the same type 
of Likert scale but using the categories (1) disagree, (2) neither agree 
nor disagree, (3) somewhat agree, (4) agree, and (5) strongly agree is 
unlikely to be equidistant as only one item can receive a rating below 
the neutral category “neither agree nor disagree.” This would clearly 
bias any result in favor of a better outcome. A good Likert scale, as 
above, will present symmetry of Likert items about a middle category 
that have clearly defined linguistic qualifiers for each category. In such 
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symmetric scaling, equidistant attributes will typically be more clearly 
observed or, at least, inferred. When a Likert scale is perceived as sym-
metric and equidistant, it will behave more like an interval scale. So 
while a Likert scale is ordinal, if it is well presented, then it is likely 
the Likert scale can approximate an interval-level measurement, and 
the corresponding variables can be used in SEM.

Data Distributions

When researchers collect quantitative data, the answers to the 
questions asked are reported as a distribution across the available (pre-
defined) response categories. For example, if responses are requested 
using a 9-point agree-disagree scale, then a distribution of the answers 
in each of the possible response categories (1, 2, 3, . . . , 9) can be calcu-
lated and displayed in a table or chart. Exhibit 1.3 shows an example 
of the frequencies of a corresponding variable x. As can be seen, most 
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Exhibit 1.3      Distribution of Responses
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respondents indicated a 5 on the 9-point scale, followed by 4 and 6, as 
well as 3 and 7, and so on. Overall, the frequency count approximately 
follows a bell-shaped, symmetric curve around the mean value of 5. 
This bell-shaped curve is the normal distribution, which many analysis 
techniques require to render correct results.

While many different types of distributions exist (e.g., normal, bino-
mial, Poisson), researchers working with SEM generally only need to 
distinguish normal from nonnormal distributions. Normal distributions 
are usually desirable, especially when working with CB-SEM. In con-
trast, PLS-SEM generally makes no assumptions about the data distribu-
tions. However, for reasons discussed in later chapters, it is nevertheless 
worthwhile to consider the distribution when working with PLS-SEM. 
To assess whether the data follow a normal distribution, researchers can 
apply statistical tests such as the Kolmogorov-Smirnov test and Shapiro-
Wilk test (Sarstedt & Mooi, 2014). In addition, researchers can examine 
two measures of distributions—skewness and kurtosis (Chapter 2)—
which allow assessing to what extent the data deviate from normality 
(Hair et al., 2010).

STRUCTURAL EQUATION MODELING WITH 
PARTIAL LEAST SQUARES PATH MODELING

Path Models With Latent Variables

Path models are diagrams used to visually display the hypotheses 
and variable relationships that are examined when SEM is applied 
(Hair et al., 2011; Hair, Celsi, Money, Samouel, & Page, 2016). An 
example of a path model is shown in Exhibit 1.4.

Constructs (i.e., variables that are not directly measured) are 
represented in path models as circles or ovals (Y1 to Y4). The indica-
tors, also called items or manifest variables, are the directly measured 
proxy variables that contain the raw data. They are represented in 
path models as rectangles (x1 to x10). Relationships between con-
structs as well as between constructs and their assigned indicators are 
shown as arrows. In PLS-SEM, the arrows are always single-headed, 
thus representing directional relationships. Single-headed arrows are 
considered predictive relationships and, with strong theoretical  
support, can be interpreted as causal relationships.

A PLS path model consists of two elements. First, there is a struc-
tural model (also called the inner model in the context of PLS-SEM) 
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that represents the constructs (circles or ovals). The structural model 
also displays the relationships (paths) between the constructs. Second, 
there are the measurement models (also referred to as the outer mod-
els in PLS-SEM) of the constructs that display the relationships 
between the constructs and the indicator variables (rectangles). In 
Exhibit 1.4, there are two types of measurement models: one for the 
exogenous latent variables (i.e., those constructs that explain other 
constructs in the model) and one for the endogenous latent variables 
(i.e., those constructs that are being explained in the model). Rather 
than referring to measurement models of exogenous and endogenous 
latent variables, researchers often refer to the measurement model of 
one specific latent variable. For example, x1 to x3 are the indicators 
used in the measurement model of Y1 while Y4 has only the x10 indica-
tor in the measurement model.

The error terms (e.g., e7 or e8; Exhibit 1.4) are connected to the 
(endogenous) constructs and (reflectively) measured variables by 
single-headed arrows. Error terms represent the unexplained variance 
when path models are estimated. In Exhibit 1.4, error terms e7 to e9 
are on those indicators whose relationships go from the construct to 
the indicator (i.e., reflectively measured indicators). In contrast, the 
formatively measured indicators x1 to x6, where the relationship goes 
from the indicator to the construct, do not have error terms Finally, 

Measurement model/outer model
of exogenous latent variables 

Structural model/inner model

x1

z3

x7 e7

e8

e9

x8

x9

x10

z4

Y1 Y3

Y4Y2

x2

x3

x4

x5

x6

Measurement model/outer model
of endogenous latent variables

Exhibit 1.4      A Simple Path Model
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for the single-item construct Y4, the direction of the relationships 
between the construct and the indicator doesn’t matter as construct 
and item are equivalent. For the same reason, there is no error term 
connected to x10. The structural model also contains error terms. In 
Exhibit 1.4, z3 and z4 are associated with the endogenous latent vari-
ables Y3 and Y4 (note that error terms on constructs and measured 
variables are labeled differently). In contrast, the exogenous latent 
variables that only explain other latent variables in the structural 
model do not have an error term.

Path models are developed based on theory. Theory is a set of 
systematically related hypotheses developed following the scientific 
method that can be used to explain and predict outcomes. Thus, 
hypotheses are individual conjectures, whereas theories are multiple 
hypotheses that are logically linked together and can be tested empiri-
cally. Two types of theory are required to develop path models: mea
surement theory and structural theory. The latter specifies how the 
constructs are related to each other in the structural model, while 
measurement theory specifies how each construct is measured.

Measurement Theory

Measurement theory specifies how the latent variables (constructs) 
are measured. Generally, there are two different ways to measure unob-
servable variables. One approach is referred to as reflective measure-
ment, and the other is a formative measurement. Constructs Y1 and Y2 
in Exhibit 1.4 are modeled based on a formative measurement model. 
Note that the directional arrows are pointing from the indicator vari-
ables (x1 to x3 for Y1 and x4 to x6 for Y2) to the construct, indicating a 
causal (predictive) relationship in that direction.

In contrast, Y3 in the exhibit is modeled based on a reflective meas-
urement model. With reflective indicators, the direction of the arrows 
is from the construct to the indicator variables, indicating the assump-
tion that the construct causes the measurement (more precisely, the 
covariation) of the indicator variables. As indicated in Exhibit 1.4, 
reflective measures have an error term associated with each indicator, 
which is not the case with formative measures. The latter are assumed 
to be error free (Diamantopoulos, 2011). Last, note that Y4 is meas-
ured using a single item rather than multi-item measures. Therefore, 
the relationship between construct and indicator is undirected.

The approach to modeling constructs (i.e., formative vs. reflec-
tive and multi-items vs. single items) is an important consideration 
in developing path models. These approaches to modeling 
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constructs as well as their variations are explained in more detail in 
Chapter 2.

Structural Theory

Structural theory shows how the latent variables are related to 
each other (i.e., it shows the constructs and the path relationships 
between them in the structural model). The location and sequence of 
the constructs are based on theory or the researcher’s experience and 
accumulated knowledge. When path models are developed, the 
sequence is from left to right. The variables on the left side of the 
path model are independent variables, and any variable on the right 
side is the dependent variable. Moreover, variables on the left are 
shown as sequentially preceding and predicting the variables on the 
right. However, variables may also serve as both the independent and 
dependent variable.

When latent variables serve only as independent variables, they 
are called exogenous latent variables (Y1 and Y2). When latent varia-
bles serve only as dependent variables (Y4) or as both independent and 
dependent variables (Y3), they are called endogenous latent variables. 
Any latent variable that has only single-headed arrows going out of it 
is an exogenous latent variable. In contrast, endogenous latent vari-
ables can have either single-headed arrows going both into and out of 
them (Y3) or only going into them (Y4). Note that the exogenous latent 
variables Y1 and Y2 do not have error terms since these constructs are 
the entities (independent variables) that are explaining the dependent 
variables in the path model.

PLS-SEM, CB-SEM, AND REGRESSIONS  
BASED ON SUM SCORES

There are two main approaches to estimating the relationships in a 
structural equation model (Hair et al., 2010; Hair et al., 2011). One 
is the more widely applied CB-SEM approach. The other is PLS-
SEM, which is the focus of this book. Each is appropriate for a 
different research context, and researchers need to understand the 
differences in order to apply the correct method. Finally, some 
researchers have argued for using regressions based on sum scores, 
instead of some type of indicator weighting as done by PLS-SEM. 
The latter approach offers practically no value beyond PLS-SEM. 
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For this reason, we discuss sum scores only in brief and focus on the 
PLS-SEM and CB-SEM methods.

To answer the question of when to use PLS-SEM versus  
CB-SEM, researchers should focus on the characteristics and objec-
tives that distinguish the two methods (Hair, Sarstedt, Ringle, et al., 
2012). In situations where theory is less developed, researchers 
should consider the use of PLS-SEM as an alternative approach to 
CB-SEM. This is particularly true if the primary objective of apply-
ing structural modeling is prediction and explanation of target 
constructs (Rigdon, 2012).

A crucial conceptual difference between PLS-SEM and CB-SEM 
relates to the way each method treats the latent variables included in 
the model. CB-SEM considers the constructs as common factors that 
explain the covariation between its associated indicators. The scores 
of these common factors are neither known nor needed in the estima-
tion of model parameters. PLS-SEM, on the other hand, uses proxies 
to represent the constructs of interest, which are weighted composites 
of indicator variables for a particular construct. For this reason, PLS-
SEM constitutes a composite-based approach to SEM, which relaxes 
the strong assumptions of CB-SEM that all the covariation between 
sets of indicators is explained by a common factor (Henseler et al., 
2014; Rigdon, 2012; Rigdon et al., 2014). At the same time, using 
weighted composites of indicator variables facilitates accounting for 
measurement error, thus making PLS-SEM superior compared with 
multiple regression using sum scores. In the latter case, the researcher 
assumes an equal weighting of indicators, which means that each 
indicator contributes equally to forming the composite (Henseler  
et al., 2014). Referring to our descriptions on composite variables at 
the very beginning of this chapter, this would imply that all weights w 
are set to 1. The resulting mathematical formula for a linear combina-
tion with five variables would be as follows:

Composite value = 1 · x1 + 1 · x2 + . . . + 1 · x5.

For example, if a respondent has the scores 4, 5, 4, 6, and 7 on 
the five variables, the corresponding composite value would be 26. 
While easy to apply, regressions using sum scores equalize any differ-
ences in the individual item weights. Such differences are, however, 
common in research reality, and ignoring them entails substantial 
biases in the parameter estimates (e.g., Thiele, Sarstedt, & Ringle, 
2015). Furthermore, learning about individual item weights offers 
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important insights as the researcher learns about each item’s impor-
tance for forming the composite in a certain context (i.e., its relation-
ships with other composites in the structural model). When measuring, 
for example, customer satisfaction, the researcher learns which 
aspects covered by the individual items are of particular importance 
for the shaping of satisfaction. 

It is important to note that the proxies produced by PLS-SEM are 
not assumed to be identical to the constructs, which they replace. They 
are explicitly recognized as approximations (Rigdon, 2012). As a conse-
quence, some scholars view CB-SEM as a more direct and precise 
method to empirically measure theoretical concepts, while PLS-SEM 
provides approximations. Other scholars contend, however, that such a 
view is quite shortsighted as common factors derived in CB-SEM are 
also not necessarily equivalent to the theoretical concepts that are the 
focus of research. In fact, there is always a large validity gap between the 
concept a researcher intends to measure and the concrete construct used 
to measure a particular concept (e.g., Rigdon, 2012; Rossiter, 2011). 

In social sciences research, viewing measurement as an approxi-
mation seems more realistic (e.g., Rigdon, 2014b), making the distinc-
tion between PLS-SEM and CB-SEM in terms of their treatment of 
constructs questionable. This view is also supported by the way CB-
SEM is applied in research practice. When using CB-SEM, initially 
hypothesized models almost always exhibit inadequate fit. In 
response, researchers should reject the model and reconsider the study 
(which usually requires gathering new data), particularly when many 
variables must be deleted to achieve fit (Hair et al., 2010). Alterna-
tively, they frequently respecify the original theoretically developed 
model in an effort to improve fit indices beyond the suggested thresh-
old levels. By doing so, researchers arrive at a model with acceptable 
fit, which they conclude theory supports. Unfortunately, the latter is 
a best-case scenario that almost never applies in reality. Rather, 
researchers engage in exploratory specification searches in which 
model subsets are modified with the aim of arriving at a satisfactory 
model fit. However, models that are the product of such modifications 
often do not correspond particularly well to the true models and tend 
to be overly simplistic (Sarstedt, Ringle, Henseler, & Hair, 2014).

Apart from differences in the philosophy of measurement, the 
differing treatment of latent variables and, more specifically, the avail-
ability of latent variable scores also has consequences for the meth-
ods’ areas of application. Specifically, while it is possible to estimate 
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latent variable scores within a CB-SEM framework, these estimated 
scores are not unique. That is, an infinite number of different sets of 
latent variable scores that will fit the model equally well are possible. 
A crucial consequence of this factor (score) indeterminacy is that the 
correlations between a common factor and any variable outside the 
factor model are themselves indeterminate. That is, they may be high 
or low, depending on which set of factor scores one chooses. As a 
result, this limitation makes CB-SEM extremely unsuitable for predic-
tion (e.g., Dijkstra, 2014). In contrast, a major advantage of PLS-SEM 
is that it always produces a single specific (i.e., determinate) score for 
each composite for each observation, once the weights are established. 
These determinate scores are proxies of the concepts being measured, 
just as factors are proxies for the conceptual variables in CB-SEM 
(Becker, Rai, & Rigdon, 2013). Using these proxies as input, PLS-
SEM applies ordinary least squares (OLS) regression with the objec-
tive of minimizing the error terms (i.e., the residual variance) of the 
endogenous constructs. In short, PLS-SEM estimates coefficients (i.e., 
path model relationships) that maximize the R² values of the (target) 
endogenous constructs. This feature achieves the prediction objective 
of PLS-SEM. PLS-SEM is therefore the preferred method when the 
research objective is theory development and explanation of variance 
(prediction of the constructs). For this reason, PLS-SEM is regarded 
as a variance-based approach to SEM.

Note that PLS-SEM is similar but not equivalent to PLS regres-
sion, another popular multivariate data analysis technique. PLS 
regression is a regression-based approach that explores the linear 
relationships between multiple independent variables and a single or 
multiple dependent variable(s). PLS regression differs from regular 
regression, however, because in developing the regression model, it 
constructs composite factors from both the multiple independent 
variables and the dependent variable(s) by means of principal compo-
nent analysis. PLS-SEM, on the other hand, relies on prespecified 
networks of relationships between constructs as well as between 
constructs and their measures (see Mateos-Aparicio, 2011, for a more 
detailed comparison between PLS-SEM and PLS regression).

Several considerations are important when deciding whether or 
not to apply PLS-SEM. These considerations also have their roots in 
the method’s characteristics. The statistical properties of the PLS-SEM 
algorithm have important features associated with the characteristics 
of the data and model used. Moreover, the properties of the PLS-SEM 
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method also affect the evaluation of the results. There are four critical 
issues relevant to the application of PLS-SEM (Hair et al., 2011; Hair, 
Sarstedt, Ringle, et al., 2012; Ringle et al., 2012): (1) the data, (2) 
model properties, (3) the PLS-SEM algorithm, and (4) model evalua-
tion issues. Exhibit 1.5 summarizes the key characteristics of PLS-
SEM. An initial overview of these issues is provided in this chapter, 
and a more detailed explanation is provided in later sections of the 
book, particularly as they relate to the PLS-SEM algorithm and evalu-
ation of results.

PLS-SEM works efficiently with small sample sizes and complex 
models and makes practically no assumptions about the underlying 
data (Cassel, Hackl, & Westlund, 1999). For example, different from 
maximum likelihood–based CB-SEM, which requires normally dis-
tributed data and regression using sum scores, which assume nor-
mally distributed residuals, PLS-SEM makes no distributional 
assumptions (i.e., it is nonparametric). In addition, PLS-SEM can 
easily handle reflective and formative measurement models, as well as 
single-item constructs, with no identification problems. It can there-
fore be applied in a wide variety of research situations. When apply-
ing PLS-SEM, researchers also benefit from high efficiency in 
parameter estimation, which is manifested in the method’s greater 
statistical power than that of CB-SEM. Greater statistical power 
means that PLS-SEM is more likely to render a specific relationship 
significant when it is in fact significant in the population. The very 
same holds for regressions based on sum scores, which lag behind 
PLS-SEM in terms of statistical power (Thiele et al., 2015). 

There are, however, several limitations of PLS-SEM. In its basic 
form, the technique cannot be applied when structural models contain 
causal loops or circular relationships between the latent variables. 
Early extensions of the basic PLS-SEM algorithm that have not yet 
been implemented in standard PLS-SEM software packages, however, 
enable handling of circular relationships (Lohmöller, 1989). Further-
more, since PLS-SEM does not have an established global goodness-
of-fit measure, its use for theory testing and confirmation is generally 
limited. Recent research, however, has started developing goodness-
of-fit measures within a PLS-SEM framework, therefore broadening 
the method’s applicability (e.g., Bentler & Huang, 2014). For exam-
ple, Henseler et al. (2014) introduced the standardized root mean 
square residual (SRMR), which measures the squared discrepancy 
between the observed correlations and the model-implied correla-
tions, as a means to validate a model. This measure has also been 
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Exhibit 1.5      Key Characteristics of PLS-SEM

Data Characteristics

Sample size •	 No identification issues with small sample 
sizes

•	 Generally achieves high levels of statistical 
power with small sample sizes

•	 Larger sample sizes increase the precision 
(i.e., consistency) of PLS-SEM estimations 

Distribution •	 No distributional assumptions; PLS-SEM is a 
nonparametric method

Missing values •	 Highly robust as long as missing values are 
below a reasonable level

Scale of 
measurement 

•	 Works with metric data, quasi-metric 
(ordinal) scaled data, and binary coded 
variables (with certain restrictions)

•	 Some limitations when using categorical data 
to measure endogenous latent variables

Model Characteristics

Number of items in 
each construct 
measurement 
model

•	 Handles constructs measured with single- 
and multi-item measures

Relationships 
between constructs 
and their indicators

•	 Easily incorporates reflective and formative 
measurement models

Model complexity •	 Handles complex models with many 
structural model relations

Model setup •	 No causal loops (no circular relationships) 
are allowed in the structural model

PLS-SEM Algorithm Properties

Objective •	 Minimizes the amount of unexplained 
variance (i.e., maximizes the R² values)

Efficiency •	 Converges after a few iterations (even in 
situations with complex models and/or large 
sets of data) to the optimum solution; efficient 
algorithm

(Continued)
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Nature of 
constructs

•	 Viewed as proxies of the latent concept 
under investigation, represented by 
composite variables

Construct scores •	 Estimated as linear combinations of their 
indicators

•	 Are determinate

•	 Used for predictive purposes

•	 Can be used as input for subsequent analyses

•	 Not affected by data inadequacies

Parameter 
estimates

•	 Structural model relationships are generally 
underestimated and measurement model 
relationships are generally overestimated when 
estimating data from common factor models

•	 Consistency at large

•	 High levels of statistical power

Model Evaluation Issues

Evaluation of the 
overall model

•	 No established global goodness-of-fit 
criterion

Evaluation of the 
measurement 
models

•	 Reflective measurement models: reliability 
and validity assessments by multiple criteria

•	 Formative measurement models: validity 
assessment, significance and relevance of 
indicator weights, indicator collinearity 

Evaluation of the 
structural model

•	 Collinearity among sets of constructs, 
significance of path coefficients, criteria to 
assess the model’s predictive capabilities

Additional analyses •	 Impact-performance matrix analysis

•	 Mediating effects

•	 Hierarchical component models

•	 Multigroup analysis

•	 Uncovering and treating unobserved 
heterogeneity

•	 Measurement model invariance

•	 Moderating effects

Source: Adapted from Hair JF, Ringle CM and Sarstedt M (2011) PLS-SEM: Indeed 
a Silver Bullet. Journal of Marketing Theory and Practice 19: 139–151 Copyright © 
2011 by M.E. Sharpe, Inc. reprinted by permission of the publisher (Taylor & Francis 
Ltd., http://www.tandfonline.com).

Exhibit 1.5      (Continued)
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implemented in the SmartPLS 3 software and will be discussed in the 
context of structural model evaluation in Chapter 6. 

Other characteristics of PLS-SEM are that the parameter esti-
mates are not optimal regarding consistency—a characteristic often 
incorrectly referred to as PLS-SEM bias (Chapter 3). Although  
CB-SEM advocates strongly emphasize this difference in the two 
methods, simulation studies show that the differences between PLS-
SEM and CB-SEM estimates are very small when measurement 
models meet minimum recommended standards in terms of number 
of indicators and indicator loadings. Specifically, when the measure-
ment models have four or more indicators and indicator loadings 
meet the common standards (≥0.70), there is practically no differ-
ence between the two methods in terms of parameter accuracy (e.g., 
Reinartz, Haenlein, & Henseler, 2009; Thiele et al., 2015). Thus, the 
extensively discussed PLS-SEM bias is of no practical relevance for 
the vast majority of applications (e.g., Binz Astrachan, Patel, & 
Wanzenried, 2014). More importantly, the divergence of parameter 
estimates of PLS-SEM should not be considered a bias but a differ-
ence resulting from the methods’ differing treatment of the construct 
measures (common factors vs. composites). Furthermore, recent 
research has developed modifications of the original PLS-SEM algo-
rithm, which correct for the PLS-SEM differences. Most notably, 
Dijkstra and Henseler’s (2015a, 2015b) consistent PLS (PLSc) 
approach provides corrected model estimates while maintaining all 
of the PLS method’s strengths, such as the ability to handle complex 
models when the sample size is limited, formatively measured con-
structs, and nonlinear relationships (for an alternative approach, see 
Bentler & Huang, 2014). At https://www.smartpls.com/documenta-
tion/pls-sem-compared-with-cb-sem, we offer a comparative estima-
tion of the highly popular technology acceptance model (TAM; 
Davis, 1989) using PLS, PLSc, and various CB-SEM–based estima-
tors such as maximum likelihood. The comparison shows that PLS, 
PLSc, and maximum likelihood–based CB-SEM are in close corre-
spondence, whereas alternative CB-SEM–based estimators yield 
much different results.

In certain cases, particularly when there is little a priori knowledge 
of structural model relationships or the measurement characteristics of 
the constructs, or when the emphasis is more on exploration than con-
firmation, PLS-SEM is superior to CB-SEM. Furthermore, when CB-
SEM assumptions are violated with regard to normality of distributions, 
minimum sample size, and maximum model complexity, or related 
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methodological anomalies occur in the process of model estimation, 
PLS-SEM is a good methodological alternative for theory testing. 

Exhibit 1.6 displays the rules of thumb that can be applied when 
deciding whether to use CB-SEM or PLS-SEM. As can be seen, PLS-
SEM is not recommended as a universal alternative to CB-SEM. Both 
methods differ from a statistical point of view, are designed to achieve 
different objectives, and rely on different philosophies of measure-
ment. Neither of the techniques is generally superior to the other, and 
neither of them is appropriate for all situations. In general, the 
strengths of PLS-SEM are CB-SEM’s limitations and vice versa. It is 
important that researchers understand the different applications each 
approach was developed for and use them accordingly. Researchers 
need to apply the SEM technique that best suits their research objec-
tive, data characteristics, and model setup (see Roldán & Sánchez-
Franco, 2012, for a more detailed discussion).

Data Characteristics

Minimum Sample Size Requirements

Data characteristics such as minimum sample size, nonnormal 
data, and scale of measurement (i.e., the use of different scale types) are 
among the most often stated reasons for applying PLS-SEM (Hair, 
Sarstedt, Ringle, et al., 2012; Henseler et al., 2009). While some of the 
arguments are consistent with the method’s capabilities, others are not. 
For example, small sample size is probably the most often abused argu-
ment with some researchers using PLS-SEM with unacceptably low sam-
ple sizes (Goodhue, Lewis, & Thompson, 2012; Marcoulides & Saunders, 
2006). These researchers oftentimes believe that there is some “magic” 
in the PLS-SEM approach that allows them to use a very small sample 
(e.g., less than 100) to obtain results representing the effects that exist 
in a population of several million elements or individuals. No multivari-
ate analysis technique, including PLS-SEM, has this kind of “magic” 
capabilities. However, the result of these misrepresentations has led to 
skepticism in general about the use of PLS-SEM.

A sample is a selection of elements or individuals from a larger 
body or population. The individuals are specifically selected in the 
sampling process to represent the population as a whole. A good 
sample should reflect the similarities and differences found in the 
population so that it is possible to make inferences from the (small) 



Chapter 1    An Introduction to Structural Equation Modeling        23

sample about the (large) population. Hence, the size of the population 
and particularly the variation of the variables under research affects 
the sample size required in the sampling process. In addition, when 
applying multivariate analysis techniques, the technical dimension of 
the sample size becomes relevant. The minimum sample size shall 
safeguard that the results of the statistical method such as PLS-SEM 
have adequate statistical power. In these regards, an insufficient sam-
ple size may not reveal a significant effect that exists in the underlying 
population (which results in committing a Type II error). Moreover, 
the minimum sample size shall ensure that the results of the statistical 
method are robust and the model is generalizable. An insufficient 

Use PLS-SEM when

•	 The goal is predicting key target constructs or identifying key 
“driver” constructs.

•	 Formatively measured constructs are part of the structural model. 
Note that formative measures can also be used with CB-SEM, but 
doing so requires construct specification modifications (e.g., the 
construct must include both formative and reflective indicators to 
meet identification requirements).

•	 The structural model is complex (many constructs and many 
indicators).

•	 The sample size is small and/or the data are nonnormally 
distributed.

•	 The plan is to use latent variable scores in subsequent analyses.

Use CB-SEM when

•	 The goal is theory testing, theory confirmation, or the comparison of 
alternative theories.

•	 Error terms require additional specification, such as the covariation.

•	 The structural model has circular relationships.

•	 The research requires a global goodness-of-fit criterion. 

Exhibit 1.6 Rules of Thumb for Choosing Between PLS-SEM 
and CB-SEM

Source: Adapted from Hair JF, Ringle CM and Sarstedt M (2011) PLS-SEM: Indeed 
a Silver Bullet. Journal of Marketing Theory and Practice 19: 139–151 Copyright © 
2011 by M.E. Sharpe, Inc. reprinted by permission of the publisher (Taylor & Francis 
Ltd., http://www.tandfonline.com).
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sample size may lead to PLS-SEM results that highly differ from those 
of another sample. In the following, we focus on the PLS-SEM method 
and its technical requirements of the minimum sample size. 

The overall complexity of a structural model has little influence 
on the sample size requirements for PLS-SEM. The reason is the algo-
rithm does not compute all relationships in the structural model at the 
same time. Instead, it uses OLS regressions to estimate the model’s 
partial regression relationships. Two early studies systematically eval-
uated the performance of PLS-SEM with small sample sizes and 
concluded it performed well (e.g., Chin & Newsted, 1999; Hui & 
Wold, 1982). More recently, a simulation study by Reinartz et al. 
(2009) indicated that PLS-SEM is a good choice when the sample size 
is small. Moreover, compared with its covariance-based counterpart, 
PLS-SEM has higher levels of statistical power in situations with com-
plex model structures or smaller sample sizes. Similarly, Henseler  
et al. (2014) show that solutions can be obtained with PLS-SEM when 
other methods do not converge or provide inadmissible solutions. For 
example, problems often are encountered when using CB-SEM on 
complex models, especially when the sample size is limited. Similarly, 
CB-SEM suffers from identification and convergence issues when 
formative measures are involved (e.g., Diamantopoulos & Riefler, 
2011).

Unfortunately, some researchers believe that sample size consid-
erations do not play a role in the application of PLS-SEM. This idea 
is fostered by the often-cited 10 times rule (Barclay, Higgins, & 
Thompson, 1995), which indicates the sample size should be equal to 
the larger of

	 1.	 10 times the largest number of formative indicators used to 
measure a single construct, or

	 2.	 10 times the largest number of structural paths directed at a 
particular construct in the structural model.

This rule of thumb is equivalent to saying that the minimum 
sample size should be 10 times the maximum number of arrowheads 
pointing at a latent variable anywhere in the PLS path model. While 
the 10 times rule offers a rough guideline for minimum sample size 
requirements, PLS-SEM—like any statistical technique—requires 
researchers to consider the sample size against the background of the 
model and data characteristics (Hair et al., 2011; Marcoulides & 
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Chin, 2013). Specifically, the required sample size should be deter-
mined by means of power analyses based on the part of the model 
with the largest number of predictors.

Since sample size recommendations in PLS-SEM essentially build 
on the properties of OLS regression, researchers can rely on rules of 
thumb such as those provided by Cohen (1992) in his statistical 
power analyses for multiple regression models, provided that the 
measurement models have an acceptable quality in terms of outer 
loadings (i.e., loadings should be above the common threshold of 
0.70). Alternatively, researchers can use programs such as G*Power 
(which is available free of charge at http://www.gpower.hhu.de/) to 
carry out power analyses specific to model setups.

Exhibit 1.7 shows the minimum sample size requirements neces-
sary to detect minimum R2 values of 0.10, 0.25, 0.50, and 0.75 in any 
of the endogenous constructs in the structural model for significance 
levels of 1%, 5%, and 10%, assuming the commonly used level of 
statistical power of 80% and a specific level of complexity of the PLS 
path model (i.e., the maximum number of arrows pointing at a con-
struct in the PLS path model). For instance, when the maximum 
number of independent variables in the measurement and structural 
models is five, one would need 45 observations to achieve a statistical 
power of 80% for detecting R² values of at least 0.25 (with a 5% 
probability of error).

Data Characteristics

As with other statistical analyses, missing values should be dealt 
with when using PLS-SEM. For reasonable limits (i.e., less than 5% 
values missing per indicator), missing value treatment options such as 
mean replacement, EM (expectation-maximization algorithm), and 
nearest neighbor (e.g., Hair et al., 2010) generally result in only 
slightly different PLS-SEM estimations. Alternatively, researchers can 
opt for deleting all observations with missing values, which decreases 
variation in the data and may introduce biases when certain groups 
of observations have been deleted systematically.

The use of PLS-SEM has two other key advantages related to 
data characteristics (i.e., distribution and scales). In situations where 
it is difficult or impossible to meet the stricter requirements of more 
traditional multivariate techniques (e.g., normal data distribution), 
PLS-SEM is the preferred method. PLS-SEM’s greater flexibility is 
described by the label “soft modeling,” coined by Wold (1982), who 
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developed the method. It should be noted, however, that “soft” is 
attributed only to the distributional assumptions and not to the con-
cepts, models, or estimation techniques (Lohmöller, 1989). PLS-SEM’s 
statistical properties provide very robust model estimations with data 
that have normal as well as extremely nonnormal (i.e., skewness and/
or kurtosis) distributional properties (Reinartz et al., 2009; Ringle, 
Götz, Wetzels, & Wilson, 2009). It must be remembered, however, 
that influential outliers and collinearity do influence the OLS regres-
sions in PLS-SEM, and researchers should evaluate the data and 
results for these issues (Hair et al., 2010).

The PLS-SEM algorithm generally requires metric data on a ratio 
or interval scale for the measurement model indicators. But the 
method also works well with ordinal scales with equidistant data 
points (i.e., quasi-metric scales; Sarstedt & Mooi, 2014) and with 
binary coded data. The use of binary coded data is often a means of 
including categorical control variables or moderators in PLS-SEM 
models. In short, dummy-coded indicators can be included in PLS-
SEM models but require special attention (see some note of caution 
by Hair, Sarstedt, Ringle, et al., 2012) and should not be used as the 
ultimate dependent variable. Exhibit 1.8 summarizes key considera-
tions related to data characteristics.

Model Characteristics

PLS-SEM is very flexible in its modeling properties. In its basic 
form, the PLS-SEM algorithm requires all models to be without  
circular relationships or loops of relationships between the latent 
variables in the structural model. While models with causal loops are 
seldom specified in business research, this characteristic does limit the 
applicability of PLS-SEM if such models are required. Note, however, 
that Lohmöller’s (1989) extensions of the basic PLS-SEM algorithm 
allow for handling such model types. Other model specification 
requirements that constrain the use of CB-SEM, such as distribution 
assumptions, are not relevant with PLS-SEM.

Measurement model difficulties are one of the major obstacles to 
obtaining a solution with CB-SEM. For instance, estimation of com-
plex models with many latent variables and/or indicators is often 
impossible with CB-SEM. In contrast, PLS-SEM can be used in such 
situations since it is not constrained by identification and other tech-
nical issues. Consideration of reflective and formative measurement 
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models is a key issue in the application of SEM. PLS-SEM can easily 
handle both formative and reflective measurement models and is 
considered the primary approach when the hypothesized model incor-
porates formative measures. CB-SEM can accommodate formative 
indicators, but to ensure model identification, they must follow dis-
tinct specification rules (Diamantopoulos & Riefler, 2011). In fact, the 
requirements often prevent running the analysis as originally planned. 
In contrast, PLS-SEM does not have such requirements and handles 
formative measurement models without any limitation. This also 
applies to model settings in which endogenous constructs are meas-
ured formatively. The applicability of CB-SEM to such model settings 
has been subject to considerable debate (Cadogan & Lee, 2013; Rig-
don, 2014a), but due to PLS-SEM’s multistage estimation process 
(Chapter 3), which separates measurement from structural model 
estimation, the inclusion of formatively measured endogenous 

•	 As a rough guideline, the minimum sample size in a PLS-SEM 
analysis should be equal to the larger of the following (10 times 
rule): (1) 10 times the largest number of formative indicators used 
to measure one construct or (2) 10 times the largest number of 
structural paths directed at a particular construct in the structural 
model. Researchers should, however, follow more elaborate 
recommendations such as those provided by Cohen (1992) that also 
take statistical power and effect sizes into account. Alternatively, 
researchers should run individual power analyses, using programs 
such as G*Power.

•	 With larger data sets (N = 250 and larger), CB-SEM and PLS-SEM 
results are very similar when an appropriate number of indicator 
variables (four or more) are used to measure each construct 
(consistency at large).

•	 PLS-SEM can handle extremely nonnormal data (e.g., high levels of 
skewness).

•	 Most missing value treatment procedures (e.g., mean replacement, 
pairwise deletion, EM, and nearest neighbor) can be used for 
reasonable levels of missing data (less than 5% missing per 
indicator) with limited effect on the analysis results.

•	 PLS-SEM works with metric, quasi-metric, and categorical (i.e., 
dummy-coded) scaled data, albeit with certain limitations.

Exhibit 1.8    Data Considerations When Applying PLS-SEM
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constructs is not an issue in PLS-SEM (Rigdon et al., 2014). The only 
problematic issue is when a high level of collinearity exists between 
the indicator variables of a formative measurement model.

Finally, PLS-SEM is capable of estimating very complex mod-
els. For example, if theoretical or conceptual assumptions support 
large models and sufficient data are available (i.e., meeting mini-
mum sample size requirements), PLS-SEM can handle models  
of almost any size, including those with dozens of constructs  
and hundreds of indicator variables. As noted by Wold (1985), PLS-
SEM is virtually without competition when path models with latent 
variables are complex in their structural relationships (Chapter 3). 
Exhibit 1.9 summarizes rules of thumb for PLS-SEM model 
characteristics.

ORGANIZATION OF REMAINING CHAPTERS

The remaining chapters provide more detailed information on PLS-
SEM, including specific examples of how to use software to estimate 
simple and complex PLS path models. In doing so, the chapters follow 
a multistage procedure that should be used as a blueprint when  
conducting PLS-SEM analyses (Exhibit 1.10).

Specifically, the process starts with the specification of structural 
and measurement models, followed by the examination of data 
(Chapter 2). Next, we discuss the PLS-SEM algorithm and provide an 
overview of important considerations when running the analyses 
(Chapter 3). On the basis of the results of the computation, the 
researchers then have to evaluate the results. To do so, researchers 
must know how to assess both reflective and formative measurement 
models (Chapters 4 and 5). When the data for the measures are 

Exhibit 1.9      Model Considerations When Choosing PLS-SEM

•	 Measurement model requirements are quite flexible. PLS-SEM can 
handle reflective and formative measurement models as well as 
single-item measures without additional requirements or constraints.

•	 Model complexity is generally not an issue for PLS-SEM. As long 
as appropriate data meet minimum sample size requirements, the 
complexity of the structural model is virtually unrestricted.
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considered reliable and valid (based on established criteria), research-
ers can then evaluate the structural model (Chapter 6). Finally, Chap-
ter 7 covers the handling of mediating and moderating effects whose 
analysis has become standard in PLS-SEM research. On the basis of 
the results of Chapters 6 and 7, researchers interpret their findings 
and draw their final conclusions.

Exhibit 1.10    A Systematic Procedure for Applying PLS-SEM

Specifying the Structural Model

Specifying the Measurement Models

Data Collection and Examination

PLS Path Model Estimation

Assessing PLS-SEM Results of the
Reflective Measurement Models 

Assessing PLS-SEM Results of the
Formative Measurement Models 

Assessing PLS-SEM Results
of the Structural Model 

Advanced PLS-SEM Analyses

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5a

Stage 5b

Stage 6

Stage 7

Chapter 2

Chapter 2

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapters 7 
and 8

Interpretation of Results and 
Drawing Conclusions

Stage 8
Chapters
6, 7, and 8
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SUMMARY

SEM is a powerful statistical method that can identify relationships in 
social science research that likely would not otherwise be found. This 
chapter introduced you to the topic, explained why researchers are 
increasingly using the method, and helped you do the following:

•	 Understand the meaning of structural equation modeling (SEM) 
and its relationship to multivariate data analysis. SEM is a second-
generation multivariate data analysis method. Multivariate data analy-
sis involves the application of statistical methods that simultaneously 
analyze multiple variables representing measurements associated with 
individuals, companies, events, activities, situations, and so forth. SEM 
is used to either explore or confirm theory. Exploratory modeling 
involves developing theory while confirmatory modeling tests theory. 
There are two types of SEM—one is covariance-based, and the other is 
variance-based. CB-SEM is used to confirm (or reject) theories. 
Variance-based structural equation modeling (i.e., PLS-SEM) is primar-
ily used for exploratory research and the development of theories.

•	 Describe the basic considerations in applying multivariate 
data analysis. Several considerations are necessary when applying 
multivariate analysis, including the following five elements: (1) com-
posite variables, (2) measurement, (3) measurement scales, (4) cod-
ing, and (5) data distributions. A composite variable (also called 
variate) is a linear combination of several variables that are chosen 
based on the research problem at hand. Measurement is the process 
of assigning numbers to a variable based on a set of rules. Multivari-
ate measurement involves using several variables to indirectly mea
sure a concept to improve measurement accuracy. The anticipated 
improved accuracy is based on the assumption that using several 
variables (indicators) to measure a single concept is more likely to 
represent all the different aspects of the concept and thereby result 
in a more valid measurement of the concept. The ability to identify 
measurement error using multivariate measurement also helps 
researchers obtain more accurate measurements. Measurement 
error is the difference between the true value of a variable and the 
value obtained by a measurement. A measurement scale is a tool 
with a predetermined number of closed-ended responses that can be 
used to obtain an answer to a question. There are four types of 
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measurement scales: nominal, ordinal, interval, and ratio. When 
researchers collect quantitative data using scales, the answers to the 
questions can be shown as a distribution across the available (pre-
defined) response categories. The type of distribution must always 
be considered when working with SEM.

•	 Comprehend the basic concepts of partial least squares struc-
tural equation modeling (PLS-SEM). Path models are diagrams used 
to visually display the hypotheses and variable relationships that are 
examined when structural equation modeling is applied. Four basic 
elements must be understood when developing path models: (1) 
constructs, (2) measured variables, (3) relationships, and (4) error 
terms. Constructs are latent variables that are not directly measured 
and are sometimes called unobserved variables. They are repre-
sented in path models as circles or ovals. Measured variables are 
directly measured observations (raw data), generally referred to as 
either indicators or manifest variables, and are represented in path 
models as rectangles. Relationships represent hypotheses in path 
models and are shown as arrows that are single-headed, indicating 
a predictive/causal relationship. Error terms represent the unex-
plained variance when path models are estimated and are present 
for endogenous constructs and reflectively measured indicators. 
Exogenous constructs and formative indicators do not have error 
terms. Path models also distinguish between the structural (inner) 
model and the measurement (outer) models. The role of theory is 
important when developing structural models. Theory is a set of 
systematically related hypotheses developed following the scientific 
method that can be used to explain and predict outcomes. Measure-
ment theory specifies how the latent unobservable variables (con-
structs) are modeled. Latent variables can be modeled as either 
reflective or formative. Structural theory shows how the latent 
unobservable variables are related to each other. Latent variables are 
classified as either endogenous or exogenous.

•	 Explain the differences between covariance-based structural 
equation modeling (CB-SEM) and PLS-SEM and when to use each. 
Compared to CB-SEM, PLS-SEM emphasizes prediction while 
simultaneously relaxing the demands regarding the data and speci-
fication of relationships. PLS-SEM maximizes the endogenous latent 
variables’ explained variance by estimating partial model relation-
ships in an iterative sequence of OLS regressions. In contrast, 
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CB-SEM estimates model parameters so that the discrepancy 
between the estimated and sample covariance matrices is minimized. 
Instead of following a common factor model logic as CB-SEM does, 
PLS-SEM calculates composites of indicators that serve as proxies 
for the concpets under research. The method is not constrained by 
identification issues, even if the model becomes complex—a situa-
tion that typically restricts CB-SEM use—and does not require 
accounting for most distributional assumptions. Moreover,  
PLS-SEM can better handle formative measurement models and has 
advantages when sample sizes are relatively small. Researchers 
should consider the two SEM approaches as complementary and 
apply the SEM technique that best suits their research objective, 
data characteristics, and model setup.

REVIEW QUESTIONS

	 1.	 What is multivariate analysis?

	 2.	 Describe the difference between first- and second-generation 
multivariate methods.

	 3.	 What is structural equation modeling?

	 4.	 What is the value of structural equation modeling in under-
standing relationships between variables?

CRITICAL THINKING QUESTIONS

	 1.	 When would SEM methods be more advantageous in under-
standing relationships between variables?

	 2.	 What are the most important considerations in deciding 
whether to use CB-SEM or PLS-SEM?

	 3.	 Under what circumstances is PLS-SEM the preferred method 
over CB-SEM?

	 4.	 Why is an understanding of theory important when deciding 
whether to use PLS-SEM or CB-SEM?

	 5.	 Why should social science researchers consider using SEM 
instead of multiple regression?
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KEY TERMS

CB-SEM

Coding

Composite variable

Confirmatory applications

Constructs

Covariance-based structural 
equation modeling

Endogenous latent variables

Equidistance

Error terms

Exogenous latent variables

Exploratory

Factor (score) indeterminacy

First-generation techniques

Formative measurement  
model

Indicators

Inner model

Interval scale

Items

Latent variable

Manifest variables

Measurement

Measurement error

Measurement model

Measurement scale

Measurement theory

Metric data

Minimum sample size

Missing value treatment

Multivariate analyses

Nominal scale

Ordinal scale

Outer models

Partial least squares structural 
equation modeling

Path models

PLS path modeling

PLS regression

PLS-SEM

Ratio scales

Reflective measurement  
model

Sample

Second-generation  
techniques

SEM

Single-item constructs

Statistical power

Structural equation modeling

Structural model

Structural theory

Sum scores

Theory

Variance-based SEM

Variate
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LEARNING OUTCOMES

1. Understand the basic concepts of structural model specification, 
including mediation and moderation.

2. Explain the differences between reflective and formative measures 
and specify the appropriate measurement model. 

3. Comprehend that the selection of the mode of measurement model 
and the indicators must be based on theoretical/conceptual 
 reasoning before data collection.

4. Explain the difference between multi-item and single-item measures 
and assess when to use each measurement type.

5. Describe the data collection and examination considerations 
 necessary to apply PLS-SEM. 

6. Learn how to develop a PLS path model using the SmartPLS 3 
software.

CHAPTER PREVIEW

Chapter 2 introduces the basic concepts of structural and measure-
ment model specification when PLS-SEM is used. The concepts are 
associated with completing the first three stages in the application of 

C H A P T E R  2

Specifying the 
Path Model and 
Examining Data
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PLS-SEM, as described in Chapter 1. Stage 1 is specifying the struc-
tural model. Stage 2 is selecting and specifying the measurement 
models. Stage 3 summarizes the major guidelines for data collection 
when the application of PLS-SEM is anticipated, as well as the need 
to examine your data after they have been collected to ensure the 
results from applying PLS-SEM are valid and reliable. An understand-
ing of these three topics will prepare you for Stage 4, estimating the 
model, which is the focus of Chapter 3.

STAGE 1: SPECIFYING THE STRUCTURAL MODEL

In the initial stages of a research project that involves the application 
of SEM, an important first step is to prepare a diagram that illustrates 
the research hypotheses and displays the variable relationships that 
will be examined. This diagram is often referred to as a path model. 
Recall that a path model is a diagram that connects variables/
constructs based on theory and logic to visually display the hypoth-
eses that will be tested (Chapter 1). Preparing a path model early in 
the research process enables researchers to organize their thoughts 
and visually consider the relationships between the variables of inter-
est. Path models also are an efficient means of sharing ideas between 
researchers working on or reviewing a research project.

Path models are made up of two elements: (1) the structural 
model (also called the inner model in PLS-SEM), which describes the 
relationships between the latent variables, and (2) the measurement 
models, which describe the relationships between the latent variables 
and their measures (i.e., their indicators). We discuss structural mod-
els first, which are developed in Stage 1. The next section covers 
Stage 2, measurement models.

When a structural model is being developed, two primary issues 
need to be considered: the sequence of the constructs and the relation-
ships between them. Both issues are critical to the concept of mod
eling because they represent the hypotheses and their relationship to 
the theory being tested.

The sequence of the constructs in a structural model is based on 
theory, logic, or practical experiences observed by the researcher. The 
sequence is displayed from left to right, with independent (predictor) 
constructs on the left and dependent (outcome) variables on the right-
hand side. That is, constructs on the left are assumed to precede and 
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predict constructs on the right. Constructs that act only as indepen
dent variables are generally referred to as exogenous latent variables 
and are on the very left side of the structural model. Exogenous latent 
variables only have arrows that point out of them and never have 
arrows pointing into them. Constructs considered dependent in a 
structural model (i.e., those that have an arrow pointing into them) 
often are called endogenous latent variables and are on the right side 
of the structural model. Constructs that operate as both independent 
and dependent variables in a model also are considered endogenous 
and, if they are part of a model, appear in the middle of the diagram.

The structural model in Exhibit 2.1 illustrates the three types 
of constructs and the relationships. The reputation construct on 
the far left is an exogenous (i.e., independent) latent variable. It is 
modeled as predicting the satisfaction construct. The satisfaction 
construct is an endogenous latent variable that has a dual relation-
ship as both independent and dependent. It is a dependent con-
struct because it is predicted by reputation. But it is also an 
independent construct because it predicts loyalty. The loyalty 
construct on the right end is an endogenous (i.e., dependent) latent 
variable predicted by satisfaction.

Determining the sequence of the constructs is seldom an easy task 
because contradictory theoretical perspectives can lead to different 
sequencing of latent variables. For example, some researchers assume 
that customer satisfaction precedes and predicts corporate reputation 
(e.g., Walsh, Mitchell, Jackson, & Beatty, 2009), while others argue 
that corporate reputation predicts customer satisfaction (Eberl, 2010; 
Sarstedt, Wilczynski, & Melewar, 2013). Theory and logic should 
always determine the sequence of constructs in a conceptual model, 
but when the literature is inconsistent or unclear, researchers must use 
their best judgment to determine the sequence. In large, complex mod-
els, researchers may adjust the sequence of constructs several times 

Exhibit 2.1    Example of Path Model and Types of Constructs

Reputation Satisfaction Loyalty
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while trying to accurately portray the theoretical concepts. Likewise, it 
is possible to have alternative competing models that test a different 
sequence (Sattler, Völckner, Riediger, & Ringle, 2010; Wilson, 
Callaghan, Ringle, & Henseler, 2007). However, selecting the best 
sequence among several competing alternatives can be challenging.

Once the sequence of the constructs has been decided, the rela-
tionships between them must be established by drawing arrows. The 
arrows are inserted with the arrow pointed to the right. This approach 
indicates the sequence and that the constructs on the left predict the 
constructs on the right side. The predictive relationships are some-
times referred to as causal links, if the structural theory supports a 
causal relationship. In drawing arrows between the constructs, 
researchers face a trade-off between theoretical soundness (i.e., 
including those relationships that are strongly supported by theory) 
and model parsimony (i.e., using fewer relationships). The latter 
should be of crucial concern as the most nonrestrictive statement 
“everything is predictive of everything else” is also the most unin-
formative. As pointed out by Falk and Miller (1992), “A parsimoni-
ous approach to theoretical specification is far more powerful than 
the broad application of a shotgun” (p. 24).

In most instances, researchers examine linear independent-
dependent relationships between two or more constructs in the path 
model. Theory may suggest, however, that model relationships are 
more complex and involve mediation or moderation relationships. In 
the following section, we briefly introduce these different relationship 
types. In Chapter 7, we explain how they can be estimated and inter-
preted using PLS-SEM.

Mediation

A mediating effect is created when a third variable or construct 
intervenes between two other related constructs, as shown in 
Exhibit 2.2. To understand how mediating effects work, let’s consider 
a path model in terms of direct and indirect effects. Direct effects are 
the relationships linking two constructs with a single arrow; indirect 
effects are those relationships that involve a sequence of relationships 
with at least one intervening construct involved. Thus, an indirect 
effect is a sequence of two or more direct effects (compound path) 
that are represented visually by multiple arrows. This indirect effect is 
characterized as the mediating effect. In Exhibit 2.2, satisfaction is 
modeled as a possible mediator between reputation and loyalty.
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From a theoretical perspective, the most common application of 
mediation is to “explain” why a relationship between an exogenous 
and endogenous construct exists. For example, a researcher may 
observe a relationship between two constructs but not be sure 
“why” the relationship exists or if the observed relationship is the 
only relationship between the two constructs. In such a situation, a 
researcher might posit an explanation of the relationship in terms of 
an intervening variable that operates by receiving the “inputs” from 
an exogenous construct and translating them into an “output,” 
which is an endogenous construct. The role of the mediator variable 
then is to reveal the true relationship between an independent and a 
dependent construct.

Consider the example in Exhibit 2.2, in which we want to exam-
ine the effect of corporate reputation on customer loyalty. On the 
basis of theory and logic, we know that a relationship exists between 
reputation and loyalty, but we are unsure how the relationship actu-
ally works. As researchers, we might want to explain how companies 
translate their reputation into higher loyalty among their customers. 
We may observe that sometimes a customer perceives a company as 
being highly reputable, but this perception does not translate into 
high levels of loyalty. In other situations, we observe that some cus-
tomers with lower reputation assessments are highly loyal. These 
observations are confusing and lead to the question as to whether 
there is some other process going on that translates corporate reputa-
tion into customer loyalty.

In the diagram, the intervening process (mediating effect) is mod-
eled as satisfaction. If a respondent perceives a company to be highly 

Exhibit 2.2    Example of a Mediating Effect

Satisfaction

Reputation Loyalty
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reputable, this assessment may lead to higher satisfaction levels and 
ultimately to increased loyalty. In such a case, the relationship between 
reputation and loyalty may be explained by the reputation → loyalty 

sequence, or the reputation → satisfaction → loyalty sequence, or 
perhaps even by both sets of relationships (Exhibit 2.2). The reputa-
tion → loyalty sequence is an example of a direct relationship. In 
contrast, the reputation → satisfaction → loyalty sequence is an exam-
ple of an indirect relationship. After empirically testing these relation-
ships, the researcher would be able to explain how reputation is 
related to loyalty, as well as the role that satisfaction might play in 
mediating that relationship. Chapter 7 offers additional details on 
mediation and explains how to test mediating effects in PLS-SEM.

Moderation

Related to the concept of mediation is moderation. With mod-
eration, a third variable could directly affect the relationship between 
the exogenous and endogenous latent variables but in a different 
way. Referred to as a moderator effect, this situation occurs when the 
moderator (an independent variable or construct) changes the 
strength or even the direction of a relationship between two con-
structs in the model.

For example, income has been shown to significantly affect the 
strength of the relationship between customer satisfaction and cus-
tomer loyalty (Homburg & Giering, 2001). In that context, income 
serves as a moderator variable on the satisfaction → loyalty relation-
ship, as shown in Exhibit 2.3. Specifically, the relationship between 
satisfaction and loyalty has been shown to be weaker for people with 
high income than for people with low income. That is, for higher-
income individuals, there may be little or no relationship between 
satisfaction and loyalty. But for lower-income individuals, there often 
is a strong relationship between the two variables. As can be seen, 
both the mediator and the moderator concept affect the strength of a 
relationship between two latent variables. The crucial distinction 
between both concepts is that the moderator variable (income in our 
moderator example) does not depend on the exogenous (predictor) 
latent variable (satisfaction in our moderator example).

There are two types of moderating relationships. One is referred 
to as continuous and the other as categorical. The difference in the 
two types of relationships is that a continuous moderating effect 
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exists when the moderating variable is metrically measured (e.g., 
income in Exhibit 2.3), whereas a categorical moderating effect is 
when the moderating variable is categorical, such as gender.

When a moderator effect is categorical, the variable may serve as 
a grouping variable that divides the data into subsamples. The same 
theoretical model is then estimated for each of the distinct subsam-
ples. Since researchers are usually interested in comparing the models 
and learning about significant differences between the subsamples, 
the model estimates for the subsamples are usually compared by 
means of multigroup analysis (Sarstedt, Henseler, & Ringle, 2011). 
Specifically, multigroup analysis enables the researcher to test for 
differences between identical models estimated for different groups 
of respondents. The general objective is to see if there are statistically 
significant differences between individual group models. This proce-
dure is different from testing different theoretical models for the same 
sample of respondents. With multigroup analysis, we are comparing 
the same model across different samples of respondents. For exam-
ple, we might be interested in evaluating whether the effect of satis-
faction on loyalty is significantly different for males compared with 
females (Exhibit 2.4). Specifically, a researcher might want to deter-
mine whether the relationship is statistically significant for both 
males and females and if the strength of the relationship is similar or 
quite different.

Another situation researchers often encounter is where they have 
a continuous moderator variable, but instead of modeling its original 
effect on the relationship as continuous, they transform the continuous 

Exhibit 2.3    Conceptual Model of a Continuous Moderating Effect

Income

Satisfaction Loyalty
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variable into a categorical variable and then conduct a multigroup 
analysis. Different approaches transform the continuous variable into 
a categorical one, such as mean and median splits. In Chapter 7, we 
discuss in greater detail how to use categorical and continuous varia-
bles for the moderator analysis.

Higher-Order and Hierarchical Component Models

Thus far, we have dealt with first-order components in which we 
consider a single layer of constructs. However, in some instances, the 
constructs that researchers wish to examine are quite complex in that 
they can also be operationalized at higher levels of abstraction. 
Higher-order models or hierarchical component models (HCMs) 
most often involve testing second-order structures that contain two 
layers of components (e.g., Ringle et al., 2012; Wetzels, Odekerken-
Schroder, & van Oppen, 2009). For example, satisfaction can be 
defined at different levels of abstraction. Specifically, satisfaction can 
be represented by numerous first-order components that capture 
separate attributes of satisfaction. In the context of services, these 
might include satisfaction with the quality of the service, the service 
personnel, the price, or the servicescape. These first-order components 
might form the more abstract second-order component satisfaction, 
as shown in Exhibit 2.5.

Instead of modeling the attributes of satisfaction as drivers of the 
respondent’s overall satisfaction on a single construct layer, higher-
order modeling involves summarizing the lower-order components 

Exhibit 2.4    Example of a Categorical Moderation Effect
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into a single multidimensional higher-order construct. This modeling 
approach leads to more parsimony and reduces model complexity. 
Theoretically, this process can be extended to any number of multiple 
layers, but researchers usually restrict their modeling approach to two 
layers. More details on hierarchical component models in PLS-SEM 
are provided in Chapter 8.

STAGE 2: SPECIFYING THE MEASUREMENT MODELS

The structural model describes the relationships between latent vari-
ables (constructs). In contrast, the measurement models represent the 
relationships between constructs and their corresponding indicator 
variables (generally called the outer models in PLS-SEM). The basis 
for determining these relationships is measurement theory. A sound 
measurement theory is a necessary condition to obtain useful results 
from PLS-SEM. Hypothesis tests involving the structural relationships 

Exhibit 2.5    Example of a Hierarchical Component Model
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among constructs will be only as reliable or valid as the measurement 
models are explaining how these constructs are measured.

Researchers typically have several established measurement 
approaches to choose from, each a slight variant from the others. In 
fact, almost all social science researchers today use established mea
surement approaches published in prior research studies or scale 
handbooks (e.g., Bearden, Netemeyer, & Haws, 2011; Bruner, James, 
& Hensel, 2001) that performed well (Ramirez, David, & Brusco, 
2013). In some situations, however, the researcher is faced with the 
lack of an established measurement approach and must develop a 
new set of measures (or substantially modify an existing approach). 
A description of the general process for developing indicators to 
measure a construct can be long and detailed. Hair et al. (2010) 
describe the essentials of this process. Likewise, Diamantopoulos and 
Winklhofer (2001), DeVellis (2011), and MacKenzie, Podsakoff, and 
Podsakoff (2011) offer thorough explications of different approaches 
to measurement development. In each case, decisions regarding how 
the researcher selects the indicators to measure a particular construct 
provide a foundation for the remaining analysis.

The path model shown in Exhibit 2.6 shows an excerpt of the 
path model we use as an example throughout the book. The model 
has two exogenous constructs—corporate social responsibility 
(CSOR) and attractiveness (ATTR)—and one endogenous construct, 
which is competence (COMP). Each of these constructs is measured 
by means of multiple indicators. For instance, the endogenous con-
struct COMP has three measured indicator variables, comp_1 to 
comp_3. Using a scale from 1 to 7 (totally disagree to completely 
agree), respondents had to evaluate the following statements: “[The 
company] is a top competitor in its market,” “As far as I know, [the 
company] is recognized worldwide,” and “I believe that [the com-
pany] performs at a premium level.” The answers to these three 
inquiries represent the measures for this construct. The construct itself 
is measured indirectly by these three indicator variables and for that 
reason is referred to as a latent variable.

The other two constructs in the model, CSOR and ATTR, can be 
described in a similar manner. That is, the two exogenous constructs 
are measured by indicators that are each directly measured by 
responses to specific questions. Note that the relationship between the 
indicators and the corresponding construct is different for COMP 
compared with CSOR and ATTR. When you examine the COMP 
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construct, the direction of the arrows goes from the construct to the 
indicators. This type of measurement model is referred to as reflective. 
When you examine the CSOR and ATTR constructs, the direction of 
the arrows is from the measured indicator variables to the constructs. 
This type of measurement model is called formative. As discussed in 
Chapter 1, an important characteristic of PLS-SEM is that the tech-
nique readily incorporates both reflective and formative measures. 
Likewise, PLS-SEM can easily be used when constructs are measured 
with only a single item (rather than multiple items). Both of these 
measurement issues are discussed in the following sections.

Reflective and Formative Measurement Models

When developing constructs, researchers must consider two 
broad types of measurement specification: reflective and formative 
measurement models. The reflective measurement model (also referred 
to as Mode A measurement in PLS-SEM) has a long tradition in the 
social sciences and is directly based on classical test theory. According 
to this theory, measures represent the effects (or manifestations) of an 
underlying construct. Therefore, causality is from the construct to its 
measures (COMP in Exhibit 2.6). Reflective indicators (sometimes 
referred to as effect indicators in the psychometric literature) can be 

Exhibit 2.6    Example of a Path Model With Three Constructs
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viewed as a representative sample of all the possible items available 
within the conceptual domain of the construct (Nunnally & Bernstein, 
1994). Therefore, since a reflective measure dictates that all indicator 
items are caused by the same construct (i.e., they stem from the same 
domain), indicators associated with a particular construct should be 
highly correlated with each other. In addition, individual items should 
be interchangeable, and any single item can generally be left out with-
out changing the meaning of the construct, as long as the construct 
has sufficient reliability. The fact that the relationship goes from the 
construct to its measures implies that if the evaluation of the latent 
trait changes (e.g., because of a change in the standard of compari-
son), all indicators will change simultaneously. A set of reflective 
measures is commonly called a scale.

In contrast, formative measurement models (also referred to as 
Mode B measurement in PLS-SEM) are based on the assumption that 
causal indicators form the construct by means of linear combina-
tions. Therefore, researchers typically refer to this type of measure-
ment model as being a formative index. An important characteristic 
of formative indicators is that they are not interchangeable, as is true 
with reflective indicators. Thus, each indicator for a formative con-
struct captures a specific aspect of the construct’s domain. Taken 
jointly, the items ultimately determine the meaning of the construct, 
which implies that omitting an indicator potentially alters the nature 
of the construct. As a consequence, breadth of coverage of the con-
struct domain is extremely important to ensure that the content of 
the focal construct is adequately captured (Diamantopoulos & 
Winklhofer, 2001).

Recently, researchers have started distinguishing two types of 
indicators in the context of formative measurement: composite and 
causal indicators. Composite indicators largely correspond to the 
above definition of formative measurement models in that they are 
combined in a linear way to form a variate (Chapter 1), which is also 
referred to as composite variable in the context of SEM (Bollen, 2011; 
Bollen & Bauldry, 2011). More precisely, the indicators fully form the 
composite variable (i.e., the composite variable’s R² value is 1.0). The 
resulting composite variable is considered a proxy for a latent concept 
(Rigdon, 2012), and the indicators do not necessarily need to be con-
ceptually united. In contrast, causal indicators do not form the latent 
variable but, as the name implies, “cause” it. Consequently, causal 
indicators must correspond to a theoretical definition of the concept 
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under investigation. This subtle distinction from composite indicators 
has important implications for the modeling of the latent variable, as 
it is highly unlikely that any set of causal indicators can fully capture 
every aspect of a latent phenomenon (Diamantopoulos & Winklhofer, 
2001). Therefore, latent variables measured with causal indicators 
have an error term, which captures all the other causes of the latent 
variable not included in the model (Diamantopoulos, 2006). The use 
of causal indicators is prevalent in CB-SEM, which allows for explic-
itly defining the error term of a formatively measured latent variable. 
But the situation is different with PLS-SEM. The PLS-SEM algorithm 
relies solely on the concept of composite indicators because of the 
way the algorithm estimates formative measurement models 
(e.g., Diamantopoulos, 2011). 

In a nutshell, the distinction between composite and causal indi-
cators relates to a difference in measurement philosophy. Causal 
indicators assume that a certain concept can—at least in principle—
be fully measured using a set of indicators and an error term. Com-
posite indicators make no such assumption but view measurement as 
an approximation of a certain theoretical concept. In social sciences 
research, viewing measurement as an approximation seems more 
realistic (e.g., Rigdon, 2014b), which, from a conceptual standpoint, 
favors the use of composite indicators over causal indicators. For the 
sake of simplicity and in line with seminal research in the field 
(e.g.,  Fornell & Bookstein, 1982), we therefore refer to formative 
indicators when referring to composite indicators (as used in PLS-
SEM) in the remainder of this book. Similarly, we refer to formative 
measurement models to describe measurement models comprising 
composite indicators. Henseler et al. (2014) and Henseler, Ringle, and 
Sarstedt (in press) provide further information on composite models 
as well as common factor models and their distinction. 

Exhibit 2.7 illustrates the key difference between the reflective 
and formative measurement perspectives. The black circle illus-
trates the construct domain, which is the domain of content the 
construct is intended to measure. The gray circles represent the 
scope each indicator captures. Whereas the reflective measurement 
approach aims at maximizing the overlap between interchangeable 
indicators, the formative measurement approach tries to fully cover 
the domain of the latent concept under investigation (black circle) 
by the different formative indicators (gray circles), which should 
have small overlap.
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Unlike the reflective measurement approach whose objective is 
to maximize the overlap between interchangeable indicators, there 
are no specific expectations about patterns or the magnitude of 
intercorrelations between formative indicators (Diamantopoulos, 
Riefler, & Roth, 2008). Since there is no “common cause” for the 
items in the construct, there is not any requirement for the items to 
be correlated, and they may be completely independent. In fact, 
collinearity among formative indicators can present significant 
problems because the weights linking the formative indicators with 
the construct can become unstable and nonsignificant. Furthermore, 
formative indicators (in the sense of composite indicators) have no 
individual measurement error terms. That is, they are assumed to be 
error free in a conventional sense. These characteristics have broad 
implications for the evaluation of formatively measured constructs, 
which rely on a totally different set of criteria compared with the 
evaluation of reflective measures (Chapter 5). For example, a 
reliability analysis based on item correlations (internal consistency) 
could remove important items and decrease the validity of the index 
(Diamantopoulos & Siguaw, 2006). Broadly speaking, researchers 
need to pay closer attention to the content validity of the measures 
by determining how well the indicators represent the domain, (or at 
least its major aspects) of the latent concept under research (e.g., 
Bollen & Lennox, 1991). 

Construct
domain Construct

domain

Reflective
Measurement

Formative
Measurement

Exhibit 2.7 Difference Between Reflective and Formative 
Measures
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But when do we measure a construct reflectively or formatively? 
There is not a definite answer to this question since constructs are not 
inherently reflective or formative. Instead, the specification depends 
on the construct conceptualization and the objective of the study. 
Consider Exhibit 2.8, which shows how the construct “satisfaction 
with hotels” can be operationalized in both ways (Albers, 2010).

The left side of Exhibit 2.8 shows a reflective measurement model 
setup. This type of model setup is likely to be more appropriate when 
a researcher wants to test theories with respect to satisfaction. In 
many managerially oriented business studies, however, the aim is to 
identify the most important drivers of satisfaction that ultimately lead 
to customer loyalty. In this case, researchers should consider the dif-
ferent facets of satisfaction, such as satisfaction with the service or the 
personnel, as shown on the right side of Exhibit 2.8. In the latter case, 
a formative measurement model specification is more promising as it 
allows identifying distinct drivers of satisfaction and thus deriving 
more nuanced recommendations. This especially applies to situations 
where the corresponding constructs are exogenous. However, forma-
tive measurement models may also be used on endogenous constructs 
when measurement theory supports such a specification.

I appreciate
this hotel 

I am looking
forward to staying

in this hotel
Y1 Y1

I recommend
this hotel to

others

Reflective Measurement Model

The service
is good 

The personnel
is friendly 

The rooms
are clean

Formative Measurement Model

Exhibit 2.8 Satisfaction as a Formatively and Reflectively 
Measured Construct

Adapted from source: Albers, S. (2010). PLS and success factor studies in marketing. In  
V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least 
squares: Concepts, methods and applications in marketing and related fields (pp. 409–425). 
Berlin: Springer.
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Apart from the role a construct plays in the model and the recom-
mendations the researcher wants to give based on the results, the 
specification of the content of the construct (i.e., the domain content 
the construct is intended to capture) primarily guides the measure-
ment perspective. Still, the decision as to which measurement model 
is appropriate has been the subject of considerable debate in a variety 
of disciplines and is not fully resolved. In Exhibit 2.9, we present a set 
of guidelines that researchers can use in their decision of whether to 
measure a construct reflectively or formatively. Note that there are 
also empirical means to determine the measurement perspective. Gud-
ergan, Ringle, Wende, and Will (2008) propose the so-called con-
firmatory tetrad analysis for PLS-SEM (CTA-PLS), which allows 
testing the null hypothesis that the construct measures are reflective 
in nature. Rejecting the null hypothesis in a tetrad test implies, there-
fore, that formative measures should be used for construct operation-
alization. We discuss the CTA-PLS technique in greater detail in 
Chapter 8. Clearly, a purely data-driven perspective needs to be sup-
plemented with theoretical considerations based on the guidelines 
summarized in Exhibit 2.9.

Single-Item Measures and Sum Scores

Rather than using multiple items to measure a construct, research-
ers sometimes choose to use a single item. Single items have practical 
advantages such as ease of application, brevity, and lower costs associ-
ated with their use. Unlike long and complicated scales, which often 
result in a lack of understanding and mental fatigue for respondents, 
single items promote higher response rates as the questions can be 
easily and quickly answered (Fuchs & Diamantopoulos, 2009; 
Sarstedt & Wilczynski, 2009). However, single-item measures do not 
offer more for less. For instance, when partitioning the data into 
groups, fewer degrees of freedom are available to calculate a solution 
when single-item measures are used since scores from only a single 
variable are available to assign observations into groups. Similarly, 
information is available from only a single measure instead of several 
measures when using imputation methods to deal with missing val-
ues. Finally, from a psychometric perspective, single-item measures do 
not allow for removal of measurement error (as is the case with mul-
tiple items), and this generally decreases their reliability. Note that, 
contrary to commonly held beliefs, single-item reliability can be esti-
mated (e.g., Loo, 2002; Wanous, Reichers, & Hudy, 1997).
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Exhibit 2.9 Guidelines for Choosing the Measurement  
Model Mode

Criterion Decision Reference

Causal priority between 
the indicator and the 
construct 

•	 From the construct 
to the indicators: 
reflective

•	 From the indicators 
to the construct: 
formative 

Diamantopoulos 
and Winklhofer 
(2001)

Is the construct a trait 
explaining the indicators 
or rather a combination 
of the indicators? 

•	 If trait: reflective

•	 If combination: 
formative 

Fornell and 
Bookstein (1982)

Do the indicators 
represent consequences 
or causes of the 
construct? 

•	 If consequences: 
reflective

•	 If causes: formative

Rossiter (2002)

Is it necessarily true that 
if the assessment of the 
trait changes, all items 
will change in a similar 
manner (assuming they 
are equally coded)? 

•	 If yes: reflective

•	 If no: formative

Chin (1998)

Are the items mutually 
interchangeable? 

•	 If yes: reflective

•	 If no: formative

Jarvis, 
MacKenzie, and 
Podsakoff (2003)

Most important, from a validity perspective, opting for single-
item measures in most empirical settings is a risky decision when it 
comes to predictive validity considerations. Specifically, the set of cir-
cumstances that would favor the use of single-item measures rather 
than multiple items is very unlikely to be encountered in practice. This 
conclusion is generally even more relevant for PLS-SEM since the 
utilization of a small number of items for construct measurement (in 
the extreme, the use of a single item) increases the differences to 
CB-SEM results (Chapter 1). Recall that with PLS-SEM, this difference 
between PLS-SEM and CB-SEM results is reduced when the number 
of indicators and/or the number of observations increases (i.e., consis
tency at large). According to guidelines by Diamantopoulos, Sarstedt, 
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Fuchs, Kaiser, and Wilczynski (2012), single-item measures should be 
considered only in situations when (1) small sample sizes are present 
(i.e., N < 50), (2) path coefficients (i.e., the coefficients linking con-
structs in the structural model) of 0.30 and lower are expected, 
(3) items of the originating multi-item scale are highly homogeneous 
(i.e., Cronbach’s alpha > 0.90), and (4) the items are semantically 
redundant (Exhibit 2.10). See also Kamakura (2015).

Nevertheless, when setting up measurement models, this 
purely empirical perspective should be complemented with practi-
cal considerations. Some research situations call for or even neces-
sitate the use of single items. Respondents frequently feel they are 
oversurveyed, which contributes to lower response rates. The 
difficulty of obtaining large sample sizes in surveys, often due to 
a lack of willingness to take the time to complete questionnaires, 
leads to the necessity of considering reducing the length of con-
struct measures where possible. Therefore, if the population being 
surveyed is small or only a limited sample size is available (e.g., 
due to budget constraints, difficulties in recruiting respondents, or 
dyadic data), the use of single-item measures may be a pragmatic 
solution. Even if researchers accept the consequences of lower 
predictive validity and use single-item measures anyway, one fun-
damental question remains: What should this item be? Unfortu-
nately, recent research clearly points to severe difficulties when 
choosing a single item from a set of candidate items, regardless of 
whether this selection is based on statistical measures or expert 
judgment (Sarstedt, Diamantopoulos, Salzberger, & Baumgartner, 
in press). Against this background, we clearly advise against the 
use of single items for construct measurement, unless indicated 
otherwise by Diamantopoulos et al.’s (2012) guidelines. Finally, it 
is important to note that the above issues must be considered for 
the measurement of unobservable phenomena, such as percep-
tions or attitudes. But single-item measures are clearly appropri-
ate when used to measure observable characteristics such as sales, 
quotas, profits, and so on.

In a similar manner, and as indicated in Chapter 1, we recom-
mend avoiding using regressions based on sum scores, which some 
scholars have recently propagated. Similarly to reflective and forma-
tive measurement models, sum scores assume that several indicators 
represent a latent variable. However, instead of explicitly estimating 
the outer relationships in the context of the specified model, the sum 
scores approach uses the average value of the indicators to determine 
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Small sample
size used?

Weak effects
expected?

Are items
highly

homogeneous?

Are items
semantically
redundant?

Yes

Yes

Yes

Use
multi-
item

scale 

N < 50

Path coefficients < 0.30

Inter-item correlations > 0.80
Cronbach’s alpha > 0.90

No

No

No

No

Yes

Use single item

Exhibit 2.10 Guidelines for Single-Item Use (Diamantopoulos 
et al., 2012)

Source: Diamantopoulos, A., Sarstedt, M., Fuchs, C., Kaiser, S., & Wilczynski, P. (2012). 
Guidelines for choosing between multi-item and single-item scales for construct 
measurement: A predictive validity perspective. Journal of the Academy of Marketing 
Science, 40, 434–449.
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the latent variable scores. Therefore, one can consider sum scores as 
a special case where all indicator weights in the measurement model 
are equal. As such, sum scores represent a simplification of PLS-SEM. 
However, this simplification (i.e., equal relevance of indicators) is not 
realistic in empirical applications, underlining PLS-SEM’s superiority 
in this regard. In fact, research has shown that sum scores can produce 
substantial parameter biases and often lag behind PLS-SEM in terms 
of statistical power (e.g., Thiele et al., 2015). Apart from these con-
struct validity concerns of the sum scores approach, the researcher 
does not learn which indicator has a higher or lower relative impor-
tance. Since PLS-SEM provides this additional information, its use is 
clearly superior compared with sum scores. 

At this point, you should be prepared to create a path model. 
Exhibit 2.11 summarizes some key guidelines you should consider 
when preparing your path model. The next section continues with 
collecting the data needed to empirically test your PLS path model.

Exhibit 2.11    Guidelines for Preparing Your PLS Path Model

•	 The variables/constructs considered relevant to the study must be 
clearly identified and defined.

•	 The measurement discussion states how the constructs are 
related to each other, that is, which constructs are dependent 
(endogenous) or independent (exogenous). If applicable, this 
also includes more complex relationships such as mediators or 
moderators.

•	 If possible, the nature (positive or negative) of the relationships as 
well as the direction is hypothesized on the basis of theory, logic, 
previous research, or researcher judgment.

•	 There is a clear explanation of why you expect these relationships 
to exist. The explanation cites theory, qualitative research, business 
practice, or some other credible source.

•	 A conceptual model or framework is prepared to clearly illustrate 
the hypothesized relationships.

•	 The measurement discussion states whether constructs are 
conceptualized as first- or second-order constructs.

•	 The measurement perspective (i.e., reflective vs. formative) has to 
be clearly stated and motivated. A construct’s conceptualization 
and the aim of the study guide this decision.

•	 Single-item measures should be used only if indicated by 
Diamantopoulos et al.’s (2012) guidelines.

•	 Do not use regressions based on sum scores.
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STAGE 3: DATA COLLECTION AND EXAMINATION

The data collection and examination stage is very important in the 
application of SEM. This stage is important in all types of research but 
is particularly important when a researcher anticipates using SEM. 
With first-generation statistical methods, the general assumption is 
that the data are error free. With second-generation statistical meth-
ods, the measurement model stage attempts to identify the error 
component of the data and remove it from the analysis. As a result, 
the research design phase of any project must be carefully planned 
and executed so the answers to questions are as valid and reliable as 
possible for social science research.

Application of SEM methods requires that quantitative data are 
available. Many research applications in scholarly research involve 
primary data, but it is also possible to use secondary data, particularly 
the increasingly available archival data from databases such as S&P 
Capital IQ, WRDS (Wharton Research Data Services), and Compu
stat. Social science researchers in general have relied on primary data 
obtained from structured questionnaires for their SEM analyses. This 
is true for both CB-SEM and PLS-SEM and particularly for academic 
research. But archival data will be used with SEM, particularly PLS-
SEM, much more in the future (Rigdon, 2013). 

When empirical data are collected using questionnaires, typically 
data collection issues must be addressed after the data are collected. 
The primary issues that need to be examined include missing data, 
suspicious response patterns (straight lining or inconsistent answers), 
outliers, and data distribution. We briefly address each of these on the 
following pages. The reader is referred to more comprehensive discus-
sions of these issues in Hair et al. (2010).

Missing Data

Missing data are often a problem in social science research 
because many projects obtain data using survey research. Missing 
data occur when a respondent either purposely or inadvertently fails 
to answer one or more question(s). When the amount of missing data 
on a questionnaire exceeds 15%, the observation is typically removed 
from the data file. Indeed, an observation may be removed from the 
data file even if the overall missing data on the questionnaire do not 
exceed 15%. For example, if a high proportion of responses are missing 
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for a single construct, then the entire observation may have to be 
removed. A high proportion of missing data on a single construct is 
more likely to occur if the construct is measuring a sensitive topic, 
such as racism, sexual orientation, or even firm performance.

The proportion of survey data collected in the United States 
using online data collection methods now exceeds 60% and is above 
50% in many developed countries. The increased use of online data 
collection approaches has reduced missing data, because it is possi-
ble to prevent respondents from going to the next question if they do 
not answer a particular question. This forced-answer approach does 
motivate some individuals to stop answering the survey. But more 
often than not, it means respondents answer the question and move 
on because the reason for skipping questions was inadvertence.

The software used in the book, SmartPLS 3 (Ringle, Wende, & 
Becker, 2015), offers three ways of handling missing data. In mean 
value replacement, the missing values of an indicator variable are 
replaced with the mean of valid values of that indicator. While easy to 
implement, mean value replacement decreases the variability in the 
data and likely reduces the possibility of finding meaningful relation-
ships. It should therefore be used only when the data exhibit extremely 
low levels of missing data. As a rule of thumb, we recommend using 
mean value replacement when there are less than 5% values missing 
per indicator.

Alternatively, SmartPLS offers an option to remove all cases from 
the analysis that include missing values in any of the indicators used 
in the model (referred to as casewise deletion or listwise deletion). 
When casewise deletion is being used, two issues warrant further 
attention. First, we need to ensure that we do not systematically delete 
a certain group of respondents. For example, market researchers fre-
quently observe that wealthy respondents are more likely to refuse 
answering questions related to their income. Running casewise dele-
tion would systematically omit this group of respondents and there-
fore likely yield biased results. Second, using casewise deletion can 
dramatically diminish the number of observations in the data set. It is 
therefore crucial to carefully check the number of observations used 
in the final model estimation when this type of missing value treat-
ment is used.

Instead of discarding all observations with missing values, pair-
wise deletion uses all observations with complete responses in the 
calculation of the model parameters. For example, assume we have a 
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measurement model with three indicators (x1, x2, and x3). To estimate 
the model parameters, all valid values in x1, x2, and x3 are used in the 
computation. That is, if a respondent has a missing value in x3, the 
valid values in x1 and x2 are still used to calculate the model. Conse-
quently, different calculations in the analysis may be based on differ-
ent sample sizes, which can bias the results. Some researchers therefore 
call this approach “unwise deletion,” and we also generally advise 
against its use. Exceptions are situations in which many observations 
have missing values—thus hindering the use of mean replacement and 
especially casewise deletion—and the aim of the analysis is to gain 
first insights into the model structure. In addition, more complex 
procedures for handling missing values can be conducted before  
analyzing the data with SmartPLS. 

Among the best approaches to overcome missing data is to first 
determine the demographic profile of the respondent with missing 
data and then calculate the mean for the sample subgroup represent-
ing the identified demographic profile. For example, if the respondent 
with missing data is male, aged 25 to 34, with 14 years of education, 
then calculate the mean for that group on the questions with missing 
data. Next determine if the question with missing data is associated 
with a construct with multiple items. If yes, then calculate an average 
of the responses to all the items associated with the construct. The 
final step is to use the subgroup mean and the average of the construct 
indicator responses to decide what value to insert for the missing 
response. This approach minimizes the decrease in variability of 
responses and also enables the researcher to know specifically what is 
being done to overcome missing data problems. Last, numerous com-
plex statistical procedures rely on regression approaches or the expec-
tation maximization algorithm to impute missing data (Little & 
Rubin, 2002; Schafer & Graham, 2002). Sarstedt and Mooi (2014) 
provide an overview and guidelines for their use in multivariate data 
analysis. However, since knowledge on their suitability specifically in 
a PLS-SEM context is scarce, we recommend drawing on the methods 
described above when treating missing values in PLS-SEM analyses.

Suspicious Response Patterns

Before analyzing their data, researchers should also examine 
response patterns. In doing so, they are looking for a pattern often 
described as straight lining. Straight lining is when a respondent marks 
the same response for a high proportion of the questions. For 
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example, if a 7-point scale is used to obtain answers and the response 
pattern is all 4s (the middle response), then that respondent in most 
cases should be deleted from the data set. Similarly, if a respondent 
selects only 1s or only 7s, then that respondent should in most cases 
be removed. Other suspicious response patterns are diagonal lining 
and alternating extreme pole responses. A visual inspection of the 
responses or the analysis of descriptive statistics (e.g., mean, variance, 
and distribution of the responses per respondent) allows identifying 
suspicious response patterns.

Inconsistency in answers may also need to be addressed before 
analyzing the data. Many surveys start with one or more screening 
questions. The purpose of a screening question is to ensure that only 
individuals who meet the prescribed criteria complete the survey. For 
example, a survey of mobile phone users may screen for individuals 
who own an Apple iPhone. But a question later in the survey is posed 
and the individual indicates he or she uses an Android device. This 
respondent would therefore need to be removed from the data set. 
Surveys often ask the same question with slight variations, especially 
when reflective measures are used. If a respondent gives a very dif-
ferent answer to the same question asked in a slightly different way, 
this too raises a red flag and suggests the respondent was not reading 
the questions closely or simply was marking answers to complete 
and exit the survey as quickly as possible. Finally, researchers some-
times include specific questions to assess the attention of respon
dents. For example, in the middle of a series of questions, the 
researcher may instruct the respondent to check only a 1 on a 7-point 
scale for the next question. If any answer other than a 1 is given for 
the question, it is an indication the respondent is not closely reading 
the question.

Outliers

An outlier is an extreme response to a particular question, or 
extreme responses to all questions. Outliers must be interpreted in the 
context of the study, and this interpretation should be based on the 
type of information they provide. Outliers can result from data 
collection of entry errors (e.g., manual coding of “77” instead of “7” 
on a 1 to 9 Likert scale). However, exceptionally high or low values 
can also be part of reality (e.g., an exceptionally high income). Finally, 
outliers can occur when combinations of variable values are particu-
larly rare (e.g., spending 80% of annual income on holiday trips).  
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The first step in dealing with outliers is to identify them. Standard 
statistical software packages offer a multitude of univariate, bivariate, 
or multivariate graphs and statistics, which allow identifying outliers. 
For example, when analyzing box plots, one may characterize 
responses as extreme outliers, which are three times the interquartile 
range below the first quartile or above the third quartile. Moreover, 
IBM SPSS Statistics has an option called Explore that develops box 
plots and stem-and-leaf plots to facilitate the identification of outliers 
by respondent number (Sarstedt & Mooi, 2014).

Once the outliers are identified, the researcher must decide what 
to do. If there is an explanation for exceptionally high or low values, 
outliers are typically retained, because they represent an element of the 
population. However, their impact on the analysis results should be 
carefully evaluated. That is, one should run the analyses with and with-
out the outliers to ensure that a very few (extreme) observations do not 
influence the results substantially. If the outliers are a result of data 
collection or entry errors, they are always deleted or corrected (e.g., the 
value of 77 on a 9-point scale). If there is no clear explanation for the 
exceptional values, outliers should be retained. See Sarstedt and Mooi 
(2014) for more details about outliers.

Outliers can also represent a unique subgroup of the sample. There 
are two approaches to use in deciding if a unique subgroup exists. First, 
a subgroup can be identified based on prior knowledge, for example, 
based on observable characteristics such as gender, age, or income. 
Using this information, the researcher partitions the data set into two 
or more groups and runs a multigroup analysis to disclose significant 
differences in the model parameters. The second approach to identify-
ing unique subgroups is the application of latent class techniques. 
Latent class techniques allow researchers to identify and treat unob-
served heterogeneity, which cannot be attributed to a specific observ-
able characteristic or a combination of characteristics. Several latent 
class techniques have recently been proposed that generalize statistical 
concepts such as finite mixture modeling, typological regression, or 
genetic algorithms to PLS-SEM (see Sarstedt, 2008, for an early review). 
In Chapter 8, we discuss several of these techniques in greater detail.

Data Distribution

PLS-SEM is a nonparametric statistical method. Different from 
maximum likelihood (ML)–based CB-SEM, it does not require the 
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data to be normally distributed. Nevertheless, it is important to verify 
that the data are not too far from normal as extremely nonnormal 
data prove problematic in the assessment of the parameters’ signifi-
cances. Specifically, extremely nonnormal data inflate standard errors 
obtained from bootstrapping (see Chapter 5 for more details) and 
thus decrease the likelihood that some relationships will be assessed 
as significant (Hair et al., 2011; Henseler et al., 2009).

The Kolmogorov-Smirnov test and Shapiro-Wilks test are 
designed to test normality by comparing the data to a normal distri-
bution with the same mean and standard deviation as in the sample 
(Sarstedt & Mooi, 2014). However, both tests only indicate whether 
the null hypothesis of normally distributed data should be rejected or 
not. As the bootstrapping procedure performs fairly robustly when 
data are nonnormal, these tests provide only limited guidance when 
deciding whether the data are too far from being normally distributed. 
Instead, researchers should examine two measures of distributions—
skewness and kurtosis.

Skewness assesses the extent to which a variable’s distribution is 
symmetrical. If the distribution of responses for a variable stretches 
toward the right or left tail of the distribution, then the distribution is 
characterized as skewed. Kurtosis is a measure of whether the distri-
bution is too peaked (a very narrow distribution with most of the 
responses in the center). When both skewness and kurtosis are close 
to zero (a situation that researchers are very unlikely ever to encoun-
ter), the pattern of responses is considered a normal distribution. A 
general guideline for skewness is that if the number is greater than +1 
or lower than –1, this is an indication of a skewed distribution. For 
kurtosis, the general guideline is that if the number is greater than +1, 
the distribution is too peaked. Likewise, a kurtosis of less than –1 
indicates a distribution that is too flat. Distributions exhibiting skew-
ness and/or kurtosis that exceed these guidelines are considered 
nonnormal.

Serious effort, considerable amounts of time, and a high level of 
caution are required when collecting and analyzing the data that you 
need for carrying out multivariate techniques. Always remember the 
garbage in, garbage out rule. All your analyses are meaningless if your 
data are inappropriate. Exhibit 2.12 summarizes some key guidelines 
you should consider when examining your data and preparing them 
for PLS-SEM. For more detail on examining your data, see Chapter 2 
of Hair et al. (2010).
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Exhibit 2.12 Guidelines for Examining Data Used With  
PLS-SEM

•	 Missing data must be identified. When missing data for an 
observation exceed 15%, it should be removed from the data set. 
Other missing data should be dealt with before running a PLS-SEM 
analysis. When less than 5% of values per indicator are missing, use 
mean replacement. Otherwise, use casewise deletion, but make 
sure that the deletion of observations did not occur systematically 
and that enough observations remain for the analysis. Generally 
avoid using pairwise deletion. Also consider using more complex 
imputation procedures before importing the data into the PLS-SEM 
software.

•	 Suspicious and inconsistent response patterns typically justify 
removing a response from the data set.

•	 Outliers should be identified before running PLS-SEM. Subgroups 
that are substantial in size should be identified based on prior 
knowledge or by statistical means (e.g., FIMIX-PLS, PLS-GAS, PLS-
POS).

•	 Lack of normality in variable distributions can distort the results of 
multivariate analysis. This problem is much less severe with PLS-
SEM, but researchers should still examine PLS-SEM results carefully 
when distributions deviate substantially from normal. Absolute 
skewness and/or kurtosis values of greater than 1 are indicative of 
nonnormal data.

CASE STUDY ILLUSTRATION—SPECIFYING  
THE PLS-SEM MODEL

The most effective way to learn how to use a statistical method is to 
apply it to a set of data. Throughout this book, we use a single exam-
ple that enables you to do that. We start the example with a simple 
model, and in Chapter 5, we expand that same model to a much 
broader, more complex model. For our initial model, we hypothesize 
a path model to estimate the relationships between corporate reputa-
tion, customer satisfaction, and customer loyalty. The example will 
provide insights on (1) how to develop the structural model represent-
ing the underlying concepts/theory, (2) the setup of measurement 
models for the latent variables, and (3) the structure of the empirical 
data used. Then, our focus shifts to setting up the SmartPLS 3 soft-
ware (Ringle et al., 2015) for PLS-SEM.
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Application of Stage 1: Structural  
Model Specification

To specify the structural model, we must begin with some funda-
mental explications about conceptual/theoretical models. The corpo-
rate reputation model by Eberl (2010) is the basis of our theory. The 
goal of the model is to explain the effects of corporate reputation on 
customer satisfaction (CUSA) and, ultimately, customer loyalty (CUSL). 
Corporate reputation represents a company’s overall evaluation by its 
stakeholders (Helm, Eggert, & Garnefeld, 2010). It is measured using 
two dimensions. One dimension represents cognitive evaluations of the 
company, and the construct is the company’s competence (COMP). The 
second dimension captures affective judgments, which determine 
the company’s likeability (LIKE). This two-dimensional approach to 
measure reputation was developed by Schwaiger (2004). It has been 
validated in different countries (e.g., Eberl, 2010; Zhang & Schwaiger, 
2009) and applied in various research studies (e.g., Eberl & Schwaiger, 
2005; Raithel & Schwaiger, 2015; Raithel, Wilczynski, Schloderer, & 
Schwaiger, 2010; Sarstedt & Ringle, 2010; Sarstedt & Schloderer, 
2010; Schloderer, Sarstedt, & Ringle, 2014; Schwaiger, Raithel, &  
Schloderer, 2009). Research also shows that the approach performs 
favorably (in terms of convergent validity and predictive validity) com-
pared with alternative reputation measures (Sarstedt et al., 2013).

Building on a definition of corporate reputation as an attitude-
related construct, Schwaiger (2004) further identified four antecedent 
dimensions of reputation—quality, performance, attractiveness, and 
corporate social responsibility—measured by a total of 21 formative 
indicators. These driver constructs of corporate reputation are com-
ponents of the more complex example we will use in the book and 
will be added in Chapter 5. Likewise, we do not consider more com-
plex model setups such as mediation or moderation effects yet. These 
aspects will be covered in the case studies in Chapter 7.

In summary, the simple corporate reputation model has two main 
conceptual/theoretical components: (1) the target constructs of 
interest—namely, CUSA and CUSL (dependent variables)—and 
(2) the two corporate reputation dimensions COMP and LIKE (inde-
pendent variables), which represent key determinants of the target 
constructs. Exhibit 2.13 shows the constructs and their relationships, 
which represent the structural model for the PLS-SEM case study.

To propose a theory/concept, researchers usually build on exist-
ing research knowledge. When PLS-SEM is applied, the structural 
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model displays the concept/theory with its key elements (i.e., con-
structs) and cause-effect relationships (i.e., paths). Researchers typi-
cally develop hypotheses for the constructs and their path 
relationships in the structural model. For example, consider Hypoth-
esis 1 (H1): Customer satisfaction has a positive effect on customer 
loyalty. PLS-SEM enables statistically testing the significance of the 
hypothesized relationship (Chapter 6). When conceptualizing the 
theoretical constructs and their hypothesized structural relationships 
for PLS-SEM, it is important to make sure the model has no circular 
relationships (i.e., causal loops). A circular relationship would occur 
if, for example, we reversed the relationship between COMP and 
CUSL as this would yield the causal loop COMP → CUSA →  
CUSL → COMP.

Application of Stage 2: Measurement  
Model Specification

Since the constructs are not directly observed, we need to specify 
a measurement model for each construct. The specification of the 
measurement models (i.e., multi-item vs. single-item measures and 
reflective vs. formative measures) draws on prior research studies by 
Schwaiger (2004) and Eberl (2010).

COMP

CUSA CUSL

LIKE

Exhibit 2.13 Example of a Conceptual/Theoretical Model 
(Simple Model)
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In our simple example of a PLS-SEM application, we have three 
constructs (COMP, CUSL, and LIKE) measured by multiple items 
(Exhibit 2.14). All three constructs have reflective measurement mod-
els as indicated by the arrows pointing from the construct to the 
indicators. For example, COMP is measured by means of the three 
reflective items comp_1, comp_2, and comp_3, which relate to the 
following survey questions (Exhibit 2.15): “[The company] is a top 
competitor in its market,” “As far as I know, [the company] is recog-
nized worldwide,” and “I believe that [the company] performs at a 
premium level.” Respondents had to indicate the degree to which they 
(dis)agree with each of the statements on a 7-point scale from 1 = fully 
disagree to 7 = fully agree.

Different from COMP, CUSL, and LIKE, the customer satisfac-
tion construct (CUSA) is operationalized by a single item (cusa) that 
is related to the following question in the survey: “If you consider 
your experiences with [company], how satisfied are you with [com-
pany]?” The single indicator is measured with a 7-point scale indicat-
ing the respondent’s degree of satisfaction (1 = very dissatisfied;  
7 = very satisfied). The single item has been used due to practical 
considerations in an effort to decrease the overall number of items in 
the questionnaire. As customer satisfaction items are usually highly 
homogeneous, the loss in predictive validity compared with a 

Exhibit 2.14    Types of Measurement Models in the Simple Model

Reflective Measurement Model Reflective Measurement Model

COMP

comp_1

comp_2

comp_3

LIKE

like_1

like_2

like_3

Single-Item Construct Reflective Measurement Model 

CUSA CUSL

cusl_1

cusl_2

cusl_3

cusa
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multi-item measure is not considered severe. As cusa is the only item 
measuring customer satisfaction, construct and item are equivalent 
(as indicated by the fact that the relationship between construct and 
single-item measure is always one in PLS-SEM). Therefore, the choice 
of the measurement perspective (i.e., reflective vs. formative) is of no 
concern and the relationship between construct and indicator is 
undirected.

Application of Stage 3: Data  
Collection and Examination

To estimate the PLS-SEM, data were collected using computer-
assisted telephone interviews (Sarstedt & Mooi, 2014) that asked 
about the respondents’ perception of and their satisfaction with four 

Exhibit 2.15 Indicators for Reflective Measurement Model 
Constructs

Competence (COMP)

comp_1 [The company] is a top competitor in its market. 

comp_2 As far as I know, [the company] is recognized worldwide. 

comp_3 I believe that [the company] performs at a premium level. 

Likeability (LIKE)

like_1
[The company] is a company that I can better identify with 
than other companies. 

like_2
[The company] is a company that I would regret more not 
having if it no longer existed than I would other companies. 

like_3 I regard [the company] as a likeable company. 

Customer Loyalty (CUSL)

cusl_1 I would recommend [company] to friends and relatives. 

cusl_2
If I had to choose again, I would choose [company] as my 
mobile phone services provider. 

cusl_3 I will remain a customer of [company] in the future. 

Note: For data collection, the actual name of the company was inserted in the 
bracketed space that indicates company.
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major mobile network providers in Germany’s mobile communica-
tions market. Respondents rated the questions on 7-point Likert 
scales, with higher scores denoting higher levels of agreement with a 
particular statement. In the case of cusa, higher scores denote higher 
levels of satisfaction. Satisfaction and loyalty were measured with 
respect to the respondents’ own service providers. The data set used 
in this book is a subset of the original set and has a sample size of 344 
observations.

Exhibit 2.16 shows the data matrix for the model. The 10 col-
umns represent a subset of all variables (i.e., specific questions in the 
survey as described in the previous section) that have been surveyed, 
and the 344 rows (i.e., cases) contain the answers of every respondent 
to these questions. For example, the first row contains the answers of 
Respondent 1 while the last row contains the answers of Respondent 
344. The columns show the answers to the survey questions. Data in 
the first nine columns are for the indicators associated with the three 
constructs, and the tenth column includes the data for the single indi-
cator for CUSA. The data set contains further variables that relate to, 
for example, the driver constructs of LIKE and COMP. We will cover 
these aspects in Chapter 5. 

If you are using a data set in which a respondent did not answer 
a specific question, you need to insert a number that does not appear 
otherwise in the responses to indicate the missing values. Researchers 
commonly use –99 to indicate missing values, but you can use any 
other value that does not normally occur in the data set. In the fol-
lowing, we will also use –99 to indicate missing values. If, for exam-
ple, the first data point of comp_1 were a missing value, the –99 value 
would be inserted into the space as a missing value space holder 
instead of the value of 6 that you see in Exhibit 2.16. Missing value 

Exhibit 2.16    Data Matrix for the Indicator Variables

Case 
Number

Variable Name

comp_1 comp_2 comp_3 like_1 like_2 like_3 cusl_1 cusl_2 cusl_3 cusa …

    1 6 7 6 6 6 6 7 7 7 7 …

    2 4 5 6 5 5 5 7 7 5 6 …

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …

344 6 5 6 6 7 5 7 7 7 7 7…
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treatment procedures (e.g., mean replacement) could then be applied 
to these data (e.g., Hair et al., 2010). Again, if the number of missing 
values in your data set per indicator is relatively small (i.e., less than 
5% missing per indicator), we recommend mean value replacement 
instead of casewise deletion to treat the missing values when running 
PLS-SEM. Furthermore, we need to ascertain that the number of 
missing values per observation does not exceed 15%. If this was the 
case, the corresponding observation should be eliminated from the 
data set.

The data example shown in Exhibit 2.16 (and in the book’s 
example) has only very few missing values. More precisely, cusa has 
one missing value (0.29%), cusl_1 and cusl_3 have three missing 
values (0.87%), and cusl_2 has four missing values (1.16%). Thus, 
mean value replacement can be used. Furthermore, none of the obser-
vations has more than 15% missing values, so we can proceed analyz-
ing all 344 respondents.

To run outlier diagnostics, we run a series of box plots using IBM 
SPSS Statistics—see Chapter 5 in Sarstedt and Mooi (2014) for details 
on how to run these analyses in IBM SPSS Statistics. The results indi-
cate some influential observations but no outliers. Moreover, non-
normality of data regarding skewness and kurtosis is not an issue. The 
kurtosis and skewness values of the indicators are within the –1 and 
+1 acceptable range. The only exception is the cusl_2 indicator, which 
has a skewness of –1.30 and thus exhibits a slight degree of nonnor-
mality. However, as the degree of skewness is not severe and because 
cusl_2 is one of three indicators measuring the (reflective) CUSL 
construct, this deviation from normality is not considered an issue 
and the indicator is retained.

PATH MODEL CREATION USING  
THE SMARTPLS SOFTWARE

The SmartPLS 3 software (Ringle et al., 2015) is used to execute all 
the PLS-SEM analyses in this book. The discussion includes an over-
view of the software’s functionalities. The student version of the 
software is available free of charge at http://www.smartpls.com. The 
student version offers practically all functionalities of the full version 
but is restricted to data sets with a maximum of 100 observations. 
However, as the data set used in this book has more than 100 obser-
vations (344 to be precise), you should use the professional version of 
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SmartPLS, which is available as a 30-day trial version at http://www 
.smartpls.com. After the trial period, a license fee applies. Licenses are 
available for different periods of time (e.g., 1 month or 2 years) and 
can be purchased through the SmartPLS website. The SmartPLS web-
site includes a download area for the software, including the old 
SmartPLS 2 (Ringle, Wende, & Will, 2005) software, and many addi-
tional resources such as short explanations of PLS-SEM and software 
related topics, a list of recommended literature, answers to frequently 
asked questions, tutorial videos for getting started using the software, 
and the SmartPLS forum, which allows you to discuss PLS-SEM top-
ics with other users.

SmartPLS has a graphical user interface that enables the user to 
estimate the PLS path model. Exhibit 2.19 shows the graphical inter-
face for the SmartPLS 3 software, with the simple model already 
drawn. In the following paragraphs, we describe how to set up this 
model using the SmartPLS 3 software. Before you draw your model, 
you need to have data that serve as the basis for running the model. 
The data we will use with the reputation model can be downloaded 
either as comma-separated value (.csv) or text (.txt) data sets in the 
download section at the following URL: http://www.pls-sem.com. 
SmartPLS can use both data file formats (i.e., .csv or .txt). Follow the 
onscreen instructions to save one of these two files on your hard 
drive. Click on Save Target As . . . to save the data to a folder on your 
hard drive and then Close. Now run the SmartPLS 3 software by 
clicking on the desktop icon  that is available after the software instal-
lation on your computer device. Alternatively, go to the folder where 
you installed the SmartPLS software on your computer. Click on the 
file that runs SmartPLS and then on the Run tab to start the 
software.

To create a new project after running SmartPLS 3, click on File → 
Create New Project. First type a name for the project into the Name 
box (e.g., Corporate Reputation). After clicking OK, the new project 
is created and appears in the Project Explorer window that is in the 
upper left below the menu bar. All previously created SmartPLS proj
ects also appear in this window. Next, you need to assign a data set to 
the project, in our case, corporate reputation data.csv (or whatever 
name you gave to the data you downloaded). To do so, click on the 
information button labeled Doubleclick to import data! below the 
project you just created, find and highlight your data folder, and click 
Open. It is important to note that if you use your own data set for a 
project using the SmartPLS software, the data must not include any 
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string elements (e.g., respondents’ comments to open-ended ques-
tions). For example, SmartPLS interprets single dots (such as those 
produced by IBM SPSS Statistics in case an observation has a system-
missing value) as string elements. In our example, the data set does not 
include any string elements, so this is not an issue. In the screen that 
follows, you can adjust the name of the data set. In this example, we 
use the original name (i.e., Corporate reputation data) and proceed by 
clicking OK. SmartPLS will open a new tab (Exhibit 2.17), which 
provides information on the data set and its format (data view).

At the bottom of the screen appears a list with all variables and 
basic descriptive statistics (i.e., mean, minimum, and maximum values 
as well as the number of missing values). At the top right of the screen 
you can see the Sample Size as well as the number of indicators and 
missing values. As we haven’t specified any missing values yet, Smart-
PLS indicates that there are no missing values in the data set. At the 
top left of the screen, you can specify the Delimiter to determine the 
separation of the data values in your data set (i.e., comma, semicolon, 
tabulator, space), the Value Quote Character (i.e., none, single quote, 
double quote) in case the values use quotations (e.g., “7”), and the 
Number Format (i.e., United States with a dot as decimal separator 
or Europe with a comma as decimal separator). Furthermore, you can 
specify the coding of missing values. Click on None next to Missing 
values. In the screen that follows, you need to specify missing values. 
Enter –99 in the field and click on OK. SmartPLS dynamically updates 
the descriptive statistics of the indicators that contain missing values 
and indicates the number of missing values next to Total Missing 
Values. Note that unlike in other statistical programs such as IBM 
SPSS Statistics, you can specify only one value for all missing data in 
SmartPLS. Thus, you have to make sure that all missing values have 
the same coding (e.g., –99) in your original data set. That is, you need 
to code all missing values uniformly, regardless of their type (user-
defined missing or system missing) and the reason for being missing 
(e.g., respondent refused to answer, respondent did not know the 
answer, not applicable). The additional tabs in the data view show the 
Indicator Correlations and the Raw File with the imported data. At 
this point, you can close the data view. Note that you can always 
reopen the data view by double-clicking on the data set (i.e., Corpo-
rate reputation data) in the Project Explorer.

Each project can have one or more path models and one or more 
data sets (i.e., .csv or .txt files). When setting up a new project, Smart-
PLS will automatically add a model with the same name as the project 
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(i.e., Corporate Reputation). You can also rename the model by right-
clicking on it. In the menu that opens, click on Rename and type in 
the new name for the model. To distinguish our introductory model 
from the later ones, rename it to Simple Model and click on OK.

Next, double-click on Simple Model in the Project Explorer win-
dow and SmartPLS will open the graphical modeling window on the 
right, where you can create a path model. We start with a new project 
(as opposed to working with a saved project), so the modeling win-
dow is empty and you can start creating the path model shown in 
Exhibit 2.18. By clicking on Latent Variable in the menu bar ( ), 
you can place one new construct into the modeling window. When 
you left-click in the modeling window, a new construct represented by 
a red circle will appear. To add multiple constructs, press the SHIFT 
key and left-click on the icon in the menu. The “1” in the icon changes 
into an “N” to indicate the changed mode. Alternatively, go to the 
Edit menu and click Add Latent Variable(s). Now a new construct 
will appear each time you left-click in the modeling window. To leave 
this mode, click on Select in the menu bar ( ). Once you have created 
all your constructs, you can left-click on any of the constructs to 
select, resize, or move it in the modeling window. To connect the 
latent variables with each other (i.e., to draw path arrows), left-click 
on Connect in the menu bar ( ). Next, left-click on an exogenous 
(independent) construct and move the cursor over the target endog-
enous (dependent) construct. Now left-click on the endogenous con-
struct, and a path relationship (directional arrow) will be inserted 
between the two constructs. Repeat the same process and connect all 
the constructs based on your theory. Analogous to the insertion of 
latent variables, you can add multiple paths by pressing the SHIFT 
key and left-clicking on the icon in the menu. The “1” in the icon 
changes into an “N” to indicate the changed mode. Alternatively, go 
to the Edit menu and click Add Connection(s). When you finish, it 
will look like Exhibit 2.18.

The next step is to name the constructs. To do so, right-click on 
the construct to open a menu with different options and left-click on 
Rename. Type the name of your construct in the window of the 
Rename box (i.e., COMP) and then click OK. The name COMP will 
appear under the construct. Follow these steps to name all constructs. 
Next, you need to assign indicators to each of the constructs. On the 
left side of the screen, there is an Indicators window that shows all the 
indicators that are in your data set along with some basic descriptive 
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statistics. Start with the COMP construct by dragging the first com-
petence indicator comp_1 from the Indicators window and dropping 
it on the construct (i.e., left-click the mouse and hold the button 
down, then move it until over a construct, then release). After assign-
ing an indicator to a construct, it appears in the graphical modeling 
window as a yellow rectangle attached to the construct (as reflective). 
Assigning an indicator to a construct will also turn the color of the 
construct from red to blue. You can move the indicator around, but it 
will remain attached to the construct (unless you delete it). By right-
clicking on the construct and choosing one of the options under Align 
(e.g., Indicators Top), you can align the indicator(s). You can also hide 
the indicators of a construct by selecting the corresponding option in 
the menu that appears when right-clicking on it. You can also access 
the align indicators option via the Modeling toolbox on the right-
hand side of the modeling window. 

By clicking on the center of the button, you can hide the 
indicators of the selected construct; by clicking on the boxes next 
to the construct, you can align the indicators correspondingly. 
Continue until you have assigned all the indicators to the constructs 
as shown in Exhibit 2.19. Make sure to save the model by going to 
File → Save.

Clicking on the right mouse button while it is placed on a con-
struct in the graphical modeling window opens a menu with several 
options. Apart from renaming the constructs, you can invert the 
measurement model from reflective to formative measurement, and 
vice versa (Switch between formative/reflective), and access more 
advanced options such as adding interaction and quadratic effects or 
choosing a different weighting scheme per construct such as sum 
scores. To add a note to your modeling window, left-click on the 
Comment button ( ) in the menu bar.

Clicking on the right mouse button while the cursor is placed 
over other elements also opens a menu with additional functions. As 
a further example, if you place the cursor in the Project Explorer 
window and right-click on the project name, you can create a new 
model (Create New Path Model), create a new project (Create New 
Project), or import a new data set (Import Data File). Moreover, you 
can select the Copy, Paste, and Delete options for projects and models 
that appear in the Project Explorer window. For example, the Copy 
option is useful when you would like to modify a PLS path model but 
want to keep your initial model setup. Save your model before using 
the copy option. The Import Data File option allows you to add more 
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data sets to an existing project (e.g., data from different years if avail-
able). You can also export a project by selecting the Export Project 
option. Using this option, SmartPLS will export the entire project, 
including all models and data sets you may have included in it, in a 
.zip folder. You can also directly import this “ready-to-use” project by 
going to File → Import Project from Backup File. You can use this 
option to import the project that includes the PLS-SEM example on 
corporate reputation. The file name is Corporate Reputation.zip. This 
project is ready to download on your computer system in the down-
load section at http://www.pls-sem.com. Download this file and save 
it on your computer system. Then, go to File → Import Project from 
Backup File. SmartPLS allows you to browse your computer and 
select the downloaded project Corporate_Reputation.zip for import. 
After successful import, double-click on the model in this project, and 
the path model as shown in Exhibit 2.19 will appear in a new mod-
eling window.

SUMMARY

•	 Understand the basic concepts of structural model specifica-
tion, including mediation and moderation. This chapter includes 
the first three stages in the application of PLS-SEM. Building in an 
a priori established theory/concept, the model specification starts 
with the structural model (Stage 1). Each element of the theory/
concept represents a construct in the structural model of the  
PLS path model. Moreover, assumptions for the causal relation-
ships between the elements must be considered. Researchers usu-
ally determine hypotheses for the relationships between constructs 
in the structural model in accordance with their theory/concept. 
These are the key elements of the structural model (i.e., constructs 
and their hypothesized relationships), which can also be more com-
plex and contain mediating or moderating relationships. The goal 
of the PLS-SEM analysis is to empirically test the theory/concept.

•	 Explain the differences between reflective and formative 
measures and specify the appropriate measurement model. Stage 2 
focuses on selecting a measurement model for each theoretical/
conceptual construct in the structural model to obtain reliable and 
valid measurements. Generally, there are two types of measurement 
models: reflective and formative. The reflective mode has arrows 
(relationships) pointing from the construct to the observed indica-
tors in the measurement model. If the construct changes, it leads to 
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a simultaneous change of all items in the measurement model. 
Thus, all indicators are highly correlated. In contrast, the formative 
mode has arrows pointing from the indicators in the measurement 
model to the constructs. Hence, all indicators together form the 
construct, and all major elements of the domain must be repre-
sented by the selected formative indicators. Since formative indica-
tors represent independent sources of the construct’s content, they 
do not necessarily need to be correlated (in fact, they shouldn’t be 
highly correlated).

•	 Comprehend that the selection of the mode of measurement 
model and the indicators must be based on theoretical/conceptual 
reasoning before data collection. A reflective specification would 
use different indicators than a formative specification of the same 
construct. One usually uses reflective constructs as target constructs 
of the theoretically/conceptually established PLS path model, while 
formative constructs may be particularly valuable as explanatory 
sources (independent variables) or drivers of these target con-
structs. During the data analysis phase, the theoretical/conceptual 
mode of the measurement models can be empirically tested by using 
CTA-PLS, which is the confirmatory tetrad analysis for PLS-SEM.

•	 Explain the difference between multi-item and single-item 
measures and assess when to use each measurement type. Rather 
than using multiple items to measure a construct, researchers some-
times choose to use a single item. Single items have practical advan-
tages such as ease of application, brevity, and lower costs associated 
with their use. However, single-item measures do not offer more for 
less. From a psychometric perspective, single-item measures are less 
reliable and risky from a predictive validity perspective. The latter 
aspect is particularly problematic in the context of PLS-SEM, which 
focuses on prediction. Furthermore, identifying an appropriate single 
item from a set of candidate items, regardless of whether this selec-
tion is based on statistical measures or expert judgment, proves very 
difficult. For these reasons, the use of single items should generally be 
avoided. The above issues are important considerations when meas-
uring unobservable phenomena, such as perceptions or attitudes. But 
single-item measures are clearly appropriate when used to measure 
observable characteristics such as gender, sales, profits, and so on.

•	 Describe the data collection and examination considerations 
necessary to apply PLS-SEM. Stage 3 underlines the need to examine 
your data after they have been collected to ensure that the results 
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from the methods application are valid and reliable. This stage is 
important in all types of research but is particularly important when 
a researcher anticipates using SEM. When empirical data are col-
lected using questionnaires, typically data collection issues must be 
addressed after the data are collected. The primary issues that need 
to be examined include missing data, suspicious response patterns 
(straight lining or inconsistent answers), and outliers. Distributional 
assumptions are of less concern because of PLS-SEM’s nonparamet-
ric nature. However, as highly skewed data can cause issues in the 
estimation of significance levels, researchers should ensure that the 
data are not too far from normal. As a general rule of thumb, always 
remember the garbage in, garbage out rule. All your analyses are 
meaningless if your data are inappropriate.

•	 Learn how to develop a PLS path model using the SmartPLS 
3 software. The first three stages of conducting a PLS-SEM analysis 
are explained by conducting a practical exercise. We discuss how to 
draw a theoretical/conceptual PLS path model focusing on corpo-
rate reputation and its relationship with customer satisfaction and 
loyalty. We also explain several options that are available in the 
SmartPLS software. The outcome of the exercise is a PLS path model 
drawn using the SmartPLS software that is ready to be estimated.

REVIEW QUESTIONS

	 1.	 What is a structural model?

	 2.	 What is a reflective measurement model?

	 3.	 What is a formative measurement model?

	 4.	 What is a single-item measure?

	 5.	 When do you consider data to be “too nonnormal” for a 
PLS-SEM analysis?

CRITICAL THINKING QUESTIONS

	 1.	 How can you decide whether to measure a construct reflec-
tively or formatively?
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	 2.	 Which research situations favor the use of reflective/
formative measures?

	 3.	 Discuss the pros and cons of single-item measures.

	 4.	 Create your own example of a PLS path model (including the 
structural model with latent variables and the measurement 
models).

	 5.	 Why is it important to carefully analyze your data prior to 
analysis? What particular problems do you encounter when 
the data set has relatively large amounts of missing data per 
indicator (e.g., more than 5% of the data are missing per 
indicator)?

KEY TERMS

Alternating extreme pole 
responses

Casewise deletion

Causal indicators

Causal links

Composite indicators

Confirmatory tetrad analysis 
for PLS-SEM (CTA-PLS)

CTA-PLS

Diagonal lining

Direct effect

Effect indicators

Formative measurement

HCM

Hierarchical component model 
(HCM)

Higher-order model

Index

Indirect effect

Inner model

Kurtosis

Listwise deletion

Mean value replacement

Measurement models

Mediating effect

Mode A

Mode B

Moderation

Moderator effect

Multigroup analysis

Outer model

Outlier

Pairwise deletion

Reflective measurement

Scale

Skewness

Straight lining

Structural model

Sum scores
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LEARNING OUTCOMES

1. Learn how the PLS-SEM algorithm functions. 

2. Comprehend the options and parameter settings to run the 
algorithm.

3. Understand the statistical properties of the PLS-SEM method.

4. Explain how to interpret the results.

5. Apply the PLS-SEM algorithm using the SmartPLS 3 software.

CHAPTER PREVIEW

This chapter covers Stage 4 of the process on how to apply PLS-SEM. 
Specifically, we focus on the PLS-SEM algorithm and its statistical 
properties. A basic understanding of the “mechanics” that underlie 
PLS-SEM, as well as its strengths and weaknesses, is needed to cor-
rectly apply the method (e.g., to make decisions regarding software 
options). Building on these foundations, you will be able to choose the 
options and parameter settings required to run the PLS-SEM algo-
rithm. After explaining how the PLS path model is estimated, we 
summarize how to interpret the initial results. These will be discussed 
in much greater detail in Chapters 4 to 6. This chapter closes with an 
application of the PLS-SEM algorithm to estimate results for the 
 corporate reputation example using the SmartPLS 3 software.

C H A P T E R  3

Path Model 
Estimation
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STAGE 4: MODEL ESTIMATION AND  
THE PLS-SEM ALGORITHM

How the Algorithm Works

The variance-based PLS-SEM algorithm was originally developed 
by Wold (1975, 1982) and later extended by Lohmöller (1989), 
Bentler and Huang (2014), Dijkstra (2014), and Dijkstra and Henseler 
(2015a, 2015b). The algorithm estimates the path coefficients and 
other model parameters in a way that maximizes the explained vari-
ance of the dependent construct(s) (i.e., it minimizes the unexplained 
variance). This section illustrates how the PLS-SEM algorithm works.

To start with, you need to understand the data that are used to 
run the algorithm. Exhibit 3.1 is a matrix showing the data set for the 
indicator variables (columns) and observations (rows) in the PLS path 
model shown in Exhibit 3.2. The measured indicator (x) variables 
(rectangles in the top portion of Exhibit 3.2) are shown in the row at 
the top of the matrix. The (Y) constructs (circles in Exhibit 3.2) are 
shown at the right side of the matrix. For example, there are seven 
measured indicator variables in this PLS-SEM example, and the vari-
ables are identified as x1 to x7. Three constructs identified as Y1, Y2, 
and Y3 are also shown. Note that the Y constructs are not measured 
variables. The measured x variables are used as raw data input to 
estimate the Y1, Y2, and Y3 construct scores in this example (e.g., for 
construct Y1, the scores are data points Y1,1 to Y89,1) as part of solving 
the PLS-SEM algorithm.

A data matrix like the one in Exhibit 3.1 serves as input for indi-
cators in our hypothetical PLS path model (Exhibit 3.2). The data for 
the measurement model might be obtained from a company database 
(e.g., the advertising budget, number of employees, profit, etc.), or it 
could be responses to survey questions. An ID for the observations is 

Case x1 x2 x3 x4 x5 x6 x7 Y1 Y2 Y3

  1 x1,1 x2,1 x3,1 x4,1 x5,1 x6,1 x7,1 Y1,1 Y2,1 Y3,1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89 x89,1 x89,2 x89,3 x89,4 x89,5 x89,6 x89,7 Y89,1 Y89,2 Y89,3

Exhibit 3.1    Data Matrix for a PLS-SEM Example
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listed in the first column to the left under the case label. For example, 
if your sample includes 89 responses (sample size), then the numbers 
in this column would be 1 to 89 (assuming you use a number as the 
ID for each respondent/object).

The minimum sample size for PLS path model estimation should 
at least meet the 10 times rule (Chapter 1). Researchers should, how-
ever, follow more elaborate guidelines, for example, by following the 
recommendations made by Cohen (1992) in the context of multiple 
OLS regression analysis (Chapter 1). In this example, the two (forma-
tively measured) exogenous constructs each have two indicators x1 
and x2 for Y1 and x3 and x4 for Y2. Moreover, the structural model has 
two exogenous (independent) constructs Y1 and Y2 to explain the 
single dependent construct Y3. The maximum number of arrows 
pointing at a particular latent variable is two. Thus, according to the 
10 times rule, 2 · 10 = 20 represents the minimum number of observa-
tions needed to estimate the PLS path model in Exhibit 3.2. Alterna-
tively, following Cohen’s (1992) recommendations for multiple OLS 
regression analysis or running a power analysis using the G*Power 
program, one would need 33 observations to detect R2 values of 
around 0.25, assuming a significance level of 5% and a statistical 
power of 80% (see Exhibit 1.7 in Chapter 1).

The PLS-SEM algorithm estimates all unknown elements in the 
PLS path model. The upper portion of Exhibit 3.2 shows the PLS path 
model with three latent variables and seven measured indicator vari-
ables. The four indicator variables (x1, x2, x3, and x4) for the two 
exogenous constructs (Y1 and Y2) are modeled as formative measures 
(i.e., relationships from the indicators to the latent variables). In con-
trast, the three indicator variables (x5, x6, and x7) for the endogenous 
construct (Y3) are modeled as reflective measures (i.e., relationships 
from the latent variable to the indicators). This kind of setup for the 
measurement models is just an example. Researchers can select 
between a reflective and formative measurement model for every 
construct. For example, alternatively, Y1 could be modeled as forma-
tive while both Y2 and Y3 could be modeled as reflective (assuming 
theory supported this change and it was considered in designing the 
questionnaire). In Exhibit 3.2, the relationships between the measured 
indicator variables of the formative constructs Y1 and Y2 (i.e., outer 
weights) are labeled as w11, w12, w23, and w24 (the first number is for 
the construct and the second number is for the arrow; the w stands 
for weight). Similarly, the relationships between the measured 
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indicator variables of the reflective construct Y3 (i.e., outer loadings) 
are labeled as l35, l36, and l37 (the l stands for loading). Note that the 
relationships between constructs and indicator variables are consid-
ered outer weights for formative constructs, whereas the relationships 
for reflective constructs are called outer loadings. Outer weights and 
loadings are initially unknown and are estimated by the PLS-SEM 
algorithm. Similarly, the relationships between the latent variables 
(i.e., the path coefficients) in the structural model that are labeled as 
p (Exhibit 3.2) are also initially unknown and estimated as part of 
solving the PLS-SEM algorithm. The coefficient p13 represents the 
relationship from Y1 to Y3, and p23 represents the relationship from  
Y2 to Y3.

The PLS-SEM algorithm uses the known elements to estimate the 
unknown elements of the model. For this task, the algorithm needs to 
determine the scores of the constructs Y that are used as input for 
(single and multiple) partial regression models within the path model. 
Recall that the construct scores were the Y columns on the right side 
of the matrix in Exhibit 3.1.

After the algorithm has calculated the construct scores, the scores 
are used to estimate each partial regression model in the path model. 
As a result, we obtain the estimates for all relationships in the meas-
urement models (i.e., the loadings and weights) and the structural 
model (i.e., the path coefficients). The setup of the partial regression 
model depends on whether the construct under consideration is mod-
eled as reflective or formative. More specifically, when a formative 
measurement model is assumed for a construct (e.g., latent variables 
Y1 and Y2 in Exhibit 3.2), the w coefficients (i.e., outer weights) are 
estimated by a partial multiple regression where the latent Y construct 
(e.g., Y1) represents a dependent variable and its associated indicator 
variables x (e.g., x1 and x2) are the independent variables. In contrast, 
when a reflective measurement model is assumed for a construct (e.g., 
latent variable Y3 in Exhibit 3.2), the l coefficients (i.e., outer loadings) 
are estimated through single regressions (one for each indicator vari-
able) of each indicator variable on its corresponding construct.

Structural model calculations are handled as follows. The partial 
regressions for the structural model specify a construct as the depen
dent latent variable (e.g., Y3 in Exhibit 3.2). This dependent latent 
variable’s direct predecessors (i.e., latent variables with a direct rela-
tionship leading to the target construct; here, Y1 and Y2) are the inde-
pendent constructs in a regression used to estimate the path 
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coefficients. Hence, there is a partial regression model for every 
endogenous latent variable to estimate all the path coefficients in the 
structural model.

All partial regression models are estimated by the PLS-SEM algo-
rithm’s iterative procedures, which include two stages. In the first 
stage, the construct scores are estimated. Then, in the second stage, the 

Y1

Y2

Y3

x3

x4

x1

x2

x5

x6

x7

w11

w12

w23

w24

l35

l37

l36

p13

p23

Measurement Models
(Indicators x, latent variables Y, 

and relationships, i.e., w or l, between 
indicators and latent variables)

Structural Model
(Latent variables Y and
relationships between 

latent variables p)

Y1 Y2 Y3

x1 w11

x2 w12

x3 w23

x4 w24

x5 I35

x6 I36

x7 I37

Y1 Y2 Y3

Y1 p13

Y2 p23

Y3

Exhibit 3.2    Path Model and Data for Hypothetical PLS-SEM Example

Source: Henseler, J., Ringle, C. M., & Sarstedt, M. (2012). Using partial least squares path 
modeling in international advertising research: Basic concepts and recent issues. In  
S. Okazaki (Ed.), Handbook of research in international advertising (pp. 252–276). 
Cheltenham, UK: Edward Elgar Publishing. http://www.elgaronline.com/
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final estimates of the outer weights and loadings are calculated, as 
well as the structural model’s path coefficients and the resulting R² 
values of the endogenous latent variables. Henseler et al. (2012) 
provide a detailed description of the PLS-SEM algorithm’s stages.

To run the PLS-SEM algorithm, users can choose from a range of 
software programs. A popular early example of a PLS-SEM software 
program is PLS-Graph (Chin, 2003), which is a graphical interface to 
Lohmöller’s (1987) LVPLS, the first program in the field. Compared 
with LVPLS, which required the user to enter commands via a text 
editor, PLS-Graph represents a significant improvement, especially in 
terms of user-friendliness. However, PLS-Graph has not been further 
developed in recent years. The same holds for several other early 
software programs such as VisualPLS (Fu, 2006) and SPAD-PLS (Test 
& Go, 2006)—see Temme, Kreis, and Hildebrandt (2010) for an early 
software review. With the increasing dissemination of PLS-SEM in a 
variety of disciplines, several other programs with user-friendly 
graphical interfaces were introduced to the market such as XLSTAT’s 
PLSPM package, Adanco (Henseler & Dijkstra, 2015); PLS-GUI 
(Hubona, 2015) WarpPLS (Kock, 2015), and particularly SmartPLS 
(Ringle et al., 2015; Ringle et al., 2005), which has recently been 
released in Version 3. To date, SmartPLS 3 is the most comprehensive 
and advanced program in the field and serves as the basis for all case 
study examples in this book. Finally, users with experience in the 
statistical software environment R can also draw on packages such as 
semPLS (Monecke & Leisch, 2012) and plspm (Sánchez, Trinchera, & 
Russolillo, 2015), which facilitate flexible analysis of PLS path models.

Statistical Properties

PLS-SEM is an OLS regression-based estimation technique that 
determines its statistical properties. The method focuses on the predic-
tion of a specific set of hypothesized relationships that maximizes the 
explained variance in the dependent variables, similar to OLS regres-
sions. Therefore, the focus of PLS-SEM is more on prediction than on 
explanation, which makes PLS-SEM particularly useful for studies on 
the sources of competitive advantage and success driver studies (Hair, 
Ringle, & Sarstedt, 2011). Unlike CB-SEM, PLS-SEM does not opti-
mize a unique global scalar function. The lack of a global scalar func-
tion and the consequent lack of global goodness-of-fit measures are 
traditionally considered major drawbacks of PLS-SEM. When using 
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PLS-SEM, it is important to recognize that the term fit has different 
meanings in the contexts of CB-SEM and PLS-SEM. Fit statistics for 
CB-SEM are derived from the discrepancy between the empirical and 
the model-implied (theoretical) covariance matrix, whereas PLS-SEM 
focuses on the discrepancy between the observed (in the case of mani-
fest variables) or approximated (in the case of latent variables) values 
of the dependent variables and the values predicted by the model in 
question (Hair, Sarstedt, Ringle, et al., 2012). While a global 
goodness-of-fit measure for PLS-SEM has been proposed (Tenenhaus, 
Amato, & Esposito Vinzi, 2004), research shows that the measure is 
unsuitable for identifying misspecified models (Henseler & Sarstedt, 
2013; see Chapter 6 for a discussion of the measure and its limita-
tions). As a consequence, researchers using PLS-SEM rely on measures 
indicating the model’s predictive capabilities to judge the model’s 
quality. These are going to be introduced in Chapters 4 to 6 on the 
evaluation of measurement models and the structural model.

While being a regression-based approach, PLS-SEM is nonpara-
metric in nature. This means that it does not make any assumptions 
regarding the distribution of the data or, more precisely, the residuals, 
as is the case in regression analysis (Sarstedt & Mooi, 2014). This 
property has important implications for testing the significances of 
the model coefficients (e.g., path coefficients) as the technique does 
not assume any specific distribution. Instead, the research has to 
derive a distribution from the data using bootstrapping, which is then 
used as basis for significance testing (Chapter 5).

One of the most important features of PLS-SEM relates to the 
nature of the construct scores. CB-SEM initially estimates the model 
parameters without using any case values of the latent variable scores. 
In contrast, the PLS-SEM algorithm directly and initially computes 
the construct scores (the scores for Y1, Y2, and Y3 in Exhibit 3.2). The 
PLS-SEM algorithm treats these scores as perfect substitutes for the 
indicator variables and therefore uses all the variance from the indi-
cators that can help explain the endogenous constructs. This is 
because the PLS-SEM approach is based on the assumption that all 
the measured variance in the model’s indicator variables is useful and 
should be included in estimating the construct scores. As a result, 
PLS-SEM avoids the factor indeterminacy problem (difficulty with 
estimating stable factor scores) and develops more accurate estimates 
of construct scores compared with CB-SEM (Rigdon, 2012, 2014b; 
Sarstedt, Ringle, Henseler, & Hair, 2014). In short, the algorithm 
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calculates the construct scores as exact linear combinations of the 
associated observed indicator variables—for example, the construct 
score of Y3 in Exhibit 3.2 as a linear combination of the indicator 
variables x5, x6, and x7.

The fact that, in PLS-SEM, latent variables are aggregates of 
observed indicator variables leads to a fundamental problem. Indica-
tor variables always involve some degree of measurement error. This 
error is present in the latent variable scores and is ultimately reflected 
in the path coefficients that are estimated using these scores. The 
error in the latent variable scores, while small, does produce a bias in 
the model estimates. The result is that the path model relationships 
are frequently underestimated, while the parameters for the measure-
ment models (i.e., the loadings and weights) typically are overesti-
mated compared with CB-SEM results. This property (structural 
model relationships underestimated and measurement model rela-
tionships overestimated) is referred to as the PLS-SEM bias. It should 
be noted that in this context, inconsistency does not imply the results 
of the PLS-SEM algorithm are actually biased. Instead, it means that 
the structural and measurement model relationships in PLS-SEM are 
not the same as those of CB-SEM as a result of PLS-SEM’s different 
handling of latent variables compared with its covariance-based 
counterpart (see Chapter 1). Only when the number of observations 
and the number of indicators per latent variable increase to infinity 
will the latent variable case values approach values similar to CB-
SEM and the PLS-SEM inconsistency disappear. This characteristic is 
commonly described as consistency at large (Hui & Wold, 1982; 
Lohmöller, 1989). 

Infinity is a really large number and implies that this difference 
never fully disappears. However, simulation studies show that the 
difference between PLS-SEM and CB-SEM is usually very small 
(Henseler et al., 2014; Reinartz et al., 2009; Ringle et al., 2009) and 
plays virtually no role in most empirical settings. Simulation studies 
also show that CB-SEM results can become extremely inaccurate 
while PLS-SEM produces accurate estimates, even when assuming a 
common factor model (see Chapter 1). This especially holds when the 
number of constructs and structural model relationships (i.e., the 
model complexity) is high and sample size is low, a situation in which 
the bias produced by CB-SEM is oftentimes substantial, particularly 
when distributional assumptions are violated. In other situations (e.g., 
when sample sizes are high and model complexity is limited), 
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CB-SEM estimates are clearly more accurate compared with PLS-SEM 
estimates, assuming a common factor model holds. Recent research 
has brought forward the consistent PLS (PLSc) method (Bentler & 
Huang, 2014; Dijkstra, 2014), a variation of the original PLS-SEM 
approach. Simulations studies (e.g., Dijkstra & Henseler, 2015a, 
2015b) show that PLSc and CB-SEM produce highly similar results in 
a variety of model constellations. Hence, PLSc is capable of perfectly 
mimicking CB-SEM. However, while maintaining some of the general 
PLS-SEM advantages, PLSc is subject to similar problems that have 
been noted for CB-SEM, such as inferior robustness and highly inac-
curate results in certain configurations. Research on PLSc is ongoing, 
and we expect further improvements of the method in the future. We 
discuss PLSc in greater detail in the final section of Chapter 8. 

Finally, model estimates produced by PLS-SEM generally exhibit 
higher levels of statistical power than CB-SEM does (Hair, Ringle, & 
Sarstedt, 2011; Henseler et al., 2014; Reinartz et al., 2009), even 
when the data originate from a factor model. Consequently, PLS-SEM 
is better at identifying population relationships and more suitable for 
exploratory research purposes—a feature that is further supported by 
the less restrictive requirements of PLS-SEM in terms of model setups, 
model complexity, and data characteristics (Chapter 1). 

Algorithmic Options and Parameter  
Settings to Run the Algorithm

To estimate a PLS path model, algorithmic options and parameter 
settings must be selected. The algorithmic options and parameter set-
tings include selecting the structural model path weighting method, 
the data metric, initial values to start the PLS-SEM algorithm, the stop 
criterion, and the maximum number of iterations. PLS-SEM allows 
the user to apply three structural model weighting schemes: (1) the 
centroid weighting scheme, (2) the factor weighting scheme, and (3) 
the path weighting scheme. While the results differ little across the 
alternative weighting schemes, path weighting is the recommended 
approach. This weighting scheme provides the highest R² value for 
endogenous latent variables and is generally applicable for all kinds 
of PLS path model specifications and estimations. Moreover, when 
the path model includes higher-order constructs (i.e., constructs meas-
ured at different levels of abstraction; Chapter 8), researchers should 
never use the centroid weighting scheme. Henseler et al. (2009) 
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provide further details on the three different weighting schemes avail-
able in PLS-SEM software.

The PLS-SEM algorithm draws on standardized latent variable 
scores. Thus, PLS-SEM applications must use standardized data for 
the indicators (more specifically, z-standardization, where each indi-
cator has a mean of 0 and the variance is 1) as input for running the 
algorithm. This raw data transformation is the recommended option 
(and automatically supported by available software packages such as 
SmartPLS) when starting the PLS-SEM algorithm. When running the 
PLS-SEM method, the software package standardizes both the raw 
data of the indicators and the latent variable scores. As a result, the 
algorithm calculates standardized coefficients approximately between 
−1 and +1 for every relationship in the structural model and the meas-
urement models. For example, path coefficients close to +1 indicate a 
strong positive relationship (and vice versa for negative values). The 
closer the estimated coefficients are to 0, the weaker the relationships. 
Very low values close to 0 generally are not statistically significant. 
Checking for significance of relationships is part of evaluating and 
interpreting the results discussed in Chapters 4 to 6.

The relationships in the measurement model require initial values 
to start the PLS-SEM algorithm. For the first iteration, any nontrivial 
linear combination of indicators can serve as values for the latent 
variable scores. In practice, equal weights are a good choice for the 
initialization of the PLS-SEM algorithm. Therefore, initialization val-
ues of +1 are specified for all relationships in the measurement model 
during the first iteration. In subsequent iterations of the algorithm, 
these initial values are replaced by path coefficients for the relation-
ships in the measurement model. If all the indicators have the same 
direction (e.g., are coded so that a low value is less favorable while a 
high value is more favorable) and all the relationships in the PLS path 
model have hypothesized positive relationships, the result should be 
positive coefficients.

A different initialization setup used in the LVPLS (Lohmöller, 
1987) and PLS-Graph (Chin, 2003) software and also offered as an 
option in SmartPLS 3 assigns the value of +1 to all measurement model 
relationships except the last one, which obtains the value of −1. 
Thereby, the PLS-SEM algorithm converges faster, which was primar-
ily an issue when computer capacities were limited. However, this 
initialization scheme can lead to counterintuitive signs of parameter 
estimates in the measurement models and structural model. Therefore, 
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using initialization values of +1 for all relationships in the measurement 
model during the first iteration is generally recommended. Alterna-
tively, programs such as SmartPLS 3 also allow the user to determine 
specific positive and negative starting values for every single indicator.

The final parameter setting to select is the stopping criterion of the 
algorithm. The PLS-SEM algorithm is designed to run until the results 
stabilize. Stabilization is reached when the sum of changes in the outer 
weights between two iterations is sufficiently low, which means it 
drops below a predefined limit. A threshold value of 1 · 10–7 (i.e., stop 
criterion) is recommended to ensure that the PLS-SEM algorithm con-
verges at reasonably low levels of iterative changes in the latent vari-
able scores. One must ensure, however, that the algorithm stops at the 
predefined stop criterion. Thus, a sufficiently high maximum number 
of iterations must be selected. Since the algorithm is very efficient (i.e., 
it converges after a relatively low number of iterations even with com-
plex models), the selection of a maximum number of 300 iterations 
should ensure that convergence is obtained at the stop criterion of  
1 · 10–7 (i.e., 0.0000001). Prior research has shown that the PLS-SEM 
algorithm almost always converges (Henseler, 2010). Only under very 
extreme and artificial conditions, which very seldom occur in practice, 
is it possible that the algorithm does not converge, which has, however, 
practically no implications for  the results. Exhibit 3.3 summarizes 
guidelines for initializing the PLS-SEM algorithm.

Results

When the PLS-SEM algorithm converges, the final outer weights 
are used to compute the final latent variable scores. Then, these scores 
serve as input to run OLS regressions to determine final estimates for 
the path relationships in the structural model. PLS-SEM always pro-
vides the outer loadings and outer weights, regardless of the measure-
ment model setup. With reflectively measured constructs, the outer 

Exhibit 3.3
Rules of Thumb for Initializing the PLS-SEM 
Algorithm

•	 Select the path weighting scheme as the weighting method.

•	 Use +1 as the initial value for all outer weights.

•	 Choose a stop criterion of 1 · 10–7 (i.e., 0.0000001).

•	 Select a value of at least 300 for the maximum number of iterations.
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loadings are single regression results with a particular indicator in the 
measurement model as a dependent variable (e.g., x5 in Exhibit 3.2) 
and the construct as an independent variable (e.g., Y3 in Exhibit 3.2). 
In contrast, with formatively measured constructs, the outer weights 
are resulting coefficients of a multiple regression with the construct as 
a dependent variable (e.g., Y1 in Exhibit 3.2) and the indicators as 
independent variables (e.g., x1 and x2 in Exhibit 3.2). The outer load-
ings or outer weights are computed for all measurement model con-
structs in the PLS path model. However, outer loadings are primarily 
associated with the results for the relationships in reflective measure-
ment models, and outer weights are associated with the results for the 
relationships in formative measurement models.

The estimations for the paths between the latent variables in the 
structural model are reported as standardized coefficients. In the par-
tial regression models of the structural model, an endogenous latent 
variable (e.g., Y3 in Exhibit 3.2) serves as the dependent variable while 
its direct predecessors serve as independent variables (e.g., Y1 and Y2 
in Exhibit 3.2). In addition to the coefficients from the estimation of 
the partial regression models in the structural model (one for each 
endogenous latent variable), the output includes the R² values of each 
endogenous latent variable in the structural model. The R² values are 
usually between 0 and +1 and represent the amount of explained vari-
ance in the construct. For example, an R² value of 0.70 for the con-
struct Y3 in Exhibit 3.2 means that 70% of this construct’s variance is 
explained by the exogenous latent variables Y1 and Y2. The goal of the 
PLS-SEM algorithm is to maximize the R² values of the endogenous 
latent variables and thereby their prediction. Additional criteria must 
be evaluated to fully understand the results of the PLS-SEM algorithm. 
These additional criteria are explained in detail in Chapters 4 to 6.

CASE STUDY ILLUSTRATION—PLS PATH  
MODEL ESTIMATION (STAGE 4)

To illustrate and explain PLS-SEM, we will use a single data set 
throughout the book and the SmartPLS 3 software (Ringle et al., 
2015). The data set is from research that attempts to predict corporate 
reputation and, ultimately, customer loyalty, as introduced in Chap-
ter 2. The data set (i.e., the Corporate Reputation data.csv file) and 
the ready-to-use SmartPLS project (i.e., the Corporate Reputation.zip 
file) for this case study are available at http://www.pls-sem.com. 
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Model Estimation

To estimate the corporate reputation model in SmartPLS, you 
need to create a new project, import the indicator data (i.e., Corporate 
reputation data.csv), and draw the model as explained in the case 
study of Chapter 2. Alternatively, you can import the SmartPLS proj
ect from a backup file (i.e., Corporate Reputation.zip). The proce-
dures to import projects into the SmartPLS software and to open a 
model are explained in Chapter 2. Once this is done (i.e., you see the 
PLS path model in the software), you need to navigate to Calculate →  
PLS Algorithm, which you can find at the top of the SmartPLS screen. 
The menu that shows up provides several algorithms to select from. 
For estimating the PLS path model, the PLS Algorithm is the one to 
choose. Alternatively, you can left-click on the wheel symbol in the 
tool bar labeled Calculate. After selecting the PLS Algorithm function, 
the dialog box in Exhibit 3.4 appears. 

The PLS-SEM algorithm needs three basic parameter settings to 
run it. The Path Weighting Scheme is selected for the inner weights 
estimation. The PLS-SEM algorithm stops when the maximum num-
ber of 300 iterations or the stop criterion of 1.0E-7 (i.e., 0.0000001) 
has been reached. Finally, one may change the Initial Weights in the 
Advanced Settings section of the dialog box. Per default, SmartPLS 
uses a value of 1.0 for all measurement model relationships to initial-
ize the PLS-SEM algorithm. Alternatively, one can check the box Use 
Lohmöller Settings (i.e., all initial weights are set to +1 except the last 
one, which is set to –1), configure a specific weight for all indicators 
in the model (option Individual Initial Weights), or use sum scores for 
all constructs by selecting equal initial weights and 0 instead of the 
default value of 300 for Maximum Iterations. In this example, we use 
the default settings as shown in Exhibit 3.4.

Next, click on the Missing Values tab at the top of the dialog box 
(Exhibit 3.5). Please note that this tab appears only when you have 
specified the coding of missing values (e.g., –99) in the Data View of 
the data set that you selected for the model estimation (Chapter 2). 
The Missing Values tab shows the number of missing values in the 
selected data set and alternative missing value treatment options. 
None of the indicator variables in the simple model has more than 
5% missing values (specifically, the maximum number of missing 
values [four missing values; 1.16%] is in cusl_2; see Chapter 2). 
Thus, use the mean value replacement option by checking the  
corresponding box.
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Finally, in the Weighting tab, you can specify a weighting variable 
(labeled weighting vector in SmartPLS 3), which assigns each observa-
tion a different importance in the PLS-SEM estimation based on some 
criterion. Weighting variables may serve two purposes. First, a weight-
ing variable may adjust a sample’s composition so that it reflects the 
population’s composition. For example, if a certain sample comprises 
60% males and 40% females, whereas in the population, gender is 
evenly distributed (i.e., 50% males and 50% females), the weighting 
variable would assign a higher importance to female sample respon
dents. Second, a weighting variable may adjust for the impact of cer-
tain sampling methods on the composition of the sample. For 
example, in simple random sampling, every member of a population 
has an equal probability of being selected in the sample (Sarstedt & 
Mooi, 2014). Therefore, every observation in the sample would carry 
the same weight in the PLS-SEM analysis. However, when using other 
sampling methods such as quota sampling, members of the popula-
tion don’t have an equal probability of being selected in the sample. 
Using a weight variable, which adjusts for the differing probabilities, 
permits making generalizations to the population from which the 
sample was drawn. In the corporate reputation example, we don’t 
specify a weighting variable, so proceed by clicking on Start Calcula-
tion at the bottom of the dialog box.

Exhibit 3.4    PLS-SEM Algorithm Settings
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Occasionally, the algorithm does not start and a message appears 
indicating a Singular Data Matrix. There are two potential reasons 
for this issue. First, one indicator is a constant and thus has zero vari-
ance. Second, an indicator is entered twice or is a linear combination 
of another indicator (e.g., one indicator is a multiple of another such 
as sales in units and sales in thousands of units). Under these circum-
stances, PLS-SEM cannot estimate the model, and the researcher has 
to modify the model by excluding the problematic indicator(s).

Estimation Results

After the estimation of the model, SmartPLS opens the results 
report per default (note that you can turn this option off by choosing 
an alternative option for After Calculation at the bottom of the PLS 
Algorithm dialog box). At the bottom of the results report, you can 
select several results tables divided into four categories (Final Results, 
Quality Criteria, Interim Results, and Base Data). For example, under 
Final Results, you can find the Outer Loadings and Outer Weights 
tables. It is important to note that the results for outer loadings and 
outer weights are provided by the software for all measurement models, 
regardless of whether they are reflective or formative. If you have 

Exhibit 3.5    Missing Values Dialog Box
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reflective measurement models, you interpret the outer loadings results. 
In contrast, if you have formative measurement models, then you pri-
marily interpret the outer weights results (the outer loadings also pro-
vide a means to evaluate formative measurement models; see Chapter 
5). Note the options Hide Zero Values (which is switched on as default 
in SmartPLS 3), Increase Decimals, and Decrease Decimals in the menu 
bar on top. Navigate to Edit Preferences in the SmartPLS menu if you 
like to permanently change the number of decimals displayed in the 
results report (e.g., to 2 decimals). The default report provides various 
other results menus of which the Stop Criterion Changes under Interim 
Results is of initial interest. Here we can see the number of iterations 
the PLS-SEM algorithm ran. We will discuss these and further menus of 
the results report in later chapters.

Exhibit 3.6 shows the results report for the path coefficients in 
matrix format. The table reads from the row to the column. For 
example, the value 0.504 in the CUSA row and the CUSL column is 
the standardized path coefficient of the relationship from CUSA to 
CUSL. Clicking on the Path Coefficients tab right above the table 
opens a bar chart (Exhibit 3.7), which visualizes the path coefficients 
for each model relationship. Each bar’s height represents the strength 
of the relationship, which is displayed at the bottom of each bar.

To get an initial overview of the results, you can switch from the 
results report view to the modeling window view by left-clicking the 
tab labeled Simple Model. Initially, SmartPLS 3 provides three key 
results in the modeling window. These are (1) the outer loadings and/
or outer weights for the measurement models, (2) the path coefficients 
for the structural model relationships, and (3) the R² values of the 
endogenous constructs CUSA and CUSL (Exhibit 3.8).

Exhibit 3.6    Path Coefficients Report (Matrix Format)
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The structural model results enable us to determine, for example, 
that CUSA has the strongest effect on CUSL (0.504), followed by 
LIKE (0.342) and COMP (0.009). Moreover, the three constructs 
explain 56.2% of the variance of the endogenous construct CUSL (R² 
= 0.562), as indicated by the value in the circle. COMP and LIKE also 
jointly explain 29.5% of the variance of CUSA. In addition to examin-
ing the sizes of the path coefficients, we must also determine if they are 
statistically significant. Based on their sizes, it would appear that the 
relationships CUSA → CUSL and LIKE → CUSL are significant. But 
it seems very unlikely that the hypothesized path relationship COMP 
→ CUSL (0.009) is significant. As a rule of thumb, for sample sizes of 
up to about 1,000 observations, path coefficients with standardized 
values above 0.20 are usually significant, and those with values below 
0.10 are usually not significant. Nevertheless, making definite state-
ments about a path coefficient’s significance requires determining the 
coefficient estimates’ standard error, which is part of more detailed 
structural model results evaluations presented in Chapter 6.

SmartPLS 3 offers you further options to display estimation results 
in the modeling window using the Calculation Results box at the bot-
tom left of the screen (Exhibit 3.9). Here, you can switch between dif-
ferent types of parameter estimates for the constructs, the inner (i.e., 
structural) model and the outer (i.e., measurement) models. For exam-
ple, by clicking on the menu next to Constructs, you can switch between 
the statistics Average Variance Extracted (AVE), Composite Reliability, 
Cronbach’s Alpha, R Square, and R Square Adjusted,which we will 
discuss in the following chapters. Depending on the selected setting, 
SmartPLS 3 will show the corresponding statistic in the center of the 

Exhibit 3.7    Path Coefficients Report (Bar Chart)
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constructs in the modeling window. Note that you can also left-click on 
the menu to select it and then use the upwards and downwards arrow 
keys on your keyboard to quickly switch between the alternative results 
options displayed for Constructs. Similarly, you can switch between 
different types of parameter estimates in the inner model or the outer 
models. Finally, by clicking on the menu next to Highlight Paths, you 
can highlight the estimated relationships in the inner and outer models. 
Based on the size of their estimated coefficients, the paths appear as 
thicker or thinner lines in the SmartPLS Modeling window.

On the basis of the path coefficient estimates and their signifi-
cance, you can determine whether the conceptual model/theoretical 
hypotheses are substantiated empirically. Moreover, by examining the 
relative sizes of the significant path relationships, it is possible to 
make statements about the relative importance of the exogenous 
latent variables in predicting an endogenous latent variable. In our 
simple example, CUSA and LIKE are both moderately strong predic-
tors of CUSL, whereas COMP does not predict CUSL at all.

SUMMARY

•	 Learn how the PLS-SEM algorithm functions. The PLS-SEM 
algorithm uses the empirical data for the indicators and iteratively 

Exhibit 3.9    Calculation Results Box
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determines the construct scores, the path coefficients, indicator load-
ings and weights, and further statistics such as R2 values. Specifi-
cally, after determining the scores for every construct, the algorithm 
estimates all remaining unknown relationships in the PLS path 
model. The algorithm first obtains the measurement model results, 
which are the relationships between the constructs and their indica-
tor variables. Then, the algorithm calculates the path coefficients, 
which are the relationships between the constructs in the structural 
model, along with the R² values of endogenous constructs. All 
results are standardized, meaning that, for example, path coeffi-
cients can be compared with each other.

•	 Comprehend the options and parameter settings to run the 
algorithm. To apply the PLS-SEM algorithm, researchers need to 
specify several parameter settings. The decisions include selecting 
the structural model weighting scheme, initial values to start the 
PLS-SEM algorithm, the stop criterion, and the maximum number 
of iterations. The path weighting scheme maximizes the R² values of 
the endogenous constructs, so that option should be selected. Finally, 
the initial values (e.g., +1) for the relationships in the measurement 
model, the stop criterion (a small number such as 1 · 10–7), and a 
sufficiently large maximum number of iterations (e.g., 300) should 
be selected. The PLS-SEM algorithm runs until convergence is 
achieved or the maximum number of iterations has been reached. 
The resulting construct scores are then used to estimate all partial 
regression models in the structural model and the measurement 
models to obtain the final model estimates.

•	 Understand the statistical properties of the PLS-SEM method. 
PLS-SEM is an OLS regression-based method, which implies that 
those statistical properties known from OLS also apply to PLS-SEM. 
PLS-SEM focuses on the prediction of a specific set of hypothesized 
relationships that maximizes the explained variance of the dependent 
variable. The initial key results of the PLS path model estimation are 
the construct scores. These scores are treated as perfect substitutes for 
the indicator variables in the measurement models and therefore use 
all the variance that can help explain the endogenous constructs. 
Moreover, they facilitate estimating all relationships in the PLS path 
model. The estimation of these relationships is, however, subject to 
what has been mistakenly referred to as the PLS-SEM bias, which 
means that measurement model results are usually overestimated 
while structural model results are usually underestimated compared 
with CB-SEM results. However, under conditions commonly 
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encountered in research situations, this inconsistency is quite small. 
Moreover, the parameter estimation efficiency of PLS-SEM delivers 
high levels of statistical power compared with CB-SEM. Conse-
quently, PLS-SEM better identifies population relationships and is 
better suited for exploratory research purposes—a feature that is 
further supported by the method’s less restrictive requirements in 
terms of model setups, model complexity, and data characteristics.

•	 Explain how to interpret the results. The PLS-SEM method 
estimates the standardized outer loadings, outer weights, and struc-
tural model path coefficients. The indicator loadings and indicator 
weights are computed for any measurement model in the PLS path 
model. When reflective measurement models are used, the researcher 
interprets the outer loadings, whereas outer weights are the primary 
criterion when formative measurement models are interpreted (note, 
however, that the loadings also play a role in formative measure-
ment model assessment). For the structural model, the standardized 
coefficients of the relationships between the constructs are provided 
as well as the R² values for the endogenous constructs. Other more 
advanced PLS-SEM evaluation criteria used in assessing the results 
are introduced in Chapters 4 to 6.

•	 Apply the PLS-SEM algorithm using the SmartPLS 3 software. 
The corporate reputation example and the empirical data available 
with this book enable you to apply the PLS-SEM algorithm using the 
SmartPLS 3 software. Selected menu options guide the user in choos-
ing the algorithmic options and parameter settings required for run-
ning the PLS-SEM algorithm. The SmartPLS 3 results reports enable 
the user to check if the algorithm converged (i.e., the stop criterion 
was reached and not the maximum number of iterations) and to 
evaluate the initial results for the outer weights, outer loadings, struc-
tural model path coefficients, and R² values. Additional diagnostic 
measures for more advanced analyses are discussed in later chapters.

REVIEW QUESTIONS

	 1.	 Describe how the PLS-SEM algorithm functions.

	 2.	 Explain the parameter settings and algorithmic options that 
you would use (e.g., stopping rules, weighting scheme).

	 3.	 What are the key results provided after convergence of the 
PLS-SEM algorithm?
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CRITICAL THINKING QUESTIONS

	 1.	 Does the PLS-SEM inconsistency represent a crucial problem 
in PLS-SEM applications? Explain why or why not.

	 2.	 What does consistency at large mean?

	 3.	 Explain what factor determinacy means and why this feature 
makes the PLS-SEM method particularly useful for explora-
tory research?

KEY TERMS

10 times rule

Algorithmic options

Consistency at large

Construct scores

Constructs

Convergence

Data matrix

Endogenous constructs

Exogenous constructs

Factor indeterminacy

Formative measures

Initial values

Latent variables (endogenous, 
exogenous)

Maximum number of iterations

Model complexity

Outer loadings

Outer weights

Parameter settings

Path coefficients

PLS-SEM algorithm

PLS-SEM bias

Prediction

R² values

Raw data

Reflective measure

Singular data matrix

Standardized data

Stop criterion

Weighting scheme
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LEARNING OUTCOMES

1. Gain an overview of Stage 5 of the process for using PLS-SEM, 
which deals with the evaluation of measurement models.

2. Describe Stage 5a: evaluating reflectively measured constructs.

3. Use the SmartPLS 3 software to assess reflectively measured con-
structs in the corporate reputation example.

C H A P T E R  4

Assessing PLS-SEM 
Results Part I

Evaluation of Reflective 
Measurement Models

CHAPTER PREVIEW

Having learned how to create and estimate a PLS path model, we now 
focus on understanding how to assess the quality of the results. Ini-
tially, we summarize the primary criteria that are used for PLS path 
model evaluation and their systematic application. Then, we focus on 
the evaluation of reflective measurement models. The PLS path model 
of corporate reputation is a practical application enabling you to 
review the relevant measurement model evaluation criteria and the 
appropriate reporting of results. This provides a foundation for the 
overview of formative measurement models in Chapter 5 and how to 
evaluate structural model results, which is covered in Chapter 6.
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OVERVIEW OF STAGE 5: EVALUATION OF 
MEASUREMENT MODELS

Model estimation delivers empirical measures of the relationships 
between the indicators and the constructs (measurement models), as 
well as between the constructs (structural model). The empirical 
measures enable us to compare the theoretically established mea
surement and structural models with reality, as represented by the 
sample data. In other words, we can determine how well the theory 
fits the data.

PLS-SEM results are reviewed and evaluated using a systematic 
process. The goal of PLS-SEM is maximizing the explained variance 
(i.e., the R² value) of the endogenous latent variables in the PLS path 
model. For this reason, the evaluation of the quality of the PLS-SEM 
measurement and structural models focuses on metrics indicating the 
model’s predictive capabilities. As with CB-SEM, the most important 
measurement model metrics for PLS-SEM are reliability, convergent 
validity, and discriminant validity. For the structural model, the most 
important evaluation metrics are R2 (explained variance), f  2 (effect 
size), Q2 (predictive relevance), and the size and statistical significance 
of the structural path coefficients. CB-SEM also relies on several of 
these metrics but in addition provides goodness-of-fit measures based 
on the discrepancy between the empirical and the model-implied 
(theoretical) covariance matrix. Since PLS-SEM relies on variances 
instead of covariances to determine an optimum solution, covariance-
based goodness-of-fit measures are not fully transferrable to the PLS-
SEM context. Fit measures in PLS-SEM are generally variance based 
and focus on the discrepancy between the observed (in the case of 
manifest variables) or approximated (in the case of latent variables) 
values of the dependent variables and the values predicted by the 
model in question. Nevertheless, research has proposed several PLS-
SEM–based model fit measures, which are, however, in their early 
stages of development (see Chapter 6 for more details).

The systematic evaluation of these criteria follows a two-step 
process, as shown in Exhibit 4.1. The process involves separate assess-
ments of the measurement models (Stage 5 of the procedure for using 
PLS-SEM) and the structural model (Stage 6).

PLS-SEM model assessment initially focuses on the measurement 
models. Examination of PLS-SEM estimates enables the researcher to 
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Stage 5: Evaluation of the Measurement Models

Stage 5a: Reflective Measurement 
Models

Stage 5b: Formative Measurement 
Models

•	 Internal consistency (Cronbach’s 
alpha, composite reliability)

•	 Convergent validity (indicator 
reliability, average variance 
extracted)

•	 Discriminant validity

•	 Convergent validity

•	 Collinearity between indicators

•	 Significance and relevance of 
outer weights

Stage 6: Evaluation of the Structural Model

•	 Coefficients of determination (R²)

•	 Predictive relevance (Q²)

•	 Size and significance of path coefficients

•	 f ² effect sizes

•	 q² effect sizes

Exhibit 4.1    Systematic Evaluation of PLS-SEM Results

evaluate the reliability and validity of the construct measures. Specifi-
cally, multivariate measurement involves using several variables (i.e., 
multi-items) to measure a construct. An example is the customer 
loyalty (CUSL) construct described in the PLS-SEM corporate reputa-
tion model, which we discussed earlier.

The logic of using multiple items as opposed to single items for 
construct measurement is that the measure will be more accurate. The 
anticipated improved accuracy is based on the assumption that using 
several indicators to measure a single concept is more likely to repre-
sent all the different aspects of the concept. However, even when using 
multiple items, the measurement is very likely to contain some degree 
of measurement error. There are many sources of measurement error 
in social sciences research, including poorly worded questions in a 
survey, misunderstanding of the scaling approach, and incorrect 
application of a statistical method, all of which lead to random and/
or systematic errors. The objective is to reduce the measurement error 
as much as possible. Multivariate measurement enables researchers to 
more precisely identify measurement error and therefore account for 
it in research findings.
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Measurement error is the difference between the true value of a 
variable and the value obtained by a measurement. Specifically, the 
measured value xm equals the true value xt plus a measurement error. 
The measurement error (e = εr + εs) can have a random source (ran-
dom error εr), which threatens reliability, or a systematic source (sys-
tematic error εs), which threatens validity. This relationship can be 
expressed as follows:

xm = xt + εr + εs.

In Exhibit 4.2, we explain the difference between reliability and 
validity by comparing a set of three targets. In this analogy, repeated 
measurements (e.g., of a customer’s satisfaction with a specific ser-
vice) are compared to arrows shot at a target. To measure each true 
score, we have five measurements (indicated by the black dots). The 
average value of the dots is indicated by a cross. Validity is indicated 
when the cross is close to the bull’s-eye at the target center. The closer 
the average value (black cross in Exhibit 4.2) to the true score, the 
higher the validity. If several arrows are fired, reliability is the dis-
tances between the dots showing where the arrows hit the target. If 
all the dots are close together, the measure is reliable, even though 
the dots are not necessarily near the bull’s-eye. This corresponds to 
the upper left box, where we have a scenario in which the measure is 
reliable but not valid. In the upper right box, both reliability and 
validity are shown. In the lower left box, though, we have a situation 
in which the measure is neither reliable nor valid. That is, the repeated 
measurements (dots) are scattered quite widely and the average value 
(cross) is not close to the bull’s-eye. Even if the average value would 
match the true score (i.e., if the cross were in the bull’s-eye), we 
would still not consider the measure valid. The reason is that an 
unreliable measure can never be valid, because there is no way we 
can distinguish the systematic error from the random error (Sarstedt 
& Mooi, 2014). If we repeat the measurement, say, five more times, 
the random error would likely shift the cross to a different position. 
Thus, reliability is a necessary condition for validity. This is also why 
the not reliable/valid scenario in the lower right box is not possible.

When evaluating the measurement models, we must distinguish 
between reflectively and formatively measured constructs (Chapter 2). 
The two approaches are based on different concepts and therefore 
require consideration of different evaluative measures. Reflective 
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measurement models are assessed on their internal consistency relia-
bility and validity. The specific measures include the composite relia-
bility (as a means to assess the internal consistency reliability), 
convergent validity, and discriminant validity. The criteria for reflec-
tive measurement models cannot be universally applied to formative 
measurement models. With formative measures, the first step is to 
ensure content validity before collecting the data and estimating the 
PLS path model. After model estimation, different metrics are used to 
assess formative measures for convergent validity, the significance and 
relevance of indicator weights, and the presence of collinearity among 
indicators (Exhibit 4.1).

As implied by its name, a single-item construct (Chapter 2) is not 
represented by a multi-item measurement model. The relationship (i.e., 
the correlation) between the single indicator and the latent variable is 

Source: Sarstedt, M., & Mooi, E. A. (2014). A concise guide to market research (2nd ed., 
p. 35). New York: Springer. With kind permission of Springer Science + Business Media.
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always 1. Put differently, the single indicator and the latent variable 
have identical values. Thus, the criteria for the assessment of measure-
ment models are not applicable to single-item constructs. To evaluate 
the reliability and validity of single-item measures, researchers must 
rely on proxies or different forms of validity assessment. For example, 
researchers can assess a single-item variable by means of criterion 
validity. This is done by correlating the single-item measure with an 
established criterion variable and comparing the resulting correlation 
with the correlation that results if the predictor construct is measured 
by a multi-item scale (e.g., Diamantopoulos et al., 2012). In terms of 
reliability, researchers often assume that one cannot estimate the reli-
ability of single-item measures based on such techniques as common 
factor analysis and the correction for attenuation formula (e.g., 
Sarstedt & Wilczynski, 2009). These procedures require that both the 
multi-item measure and the single-item measure are included in the 
same survey. Thus, these analyses are of primary interest when 
researchers want to assess in a pretest or pilot study whether in the 
main study, a multi-item scale can be replaced with a single-item mea
sure of the same construct. Still, recent research suggests that the reli-
ability and validity of single items are highly context specific, which 
renders their assessment in pretests or pilot studies problematic 
(Sarstedt et al., in press).

The structural model estimates are not examined until the relia-
bility and validity of the constructs have been established. If assess-
ment of reflective (i.e., Stage 5a) and formative (i.e., Stage 5b) 
measurement models provides evidence of the measures’ quality, the 
structural model estimates are evaluated in Stage 6 (Chapter 6). PLS-
SEM assessment of the structural model involves the model’s ability 
to predict the variance in the dependent variables. Hence, after relia-
bility and validity are established, the primary evaluation criteria for 
PLS-SEM results are the coefficients of determination (R² values) as 
well as the size and significance of the path coefficients. The f ² effect 
sizes, predictive relevance (Q²), and the q² effect sizes give additional 
insights about quality of the PLS path model estimations (Exhibit 4.1).

Assessment of PLS-SEM outcomes can be extended to more 
advanced analyses such as examining mediating or moderating 
effects, which we discuss in Chapter 7. Similarly, advanced analyses 
may involve estimating nonlinear effects (e.g., Rigdon, Ringle, & 
Sarstedt, 2010), conducting an importance-performance matrix anal-
ysis (PLS-IPMA; e.g., Rigdon, Ringle, Sarstedt, & Gudergan, 2011; 
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Schloderer et al., 2014), assessing the mode of measurement model 
by using the confirmatory tetrad analysis (CTA-PLS; Gudergan et al., 
2008), analyzing hierarchical component models (e.g., Becker, 
Klein, & Wetzels, 2012; Ringle et al., 2012), considering heterogene-
ity (e.g., Becker, Rai, Ringle, & Völckner, 2013; Sarstedt & Ringle, 
2010), executing multigroup analyses (Sarstedt, Henseler, & Ringle, 
2011), and assessing measurement model invariance (Henseler, 
Ringle, & Sarstedt, in press). In Chapter 8, we discuss several of these 
aspects in greater detail. The objective of these additional analyses is 
to extend and further differentiate the findings from the basic PLS 
path model estimation. Some of these advanced analyses are neces-
sary to obtain a complete understanding of PLS-SEM results (e.g., 
checking for the presence of unobserved heterogeneity and signifi-
cantly different subgroups), while others are optional. 

The primary rules of thumb on how to evaluate PLS-SEM 
results are shown in Exhibit 4.3. In the following sections, we pro-
vide an overview of the process for assessing reflective measurement 
models (Stage 5a). Chapter 5 addresses the evaluation of formative 
measurement models (Stage 5b), while Chapter 6 deals with struc-
tural model evaluation.

•	 Model assessment in PLS-SEM primarily builds on nonparametric 
evaluation criteria based on bootstrapping and blindfolding. 
Goodness-of-fit measures used in CB-SEM are not universally 
transferrable to PLS-SEM, but recent research has brought forward 
various model fit criteria.

•	 Begin the evaluation process by assessing the quality of the 
reflective and formative measurement models (specific rules 
of thumb for reflective measurement models follow later in this 
chapter and in Chapter 5 for formative measurement models).

•	 If the measurement characteristics of constructs are acceptable, 
continue with the assessment of the structural model results. 
Path estimates should be statistically significant and meaningful. 
Moreover, endogenous constructs in the structural model should 
have high levels of explained variance as expressed in high R2 
values (Chapter 6 presents specific guidelines).

•	 Advanced analyses that extend and differentiate initial PLS-SEM 
findings may be necessary to obtain a correct picture of the results 
(Chapters 7 and 8). 

Exhibit 4.3    Rules of Thumb for Evaluating PLS-SEM Results
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STAGE 5A: ASSESSING RESULTS OF REFLECTIVE 
MEASUREMENT MODELS

Assessment of reflective measurement models includes composite reli-
ability to evaluate internal consistency, individual indicator reliability, 
and average variance extracted (AVE) to evaluate convergent validity. 
Assessment of reflective measurement models also includes discrimi-
nant validity. The Fornell-Larcker criterion, cross-loadings, and espe-
cially the heterotrait-monotrait (HTMT) ratio of correlations can be 
used to examine discriminant validity. In the following sections, we 
address each criterion for the evaluation of reflective measurement 
models.

Internal Consistency Reliability

The first criterion to be evaluated is typically internal consistency 
reliability. The traditional criterion for internal consistency is 
Cronbach’s alpha, which provides an estimate of the reliability based 
on the intercorrelations of the observed indicator variables. This 
statistic is defined as follows:
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In this formula, s2
i  represents the variance of the indicator variable 

i of a specific construct, measured with M indicators (i = 1, . . . , M), 
and  s2

t   is the variance of the sum of all M indicators of that construct. 
Cronbach’s alpha assumes that all indicators are equally reliable (i.e., 
all the indicators have equal outer loadings on the construct). But 
PLS-SEM prioritizes the indicators according to their individual reli-
ability. Moreover, Cronbach’s alpha is sensitive to the number of items 
in the scale and generally tends to underestimate the internal consis-
tency reliability. As such, it may be used as a more conservative mea-
sure of internal consistency reliability. Due to Cronbach’s alpha’s 
limitations, it is technically more appropriate to apply a different 
measure of internal consistency reliability, which is referred to as 
composite reliability. This measure of reliability takes into account the 
different outer loadings of the indicator variables and is calculated 
using the following formula:
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where li symbolizes the standardized outer loading of the indicator 
variable i of a specific construct measured with M indicators, ei is the 
measurement error of indicator variable i, and var(ei) denotes the vari-
ance of the measurement error, which is defined as 1 – l 2i.

The composite reliability varies between 0 and 1, with higher 
values indicating higher levels of reliability. It is generally interpreted 
in the same way as Cronbach’s alpha. Specifically, composite reliabil-
ity values of 0.60 to 0.70 are acceptable in exploratory research, while 
in more advanced stages of research, values between 0.70 and 0.90 
can be regarded as satisfactory. Values above 0.90 (and definitely 
above 0.95) are not desirable because they indicate that all the indica-
tor variables are measuring the same phenomenon and are therefore 
not likely to be a valid measure of the construct. Specifically, such 
composite reliability values occur if one uses semantically redundant 
items by slightly rephrasing the very same question. As the use of 
redundant items has adverse consequences for the measures’ content 
validity (e.g., Rossiter, 2002) and may boost error term correlations 
(Drolet & Morrison, 2001; Hayduk & Littvay, 2012), researchers are 
advised to minimize the number of redundant indicators. Finally, 
composite reliability values below 0.60 indicate a lack of internal 
consistency reliability. 

Cronbach’s alpha is a conservative measure of reliability (i.e., it 
results in relatively low reliability values). In contrast, composite reli-
ability tends to overestimate the internal consistency reliability, 
thereby resulting in comparatively higher reliability estimates. There-
fore, it is reasonable to consider and report both criteria. When ana-
lyzing and assessing the measures’ internal consistency reliability, the 
true reliability usually lies between Cronbach’s alpha (representing 
the lower bound) and the composite reliability (representing the 
upper bound).

Convergent Validity

Convergent validity is the extent to which a measure correlates 
positively with alternative measures of the same construct. Using the 
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domain sampling model, indicators of a reflective construct are 
treated as different (alternative) approaches to measure the same 
construct. Therefore, the items that are indicators (measures) of a 
specific reflective construct should converge or share a high propor-
tion of variance. To evaluate convergent validity of reflective con-
structs, researchers consider the outer loadings of the indicators and 
the average variance extracted (AVE).

High outer loadings on a construct indicate the associated 
indicators have much in common, which is captured by the con-
struct. The size of the outer loading is also commonly called indi-
cator reliability. At a minimum, the outer loadings of all indicators 
should be statistically significant. Because a significant outer load-
ing could still be fairly weak, a common rule of thumb is that the 
standardized outer loadings should be 0.708 or higher. The ration-
ale behind this rule can be understood in the context of the square 
of a standardized indicator’s outer loading, referred to as the com-
munality of an item. The square of a standardized indicator’s outer 
loading represents how much of the variation in an item is 
explained by the construct and is described as the variance 
extracted from the item. An established rule of thumb is that a 
latent variable should explain a substantial part of each indicator’s 
variance, usually at least 50%. This also implies that the variance 
shared between the construct and its indicator is larger than the 
measurement error variance. This means that an indicator’s outer 
loading should be above 0.708 since that number squared (0.7082) 
equals 0.50. Note that in most instances, 0.70 is considered close 
enough to 0.708 to be acceptable.

Researchers frequently obtain weaker outer loadings (<0.70) in 
social science studies, especially when newly developed scales are used 
(Hulland, 1999). Rather than automatically eliminating indicators 
when their outer loading is below 0.70, researchers should carefully 
examine the effects of item removal on the composite reliability, as 
well as on the content validity of the construct. Generally, indicators 
with outer loadings between 0.40 and 0.70 should be considered for 
removal from the scale only when deleting the indicator leads to an 
increase in the composite reliability (or the average variance extracted; 
see next section) above the suggested threshold value. Another consid-
eration in the decision of whether to delete an indicator is the extent 
to which its removal affects content validity. Indicators with weaker 
outer loadings are sometimes retained on the basis of their 
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contribution to content validity. Indicators with very low outer load-
ings (below 0.40) should, however, always be eliminated from the 
construct (Bagozzi, Yi, & Philipps, 1991; Hair et al., 2011). Exhibit 
4.4 illustrates the recommendations regarding indicator deletion based 
on outer loadings.

A common measure to establish convergent validity on the con-
struct level is the average variance extracted (AVE). This criterion is 
defined as the grand mean value of the squared loadings of the indica-
tors associated with the construct (i.e., the sum of the squared load-
ings divided by the number of indicators). Therefore, the AVE is 

Exhibit 4.4    Outer Loading Relevance Testing
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equivalent to the communality of a construct. The AVE is calculated 
using the following formula:
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Using the same logic as that used with the individual indicators, 
an AVE value of 0.50 or higher indicates that, on average, the con-
struct explains more than half of the variance of its indicators. Con-
versely, an AVE of less than 0.50 indicates that, on average, more 
variance remains in the error of the items than in the variance 
explained by the construct.

The AVE of each reflectively measured construct should be evalu-
ated. In the example introduced in Chapter 2, an AVE estimate is 
needed only for constructs COMP, CUSL, and LIKE. For the single-
item construct CUSA, the AVE is not an appropriate measure since 
the indicator’s outer loading is fixed at 1.00.

Discriminant Validity

Discriminant validity is the extent to which a construct is truly 
distinct from other constructs by empirical standards. Thus, establish-
ing discriminant validity implies that a construct is unique and cap-
tures phenomena not represented by other constructs in the model. 
Traditionally, researchers have relied on two measures of discriminant 
validity. The cross-loadings are typically the first approach to assess 
the discriminant validity of the indicators. Specifically, an indicator’s 
outer loading on the associated construct should be greater than any 
of its cross-loadings (i.e., its correlation) on other constructs. The best 
way to assess and report cross-loadings is in a table with rows for the 
indicators and columns for the latent variable. Exhibit 4.5 illustrates 
this analysis in an example with three latent variables (Y1, Y2, and Y3), 
each measured with two indicators. As can be seen, the loadings 
always exceed the cross-loadings. For example, x11 loads high on its 
corresponding construct Y1 (0.75) but much lower on constructs Y2 
(0.49) and Y3 (0.41). In this example, the analysis of cross-loadings 
suggests that discriminant validity has been established. On the con-
trary, the presence of cross-loadings that exceed the indicators’ outer 
loadings would represent a discriminant validity problem. 

The Fornell-Larcker criterion is the second approach to assessing 
discriminant validity. It compares the square root of the AVE values 
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Exhibit 4.5    Cross-Loadings Analysis

Y1 Y2 Y3

x11 0.75 0.49 0.41

x12 0.83 0.27 0.35

x21 0.55 0.82 0.60

x22 0.45 0.82 0.42

x31 0.43 0.53 0.87

x32 0.42 0.55 0.84

Note: One expects that an indicator has the highest loading value (in bold) with the 
construct to which it has been assigned to.

with the latent variable correlations. Specifically, the square root of 
each construct’s AVE should be greater than its highest correlation 
with any other construct. An alternative approach to evaluating the 
results of the Fornell-Larcker criterion is to determine whether the 
AVE is larger than the squared correlation with any other construct. 
The logic of the Fornell-Larcker method is based on the idea that a 
construct shares more variance with its associated indicators than 
with any other construct.

Exhibit 4.6 illustrates this concept. In the example, the AVE val-
ues of the constructs Y1 and Y2 are 0.55 and 0.65, respectively. The 
AVE values are obtained by squaring each outer loading, obtaining 
the sum of the three squared outer loadings, and then calculating the 
average value. For example, with respect to construct Y1, 0.60, 0.70, 
and 0.90 squared are 0.36, 0.49, and 0.81, respectively. The sum of 
these three numbers is 1.66, and the average value is therefore 0.55 
(i.e., 1.66/3). The correlation between constructs Y1 and Y2 (as indi-
cated by the double-headed arrow linking the two constructs) is 0.80. 
Squaring the correlation of 0.80 indicates that 64% (i.e., the squared 
correlation; 0.80² = 0.64) of each construct’s variation is explained by 
the other construct. Therefore, Y1 explains less variance in its indica-
tor measures x1 to x3 than it shares with Y2, which implies that the 
two constructs (Y1 and Y2), which are conceptually different, are not 
sufficiently different in terms of their empirical standards. Thus, in 
this example, discriminant validity is not established.

The analysis and presentation of the results of the Fornell-Larcker 
criterion are illustrated in Exhibit 4.7—for a PLS path model with 
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Exhibit 4.6
Visual Representation of the Fornell-Larcker 
Criterion

two reflective constructs (i.e., Y1 and Y2), one formative construct (i.e., 
Y3), and a single-item construct (i.e., Y4). The first consideration is that 
only reflective multi-item constructs are evaluated using the 
Fornell-Larcker criterion. Therefore, constructs Y3 and Y4 are excep-
tions to this type of evaluation since the AVE value is not a meaningful 
criterion for formative and single-item measures. Looking only at 
constructs Y1 and Y2, note that the square root of each construct’s 
AVE is on the diagonal. The nondiagonal elements represent the cor-
relations between the latent variables. To establish discriminant valid-
ity, the square root of each construct’s AVE must be larger than its 
correlation with other constructs. To evaluate the reflective construct 
Y2 in Exhibit 4.7, one would compare all correlations in the row of Y2 
and the column of Y2 with its square root of the AVE. In the case study 
illustration of the corporate reputation path model later in this chap-
ter, the actual estimated values for this type of analysis are provided.

Recent research that critically examined the performance of 
cross-loadings and the Fornell-Larcker criterion for discriminant 
validity assessment has found that neither approach reliably detects 

Y1 Y2 Y3 Y4

Y1
AVEY1

Y2
CORRY Y1 2

AVEY2

Y3
CORRY Y1 3

C RRY YO
2 3

Formative 
measurement model

Y4
CORRY Y1 4

CORRY Y2 4
CORRY Y3 4 Single-item construct

Exhibit 4.7    Example of Fornell-Larcker Criterion Analysis
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discriminant validity issues (Henseler et al., 2015). Specifically, cross-
loadings fail to indicate a lack of discriminant validity when two 
constructs are perfectly correlated, which renders this criterion inef-
fective for empirical research. Similarly, the Fornell-Larcker criterion 
performs very poorly, especially when indicator loadings of the con-
structs under consideration differ only slightly (e.g., all indicator load-
ings vary between 0.60 and 0.80). When indicator loadings vary more 
strongly, the Fornell-Larcker criterion’s performance in detecting 
discriminant validity issues improves but is still rather poor overall. 
(also see Voorhees, Brady, Calantone, & Ramirez, 2016).

As a remedy, Henseler et al. (2015) propose assessing the 
heterotrait-monotrait ratio (HTMT) of the correlations. In short, 
HTMT is the ratio of the between-trait correlations to the within-
trait correlations. HTMT is the mean of all correlations of indica-
tors across constructs measuring different constructs (i.e., the 
heterotrait-heteromethod correlations) relative to the (geometric) 
mean of the average correlations of indicators measuring the same 
construct (i.e., the monotrait-heteromethod correlations; for a for-
mal definition of the HTMT statistic, see Henseler et al., 2015). 
Technically, the HTMT approach is an estimate of what the true 
correlation between two constructs would be, if they were perfectly 
measured (i.e., if they were perfectly reliable). This true correlation 
is also referred to as disattenuated correlation. A disattenuated cor-
relation between two constructs close to 1 indicates a lack of discri-
minant validity. 

Exhibit 4.8 illustrates the HTMT approach. The average hetero-
trait-heteromethod correlations equal all pairwise correlations between 
variables x1, x2, and x3 and x4, x5, and x6 (gray-shaded area in the cor-
relation matrix in Exhibit 4.8). In the example, the average heterotrait-
heteromethod correlation is 0.341. The average monotrait-heteromethod 
correlations of Y1 equal the mean of all pairwise correlations between 
x1, x2, and x3 (i.e., 0.712). Similarly, the mean of all pairwise correla-
tions between x4, x5, and x6 (i.e., 0.409) defines the average monotrait-
heteromethod correlations of Y2. The HTMT statistic for the 
relationship between Y1 and Y2 therefore equals

HTMT Y Y1 2

0 341

0 712 0 409
0 632,

.

. .
. .( ) =

⋅
=

The exact threshold level of the HTMT is debatable; after all, 
“when is a correlation close to 1?” Based on prior research and their 
study results, Henseler et al. (2015) suggest a threshold value of 0.90 
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Exhibit 4.8   Visual Representation of the HTMT Approach

Y1 Y2

x4

x5

x6

x1 x2 x3 x4 x5 x6

x1 1

x2 0.770 1

x3 0.701 0.665 1

x4 0.426 0.339 0.393 1

x5 0.423 0.345 0.385 0.574 1

x6 0.274 0.235 0.250 0.318 0.335 1

x1

x2

x3

if the path model includes constructs that are conceptually very simi-
lar (e.g., affective satisfaction, cognitive satisfaction, and loyalty). In 
other words, an HTMT value above 0.90 suggests a lack of discrimi-
nant validity. When the constructs in the path model are conceptually 
more distinct, a lower and thus more conservative threshold value of 
0.85 seems warranted (Henseler et al., 2015). Furthermore, the 
HTMT can serve as the basis of a statistical discriminant validity test. 
However, as PLS-SEM does not rely on any distributional assump-
tions, standard parametric significance tests cannot be applied to test 
whether the HTMT statistic is significantly different from 1. Instead, 
researchers have to rely on a procedure called bootstrapping to derive 
a distribution of the HTMT statistic (see Chapter 5 for more details 
on the bootstrapping procedure). 

In bootstrapping, subsamples are randomly drawn (with replace-
ment) from the original set of data. Each subsample is then used to 
estimate the model. This process is repeated until a large number of 
random subsamples have been created, typically about 5,000. The 
estimated parameters from the subsamples (in this case, the HTMT 
statistic) are used to derive standard errors for the estimates. With this 
information, it is possible to derive a bootstrap confidence interval. 
The confidence interval is the range into which the true HTMT popu-
lation value will fall, assuming a certain level of confidence (e.g., 95%). 
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A confidence interval containing the value 1 indicates a lack of dis
criminant validity. Conversely, if the value 1 falls outside the interval’s 
range, this suggests that the two constructs are empirically distinct. 
Since the HTMT-based assessment using a confidence interval relies 
on inferential statistics, one should primarily rely on this criterion, 
especially in light of the limitations of cross-loadings and the Fornell-
Larcker criterion. However, the latter two measures still constitute 
standard means for discriminant validity assessment.

What should researchers do if any of the criteria signal a lack of 
discriminant validity? There are different ways to handle discriminant 
validity problems (Exhibit 4.9). The first approach retains the con-
structs that cause discriminant validity problems in the model and 
aims at increasing the average monotrait-heteromethod correlations 
and/or decreasing the average heteromethod-heterotrait correlations 
of the constructs measures. 

To decrease the HTMT by increasing a construct’s average 
monotrait-heteromethod correlations, one can eliminate items that 
have low correlations with other items measuring the same construct. 
Likewise, heterogeneous subdimensions in the construct’s set of items 
could also deflate the average monotrait-heteromethod correlations. 
In this case, the construct (e.g., quality) can be split into homogeneous 
subconstructs (e.g., product quality and service quality), perhaps using 
a higher-order construct, if the measurement theory supports this step 
(e.g., Kocyigit & Ringle, 2011). These subconstructs then replace the 
more general construct in the model. When following this approach, 
however, the discriminant validity of the newly generated constructs 
with all the other constructs in the model needs to be reevaluated. 

To decrease the average heteromethod-heterotrait correlations, 
one can (1) eliminate items that are strongly correlated with items in 
the opposing construct, or (2) reassign these indicators to the other 
construct, if theoretically plausible. It is important to note that the 
elimination of items purely on statistical grounds can have adverse 
consequences for the content validity of the constructs. Therefore, this 
step entails carefully examining the scales (based on prior research 
results or on a pretest when newly developed measures are involved) 
to determine whether all the construct domain facets have been 
captured. At least two expert coders should conduct this judgment 
independently to ensure a high degree of objectivity. 

Another approach to treating discriminant validity problems 
involves merging the constructs that cause the problems into a more 
general construct. Again, measurement theory must support this step. 
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Exhibit 4.9    Handling Discriminant Validity Problems
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Discard the model
Continue with the

analysis

In this case, the more general construct replaces the problematic con-
structs in the model. This step may entail modifications to increase a 
construct’s average monotrait-heteromethod correlations and/or to 
decrease the average heteromethod-heterotrait correlations. 

In Exhibit 4.10, we summarize the criteria used to assess the reli-
ability and validity of reflective construct measures. If the criteria are 
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•	 Internal consistency reliability: composite reliability should 
be higher than 0.70 (in exploratory research, 0.60 to 0.70 is 
considered acceptable). Consider Cronbach’s alpha as the lower 
bound and composite reliability as the upper bound of internal 
consistency reliability.

•	 Indicator reliability: the indicator’s outer loadings should be 
higher than 0.70. Indicators with outer loadings between 0.40 and 
0.70 should be considered for removal only if the deletion leads to 
an increase in composite reliability and AVE above the suggested 
threshold value.

•	 Convergent validity: the AVE should be higher than 0.50.

•	 Discriminant validity:

	 Use the HTMT criterion to assess discriminant validity in  
PLS-SEM.

	 The confidence interval of the HTMT statistic should not include 
the value 1 for all combinations of constructs.

	 According to the traditional discriminant validity assessment 
methods, an indicator’s outer loadings on a construct should 
be higher than all its cross-loadings with other constructs. 
Furthermore, the square root of the AVE of each construct 
should be higher than its highest correlation with any other 
construct (Fornell-Larcker criterion).

Exhibit 4.10
Rules of Thumb for Evaluating Reflective 
Measurement Models

not met, the researcher may decide to remove single indicators from 
a specific construct in an attempt to more closely meet the criteria. 
However, removing indicators should be carried out with care since 
the elimination of one or more indicators may improve the reliability 
or discriminant validity but at the same time may decrease the mea
surement’s content validity.

CASE STUDY ILLUSTRATION—REFLECTIVE 
MEASUREMENT MODELS

Running the PLS-SEM Algorithm

We continue working with our PLS-SEM example on corporate 
reputation. In Chapter 3, we explained how to estimate the PLS path 
model and how to obtain the results by opening the default report in 
the SmartPLS 3 software. Recall that to do so, you must first load the 
simple corporate reputation model and then run the model by click-
ing on the icon at the top right or by using the pull-down menu by 
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going to Calculate → PLS Algorithm. After running the PLS Algo-
rithm, the SmartPLS results report automatically opens; if not, go to 
the Calculation Results tab on the bottom left of the screen and click 
on Report.

Before analyzing the results, you need to quickly check if the 
algorithm converged (i.e., the stop criterion of the algorithm was 
reached and not the maximum number of iterations). To do so, go to 
Interim Results → Stop Criterion Changes in the results report. You 
will then see the table shown in Exhibit 4.11, which shows the num-
ber of iterations of the PLS-SEM algorithm. This number should be 
lower than the maximum number of iterations (e.g., 300) that you 
defined in the PLS-SEM algorithm parameter settings (Chapter 2). 
At the bottom left side of the table, you will see that the algorithm 
converged after Iteration 5.

If the PLS-SEM algorithm does not converge in fewer than 300 
iterations (the default setting in the software), the algorithm could not 
find a stable solution. This kind of situation almost never occurs. But 
if it does occur, there are two possible causes of the problem: (1) the 
selected stop criterion is at a very small level (e.g., 1.0E-10) so that 
little changes in the coefficients of the measurement models prevent 
the PLS-SEM algorithm from stopping, or (2) there are problems with 
the data and they need to be checked carefully. For example, data 
problems may occur if the sample size is too small or if an indicator 
has many identical values (i.e., the same data points, which results in 
insufficient variability).

When your PLS path model estimation converges, which it practi-
cally always does, you need to examine the following PLS-SEM calcu-
lation results tables from the results report for reflective measurement 
model assessment: Outer Loadings, Composite Reliability, Cronbach’s 
Alpha, Average Variance Extracted (AVE), and Discriminant Validity. 
We examine other information in the report in Chapters 5 and 6, when 
we extend the simple path model by including formative measures and 
examine the structural model results.

Exhibit 4.11    Stop Criterion Table in SmartPLS
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Reflective Measurement Model Evaluation

The simple corporate reputation model has three latent variables 
with reflective measurement models (i.e., COMP, CUSL, and LIKE) 
as well as a single-item construct (CUSA). For the reflective measure-
ment models, we need the estimates for the relationships between the 
reflective latent variables and their indicators (i.e., outer loadings). 
Exhibit 4.12 displays the results table for the outer loadings, which 
can be found under Final Results → Outer Loadings. By default, the 
outer loadings are also displayed in the modeling window after run-
ning the PLS-SEM algorithm. All outer loadings of the reflective 
constructs COMP, CUSL, and LIKE are well above the threshold 
value of 0.70, which suggests sufficient levels of indicator reliability. 
The indicator comp_2 (outer loading: 0.798) has the smallest indica-
tor reliability with a value of 0.637 (0.7982), while the indicator 
cusl_2 (outer loading: 0.917) has the highest indicator reliability, with 
a value of 0.841 (0.9172). 

To evaluate the composite reliability of the construct measures, 
left-click on the Construct Reliability and Validity tab under Quality 
Criteria in the results report. Here, you have the option of displaying 
the composite reliability values using a bar chart or in a matrix format. 
Exhibit 4.13 shows the bar chart of the constructs’ composite reliabil-
ity values. The horizontal blue line indicates the common minimum 
threshold level for composite reliability (i.e., 0.70). If a composite reli-
ability value is above this threshold value, the corresponding bar is 
colored green. If the composite reliability value is lower than 0.70, the 
bar is colored red. In our example, all composite reliability values 
exceed the threshold. Clicking on the Matrix tab shows the specific 
composite reliability values. With values of 0.865 (COMP), 0.899 
(CUSL), and 0.899 (LIKE), all three reflective constructs have high 

Exhibit 4.12    Outer Loadings



125 125

Ex
hi

bi
t 

4.
13

  
C

om
po

si
te

 R
el

ia
bi

lit
y



126      A Primer on Partial Least Squares

levels of internal consistency reliability. Note that the composite reli-
ability value of the single-item variable CUSA is 1.00. But this cannot 
be interpreted as evidence that the construct exhibits perfect reliability 
and should not be reported with other measures of reliability.

Going to Quality Criteria → Construct Reliability and Validity  
gives you the option to show the chart of Cronbach’s alpha values for 
all constructs (Exhibit 4.14). All bars in the chart appear in green, 
indicating that all construct measures are above the 0.70 threshold. 
The specific Cronbach’s alpha (0.776 for COMP, 0.831 for CUSL, 
and 0.831 for LIKE) values can be accessed by left-clicking on the 
Matrix tab. Again, as CUSA is measured using a single item, interpret-
ing this construct’s Cronbach’s alpha value is not meaningful. 

Convergent validity assessment is based on the AVE values, which 
can be accessed by going to Quality Criteria → Construct Reliability 
and Validity in the results report. As with composite reliability and 
Cronbach’s alpha, SmartPLS offers the option of displaying the results 
using bar charts (Exhibit 4.15) or in a matrix format. In this example, 
the AVE values of COMP (0.681), CUSL (0.748), and LIKE (0.747) are 
well above the required minimum level of 0.50. Thus, the measures of 
the three reflective constructs have high levels of convergent validity.

Finally, in the Discriminant Validity tab under Quality Criteria, 
SmartPLS 3 offers several means to assess whether the construct 
measures discriminate well empirically. According to the Fornell-
Larcker criterion, the square root of the AVE of each construct should 
be higher than the construct’s highest correlation with any other 
construct in the model (this notion is identical to comparing the AVE 
with the squared correlations between the constructs). Exhibit 4.16 
shows the results of the Fornell-Larcker criterion assessment with the 
square root of the reflective constructs’ AVE on the diagonal and the 
correlations between the constructs in the off-diagonal position. For 
example, the reflective construct COMP has a value of 0.825 for the 
square root of its AVE, which needs to be compared with all correla-
tion values in the column of COMP. Note that for CUSL, you need 
to consider the correlations in both the row and column. Overall, the 
square roots of the AVEs for the reflective constructs COMP (0.825), 
CUSL (0.865), and LIKE (0.864) are all higher than the correlations 
of these constructs with other latent variables in the path model, thus 
indicating all constructs are valid measures of unique concepts.

Another alternative to assessing discriminant validity is the cross-
loadings. One can check the cross-loadings (click on Cross Loadings in 
the Discriminant Validity section of the results report) to make this 
evaluation. Discriminant validity is established when an indicator’s 
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Exhibit 4.16    Fornell-Larcker Criterion

Exhibit 4.17    Cross-Loadings

loading on its assigned construct is higher than all of its cross-loadings 
with other constructs. Exhibit 4.17 shows the loadings and cross-
loadings for every indicator. For example, the indicator comp_1 has the 
highest value for the loading with its corresponding construct COMP 
(0.858), while all cross-loadings with other constructs are considerably 
lower (e.g., comp_1 on CUSA: 0.464). The same finding holds for the 
other indicators of COMP as well as the indicators measuring CUSL 
and LIKE. Overall, cross-loadings as well as the Fornell-Larcker crite-
rion provide evidence for the constructs’ discriminant validity.

However, note that while frequently used in applied research, 
neither the Fornell-Larcker criterion nor the cross-loadings allow 
for reliably detecting discriminant validity issues. Therefore, an 
alternative, more reliable criterion, HTMT, should be applied. The 
Discriminant Validity section of the results report includes 
the Heterotrait-Monotrait Ratio (HTMT). Exhibit 4.18 shows the 
HTMT values for all pairs of constructs in a matrix format. The 
next tab also shows these HTMT values in bar charts, using 0.85 as 
the relevant threshold level. As can be seen, all HTMT values are 
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Exhibit 4.18    HTMT

clearly lower than the more conservative threshold value of 0.85, 
even for CUSA and CUSL, which, from a conceptual viewpoint, are 
very similar. Recall that the threshold value for conceptually similar 
constructs is 0.90.

In addition to examining the HTMT ratios, you should test 
whether the HTMT values are significantly different from 1. This 
requires computing bootstrap confidence intervals obtained by run-
ning the bootstrapping option. To run the bootstrapping procedure, 
go back to the modeling window and left-click on Calculate → Boot-
strapping in the pull-down menu. In the dialog box that opens, choose 
the bootstrapping options as displayed in Exhibit 4.19 (Chapter 5 
includes a more detailed introduction to the bootstrapping procedure 
and the parameter settings). Make sure to select the Complete Boot-
strapping option, which, unlike the Basic Bootstrapping option, 
includes the results for HTMT. Finally, click on Start Calculation. 

After running bootstrapping, open the results report. Go to 
Quality Criteria → Heterotrait-Monotrait (HTMT) and left-click 
on the tab Confidence Intervals Bias Corrected. The menu that 
opens up (Exhibit 4.20) shows the original HTMT values (column 
Original Sample (O)) for each combination of constructs in the 
model, along with the average HTMT values computed from 
the 5,000 bootstrap samples (column Sample Mean (M)). Note that 
the results in Exhibit 4.20 will differ from your results and will 
change when rerunning the bootstrapping procedure. The reason is 
that bootstrapping builds on randomly drawn bootstrap samples, 
which will differ every time the procedure is run. The differences in 
the overall bootstrapping results are marginal, however, provided 
that a sufficiently large number of bootstrap samples have been 
drawn (e.g., 5,000). The columns labeled 2.5% and 97.5% show the 
lower and upper bounds of the 95% (bias-corrected and acceler-
ated) confidence interval. As can be seen, neither of the confidence 
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Exhibit 4.20    Confidence Intervals for HTMT

Latent 
Variable

Indicators

Convergent Validity
Internal Consistency 

Reliability
Discriminant 

Validity

Loadings
Indicator 
Reliability

AVE
Composite 
Reliability

Cronbach’s 
Alpha

>0.70 >0.50 >0.50 0.60–0.90 0.60–0.90

HTMT 
confidence 

interval does 
not include 1

COMP

comp_1 0.858 0.736

0.681 0.865 0.776 Yescomp_2 0.798 0.637

comp_3 0.818 0.669

CUSL

cusl_1 0.833 0.694

0.748 0.899 0.831 Yescusl_2 0.917 0.841

cusl_3 0.843 0.711

LIKE

like_1 0.879 0.773

0.747 0.899 0.831 Yeslike_2 0.870 0.757

like_3 0.843 0.711

Exhibit 4.21
Results Summary for Reflective Measurement 
Models

intervals includes the value 1. For example, the lower and upper 
bounds of the confidence interval of HTMT for the relationship 
between CUSA and COMP are 0.364 and 0.565, respectively (again, 
your values will likely look slightly different because bootstrapping is 
a random process). As expected, since the conservative HTMT thresh-
old of 0.85 already supports discriminant validity (Exhibit 4.18), the 
bootstrap confidence interval results of the HTMT criterion also 
clearly speak in favor of the discriminant validity of the constructs.

Exhibit 4.21 summarizes the results of the reflective measurement 
model assessment. As can be seen, all model evaluation criteria have 
been met, providing support for the measures’ reliability and validity.
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SUMMARY

•	 Gain an overview of Stage 5 of the process for using PLS-SEM, 
which deals with the evaluation of measurement models. PLS-SEM 
results are reviewed and evaluated using a systematic process. The 
goal of PLS-SEM is maximizing the explained variance (i.e., the R² 
value) of the endogenous latent variables in the PLS path model. For 
this reason, the evaluation of the quality of the PLS-SEM measure-
ment and structural models focuses on metrics indicating the model’s 
predictive capabilities. Evaluation of PLS-SEM results is a two-step 
approach (Stages 5 and 6) that starts with evaluating the quality of 
the measurement models (Stage 5). Each type of measurement model 
(i.e., reflective or formative) has specific evaluation criteria. With 
reflective measurement models, reliability and validity must be 
assessed (Stage 5a). In contrast, evaluation of formative measurement 
models (Stage 5b) involves testing the measures’ convergent validity 
and the significance and relevance of the indicator weights as well as 
collinearity. Satisfactory outcomes for the measurement model are a 
prerequisite for evaluating the relationships in the structural model 
(Stage 6), which includes testing the significance of path coefficients 
and the coefficient of determination (R² value). Depending on the 
specific model and the goal of the study, researchers may want to use 
additional advanced analyses such as mediation or moderation, which 
we discuss in Chapters 7 and 8. 

•	 Describe Stage 5a: Evaluating reflectively measured con-
structs. The goal of reflective measurement model assessment is to 
ensure the reliability and validity of the construct measures and 
therefore provide support for the suitability of their inclusion in the 
path model. The key criteria include indicator reliability, composite 
reliability, convergent validity, and discriminant validity. Convergent 
validity means the construct includes more than 50% of the indica-
tor’s variance. Discriminant validity means that every reflective con-
struct must share more variance with its own indicators than with 
other constructs in the path model. Reflective constructs are appro-
priate for PLS-SEM analyses if they meet all these requirements.

•	 Use the SmartPLS 3 software to assess reflectively measured 
constructs in the corporate reputation example. The case study illus-
tration uses the corporate reputation path model and the data set 
introduced in Chapter 2. The SmartPLS 3 software provides all 
relevant results for the evaluation of the measurement models. 
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Tables and figures for this example demonstrate how to correctly 
report and interpret the PLS-SEM results. This hands-on example 
not only summarizes the concepts that have been introduced before 
but also provides additional insights for their practical application.

REVIEW QUESTIONS

	 1.	 What is indicator reliability and what is the minimum thresh-
old value for this criterion?

	 2.	 What is composite reliability and what is the minimum 
threshold value for this criterion?

	 3.	 What is average variance extracted and what is the minimum 
threshold value for this criterion?

	 4.	 Explain the idea behind discriminant validity and how it can 
be established.

CRITICAL THINKING QUESTIONS

	 1.	 Why are the criteria for reflective measurement model assess-
ment not applicable to formative measures?

	 2.	 How do you evaluate single-item constructs? Why is internal 
consistency reliability a meaningless criterion when evaluat-
ing single-item constructs?

	 3.	 Should researchers rely purely on statistical evaluation crite-
ria to select a final set of indicators to include in the path 
model? Discuss the trade-off between statistical analyses and 
content validity.

KEY TERMS

AVE

Average variance extracted (AVE)

Bootstrap confidence interval

Bootstrapping

Coefficient of determination (R²)

Collinearity

Communality (construct)

Communality (item)

Composite reliability

Content validity
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LEARNING OUTCOMES

1. Explain the criteria used for the assessment of formative measure-
ment models.

2. Understand the basic concepts of bootstrapping for significance 
testing in PLS-SEM and apply them.

3. Use the SmartPLS 3 software to apply the formative measurement 
model assessment criteria and learn how to properly report the 
results of the practical example on corporate reputation.

CHAPTER PREVIEW

Having learned how to evaluate reflective measurement models in the 
previous chapter (Stage 5a of applying PLS-SEM), our attention now 
turns to the assessment of formative measurement models (Stage 5b 
of applying PLS-SEM). The internal consistency perspective that 
underlies reflective measurement model evaluation cannot be applied 
to formative models since formative measures do not necessarily 
covary. Thus, any attempt to purify formative indicators based on 
correlation patterns can have negative consequences for a construct 

C H A P T E R  5

Assessing PLS-SEM 
Results Part II

Evaluation of the Formative 
Measurement Models
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measure’s content validity. This notion especially holds for PLS-SEM, 
which assumes that the formative indicators (more precisely, compos-
ite indicators) fully capture the content domain of the construct under 
consideration. Therefore, instead of employing measures such as 
composite reliability or AVE, researchers should rely on other criteria 
to assess the quality of formative measurement models.

The chapter begins with an introduction to the criteria needed to 
evaluate formative measures. This includes a discussion of the boot-
strapping routine that facilitates significance testing of PLS-SEM 
estimates, including formative indicator weights. These criteria are 
then applied to the corporate reputation model that is extended for 
this purpose. While the simple model contains only three reflectively 
measured constructs as well as one single-item construct, the extended 
model also includes four antecedent constructs of corporate 
reputation that are measured using formative indicators. This chapter 
concludes with the evaluation of measurement models. In Chapter 6, 
we move to the evaluation of the structural model (Stage 6 of 
applying PLS-SEM).

STAGE 5B: ASSESSING RESULTS OF FORMATIVE 
MEASUREMENT MODELS

Many researchers incorrectly use reflective measurement model 
evaluation criteria to assess the quality of formative measures in 
PLS-SEM, as revealed by the review of PLS-SEM studies in the 
strategic management and marketing disciplines (Hair, Sarstedt, 
Pieper, et al., 2012b; Hair, Sarstedt, Ringle, & Mena, 2012). However, 
the statistical evaluation criteria for reflective measurement scales 
cannot be directly transferred to formative measurement models 
where indicators are likely to represent the construct’s independent 
causes and thus do not necessarily correlate highly. Furthermore, 
formative indicators are assumed to be error free (Diamantopoulos, 
2006; Edwards & Bagozzi, 2000), which means that the internal 
consistency reliability concept is not appropriate.

Assessing convergent validity and discriminant validity of form-
atively measured constructs using criteria similar to those associated 
with reflective measurement models is not meaningful (Chin, 1998). 
Instead, researchers should focus on establishing content validity 
before empirically evaluating formatively measured constructs. This 
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step requires ensuring that the formative indicators capture all (or at 
least major) facets of the construct. In creating formative constructs, 
content validity issues are addressed by the content specification in 
which the researcher clearly specifies the domain of content the 
indicators are intended to measure. Researchers must include a com-
prehensive set of indicators that exhausts the formative construct’s 
domain as defined by the researcher. The set of comprehensive indi-
cators for formatively measured constructs should be identified 
using a rigorous qualitative approach. Failure to consider all major 
aspects of the construct (i.e., relevant indicators) entails an exclusion 
of important parts of the construct itself. In this context, experts’ 
assessment helps safeguard that proper sets of indicators have been 
used. In addition to specific reasons for operationalizing the con-
struct as formative (Chapter 2), researchers should conduct a thor-
ough literature review and ensure a reasonable theoretical grounding 
when developing measures (Diamantopoulos & Winklhofer, 2001; 
Jarvis, MacKenzie, & Podsakoff, 2003). The evaluation of PLS-SEM 
results for formative measurement models may include reviewing 
these aspects.

In this chapter, we examine the PLS-SEM results of formative 
measurement models following the procedure outlined in Exhibit 5.1. 
The first step involves assessing the formative measurement model’s 
convergent validity by correlating the formatively measured construct 
with a reflective measure of the same construct (Step 1). At the indicator 
level, the question arises as to whether each formative indicator indeed 

Assess convergent validity of
formative measurement models

Assess formative measurement models
for collinearity issues

Assess the significance and relevance
of the formative indicators

Step 1

Step 2

Step 3

Exhibit 5.1
Formative Measurement Models Assessment 
Procedure
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delivers a contribution to the formative index by representing the 
intended meaning. There are two situations in which researchers should 
critically examine whether a particular indicator should be included in 
the index: First, an indicator’s information could be redundant if it 
exhibits high correlations with other indicators of the same construct. 
This requires examining collinearity among the indicators (Step 2). 
Second, a formative indicator may not significantly contribute to the 
construct both relatively and absolutely. The latter aspects can be 
assessed by examining the (statistical) significance and relevance of the 
formative indicators (Step 3). Depending on the outcomes of Steps 2 
and 3, you may need to revisit the previous steps, starting with estab-
lishing convergent validity of the revised set of formative indicators.

Step 1: Assess Convergent Validity

Convergent validity is the extent to which a measure correlates 
positively with other (e.g., reflective) measures of the same construct 
using different indicators. Hence, when evaluating formative mea
surement models, we have to test whether the formatively measured 
construct is highly correlated with a reflective measure of the same 
construct. This type of analysis is also known as redundancy analysis 
(Chin, 1998). The term redundancy analysis stems from the informa-
tion in the model being redundant in the sense that it is included in 
the formative construct and again in the reflective one. Specifically, 
one has to use the formatively measured construct as an exogenous 
latent variable predicting an endogenous latent variable operational-
ized through one or more reflective indicators (Exhibit 5.2). The 
strength of the path coefficient linking the two constructs is indicative 
of the validity of the designated set of formative indicators in tapping 
the construct of interest. Ideally, a magnitude of 0.80, but at a mini-
mum 0.70 and above, is desired for the path between Y1

formative and  
Y1

reflective, which translates into an R² value of 0.64—or at least 0.50. 
If the analysis exhibits lack of convergent validity (i.e., the R² value of 
Y1

reflective < 0.50), then the formative indicators of the construct Y1
formative 

do not contribute at a sufficient degree to its intended content. The 
formative construct needs to be theoretically/conceptually refined by 
exchanging and/or adding indicators. Note that to execute this 
approach, the reflective latent variable must be specified in the 
research design phase and included in data collection for the research.

To identify suitable reflective measures of the construct, research-
ers can draw on scales from prior research, many of which are 
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reviewed in scale handbooks (e.g., Bearden et al., 2011; Bruner et al., 
2001). Including sets of reflective multi-item measures is not always 
desirable, however, since they increase the survey length. Long surveys 
are likely to result in respondent fatigue, decreased response rates, and 
an increased number of missing values. Furthermore, established 
reflective measurement instruments may not be available, and 
constructing a new scale is difficult and time-consuming.

An alternative is to use a global item that summarizes the essence 
of the construct the formative indicators purport to measure (Sarstedt 
et al., 2013). For the PLS-SEM example on corporate reputation in 
Chapter 3, an additional statement, “Please assess the extent to which 
[the company] acts in socially conscious ways,” was developed and 
measured on a scale of 0 (not at all) to 10 (definitely). This question can 
be used as an endogenous single-item construct to validate the forma-
tive measurement of corporate social responsibility (CSOR). Later in 
this chapter, we explain how to access the full data set for this PLS-SEM 
example on corporate reputation and how to conduct this procedure. 
Note that while the use of single items is generally not recommended, 
especially in the context of PLS-SEM (Chapter 2), their role in redun-
dancy analyses is different because single items only serve as a proxy 
for the constructs under consideration. In other words, the aim is not 
to fully capture the content domain of the construct but only to consider 
its salient elements, which serves as standard of comparison for the 
formative measurement approach of the construct.

Step 2: Assess Formative Measurement  
Models for Collinearity Issues

Unlike reflective indicators, which are essentially interchangeable, 
high correlations are not expected between items in formative 

Y1
formative Y1

reflective

x1

x2

x4

x5

x6

x7

x3

Exhibit 5.2
Redundancy Analysis for Convergent Validity 
Assessment
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measurement models. In fact, high correlations between two forma-
tive indicators, also referred to as collinearity, can prove problematic 
from a methodological and interpretational standpoint. Note that 
when more than two indicators are involved, this situation is called 
multicollinearity. To simplify our comments, we only refer to collin-
earity in the following discussion.

The most severe form of collinearity occurs if two (or more) 
formative indicators are entered in the same block of indicators with 
exactly the same information in them (i.e., they are perfectly corre-
lated). This situation may occur because the same indicator is entered 
twice or because one indicator is a linear combination of another 
indicator (e.g., one indicator is a multiple of another indicator such as 
sales in units and sales in thousand units). Under these circumstances, 
PLS-SEM cannot estimate one of the two coefficients (technically, a 
singular matrix occurs during the model estimation; Chapter 3). Col-
linearity problems may also appear in the structural model (Chap-
ter 6) if, for example, redundant indicators are used as single items to 
measure two (or more) constructs. If this occurs, researchers need to 
eliminate the redundant indicators. While perfect collinearity occurs 
rather seldom, high levels of collinearity are much more common.

High levels of collinearity between formative indicators are a cru-
cial issue because they have an impact on the estimation of weights and 
their statistical significance. More specifically, in practice, high levels of 
collinearity often affect the results of analyses in two respects. First, 
collinearity boosts the standard errors and thus reduces the ability to 
demonstrate that the estimated weights are significantly different from 
zero. This issue is especially problematic in PLS-SEM analyses based on 
smaller sample sizes where standard errors are generally larger due to 
sampling error. Second, high collinearity can result in the weights being 
incorrectly estimated, as well as in their signs being reversed. The 
following example (Exhibit 5.3) illustrates sign reversal due to high 
correlations between two formative indicators.

On examining the correlation matrix in Exhibit 5.3 (right side), 
note that indicators x1 and x2 are both positively correlated with con-
struct Y1 (0.38 and 0.14, respectively) but have a higher intercorrela-
tion (0.68). Although both bivariate correlations of the indicators are 
positive with the construct Y1 in this situation, and the two indicators 
are positively intercorrelated, when the final parameter estimates are 
computed in the last stage of the algorithm (Chapter 3), the outer 
weight of x1 is positive (0.53), whereas the outer weight of x2 is nega-
tive (–0.17) as in Exhibit 5.3 (left side). This demonstrates a situation 
where high collinearity unexpectedly reverses the signs of the weaker 
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indicator (i.e., the indicator less correlated with the construct) which 
can entail a false interpretation of results and misleading conclusions.

How to Assess Collinearity and Deal With Critical Levels

To assess the level of collinearity, researchers should compute the 
tolerance (TOL). The tolerance represents the amount of variance of 
one formative indicator not explained by the other indicators in the 
same block. For example, in a block of formative indicators, the 
tolerance for the first indicator x1 can be obtained in two steps:

	 1.	 Take the first formative indicator x1 and regress it on all 
remaining indicators in the same block. Calculate the propor-
tion of variance of x1 associated with the other indicators (R2

x1
).

	 2.	 Compute the tolerance for indicator x1 (TOLxs) using  
1 – R2

x1
. For example, if the other indicators explain 75% of 

the first indicator’s variance (i.e., R2
x1

 = 0.75), the tolerance 
for x1 is 0.25 (TOLxs = 1.00 – 0.75 = 0.25).

A related measure of collinearity is the variance inflation factor 
(VIF), defined as the reciprocal of the tolerance (i.e., VIFxs = 1/TOLxs). 
Therefore, a tolerance value of 0.25 for x1 (TOLxs) translates into a 
VIF value of 1/0.25 = 4.00 for x1 (VIFxs). The term VIF is derived from 
its square root (√VIF) being the degree to which the standard error 
has been increased due to the presence of collinearity. In the example 
above, a VIF value of 4.00 therefore implies that the standard error 
has been doubled (√4 = 2.00) due to collinearity. Similarly, the TOL 
and VIF values are computed for every indicator per formative meas-
urement model. Both collinearity statistics carry the same informa-
tion, but the reporting of VIF values has become standard practice.

In the context of PLS-SEM, a tolerance value of 0.20 or lower 
and a VIF value of 5 and higher respectively indicate a potential col-
linearity problem (Hair et al., 2011). More specifically, an indicator’s 

Formative Measurement Model

x1
0.53

–0.17
x2

Y1

Correlation Matrix

Y1 x1 x2

Y1 1.00

x1 0.38 1.00

x2 0.14 0.68 1.00

Exhibit 5.3    Correlation Matrix Demonstrating Collinearity
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VIF level of 5 indicates that 80% of its variance is accounted for by 
the remaining formative indicators associated with the same con-
struct. Besides the VIF, researchers may also consider using the condi-
tion index (CI) to assess the presence of critical collinearity levels in 
formative measurement models (Götz, Liehr-Gobbers, & Krafft, 
2010). However, the CI is more difficult to interpret and not yet 
included in any PLS-SEM software. Another alternative approach to 
evaluating collinearity is a bivariate correlation. While not common, 
in practice, bivariate correlations higher than 0.60 have resulted in 
collinearity issues with formative indicators in PLS path models.

If the level of collinearity is very high, as indicated by a VIF value 
of 5 or higher, one should consider removing one of the corresponding 
indicators. However, this requires that the remaining indicators still 
sufficiently capture the construct’s content from a theoretical perspec-
tive. Combining the collinear indicators into a single (new) composite 
indicator (i.e., an index)—for example, by using their average values, 
their weighted average value, or their factor scores—is another option 
for treating collinearity problems. However, the latter step is not with-
out problems because the individual effects of the indicators become 
confounded, which can have adverse consequences for the content 
validity of the index. Alternatively, setting up formative-formative 
higher-order constructs (Becker et al., 2012; Kuppelwieser & Sarstedt, 
2014; Ringle et al., 2012) is a solution to address the collinearity 
problem, if measurement theory supports such a step (Chapter 8).

Exhibit 5.4 displays the process to assess collinearity in formative 
measurement models based on the VIF. Outer weights in formative 
measurement models should be analyzed for their significance and 
relevance only if collinearity is not at a critical level. When this is not 
the case and collinearity issues cannot be treated, one cannot use and 
interpret the results of the outer weights in formative measurement 
models. As a consequence, the results of the formative measurement 
must not be interpreted. Even though it is still possible to analyze the 
relationships of such a constructs with other constructs in the struc-
tural model (Chapter 6). However, in such a situation, the researcher 
may want to reconsider or dismiss the operationalization of the 
formative measurement model.

Step 3: Assess the Significance and  
Relevance of the Formative Indicators

Another important criterion for evaluating the contribution of a 
formative indicator, and thereby its relevance, is its outer weight. The 



Chapter 5    Assessing PLS-SEM Results Part II       145

outer weight is the result of a multiple regression (Hair et al., 2010) 
with the latent variable scores as the dependent variable and the 
formative indicators as the independent variables (see the PLS-SEM 
algorithm in Chapter 3). Since the construct itself is formed by its 
underlying formative indicators as a linear combination of the indica-
tor scores and the outer weights, running such a multiple regression 
analysis yields an R² value of 1.0. That is, 100% of the construct is 
explained by the indicators. This characteristic distinguishes forma-
tive (i.e., composite) indicators from causal indicators commonly used 
in CB-SEM. In the latter case, the construct measured is not automati-
cally explained in full by its (causal) indicators (Chapter 2). The val-
ues of the outer weights are standardized and can therefore be 

Analyze the significance 
of outer weights and

interpret the formative 
indicators’ absolute and 

relative contribution 

Assess the
level of collinearity 

in the formative
measurement model 

Treat collinearity 
issues

No critical levels
of collinearity 
(i.e., VIF < 5) 

Dismiss the formative 
measurement model 

Analyze the significance 
of outer weights and 

interpret the formative 
indicators’ absolute and 

relative contribution 

Critical levels 
of collinearity
(i.e., VIF ≥ 5) 

No critical levels 
of collinearity
(e.g., VIF < 5) 

Critical levels
of collinearity 
(e.g., VIF ≥ 5) 

Exhibit 5.4 Collinearity Assessment in Formative 
Measurement Models Using the VIF
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compared with each other. They express each indicator’s relative 
contribution to the construct, or its relative importance to forming  
the construct. The estimated values of outer weights in formative 
measurement models are frequently smaller than the outer loadings 
of reflective indicators.

The key question that arises is whether formative indicators truly 
contribute to forming the construct. To answer this question, we must 
test if the outer weights in formative measurement models are signifi-
cantly different from zero by means of the bootstrapping procedure. 
Note that bootstrapping also plays a crucial role in other elements of 
the PLS path model analysis, particularly in the evaluation of the 
structural model path coefficients (Chapter 6). We explain bootstrap-
ping in more detail later in this chapter.

It is important to note that the values of the formative indicator 
weights are influenced by other relationships in the model (see the 
PLS-SEM algorithm in Chapter 3). Hence, the exogenous formative 
construct(s) can have different contents and meanings depending on 
the endogenous constructs used as outcomes. This is also known as 
interpretational confounding and represents a situation in which the 
empirically observed meaning between the construct and its measures 
differs from the theoretically imposed meaning (Kim, Shin, & Grover, 
2010). Such outcomes are not desirable since they limit the generaliz-
ability of the results (Bagozzi, 2007). Therefore, comparing forma-
tively measured constructs across several PLS path models with 
different setups (e.g., different endogenous latent variables) should be 
approached with caution.

Implications of the Numbers of Indicators  
Used on the Indicator Weights

With larger numbers of formative indicators used to measure a 
single construct, it becomes more likely that one or more indicators will 
have low or even nonsignificant outer weights. Unlike reflective mea
surement models, where the number of indicators has little bearing on 
the measurement results, formative measurement has an inherent limit 
to the number of indicators that can retain a statistically significant 
weight (Cenfetelli & Bassellier, 2009). Specifically, when indicators are 
assumed to be uncorrelated, the maximum possible outer weight is 
1/√n, where n is the number of indicators. For example, with 2 (or 5  
or 10) uncorrelated indicators, the maximum possible outer weight  
is 1/√2 = 0.707 (or 1/√5 = 0.447 or 1√10 = 0.316). Similarly, just 
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as the maximum possible outer weight declines with the number 
of indicators, the average value of outer weights significantly 
declines with larger numbers of items. Thus, it becomes more likely 
that additional formative indicators will become nonsignificant.

To deal with the potential impact of a large number of indica-
tors, Cenfetelli and Bassellier (2009) propose grouping indicators 
into two or more distinct constructs. This approach, of course, 
requires the indicator groups to be conceptually aligned and that the 
grouping makes sense from theoretical and conceptual perspectives. 
For example, the indicators of the performance construct, which we 
introduce as a driver construct of corporate reputation later in this 
chapter (see Exhibit 5.13), could be grouped into two sets, as shown 
in Exhibit 5.5. The indicator items “[the company] is a very well-
managed company” (perf_1) and “[the company] has a clear vision 
about the future” (perf_5) could be used as formative indicators of 
a separate construct called management competence. Similarly, the 
indicators “[the company] is an economically stable company” 
(perf_2), “I assess the business risk for [the company] as modest 
compared to its competitors” (perf_3), and “I think that [the 
company] has growth potential” (perf_4) could be used as formative 
indicators of a second construct labeled economic performance. An 
alternative is to create a formative-formative hierarchical compo-
nent model (Becker et al., 2012; Kuppelwieser & Sarstedt, 2014; 
Ringle et al., 2012). The higher-order component itself (perfor-
mance) is then formed by the formatively measured lower-order 
components management competence and economic performance 
(Exhibit 5.5).

Dealing With Nonsignificant Indicator Weights

Nonsignificant indicator weights should not automatically be 
interpreted as indicative of poor measurement model quality. Rather, 
researchers should also consider a formative indicator’s absolute con-
tribution to (or absolute importance for) its construct—that is, the 
information an indicator provides without considering any other 
indicators. The absolute contribution is given by the formative indica-
tor’s outer loading, which is always provided along with the indicator 
weights. Different from the outer weights, the outer loadings stem 
from simple regressions of each indicator on its corresponding con-
struct (which in PLS-SEM is equivalent to the bivariate correlation 
between each indicator and the construct).
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When an indicator’s outer weight is nonsignificant but its outer 
loading is high (i.e., above 0.50), the indicator should be interpreted 
as absolutely important but not as relatively important. In this situa-
tion, the indicator would generally be retained. But when an indicator 
has a nonsignificant weight and the outer loading is below 0.50, 
researchers should decide whether to retain or delete the indicator by 
examining its theoretical relevance and potential content overlap with 
other indicators of the same construct.

If the theory-driven conceptualization of the construct strongly 
supports retaining the indicator (e.g., by means of expert assess-
ment), it should be kept in the formative measurement model. But  
if the conceptualization does not strongly support an indicator’s 
inclusion, the nonsignificant indicator should most likely be removed 
from further analysis. In contrast, if the outer loading is low (e.g., 
say below 0.10) and nonsignificant, there is no empirical support for 
the indicator’s relevance in providing content to the formative index 
(Cenfetelli & Bassellier, 2009). Therefore, such an indicator should 
be removed from the formative measurement model.

Eliminating formative indicators that do not meet threshold lev-
els in terms of their contribution has, from an empirical perspective, 
almost no effect on the parameter estimates when reestimating the 

Exhibit 5.5    Example of a Higher-Order Construct
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perf_5

perf_2

perf_3

perf_4
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Competence
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perf_1

perf_2

perf_3
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Performance
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model. Nevertheless, formative indicators should never be discarded 
simply on the basis of statistical outcomes. Before removing an indica-
tor from the formative measurement model, researchers need to check 
its relevance from a content validity point of view. Again, omitting a 
formative indicator results in the omission of some of the construct’s 
content. Exhibit 5.6 summarizes the decision-making process for 
keeping or deleting formative indicators.

In summary, the evaluation of formative measurement models 
requires establishing the measures’ convergent validity, assessing the 
indicators’ collinearity, and analyzing the indicators’ relative and abso-
lute contributions, including their significance. Exhibit 5.7 summarizes 
the rules of thumb for evaluating formative measurement models.

Bootstrapping Procedure

Concept

PLS-SEM does not assume the data are normally distributed. 
Lack of normality means that parametric significance tests used in 
regression analyses cannot be applied to test whether coefficients such 
as outer weights, outer loadings, and path coefficients are significant. 
Instead, PLS-SEM relies on a nonparametric bootstrap procedure 
(Davison & Hinkley, 1997; Efron & Tibshirani, 1986) to test coeffi-
cients for their significance.

In bootstrapping, a large number of samples (i.e., bootstrap sam-
ples) are drawn from the original sample with replacement. Replace-
ment means that each time an observation is drawn at random from 
the sampling population, it is returned to the sampling population 
before the next observation is drawn (i.e., the population from which 
the observations are drawn always contains all the same elements). 
Therefore, an observation for any bootstrap sample can be selected 
more than once or may not be selected at all for the sample. Each 
bootstrap sample has the same number of observations (often termed 
bootstrap cases) as the original sample. For example, if the original 
sample has 130 valid (!) observations (e.g., after applying casewise 
deletion to treat missing values; see Chapter 2), then each bootstrap 
sample contains 130 observations. The number of bootstrap samples 
should be high but must be at least equal to the number of valid 
observations in the data set. As a rule, 5,000 bootstrap samples are 
recommended. Exhibit 5.8 illustrates how the bootstrap technique 
works.
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Continue with the
interpretation of the 

outer weight’s absolute
and relative size 

Outer weight
significance testing

Analyze the
formative indicator’s

outer loading 

Outer weight
is significant 

Outer weight is
not significant 

The outer
loading is < 0.5

The outer
loading is ≥ 0.5

Keep the indicator even
though it is not significant

Test the significance
of the formative 
indicator’s outer 

loading 

The outer
loading is < 0.5

and not 
significant 

The outer
loading is < 0.5
but significant 

Delete the
formative indicator

Strongly consider removal
of the formative indicator

Exhibit 5.6
Decision-Making Process for Keeping or Deleting 
Formative Indicators

The bootstrap samples are used to estimate the PLS path model. 
That is, when using 5,000 bootstrap samples, 5,000 PLS path models 
are estimated. The estimates of the coefficients form a bootstrap dis-
tribution, which can be viewed as an approximation of the sampling 
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distribution. Based on this distribution, it is possible to determine the 
standard error and the standard deviation of the estimated coeffi-
cients. We refer to the estimated bootstrap standard error by using se*, 
whereby the asterisk denotes that the estimated standard error has 
been obtained by using the bootstrap method. The bootstrap distribu-
tion can be viewed as a reasonable approximation of an estimated 
coefficient’s distribution in the population, and its standard deviation 
can be used as a proxy for the parameter’s standard error in the 
population.

For example, the bootstrap method allows for the statistical test-
ing of the hypothesis that a specific outer weight w1 is in fact zero in 
the population. Using the standard error derived from the bootstrap 
distribution, a Student’s t test can be calculated to test whether w1 is 
significantly different from zero (i.e., H0: w1 = 0 and H1: w1 ≠ 0) using 
the following formula:

=t
w

se
,*

w

1

1

Exhibit 5.7
Rules of Thumb for the Evaluation of Formative 
Measurement Indicators

•	 Assess the formative construct’s convergent validity by examining 
its correlation with an alternative measure of the construct, using 
reflective measures or a global single item (redundancy analysis). The 
correlation between the constructs should be 0.70 or higher.

•	 Collinearity of indicators: Each indicator’s VIF value should be 
lower than 5. Otherwise, consider eliminating indicators, merging 
indicators into a single index, or creating higher-order constructs to 
treat collinearity problems.

•	 Examine each indicator’s outer weight (relative importance) and outer 
loading (absolute importance) and use bootstrapping to assess their 
significance.

•	 When an indicator’s weight is significant, there is empirical support to 
retain the indicator.

•	 When an indicator’s weight is not significant but the corresponding 
item loading is relatively high (i.e., ≥0.50), or statistically significant, 
the indicator should generally be retained.

•	 If the outer weight is non-significant and the outer loading relatively 
low (i.e., <0.5), you should strongly consider to remove the formative 
indicator from the model.
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where w1 is the weight obtained from the original model estimation 
using the original set of empirical data, and se*

w1
 is the bootstrap 

standard error of w1.
As indicated by its name, the test statistic follows a t distribution 

with degrees of freedom (df) (which is the number of values in the final 
calculation of the test statistic that are free to vary) equal to the number 
of observations minus the number of  indicators in the formative meas-
urement model minus 1. As a general rule, the t distribution is well 
approximated by the normal (Gaussian) distribution for more than 
30 observations. As the number of observations usually exceeds this 
threshold, the normal (Gaussian) quantiles can be used to determine 
critical t values (or theoretical t values) for significance testing. There-
fore, when the size of the resulting empirical t value is above 1.96, we 
can assume that the path coefficient is significantly different from zero 
at a significance level of 5% (α = 0.05; two-tailed test). The critical 
t values for significance levels of 1% (α = 0.01; two-tailed test) and 
10% (α = 0.10; two-tailed test) probability of error are 2.57 and 1.65, 
respectively.

PLS-SEM software programs such as SmartPLS 3 also report p 
values (i.e., probability values) that equal the probability of obtaining 
an empirical t value at least as extreme as the one that is actually 
observed, conditional on the null hypothesis being supported. With 
regard to the example above, the p value is the answer to the following 
question: If w1 is in fact zero (i.e., in reality H0 holds), what is the prob-
ability that random sampling using bootstrapping would yield a t value 
of at least 1.96 (in case of a 5% significance level, two-tailed)? In other 
words, the p value is the probability of erroneously rejecting a true null 
hypothesis (i.e., assuming a significant effect when there is no signifi-
cance). In most settings, researchers choose a significance level of 5%, 
which implies that the p value must be smaller than 0.05 in order to 
render the relationship under consideration significant. When research-
ers are very conservative or strict in their testing of relationships (e.g., 
when conducting experiments), the significance level is set to 1%. In 
studies that are exploratory, however, a significance level of 10% is 
commonly used.

An important consideration in the use of bootstrapping in PLS-
SEM is that the signs of the latent variable scores are indeterminate 
(Wold, 1985). This sign indeterminacy of latent variable scores may, 
however, result in arbitrary sign changes in the bootstrap estimates of 
the coefficients, compared with the estimates obtained from the 
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original sample. Such occurrence of sign changes “pulls” the mean 
value of bootstrap results (e.g., for an outer weight w1) toward zero 
and inflates the corresponding bootstrap standard error (se*

w1
) upward, 

thereby decreasing the t value.
Three options for dealing with sign changes have been pro-

posed: the no sign change option, the individual-level sign change 
option, and the construct-level sign change option. No sign change 
simply means to not do anything and to accept the negative impact 
of sign changes on the results for the empirical t value. The 
individual-level sign change option reverses sign if an estimate for 
a bootstrap sample results in a different sign compared with that 
resulting from the original sample. Thus, the signs in the measure-
ment and structural models of each bootstrap sample are made 
consistent with the signs in the original sample to avoid sign 
change–related problems. A third option, the construct-level sign 
change, considers a group of coefficients (e.g., all outer weights) 
simultaneously and compares the signs of the original PLS path 
model estimation with those of a bootstrapping sample. If the 
majority of signs need to be reversed in a bootstrap run to match 
the signs of the model estimation using the original sample, all signs 
are reversed in that bootstrap run. Otherwise, no signs are changed. 
As such, the construct-level sign change is a compromise between 
the two extremes of no sign changes and individual-level sign 
changes: Some signs are changed for improvement, but the results 
do not 100% match the signs of the original model estimation.

The individual-level and construct-level sign change options have 
been introduced in connection with the Lohmöller scheme for initial-
izing the outer weights when initializing the PLS-SEM algorithm (i.e., 
all initial weights are set to +1 except the last one, which is set to –1; 
see Chapter 3). The Lohmöller initialization leads to faster 
convergence of the PLS-SEM algoirithm but is well known to entail 
unexpected sign changes. In practice, the results of the three different 
options usually do not differ much, provided that the original esti-
mates are not close to zero. However, if the original estimates are 
close to zero, the sign reversal may systematically reduce the boot-
strapping standard error. We strongly recommend using the no sign 
change option because it results in the most conservative outcome. 
Conservative means that if coefficients are significant under the no 
sign change option, they will also be significant when using the 
alternative options. 
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Bootstrap Confidence Intervals

Instead of just reporting the significance of a parameter, it is valu-
able to also report the bootstrap confidence interval that provides 
additional information on the stability of a coefficient estimate. The 
confidence interval is the range within which the true population 
parameter will fall assuming a certain level of confidence (e.g., 95%). 
In a PLS-SEM context, we also talk about bootstrap confidence inter-
vals because the construction of the interval is based on the standard 
errors obtained from the bootstrapping procedure (Henseler et al., 
2009). A null hypothesis H0 that a certain parameter such as an outer 
weight w1 equals zero (i.e., H0: w1 = 0) in the population is rejected at 
a given level α, if the corresponding (1 – α)% bootstrap confidence 
interval does not include zero. In other words, if a confidence interval 
for an estimated coefficient such as an outer weight w1 does not 
include zero, the hypothesis that w1 equals zero is rejected, and we 
assume a significant effect. In addition to the significance testing 
aspect, the range of the confidence interval provides the researcher 
with an indication of how stable the estimate is. If the confidence 
interval of a coefficient is wider, then its stability is lower. The confi-
dence interval offers a range of plausible population values for a 
certain parameter dependent on the variation in the data and the 
sample size.

There are several approaches for constructing bootstrap confi-
dence intervals (Davison & Hinkley, 1997; Efron & Tibshirani, 
1986). The logical approach is to order all estimates of a certain 
parameter (e.g., an outer weight w1) as obtained from the bootstrap-
ping samples and compute an interval that excludes the 2.5% lowest 
and 2.5% highest values. For example, suppose that we draw 5,000 
bootstrap samples and thus obtain 5,000 estimates for the indicator 
weight w1. After ordering these values from smallest to largest, let us 
denote these values as w*

(1), w
*
(2), …, w*

(5,000). Here, the asterisk denotes 
that the estimated weight has been obtained by using the bootstrap 
method. The number in brackets in subscript indicates the bootstrap 
sample. The lower bound of the 95% bootstrap confidence interval 
would be the bootstrap estimate of w1 that separates the lowest 2.5% 
from the highest 97.5% of the bootstrap values (i.e., w*

(125)). Similarly, 
the upper bound would be the value separating the 97.5% lowest 
from the 2.5% highest bootstrap values (i.e., w*

(4,875)). Exhibit 5.9 
illustrates this approach, known as the percentile method, by showing 
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Exhibit 5.9    Percentile Method

a histogram of the distribution of the indicator weight w1 (more pre-
cisely, csor_1), resulting from 5,000 bootstrap samples. The resulting 
confidence interval is [0.138, 0.462], which suggests that the popula-
tion value of w1 will be somewhere in between 0.138 and 0.462 with 
a 95% probability. As this confidence interval does not include the 
value zero, we would conclude that w1 is significant.

A shortcoming of the percentile method is its assumption that the 
expected value of a certain parameter derived by computing its mean 
value across all bootstrapping samples (e.g., ŵ1) is an unbiased esti-
mate of the true value. However, this assumption does not necessarily 
hold, especially when sample sizes are small or when the distribution 
of the parameter is asymmetric. In these situations, the percentile 
method is subject to coverage error (e.g., a 95% confidence interval 
may actually be a 90% confidence interval). As a remedy, researchers 
have introduced bias corrections, which adjust for resulting devia-
tions in the bootstrap distribution from the empirical distribution of 
the parameters. The most prominent among this set of approaches is 
Efron’s (1987) bias-corrected and accelerated (BCa) bootstrap confi-
dence intervals, which adjust for biases and skewness in the bootstrap 
distribution. Henseler et al. (2009) provide more details on the use of 
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the BCa bootstrap method in PLS-SEM—see also Gudergan et al. 
(2008) and Sarstedt, Henseler, and Ringle (2011).

An alternative to the previously described approaches is the stu-
dentized bootstrap method. The studentized bootstrap confidence 
interval is computed similar to a confidence interval based on the t 
distribution, except that the standard error is derived from the boot-
strapping results. For example, if an outer weight w1 has a bootstrap 
standard error (se*

w1
), then the corresponding approximate 100 · (1 – α)% 

confidence interval is

− ⋅ + ⋅ α α( ) ( )− −w t se w t se; ,* *
w w1 1 /2 1 1 /21 1

where t(1−a/2) stems from the t distribution table. If the probability of 
error is 5% (i.e., α = 0.05), then t(1−a/2) = t0.975 = 1.96. Thus, the lower 
bound of the bootstrap confidence interval is − ⋅w se1.96 ,w

*
1 1

 and 
the upper bound is + ⋅w se1.96 w

*
1 1

 (i.e., [ − ⋅
w se1.96 ;w

*
1 1

 + ⋅ 
w se1.96 w

*
1 1

+ ⋅ 
w se1.96 w

*
1 1

]). For example, assume that an outer weight of an indicator in a 
formative measurement model has the value 0.306 and a bootstrap 
standard error of 0.083. The lower bound of the 95% bootstrap 
confidence interval has a value of 0.306 – 1.96 · 0.083 = 0.143, while 
the upper bound has a value of 0.306 + 1.96 · 0.083 = 0.469. Thus, 
the 95% bootstrap confidence interval is [0.143, 0.469]. Since zero 
does not fall in this confidence interval, we conclude that the outer 
weight of 0.306 is significant at the 5% probability of error level.

Double bootstrapping offers yet another way of establishing 
confidence intervals. Double bootstrapping follows the same princi-
ples as regular bootstrapping in that samples (i.e., bootstrap samples) 
are drawn from the original sample with replacement. Different from 
regular bootstrapping, further subsamples are drawn from each boot-
strap sample (i.e., bootstrap the bootstrap samples). That way, the 
method produces a larger number of samples and subsamples, which 
provide the basis for parameter estimation (Exhibit 5.10; for further 
details, see Sarstedt, Henseler, & Ringle, 2011). However, this increase 
in bootstrap (sub)samples comes at the expense of computational 
demands. For example, following general recommendations of draw-
ing 5,000 (sub)samples would require estimating the PLS path model 
5,000 · 5,000 + 5,000 = 25,005,000 times. Different types of double 
bootstrapping methods have been proposed, two of which have 
recently been implemented in SmartPLS 3. Shi (1992) extends the 
percentile method to double bootstrapping, accounting for coverage 
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errors. Davison and Hinkley (1997) introduced a bias correction 
based on differences between parameter estimates derived from 
samples and corresponding subsamples.

A fundamental question remains, however: Which method 
should we use? Prior research indicates that while the percentile 
method is intuitive and easy to implement, it does not work very well 
with small sample sizes, especially when the distribution of the 
parameter is asymmetric (e.g., Chernick, 2008). Against this back-
ground, researchers routinely suggest using the BCa bootstrap 
method as it has reasonable computation requirements and produces 
comparably narrow confidence intervals. Initial research in the PLS-
SEM context by Henseler et al. (2014) provides support for these 
results (e.g., in terms of low levels of Type I errors), but future 
research needs to provide a more detailed assessment of the approach’s 
properties. Finally, confidence intervals derived from double boot-
strap methods have been proven to be more accurate than those from 
regular bootstrapping. However, their performance has not been 
examined in the context of PLS-SEM. In light of the considerable 
computational demand, their application should be restricted to 
models with limited complexity (i.e., four constructs or less) when 
sample size is small (i.e., fewer than 300; a number of 300 bootstrap 
samples would result in the computation 300 · 300 = 90,000 samples 
when applying the double bootstrap method). Instead, you should 
primarily rely on the BCa method. Exhibit 5.11 summarizes the rules 
of thumb for significance testing using the bootstrapping routine in 
PLS-SEM.

CASE STUDY ILLUSTRATION—EVALUATION  
OF FORMATIVE MEASUREMENT MODELS

Extending the Simple Path Model

The simple path model introduced in Chapter 2 describes the 
relationships between the two dimensions of corporate reputation 
(i.e., competence and likeability) as well as the two outcome variables 
(i.e., customer satisfaction and loyalty). While the simple model is 
useful to explain how corporate reputation affects customer satisfac-
tion and customer loyalty, it does not indicate how companies can 
manage (i.e., improve) their corporate reputation effectively.
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Schwaiger (2004) identified four driver constructs of corporate 
reputation that companies can steer by means of corporate-level mar-
keting activities. Specifically, the driver constructs of corporate repu-
tation are (1) the quality of a company’s products and services as well 
as its quality of customer orientation (QUAL), (2) its economic and 
managerial performance (PERF), (3) the company’s corporate social 
responsibility (CSOR), and (4) its attractiveness (ATTR). All four 
driver constructs are related to the competence and likeability dimen-
sions of corporate reputation. Exhibit 5.12 shows the constructs and 
their relationships, which represent the extended structural model for 
our PLS-SEM example in the remaining chapters of the text. To sum-
marize, the extended corporate reputation model has three main 
conceptual/theoretical components: (1) the target constructs of inter-
est (namely, CUSA and CUSL); (2) the two corporate reputation 
dimensions, COMP and LIKE, that represent key determinants of the 
target constructs; and (3) the four exogenous driver constructs (i.e., 
ATTR, CSOR, PERF, and QUAL) of the two corporate reputation 
dimensions.

The endogenous latent variables on the right-hand side in 
Exhibit 5.12 include a single-item construct (i.e., CUSA) and three 
reflective constructs (i.e., COMP, CUSL, and LIKE). In contrast, 
the four new driver constructs (i.e., exogenous latent variables) on 
the left-hand side of the exhibit (i.e., ATTR, CSOR, PERF, and 

Exhibit 5.11    Rules of Thumb for Bootstrapping in PLS-SEM

•	 The number of bootstrap samples must be larger than the number 
of valid observations in the original data set but should be higher; 
generally, 5,000 bootstrap samples are recommended.

•	 The bootstrap routine provides the standard error of an estimated 
coefficient (e.g., an indicator weight), which serves as the basis for 
determining the empirical t value and its corresponding p value.

•	 Use the no sign change option to obtain the most conservative results 
when running the bootstrap routine.

•	 Bootstrap confidence intervals provide additional information 
on the stability of coefficient estimates. Use the BCa method for 
constructing confidence intervals. When models are not complex 
(i.e., fewer than four constructs) and sample size is small (i.e., <300), 
use double bootstrapping. However, the running time can be 
extensive.
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QUAL) have formative measurement models in accordance with 
their role in the reputation model (Schwaiger, 2004). Specifically, 
the four new constructs are measured by a total of 21 formative 
indicators that have been derived from literature, qualitative stud-
ies, and quantitative pretests (for more details, see Schwaiger, 
2004). Exhibit 5.13 shows a complete list of the formative indica-
tors and the corresponding survey questions.

Again, we use a data set with 344 observations for our empirical 
PLS-SEM analyses. Unlike in the simple model that we used in the 
prior chapters, we now also have to consider the formative measure-
ment models when deciding on the minimum sample size required to 
estimate the model. The maximum number of arrowheads pointing at 
a particular construct occurs in the measurement model of QUAL. All 
other formatively measured constructs have fewer indicators. Simi-
larly, there are fewer arrows pointing at each of the endogenous 
constructs in the structural model. Therefore, when building on the 
10 times rule of thumb, we would need 8 · 10 = 80 observations. 
Alternatively, following Cohen’s (1992) recommendations for 

CUSLCUSA

COMP

LIKE

QUAL

PERF

CSOR

ATTR

Exhibit 5.12
The Conceptual/Theoretical Model of Corporate 
Reputation
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Exhibit 5.13    Indicators of the Formative Measurement Models

Quality (QUAL)

qual_1 The products/services offered by [the company] are of high quality.

qual_2 [The company] is an innovator, rather than an imitator with 
respect to [industry].

qual_3 [The company]’s products/services offer good value for money.

qual_4 The services [the company] offered are good.

qual_5 Customer concerns are held in high regard at [the company].

qual_6 [The company] is a reliable partner for customers.

qual_7 [The company] is a trustworthy company.

qual_8 I have a lot of respect for [the company].

Performance (PERF)

perf_1 [The company] is a very well-managed company.

perf_2 [The company] is an economically stable company.

perf_3 The business risk for [the company] is modest compared to its 
competitors.

perf_4 [The company] has growth potential.

perf_5 [The company] has a clear vision about the future of the 
company.

Corporate Social Responsibility (CSOR)

csor_1 [The company] behaves in a socially conscious way.

csor_2 [The company] is forthright in giving information to the public.

csor_3 [The company] has a fair attitude toward competitors.

csor_4 [The company] is concerned about the preservation of the 
environment.

csor_5 [The company] is not only concerned about profits.

Attractiveness (ATTR)

attr_1 [The company] is successful in attracting high-quality employees.

attr_2 I could see myself working at [the company].

attr_3 I like the physical appearance of [the company] (company, 
buildings, shops, etc.).
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multiple OLS regression analysis or running a power analysis using 
the G*Power program, one would need only 54 observations to 
detect R2 values of around 0.25, assuming a significance level of 5% 
and a statistical power of 80% (Chapter 1).

The SmartPLS project and data files for the extended corporate 
reputation model can be downloaded at http://www.pls-sem.com (i.e., 
Corporate Reputation.zip). Click with the right mouse button on 
Corporate Reputation.zip and save the file on your hard drive. Then, 
run the SmartPLS software and click on File → Import project from 
backup file in the menu. In the box that appears on the screen, locate 
and open the Corporate Reputation.zip file that you just downloaded. 
Thereafter, a new project appears with the name Corporate Reputa-
tion in the SmartPLS Project Explorer window on the left-hand side. 
This project contains several models (.splsm files) labeled Simple 
model, Extended model, Redundancy analysis ATTR, Redundancy 
analysis CSOR, and so forth, plus the data file Corporate reputation 
data.csv. Note that you do not see the file extensions such as .splsm 
and .csv in the SmartPLS Project Explorer window. Next, double-click 
on Extended model, and the extended PLS path model for the corpo-
rate reputation example opens as displayed in Exhibit 5.14.

Alternatively, if you want to practice using the SmartPLS soft-
ware, you can create the extended model by yourself. Following the 
description in Chapter 2, we use the SmartPLS software to extend  
the simple model. For this purpose, right-click on Simple model in  
the Project Explorer window and select the option Copy 
(Exhibit 5.15). Next, right-click on the Corporate Reputation project 
file and select Paste (Exhibit 5.16). A menu opens and gives you the 
option to select a name for the copy of the existing project; for exam-
ple, type in the name Extended Model or something similar. By click-
ing on OK, SmartPLS will copy the simple model under a new name 
within the Corporate Reputation project. Alternatively, you can use 
the Duplicate option. While copy and paste uses the model when the 
SmartPLS session was started or from the last time it was saved, the 
duplicate option creates a copy of the model with all its changes as it 
is shown in the modeling window. In this case, since we did not 
change the simple model, both options will lead to the same results.  

You can now start extending the simple PLS path model on cor-
porate reputation. Double-click on Extended Model in the Corporate 
Reputation project and the existing PLS path model elements will 
open it in the Modeling window. Click on the Modeling window and 
select everything by pressing on the CTRL and A keys on your 
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keyboard. Move all existing PLS path model elements further to the 
right-hand side of the Modeling window (simply left-click and hold 
down anywhere on the model, and move your mouse to the right). 
Note that if your simple model filled the screen, you may wish to 
reduce the model size by clicking on the Zoom Out button at the top 
of the Modeling window. Next, go to the Edit menu, click on Add 
Latent Variable(s), and place four additional constructs into the Mod-
eling window. Refer to Exhibit 5.14 to see where to place the new 
constructs. Right-click on any of the constructs, and a dialog box 
opens with several options (Exhibit 5.17). The Rename option allows 
you to rename each construct in accordance with the extended model 
setup shown in Exhibit 5.14.

Next draw the path relationships between the constructs. Go to 
the Edit menu, click on Add Connection(s), and connect the new 
constructs with the existing ones as shown in Exhibit 5.14. To draw 
path relationships, you need to first click on the starting constructs 
and then click on the target construct.

Exhibit 5.15    Options in the SmartPLS Project Explorer Window
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Finally, drag and drop the corresponding indicators from the 
Indicators window to each of the constructs. Initially, the indicators 
will be associated with the constructs as reflective indicators. To 
change the measurement model setup to formative, right-click on 
the construct and select Switch between formative/reflective 
(Exhibit 5.17). Doing so will switch the indicators from reflective 
to formative. The final model in your SmartPLS Modeling window 
should look similar to the one shown in Exhibit 5.14. At this point, 
be sure to save your newly drawn extended model.

Once the model is set up, we click on Calculate → PLS Algo-
rithm and run PLS-SEM using the options presented in Chapter 3 
(i.e., path weighting scheme, 300 iterations, stop criterion: 1.0E-7) 
and as displayed in Exhibit 5.18. Just like the indicator data that we 
used in the previous chapters, the Corporate reputation data.csv data 
set has almost no missing values. Only the indicators cusl_1 (three 
missing values; 0.87% of all responses on this indicator), cusl_2 (four 
missing values; 1.16% of all responses on this indicator), cusl_3 
(three missing values; 0.87% of all responses on this indicator), and 

   � Paste Option in the SmartPLS Project  
Explorer WindowExhibit 5.16
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cusa (one missing value; 0.29% of all responses on this indicator) 
have missing values. Since the number of missing values is relatively 
small (i.e., less than 5% missing values per indicator; Chapter 2), we 
use mean value replacement instead of casewise or pairwise deletion 
to treat the missing values when running the PLS-SEM algorithm. 
Then, click on Start Calculation.

When the PLS-SEM algorithm stops running, check whether the 
algorithm converged (Chapter 3). For this example, the PLS-SEM algo-
rithm will stop when the maximum number of 300 iterations or the 
stop criterion of 1.0E-7 (i.e., 0.0000001) has been reached. Go to 
Interim Results → Stop Criterion Changes in the results report to deter-
mine how the algorithm stopped. If the algorithm stopped based on the 
stop criterion, continue with the measurement model evaluation. If the 
algorithm stopped based on the number of iterations (which is, how-
ever, practically never the case; see Henseler, 2010), the calculation 
results cannot be reliably interpreted and the model setup and/or data 
need to be reconsidered. In the present example, the algorithm 
converged after eight iterations, so we can proceed with the analysis.

Exhibit 5.17    Options in the SmartPLS Modeling Window
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The results presentation in the Modeling window gives you a first 
overview of the outcomes. As shown in Exhibit 5.19, you see the 
standardized outer weights for the formative measurement models 
(e.g., QUAL), standardized outer loadings for the reflective measure-
ment models (e.g., CUSL), and a 1.000 for the relationship between 
the CUSA construct and its single-item measure. In the latter case, the 
outer relationship is always 1 regardless of whether the mode of the 
single-item construct is formative or reflective. The standardized path 
relationships between the constructs in the structural model are also 
shown, as well as the R² values for the endogenous latent variables 
(i.e., the values in the circles). Note that the exogenous constructs 
ATTR, CSOR, PERF, and QUAL, by definition, have no R² value. 
Clicking on the Calculation Results tab on the bottom left of the 
screen enables you to browse different parameter estimates for the 
constructs, as well as the inner and the outer models (see Chapter 3).

Reflective Measurement Model Evaluation

An important characteristic of PLS-SEM is that the model esti-
mates always depend on the model under consideration. For instance, 
eliminating or adding certain indicators or constructs will also have an 
effect on the model estimates in different parts of the model. Since we 
extended the initial model by adding four constructs, we need to reas-
sess the reflective measurement models according to the criteria pre-
sented in Chapter 4. However, we present the assessment in a much 
more concise way, which gives the reader some guidance on how to 
write up his or her own report in a straight-to-the-point manner—see, 
for example, the assessment of PLS-SEM results in applications such 
as Klarner, Sarstedt, Höck, and Ringle (2013), Ringle, Sarstedt, and 
Zimmermann (2011), and Schloderer et al. (2014).

To examine the results, go to the SmartPLS 3 results report. If 
this report did not open automatically after running the PLS 
Algorithm, go to the Calculation Results tab on the bottom left of 
the screen and click on Report. First check for the measures’ conver-
gent validity and internal consistency reliability (i.e., Cronbach’s 
alpha and composite reliability) under Quality Criteria → Construct 
Reliability and Validity. The results reveal that all reflectively meas-
ured constructs have AVE values of 0.688 (COMP) or higher, which 
is considerably above the critical value of 0.5 (Chapter 4). In addi-
tion, all Cronbach’s alpha and composite reliability values are well 
above the critical threshold of 0.70.
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Looking at the indicator loadings (Final Results → Outer Load-
ings in the results report) reveals that all indicators of the reflective 
constructs COMP, LIKE and CUSL have loadings of 0.821 and 
higher, as shown in Exhibit 5.20. It is important to note that PLS soft-
ware applications such as SmartPLS 3 always provide outer loadings 
and outer weights for all constructs in the PLS path model, regardless 
of whether they are measured reflectively or formatively. Thus, the 
report shown in Exhibit 5.20 displays the outer loadings for both the 
reflective and formative constructs. For the reflective measurement 
model evaluation, however, the assessment focuses only on the outer 
loadings of the reflective constructs (i.e., COMP, LIKE, and CUSL).

In the next step, we examine the measures’ discriminant validity. 
Examining the cross-loadings (Quality Criteria → Discriminant 
Validity → Cross Loadings in the results report) provides initial sup-
port for the reflective constructs’ discriminant validity as each reflec-
tive indicator loads highest on the construct it is linked to (Chapter 4). 
Reviewing the Fornell-Larcker criterion (Quality Criteria → 
Discriminant Validity → Fornell-Larcker Criterion in the results report) 
shown in Exhibit 5.21 also suggests that the constructs discriminate 
well because the square root of the AVE of each reflective construct 
(shown on the diagonal) is larger than the correlations with the remain-
ing constructs in the model (Chapter 4). Note that when assessing the 
Fornell-Larcker criterion in a model that includes formative constructs, 
one needs to compare the reflective construct’s AVE values (more pre-
cisely their square root) with all latent variable correlations (i.e., also 
those of formative constructs). However, the AVEs of formatively 
measured constructs should not be compared with the correlations. In 
fact, the AVEs are not even reported for formative constructs in 
SmartPLS (see the empty cells on the diagonal in Exhibit 5.21).

Several shortcomings of these traditional approaches to discrimi-
nant validity assessment have been identified. As a result, you should 
primarily consider the HTMT statistics, which you can also find under 
Quality Criteria → Discriminant Validity → Heterotrait-Monotrait 
Ratio (HTMT). The assessment of cross-loadings and the Fornell-
Larcker criterion can be different when additional constructs are 
added to a model, as when our example moved from a simple model 
to the extended model by adding the four formative exogenous con-
structs. In contrast, the HTMT results of the extended model do not 
change compared with those produced in the simple model. The reason 
is that the HTMT statistic is purely based on correlations among items 
of the reflectively measured constructs. Adding formative constructs 
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has no bearing on the computation of heterotrait-heteromethod and 
monotrait-heteromethod correlations. The results therefore parallel 
those presented in Chapter 4, which clearly showed that all reflec-
tively measured constructs exhibit discriminant validity. Recall that 
an HTMT value above 0.90—or above 0.85 when the constructs in 
the path model are conceptually more distinct—suggests a lack of 
discriminant validity. Thus, all constructs in the extended model 
exhibit discriminant validity based on the HTMT method.

Formative Measurement Model Evaluation

To evaluate the formative measurement models of the extended 
corporate reputation model, we follow the formative measurement 
models assessment procedure (Exhibit 5.1). First, we need to examine 
whether the formative constructs exhibit convergent validity. To do 
so, we carry out separate redundancy analyses for each construct.  

Exhibit 5.20    PLS-SEM Results for Outer Loadings
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The original questionnaire contained global single-item measures 
with generic assessments of the four phenomena—attractiveness, 
corporate social responsibility, performance, and quality—that we 
can use as measures of the dependent construct in the redundancy 
analyses. Note that when you are designing your own research study 
that includes formatively measured constructs, you need to include 
this type of global measure in the survey to be able to conduct this 
type of test for your formative constructs.

To assess convergent validity, we need to create the new mod-
els, as shown in Exhibit 5.22. Each model is included in the Smart-
PLS project file Corporate Reputation that you can download and 
import into the SmartPLS software. Each model opens after double-
clicking on it. Alternatively, you can create these four models for 
the convergent validity assessment in the Corporate Reputation 
project in SmartPLS 3. To do so, select Corporate Reputation in the 
Project window (click with the left mouse button) and then click 
the right mouse button. A box with several options appears (Exhibit 
5.15). Select the option Create New Path Model. Thereafter, you 
can select a name for the new model (e.g., Redundancy analysis 
ATTR). After pressing on the OK button, the new model (e.g., 
Redundancy analysis ATTR) appears in the Corporate Reputation 
project, and an empty modeling window shows up. Now, we follow 
the steps explained in the earlier chapters to create one of the mod-
els displayed in Exhibit  5.22 (e.g., the first one, Redundancy 
analysis ATTR).

The first box in Exhibit 5.22 shows the results for the redundancy 
analysis for the ATTR construct. The original formative construct is 
labeled with ATTR_F, whereas the global assessment of the 

Exhibit 5.21    Fornell-Larcker Criterion
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Convergent Validity ATTR

Convergent Validity CSOR

Convergent Validity PERF

Convergent Validity QUAL

0.459

0.187

0.295

-0.018

0.335

0.148

0.291

0.261 0.811 1.000

0.390

0.328

0.303

0.031

0.257

-0.041

0.170

0.268

0.091

0.232

0.805 0.648 1.000

0.857 1.0000.735

ATTR_F

CSOR_F CSOR_G

ATTR_G

attr_1

attr_global0.764attr_2

attr_3

csor_1

csor_2

csor_globalcsor_3

csor_4

csor_5

perf_1

perf_2

0.657perf_3 perf_global

qual_global

perf_4
PERF_F

QUAL_F QUAL_G

PERF_Gperf_5

qual_1

qual_2

qual_3

qual_4

qual_5

qual_6

qual_7

qual_8

0.573

0.176

0.523

0.874 1.000

Exhibit 5.22
Redundancy Analysis Assessment of Formative 
Measurement Models
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company’s attractiveness using a single-item construct is labeled with 
ATTR_G. As can be seen, this analysis yields a path coefficient of 
0.874, which is above the recommended threshold of 0.70, thus pro-
viding support for the formative construct’s convergent validity. The 
redundancy analyses of CSOR, PERF, and QUAL yield estimates of 
0.857, 0.811, and 0.805, respectively. Thus, all formatively measured 
constructs exhibit convergent validity.

In the next step, we check the formative measurement models for 
collinearity of indicators by looking at the formative indicators’ VIF 
values. To do so, go to Quality Criteria → Collinearity Statistics (VIF) → 
Outer VIF Values in the results report. Note that SmartPLS 3 also pro-
vides VIF values for reflective indicators. However, since we would 
expect high correlations among reflective indicators, we do not inter-
pret these results but focus on the formative indicators’ VIF values.

According to the results in Exhibit 5.23, qual_3 has the highest 
VIF value (2.269). Hence, VIF values are uniformly below the thresh-
old value of 5. We conclude, therefore, that collinearity does not reach 
critical levels in any of the formative constructs and is not an issue for 
the estimation of the PLS path model in the extended example on 
corporate reputation.

Next we need to analyze the outer weights for their significance 
and relevance. We first consider the significance of the outer weights 
by means of bootstrapping. To run the bootstrapping procedure, go 
to Calculate → Bootstrapping in the SmartPLS menu or left-click 
on  the wheel symbol in the tool bar labeled Calculate and select 
Bootstrapping. Then, the menu opens as displayed in Exhibit 5.24. 

We retain all previous settings for the PLS-SEM algorithm (Partial 
Least Squares tab) and the missing value treatment (Missing Values 
tab) as in the initial model estimation. Instead, we focus on the Setup 
tab where we can make the additional selections required to run the 
bootstrapping procedure (shown in Exhibit 5.24). In terms of boot-
strap samples, we recommend using 5,000 bootstrap samples. Since 
using such a great number of samples requires much computational 
time, you may choose a smaller number of samples (e.g., 500) for the 
initial model estimation. For the final results preparation, however, 
you should use the suggested number of 5,000 bootstrap samples. The 
selection Do Parallel Processing allows you to use all processors of 
your computer device. We recommend using this option since it 
makes bootstrapping much faster. Next, select the No Sign Changes 
option as it is the most conservative among the three sign change 
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options. The choice between Basic Bootstrapping and Complete 
Bootstrapping returns a reduced (basic) and a complete basic results 
report. While the first option is faster, the latter option provides more 
details that are relevant for the model evaluation. Hence, for the 

Exhibit 5.23    VIF Values
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initial model estimation, you may use Basic Bootstrapping, but we 
select Complete Bootstrapping.

Next you need to select an approach to compute the bootstrap 
confidence intervals. Since our data set has more than 300 observa-
tions (i.e., it has 344 observations), we do not use the computationally 
intensive double bootstrap routines. Instead, we use the default option 
Bias Corrected and Accelerated (BCa) Bootstrap. Finally, we select the 
0.05 significance level and follow general convention by using 
two-tailed testing. Finally, click on Start Calculation.

After running the bootstrapping procedure, SmartPLS 3 shows 
the bootstrapping results for the measurement models and struc-
tural model in the Modeling window. At this point in the analysis, 
we are primarily interested in the significance of the weights and 
therefore consider only the measurement models for now. Using the 
Calculation Results box at the bottom left of the screen, you can 
choose whether SmartPLS should display t values or p values in the 
Modeling window, individually or jointly with the path coeffi-
cients. Exhibit 5.25 shows t values for the measurement and struc-
tural model relationships that the bootstrapping procedure 
produces. Note that the results will differ from your results and will 
change again when rerunning the bootstrapping routine. This is 
because bootstrapping builds on randomly drawn samples, and 
each time you run the bootstrapping routine, different samples will 
be drawn. The differences become very small, however, if the num-
ber of bootstrapping samples is sufficiently large (e.g., 5,000). In 
terms of the measurement models, we can compare the t values 
shown in Exhibit 5.26 with the critical values from the standard 
normal distribution to decide whether the coefficients are signifi-
cantly different from zero. For example, the critical values for sig-
nificance levels of 1% (α = 0.01) and 5% (α = 0.05) probability of 
error are 2.57 and 1.96 (two-tailed), respectively. Alternatively, you 
can choose to display p  values, as shown in Exhibit 5.26, by 
clicking on the menu next to Inner model in the Calculation Results 
box at the bottom left of the screen. These correspond to the t 
values; for example, a t value of 1.96 translates into a p value of 
0.05. The p values in the formative measurement models displayed 
in Exhibit 5.26 must be lower than 0.05 to establish significant 
outer weights at a significance level of 5% (i.e., α = 0.05). Finally, 
you can also let SmartPLS display t or p values in conjunction with 
the path coefficients.

(Text continues on page 180)
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By going to the bootstrapping results report, we get a more 
detailed overview of the results. The table under Final Results → 
Outer Weights provides us with an overview of results, including 
standard errors, bootstrap mean values, t values, and p values 
(Exhibit 5.27; again, your results will look slightly different because 
bootstrapping is a random process). The original estimate of an 
outer weight (shown in the second column, Original Sample (O); 
Exhibit 5.27) divided by the bootstrap standard error (column: 
Standard Error (STERR)) for that outer weight results in its empiri-
cal t value as displayed in the second to last column in Exhibit 5.27. 
The t values translate into p values as shown in the last column.

The bootstrapping results report also provides bootstrap confi-
dence intervals. Clicking on the Confidence Intervals Bias Corrected 
tab in the bootstrapping results report shows the confidence intervals 
as derived from the BCa method (Exhibit 5.28). In addition, you can 
access the confidence interval without bias correction by clicking the 
corresponding tab in the results report. Finally, you can access all 
bootstrap sample–specific estimates by clicking the Samples tab.

Exhibit 5.29 summarizes the results for the formatively measured 
constructs ATTR, CSOR, PERF, and QUAL by showing the original 
outer weights estimates, t values, p values, and the confidence inter-
vals derived from the percentile method.

Looking at the significance levels, we find that all formative indi-
cators are significant at a 5% level, except csor_2, csor_4, qual_2, 
qual_3, and qual_4. The results report of the SmartPLS 3 software 
also provides their outer loadings, t values, and p values in the results 
table for the outer loadings. Using this information, we note that the 
lowest outer loading of these five formative indicators occurs for 
qual_2 (0.570). Furthermore, the p values of the five indicator load-
ings (i.e., csor_2, csor_4, qual_2, qual_3, and qual_4) are clearly 
below 0.01, suggesting that all loadings are significant at a level of 
1%. Moreover, prior research and theory also provide support for the 
relevance of these indicators for capturing the corporate social respon-
sibility and quality dimensions of corporate reputation (Eberl, 2010; 
Sarstedt et al., 2013; Schwaiger, 2004; Schwaiger, Sarstedt, & Taylor, 
2010). Thus, we retain the indicators in the formative constructs, even 
though their outer weights are not significant.

The analysis of outer weights concludes the evaluation of  
the formative measurement models. Considering the results from 
Chapters 4 and 5 jointly, all reflective and formative constructs 
exhibit satisfactory levels of quality. Thus, we can proceed with the 
evaluation of the structural model (Chapter 6).

(Text continues on page 185)
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SUMMARY

•	 Explain the criteria used for the assessment of formative 
measurement models. The statistical evaluation criteria for reflective 
measurement scales cannot be directly transferred to formative mea
surement models where indicators are likely to represent the con-
struct’s independent causes and thus do not necessarily correlate 
highly. Researchers must include a comprehensive set of indicators 
that fully exhausts the formative construct’s domain. Failure to con-
sider all major facets of the construct—as defined by the researcher—
entails an exclusion of important parts of the construct itself. The 
evaluation of formative measurement models starts with convergent 
validity to ensure that the entire domain of the construct and all of 
its relevant facets have been covered by the formative indicators. The 
next step involves examining whether each indicator contributes to 
forming the index. Hence, the significance and relevance of the indi-
cator weights must be assessed, and it is valuable also to report the 
bootstrap confidence interval that provides additional information 
on the stability of the coefficient estimates. Nonsignificant indicator 
weights should not automatically be interpreted as indicating poor 
measurement model quality. Rather, researchers should also consider 
a formative indicator’s absolute contribution to its construct (i.e., its 
loading). Only if both weights and loadings are low or even nonsig-
nificant should a formative indicator be deleted. In addition, poten-
tial collinearity issues among sets of formative indicators need to be 
addressed in the measurement model assessment. By accounting for 
these issues, one makes sure that the formative construct can be used 
for the PLS-SEM analysis and that the estimations of outer weights 
are correctly interpreted.

•	 Understand the basic concepts of bootstrapping for signifi-
cance testing in PLS-SEM and apply them. PLS-SEM is a 
distribution-free multivariate data analysis technique and, as such, 
does not rely on distributional assumptions. As a consequence and 
different from, for example, OLS regression, PLS-SEM does not 
initially provide t or p values to evaluate the estimates’ signifi-
cance. Instead, researchers have to rely on the bootstrapping pro-
cedure that provides bootstrap standard errors. These standard 
errors can be used to approximate t values and, in turn, p values. 
Bootstrapping is a resampling approach that draws random sam-
ples (with replacement) from the data and uses these samples to 
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estimate the path model multiple times under slightly changed data 
constellations. When running the bootstrapping procedure, 
researchers should draw 5,000 bootstrap samples, each of which 
includes the same number of cases as there are observations in the 
original data set. The random nature of the bootstrapping proce-
dure might cause arbitrary sign changes in the model estimates that 
researchers can correct for by using the construct-level or individ-
ual-level sign change options. However, choosing the no sign 
change option is strongly recommended because it is the most 
conservative option. Bootstrap confidence intervals provide further 
information on the stability of the model estimates. Researchers 
should draw on the BCa method to construct bootstrap confidence 
intervals.

•	 Use the SmartPLS software to apply the formative measure-
ment model assessment criteria and learn how to properly report the 
results of the practical example on corporate reputation. Expanding 
the corporate reputation model example by four formatively 
measured constructs allows us to continue the SmartPLS application 
of the previous chapters. The SmartPLS 3 software generates results 
for the evaluation of the formative measurement models. Besides the 
outcomes of the PLS-SEM algorithm, running the bootstrapping 
routine delivers the results required for testing the significance of 
formative indicators’ outer weights. Tables and figures for the PLS 
path model example on corporate reputation demonstrate how to 
correctly report and interpret the PLS-SEM results. This hands-on 
example not only reinforces the concepts that have been introduced 
before but also provides additional insights for their practical 
application.

REVIEW QUESTIONS

	 1.	 How do you assess the content validity of formative 
constructs?

	 2.	 Why do you need to consider the significance and relevance 
of formative indicators?

	 3.	 What VIF level indicates critical levels of indicator 
collinearity?
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	 4.	 What is the basic idea underlying bootstrapping?

	 5.	 Which sign changes procedure and number of samples 
should you choose when running the bootstrap procedure?

CRITICAL THINKING QUESTIONS

	 1.	 What is the difference between reflectively and formatively 
measured constructs? Explain the difference between outer 
loadings and outer weights.

	 2.	 Why are formative constructs particularly useful as exoge-
nous latent variables in a PLS path model?

	 3.	 Why is indicator collinearity an issue in formative measure-
ment models?

	 4.	 Critically discuss the following statement: “Nonsignificant 
indicators should be eliminated from a formative measure-
ment model as they do not contribute to forming the 
index.”

	 5.	 What value added do bootstrap confidence intervals offer 
over p values?

KEY TERMS

Absolute contribution

Absolute importance

Bias-corrected and accelerated 
(BCa) bootstrap confidence 
intervals

Bootstrap cases

Bootstrap samples

Confidence interval

Construct-level sign change 
option

Content specification

Coverage error

Critical t value

Davison and Hinkley’s double 
bootstrap

Degrees of freedom (df )

Double bootstrapping

Empirical t value

Individual-level sign change 
option

Interpretational  
confounding

Multicollinearity

No sign change option
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LEARNING OUTCOMES

1. Understand the concept of model fit in a PLS-SEM context.

2. Assess the path coefficients in the structural model.

3. Evaluate the coefficients of determination (R² values).

4. Understand and evaluate the f  ² effect size.

5. Use the blindfolding procedure to assess the predictive relevance 
(Q² value) of the path model.

6. Understand how to report and interpret the structural model 
results.

CHAPTER PREVIEW

Chapters 4 and 5 provided insights into the evaluation of reflective 
and formative measurement models. This chapter continues the anal-
ysis and focuses on the structural model that represents the underly-
ing structural theories/concepts of the path model. Assessment of the 
structural model results enables you to determine the model’s capabil-
ity to predict one or more target constructs. We first discuss the 
concept of model fit in a PLS-SEM context and then introduce a range 

C H A P T E R  6

Assessing PLS-SEM 
Results Part III
Evaluation of the Structural Model
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of measures that should be used to assess the structural model. The 
chapter concludes with a practical application and assessment of the 
PLS-SEM results of the structural model by means of our corporate 
reputation example and using the SmartPLS 3 software.

STAGE 6: ASSESSING PLS-SEM  
STRUCTURAL MODEL RESULTS

Once we have confirmed that the construct measures are reliable and 
valid, the next step addresses the assessment of the structural model 
results. This involves examining the model’s predictive capabilities 
and the relationships between the constructs. Exhibit 6.1 shows a 
systematic approach to the assessment of structural model results.

Before we describe these analyses, however, we need to exam-
ine the structural model for collinearity (Step 1). The reason is 
that the estimation of path coefficients in the structural models is 
based on OLS regressions of each endogenous latent variable on 

Exhibit 6.1    Structural Model Assessment Procedure

Assess the significance and relevance
of the structural model relationships

Assess the level of R

Step 1

Step 2

Step 3

Assess the f   effect sizeStep 4

Assess the predictive relevance Q2Step 5

Assess the q2  effect sizeStep 6

Assess structural model
for collinearity issues

2

2



192      A Primer on Partial Least Squares

its corresponding predecessor constructs. Just as in a regular mul-
tiple regression, the path coefficients might be biased if the estima-
tion involves critical levels of collinearity among the predictor 
constructs.

When examining the structural model, it is important to under-
stand that PLS-SEM estimates the parameters so that the explained 
variance of the endogenous latent variable(s) is maximized. This aspect 
of PLS-SEM is different from CB-SEM, which estimates parameters so 
that the differences between the sample covariances and those pre-
dicted by the theoretical/conceptual model are minimized. As a result, 
with CB-SEM, the covariance matrix estimated by the theoretical/
conceptual model is as close as possible to the sample covariance 
matrix. Goodness-of-fit measures such as the chi-square (χ²) statistic 
or the various fit indices associated with CB-SEM are based on the 
difference between the two covariance matrices. The notion of fit is 
therefore not fully transferrable to PLS-SEM as the method seeks a 
solution based on a different statistical objective when estimating 
model parameters (i.e., maximizing the explained variance instead of 
minimizing the differences between covariance matrices).

Instead of assessing goodness-of-fit, the structural model is pri-
marily assessed on the basis of heuristic criteria that are determined by 
the model’s predictive capabilities. These criteria, by definition, do not 
allow for testing the overall goodness of the model fit in a CB-SEM 
sense. Rather, the model is assessed in terms of how well it predicts the 
endogenous variables/constructs (see Sarstedt, Ringle, Henseler, & 
Hair, 2014, for a discussion of model fit in CB-SEM vis-à-vis PLS-
SEM’s prediction orientation). The key criteria for assessing the struc-
tural model in PLS-SEM are the significance of the path coefficients 
(Step 2), the level of the R² values (Step 3), the f ² effect size (Step 4), 
the predictive relevance Q² (Step 5), and the q² effect size (Step 6).

Nevertheless, research has proposed several PLS-SEM–based 
model fit measures, which are, however, in their early stages of devel-
opment. We therefore provide an outlook on these developments in 
Exhibit 6.2.

Step 1: Collinearity Assessment

To assess collinearity, we apply the same measures as in the evalu-
ation of formative measurement models (i.e., tolerance and VIF values) 
in Chapter 5. In doing so, we need to examine each set of predictor 
constructs separately for each subpart of the structural model. 
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While PLS-SEM was originally designed for prediction purposes, 
research has sought to extend its capabilities for theory testing by 
developing model fit measures. Model fit indices enable judging how 
well a hypothesized model structure fits the empirical data and, thus, 
help to identify model misspecifications.

One of the earliest proposed indices was by Tenenhaus et al. (2004) 
and Tenenhaus, Esposito Vinzi, Chatelin, and Lauro (2005), who 
proposed the goodness-of-fit index (GoF) as “an operational solution 
to this problem as it may be meant as an index for validating the PLS 
model globally” (Tenenhaus et al., 2005, p. 173). Henseler and Sarstedt 
(2013) challenged the usefulness of the GoF both conceptually and 
empirically. Their research shows that the GoF does not represent a 
goodness-of-fit criterion for PLS-SEM. In particular, the GoF is, unlike 
fit measures in CB-SEM, not able to separate valid models from invalid 
ones. Since the GoF is also not applicable to formatively measured 
models and does not penalize overparametrization efforts, researchers 
are advised not to use this measure.

More recently, Henseler et al. (2014) assessed the efficacy of the 
standardized root mean square residual (SRMR), a model fit measure 
well known from CB-SEM, which has previously not been applied in a 
PLS-SEM context. The SRMR is defined as the root mean square 
discrepancy between the observed correlations and the model-implied 
correlations. Because the SRMR is an absolute measure of fit, a value 
of zero indicates perfect fit. When applying CB-SEM, a value less than 
0.08 is generally considered a good fit (Hu & Bentler, 1998). But this 
threshold is likely too low for PLS-SEM. The reason is that the 
discrepancy between the observed correlations and the model-implied 
correlations plays different roles in CB-SEM and PLS-SEM. Whereas the 
CB-SEM algorithm aims at minimizing the discrepancy, in PLS-SEM, the 
discrepancy results from the model estimation, whose aim is to 
maximize the explained variance of the endogenous construct(s). That 
is, minimizing the discrepancy is the target criterion of CB-SEM, 
whereas this is not the case in PLS-SEM.

As an alternative model fit measure, researchers may use the root mean 
square residual covariance (RMStheta), which follows the same logic as 
SRMR but relies on covariances. The criterion was introduced by 
Lohmöller (1989) but has not been explored by PLS-SEM researchers 
until recently. Initial simulation results suggest a (conservative) 
threshold value for RMStheta of 0.12. That is, RMStheta values below 0.12 
indicate a well-fitting model, whereas higher values indicate a lack of 
fit (Henseler et al., 2014).

Exhibit 6.2    Model Fit Measures in PLS-SEM

(Continued)
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For  instance, in the model shown in Exhibit 6.3, Y1 and Y2 jointly 
explain Y3. Likewise, Y2 and Y3 act as predictors of Y4. Therefore, one 
needs to check whether there are critical levels of collinearity between 
each set of predictor variables, that is, Y1 and Y2 as well as Y2 and Y3.

Analogous to the assessment of formative measurement models, 
we consider tolerance values below 0.20 (VIF value above 5) in the 
predictor constructs as critical levels of collinearity. If a critical level 
of collinearity is indicated by the tolerance or VIF guidelines, one 
should consider eliminating constructs, merging predictors into a 
single construct, or creating higher-order constructs (Chapter 8) to 
treat collinearity problems.

Exhibit 6.2    (Continued)

Finally, Dijkstra and Henseler (2015a) recently introduced the exact fit 
test. Their chi-square–based test applies bootstrapping to derive p 
values of the discrepancy between the observed correlations and the 
model-implied correlations. Different from SRMR, the discrepancy is 
not expressed in the form of residuals but in terms of distances, which 
are calculated in two forms (Euclidean and geodesic distance).

Initial simulation results suggest that the SRMR, RMStheta, and exact fit test 
are capable of identifying a range of model misspecifications (Dijkstra & 
Henseler, 2015a; Henseler et al., 2014). At this time, too little is known 
about these measures’ behavior across a range of data and model 
constellations, so more research is needed. Furthermore, these criteria 
are not readily implemented in standard PLS-SEM software. However, 
SmartPLS 3 offers the SRMR measure thus far and future releases will 
include the exact fit measures and other extensions of PLS-SEM.

Apart from these developments, it is an open question whether fit 
measured as described above adds any value to PLS-SEM analyses in 
general. PLS-SEM focuses on prediction rather than on explanatory 
modeling and therefore requires a different type of validation. More 
precisely, validation of PLS-SEM results is concerned with generalization, 
which is the ability to predict sample data, or, preferably, out-of-sample 
data—see Shmueli (2010) for details. Against this background researchers 
increasingly call for the development of evaluation criteria that better 
support the prediction-oriented nature of PLS-SEM (e.g., Rigdon, 2012, 
2014b) and for an emancipation of PLS-SEM from its CB-SEM sibling 
(Sarstedt, Ringle, Henseler, & Hair, 2014). In this context, fit (as put into 
effect by SRMR), RMStheta, and the exact fit test offer little value. In fact, 
their use can even be harmful as researchers may be tempted to sacrifice 
predictive power to achieve better “fit.” Therefore, we advise against the 
routine use of such statistics in the context of PLS-SEM.
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Exhibit 6.3    Collinearity in the Structural Model

Y3

Y4

p13

p23

p24

p34

Y1

Y2

Step 2: Structural Model Path Coefficients

After running the PLS-SEM algorithm, estimates are obtained for 
the structural model relationships (i.e., the path coefficients), which 
represent the hypothesized relationships among the constructs. The 
path coefficients have standardized values approximately between –1 
and +1 (values can be smaller/larger but usually fall in between these 
bounds). Estimated path coefficients close to +1 represent strong posi-
tive relationships (and vice versa for negative values) that are usually 
statistically significant (i.e., different from zero in the population). 
The closer the estimated coefficients are to 0, the weaker are the  
relationships. Very low values close to 0 are usually not significantly 
different from zero.

Whether a coefficient is significant ultimately depends on its 
standard error that is obtained by means of bootstrapping. The 
bootstrapping routine is applied as described in Chapter 5, where 
we used the procedure to assess whether a formative indicator sig-
nificantly contributes to its corresponding construct. The bootstrap 
standard error enables computing the empirical t values and p val-
ues for all structural path coefficients. When an empirical t value is 
larger than the critical value, we conclude that the coefficient is 
statistically significant at a certain error probability (i.e., signifi-
cance level). Commonly used critical values for two-tailed tests are 
1.65 (significance level = 10%), 1.96 (significance level = 5%), and 
2.57 (significance level = 1%). Critical values for one-tailed tests are 
1.28 (significance level = 10%), 1.65 (significance level = 5%), and 
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2.33 (significance level = 1%). In marketing, researchers usually 
assume a significance level of 5%. This does not always apply, how-
ever, since consumer research studies sometimes assume a signifi-
cance level of 1%, especially when experiments are involved. In 
general, when a study is exploratory in nature, researchers often 
assume a significance level of 10%. Ultimately, the choice of the 
significance level and type of test (one or two tails) depends on the 
field of study and the study’s objective.

Most researchers use p values to assess significance levels. A p 
value is equal to the probability of obtaining a t value at least as 
extreme as the one that is actually observed, conditional on the null 
hypothesis being supported. In other words, the p value is the prob-
ability of erroneously rejecting a true null hypothesis (i.e., assuming a 
significant path coefficient when in fact it is not significant). When 
assuming a significance level of 5%, the p value must be smaller than 
0.05 to conclude that the relationship under consideration is signifi-
cant at a 5% level. For example, when we assume a significance level 
of 5% and the analysis yields a p value of 0.03 for a certain coeffi-
cient, we would conclude that the coefficient is significant at a 5% 
level. Correspondingly, when researchers want to be stricter in their 
testing of relationships and therefore assume a 1% significance level, 
the corresponding p value must be smaller than 0.01 to indicate a 
relationship is significant.

The bootstrap confidence interval also allows testing whether a 
path coefficient is significantly different from zero. The confidence 
interval provides information on the stability of the estimated 
coefficient by offering a range of plausible population values for the 
parameter dependent on the variation in the data and the sample size. 
As discussed in Chapter 5, the bootstrap confidence interval is based 
on standard errors derived from bootstrapping and specifies the range 
into which the true population parameter will fall assuming a certain 
level of confidence (e.g., 95%). If a confidence interval for an 
estimated path coefficient does not include zero, the hypothesis that 
the path equals zero is rejected, and we assume a significant effect. 
While research has brought forward a range of different bootstrap 
confidence intervals, we recommend using the BCa approach in line 
with prior research (see Chapter 5 for a discussion). Alternatively, 
when models are not complex (i.e., fewer than four constructs) and 
sample size is relatively small (e.g., <300), using the double bootstrap 
routine is beneficial.
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When interpreting the results of a path model, we need to test the 
significance of all structural model relationships using t values, p val-
ues, and the bootstrap confidence intervals. When reporting results, 
researchers usually provide t values or p values. Reporting of the 
bootstrapping confidence interval is less common despite their value 
added but is likely to increase in the future.

After examining the significance of relationships, it is important 
to assess the relevance of significant relationships. Many studies do 
not undertake this important step in their analyses but simply focus 
on the significance of effects. However, the path coefficients in the 
structural model may be significant, but their size may be very small. 
Such situations often occur with large sample sizes. An analysis of the 
relative importance of relationships is crucial for interpreting the 
results and drawing conclusions since such small coefficients, even 
though significant, may not warrant managerial attention.

The structural model path coefficients can be interpreted relative 
to one another. If one path coefficient is larger than another, its effect 
on the endogenous latent variable is greater. More specifically, the 
individual path coefficients of the path model can be interpreted just 
as the standardized beta coefficients in an OLS regression: A one-unit 
change of the exogenous construct changes the endogenous construct 
by the size of the path coefficient when everything else (i.e., all other 
constructs and their path coefficients) remains constant (ceteris pari-
bus; Hair et al., 2010). If the path coefficient is statistically significant 
(i.e., the coefficient is significantly different from zero in the popula-
tion), its value indicates the extent to which the exogenous construct 
is associated with the endogenous construct. Researchers have also 
proposed formal tests for assessing whether two path coefficients 
differ significantly in one model (Chin, Kim, & Lee, 2013). Such a 
test should be used when hypotheses relate to differences in path 
coefficients in the model, which, however, is rather rarely the case.

Researchers are often interested in evaluating not only one con-
struct’s direct effect on another but also its indirect effects via one or 
more mediating constructs. The sum of direct and indirect effects is 
referred to as the total effect. The interpretation of total effects is 
particularly useful in studies aimed at exploring the differential impact 
of several driver constructs on a criterion construct via one or more 
mediating variables. In Exhibit 6.4, for example, constructs Y1 and Y3 
are linked by a direct effect (p13 = 0.20). In addition, there is an indi-
rect effect between the two constructs via the mediating construct Y2. 
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Exhibit 6.4    Example of Direct, Indirect, and Total Effects

Y2

p13 = 0.20

p23 = 0.50p12 = 0.80

Y1 Y3

This indirect effect can be calculated as the product of the two effects 
p12 and p23 (p12 · p23 = 0.80 · 0.50 = 0.40). The total effect is 0.60, 
which is calculated as p13 + p12 · p23 = 0.20 + 0.80 · 0.50 = 0.60.

Although the direct effect of Y1 to Y3 is not very strong (i.e., 0.20), 
the total effect (both direct and indirect combined) is quite pro-
nounced (i.e., 0.60), indicating the relevance of Y1 in explaining Y3. 
This type of result suggests that the direct relationship from Y1 to Y3 
is mediated by Y2. In Chapter 7, we will deal with the question of how 
to analyze mediating effects.

Step 3: Coefficient of Determination (R² Value)

The most commonly used measure to evaluate the structural 
model is the coefficient of determination (R² value). This coefficient 
is a measure of the model’s predictive power and is calculated as the 
squared correlation between a specific endogenous construct’s actual 
and predicted values. The coefficient represents the exogenous latent 
variables’ combined effects on the endogenous latent variable. That 
is, the coefficient represents the amount of variance in the endogenous 
constructs explained by all of the exogenous constructs linked to it. 
Because the R2 is the squared correlation of actual and predicted val-
ues and, as such, includes all the data that have been used for model 
estimation to judge the model’s predictive power, it represents a mea
sure of in-sample predictive power (Rigdon, 2012; Sarstedt, Ringle, 
Henseler, & Hair, 2014).
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The R² value ranges from 0 to 1, with higher levels indicating 
higher levels of predictive accuracy. It is difficult to provide rules of 
thumb for acceptable R² values as this depends on the model 
complexity and the research discipline. Whereas R² values of 0.20 are 
considered high in disciplines such as consumer behavior, in success 
driver studies (e.g., in studies that aim at explaining customer 
satisfaction or loyalty), researchers expect much higher values, such 
as 0.75 and above. In scholarly research that focuses on marketing 
issues, R² values of 0.75, 0.50, or 0.25 for endogenous latent variables 
can, as a rule of thumb, be respectively described as substantial, 
moderate, or weak (Hair et al., 2011; Henseler et al., 2009).

Problems often arise if we use the R² value to compare models that 
are specified differently (e.g., different exogenous constructs predicting 
the same endogenous construct). For example, adding nonsignificant 
constructs to a structural model that are slightly correlated with the 
endogenous latent variable will increase the R² value. This type of 
impact is most noticeable if the sample size is close to the number of 
exogenous latent variables predicting the endogenous latent variable 
under consideration. Thus, if we use the R² value as the only basis for 
understanding the model’s predictive power, there is an inherent bias 
toward selecting models with many exogenous constructs, including 
ones that may be only slightly related to the endogenous constructs.

Selecting a model solely based on the R² value is not a good 
approach. Adding additional (nonsignificant) constructs to explain an 
endogenous latent variable in the structural model always increases 
its R² value. The more paths pointing toward a target construct, the 
higher its R² value. However, researchers typically prefer models that 
are good at explaining the data (thus, with high R² values) but also 
have fewer exogenous constructs. Such models are called 
parsimonious.

As with multiple regression, the adjusted coefficient of determina-
tion (Radj

2 ) can be used as the criterion to avoid bias toward complex 
models. This criterion is modified according to the number of exog-
enous constructs relative to the sample size. The value is formally 
defined as

( )= − − ⋅
−

− −
R R

n
n k

1 1
1

1
,adj

2 2

where n is the sample size and k is the number of exogenous latent 
variables used to predict the endogenous latent variable under 
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consideration. The R2
adj value reduces the R² value by the number of 

explaining constructs and the sample size and thus systematically 
compensates for adding nonsignificant exogenous constructs merely 
to increase the explained variance R². Note that we cannot interpret 
the Radj

2  just like the regular R2. Rather, the Radj
2  is used for comparing 

PLS-SEM results involving models with different numbers of exoge-
nous latent variables and/or data sets with different sample sizes. See 
Sarstedt et al. (2013) for an example application.

Consider the sample path model in Exhibit 6.5. We are interested 
in comparing the Radj

2  values of the endogenous construct Y3 of the 
original model that includes the two exogenous constructs Y1 and Y2 
with an extended model that additionally includes the exogenous 
construct Y0. As indicated by the path coefficient of 0.06, Y0 has a 
very weak (and likely nonsignificant) effect on Y3. The underlying 
data set has many missing values in the indicators of Y0, which 
requires the use of casewise deletion. Therefore, the estimation of the 
extended model with three exogenous constructs is based on only 
100 observations (i.e., n = 100). In contrast, the original model with-
out Y0 can be estimated with 160 observations (i.e., n = 160); 60 
observations were eliminated because of missing data in Y0. Estimat-
ing the original and extended model shows that the inclusion of Y0 
slightly increases the R2 of Y3 from 0.595 to 0.598. Therefore, from a 
prediction standpoint, one might consider it beneficial to include Y0 
in the model. But a different picture emerges when comparing the 
adjusted R2 values, which also take the model complexity and sample 
sizes into account, for the original situation (n = 160) and the extended 
situation (n = 100):

( )= − − ⋅
−

− −
=R 1 1 0.595

160 1
160 2 1

0.590,adj,Original
2

( )= − − ⋅
−

− −
=R 1 1 0.598

100 1
100 3 1

0.585.adj,Extended
2

Based on the Radj
2  values, the original model is preferable. While 

the differences in (adjusted) R2 values are not very pronounced in this 
example, they can vary in different setups that involve comparing 
models with a great number of exogenous latent variables and/or dif-
ferent sample sizes. Note that one can also use the bootstrapping 
routine to test for significant differences between (adjusted) R2 values 
between two models (for an example, see Sarstedt et al., 2013).
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Exhibit 6.5    Original and Extended Path Model

Y1

Y2
p23 = 0.55

p13 = 0.25

Y0
p03 = 0.06

Y3

Step 4: Effect Size f ²

In addition to evaluating the R² values of all endogenous 
constructs, the change in the R² value when a specified exogenous 
construct is omitted from the model can be used to evaluate whether 
the omitted construct has a substantive impact on the endogenous 
constructs. This measure is referred to as the ƒ² effect size and is 
increasingly encouraged by journal editors and reviewers. The effect 
size can be calculated as

f
R R

R
2

2 2

21
=

−
−

included excluded

included

,

where Rincluded
2  and Rexcluded

2  are the R² values of the endogenous latent 
variable when a selected exogenous latent variable is included in or 
excluded from the model. Technically, the change in the R² values is 
calculated by estimating the PLS path model twice. It is estimated the 
first time with the exogenous latent variable included (yielding Rincluded

2 ) 
and the second time with the exogenous latent variable excluded 
(yielding Rexcluded

2 ). Guidelines for assessing ƒ² are that values of 0.02, 
0.15, and 0.35, respectively, represent small, medium, and large 
effects (Cohen, 1988) of the exogenous latent variable. Effect size 
values of less than 0.02 indicate that there is no effect.

For example, consider the extended path model with the three 
exogenous constructs Y0, Y1, and Y2 as shown in Exhibit 6.5. 
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Estimating this model yields an R2 value of 0.598 (i.e., Rincluded
2

 
= 0.598). 

However, when, for example, excluding Y1 from the path model, the 
R2 value drops to 0.501 (i.e., Rexcluded

2

 
= 0.501), yielding the following 

f 2 effect size for Y1:

f 2 0 598 0 501
1 0 598

0 241=
−

−
=

. .
.

. .

Hence, we would consider the effect size of construct Y1 on the 
endogenous latent variable Y3 as medium. Another application of f ² 
effect size computations follows later in this chapter when we work 
with the example on corporate reputation.

Step 5: Blindfolding and Predictive Relevance Q²

In addition to evaluating the magnitude of the R² values as a 
criterion of predictive accuracy, researchers should also examine 
Stone-Geisser’s Q² value (Geisser, 1974; Stone, 1974). This measure 
is an indicator of the model’s out-of-sample predictive power or pre-
dictive relevance. When a PLS path model exhibits predictive rele-
vance, it accurately predicts data not used in the model estimation. In 
the structural model, Q² values larger than zero for a specific reflec-
tive endogenous latent variable indicate the path model’s predictive 
relevance for a particular dependent construct.

The Q² value is obtained by using the blindfolding procedure for 
a specified omission distance D. Blindfolding is a sample reuse tech-
nique that omits every dth data point in the endogenous construct’s 
indicators and estimates the parameters with the remaining data 
points (Chin, 1998; Henseler et al., 2009; Tenenhaus et al., 2005). The 
omitted data points are considered missing values and treated accord-
ingly when running the PLS-SEM algorithm (e.g., by using pairwise 
deletion or mean value replacement; Chapter 2). The resulting esti-
mates are then used to predict the omitted data points. The difference 
between the true (i.e., omitted) data points and the predicted ones is 
then used as input for the Q2 measure. Blindfolding is an iterative 
process that repeats until each data point has been omitted and the 
model reestimated. The blindfolding procedure is usually applied to 
endogenous constructs that have a reflective measurement model 
specification as well as to endogenous single-item constructs.

When applying the blindfolding procedure to the path model 
shown in Exhibit 6.6, the data points in the measurement model of 
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the reflective endogenous construct are estimated by means of a two-
step approach. First, the information from the structural model is 
used to predict the scores of latent variable Y3. More precisely, after 
running the PLS-SEM algorithm, the scores of the latent variables Y1, 
Y2, and Y3 are available. Instead of directly using the Y3 scores, the 
blindfolding procedure predicts these scores by using the available 
information for the structural model (i.e., the latent variable scores of 
Y1 and Y2, as well as the structural model coefficients p13 and p23). 
Specifically, the prediction of Y3 equals the standardized scores of the 
following equation: Y p Y p Y

3 13 1 23 2= ⋅ + ⋅ ,  whereby Y 3 represents the 
structural model’s prediction. These scores differ from the scores of 
Y3, which were obtained by applying the PLS-SEM algorithm because 
they result from the structural model estimates rather than those from 
the measurement model (Chapter 3).

In the second step, the predicted scores (Y 3) of the reflective 
endogenous latent variable are used to predict systematically omitted 
(or eliminated) data points of the indicators x5, x6, and x7 in the mea
surement model. The systematic pattern of data point elimination and 
prediction depends on the omission distance (D), which must be 
determined to run the blindfolding procedure. An omission distance 
of 3, for example, implies that every third data point of the indicators 
x5, x6, and x7 is eliminated in a single blindfolding round. Since the 
blindfolding procedure has to omit and predict every data point of the 
indicators used in the measurement model of a reflective endogenous 
latent variable, it has to include three rounds. Hence, the number of 
blindfolding rounds always equals the omission distance D.

Exhibit 6.6    Path Model Example of the Blindfolding Procedure

x1 w11

p13

p23

w12

Y1

Y3

x2

x3 w23

w24

Y2

x4

x6

x5

l36

l35

l37

x7
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Exhibit 6.7 shows the application of the blindfolding procedure 
with respect to the reflective endogenous latent variable Y3 shown in 
Exhibit 6.6. For illustrative purposes, the number of observations for 
the standardized data of indicators x5, x6, and x7 is reduced to seven. 
We select an omission distance of 3 in this example. We use this num-
ber for illustrative reasons. In applications, a higher omission distance 
D between 5 and 10 should be used (Apel and Wold, 1982; Hair, 
Sarstedt, Ringle, et al., 2012), which represents an omission between 
approximately 20% (i.e., D = 5) and 10% (i.e., D = 10) of the data 
points per blindfolding round. Note that [d1], [d2], and [d3] in Exhibit 
6.7 are not entries in the data matrix but are used to show how the 
data elimination pattern is applied to the data points of x5, x6, and x7. 
For example, the first data point of indicator x5 has a value of –0.452 
and is connected to [d1], which indicates that this data point is elimi-
nated in the first blindfolding round. The assignment of the omission 
distance (e.g., [d1], [d2], and [d3] in Exhibit 6.7) occurs per column. 
When the assignment of the pattern ends with [d1] in the last observa-
tion (i.e., Observation 7) in the first column of indicator x5 (Exhibit 
6.7), the procedure continues assigning [d2] to the first observation in 
the second column of indicator x6.

Exhibit 6.7 displays the assignment of the data omission pattern 
for the omission distance D of 3. It is important to note that the omis-
sion distance D has to be chosen so that the number of observations 
used in the model estimation divided by D is not an integer. If the 
number of observations divided by D results in an integer, you would 
always delete the same set of observations in each round from the data 
matrix. For example, if you have 90 observations, the omission dis-
tance must not be 9 or 10 as 90/9 = 10 and 90/10 = 9 are integers. 
Rather, you should use omission distances of 7 or 8.

As shown in Exhibit 6.7, the data points [d1] are eliminated in 
the first blindfolding round. The remaining data points are now used 
to estimate the path model in Exhibit 6.6. A missing value treatment 
function (e.g., the mean value replacement) is used for the deleted 
data points when running the PLS-SEM algorithm. These PLS-SEM 
estimates differ from the original model estimation and from the 
results of the two following blindfolding rounds. The outcomes of 
the first blindfolding round are used to first predict the Y 3 scores of 
the selected reflective endogenous latent variable. Thereafter, the pre-
dicted values of Y 3 and the estimations of the outer loadings (i.e., l35, 
l36, and l37; Exhibit 6.7) in the first blindfolding round allow every 
single eliminated data point to be predicted in this first round. The 
second and the third blindfolding rounds follow a similar process.
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After the last blindfolding round, each data point of the indica-
tors of a selected reflective endogenous latent variable has been 
removed and then predicted. Thus, the blindfolding procedure can 
compare the original values with the predicted values. If the predic-
tion is close to the original value (i.e., there is a small prediction error), 
the path model has a high predictive accuracy. The prediction errors 
(calculated as the difference between the true values [i.e., the omitted 
values] and the predicted values), along with a trivial prediction error 
(defined as the mean of the remaining data), are then used to estimate 
the Q² value (Chin, 1998). Q² values larger than 0 suggest that the 
model has predictive relevance for a certain endogenous construct. In 
contrast, values of 0 and below indicate a lack of predictive relevance.

It is important to note that the Q² value can be calculated by 
using two different approaches. The cross-validated redundancy 
approach—as described in this section—builds on the path model 
estimates of both the structural model (scores of the antecedent con-
structs) and the measurement model (target endogenous construct) of 
data prediction. Therefore, prediction by means of cross-validated 
redundancy fits the PLS-SEM approach perfectly. An alternative 
method, the cross-validated communality approach, uses only the 
construct scores estimated for the target endogenous construct (with-
out including the structural model information) to predict the omitted 
data points. We recommend using the cross-validated redundancy as 
a measure of Q2 since it includes the structural model, the key element 
of the path model, to predict eliminated data points.

Step 6: Effect Size q2

The Q2 values estimated by the blindfolding procedure represent a 
measure of how well the path model can predict the originally observed 
values. Similar to the ƒ² effect size approach for assessing R2 values, the 
relative impact of predictive relevance can be compared by means of 
the measure to the q² effect size, formally defined as follows:

q
Q Q

Q
2

2 2

21
=

−
−

included excluded

included

.

For example, to determine the q² effect size of construct Y1 on the 
reflective endogenous latent variable Y3 in Exhibit 6.6, one would com-
pute the PLS-SEM results of the model with construct Y1 (Qincluded

2 ) and, 
thereafter, of the path model without construct Y1 (Qexcluded

2 ). In doing 
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so, one has to use identical values for the omission distance D when 
computing the results of Qincluded

2  and Qexcluded
2 . As a relative measure of 

predictive relevance, values of 0.02, 0.15, and 0.35 indicate that an 
exogenous construct has a small, medium, or large predictive relevance, 
respectively, for a certain endogenous construct. An application of q² 
effect size to the reputation model follows later in this chapter. 
Exhibit 6.8 summarizes the key criteria for evaluating structural model 
results.

•	 Examine each set of predictors in the structural model for 
collinearity. Each predictor construct’s tolerance (VIF) value 
should be higher than 0.20 (lower than 5). Otherwise, consider 
eliminating constructs, merging predictors into a single construct, 
or creating higher-order constructs to treat collinearity problems.

•	 Use bootstrapping to assess the significance of path coefficients. 
The minimum number of bootstrap samples must be at least as 
large as the number of valid observations but should be 5,000. 
Critical t values for a two-tailed test are 1.65 (significance level 
= 10%), 1.96 (significance level = 5%), and 2.57 (significance 
level = 1%). Alternatively, examine the p value, which should 
be lower than 0.10 (significance level = 10%), 0.05 (significance 
level = 5%), or 0.01 (significance level = 1%). In applications, 
you should usually assume a 5% significance level.

•	 Bootstrap confidence intervals provide additional information 
on the stability of path coefficient estimates. Use the percentile 
method for constructing confidence intervals. When models are 
not complex (i.e., fewer than four constructs) and sample size is 
small, use double bootstrapping. However, the running time can 
be extensive.

•	 PLS-SEM aims at maximizing the R2 values of the endogenous latent 
variable(s) in the path model. While the exact interpretation of the 
R2 value depends on the particular model and research discipline, 
in general R2 values of 0.75, 0.50, or 0.25 for the endogenous 
construct can be described as respectively substantial, moderate, 
and weak.

•	 Use the Radj
2  when comparing models with different exogenous 

constructs and/or different numbers of observations.

•	 The effect size f 2 allows assessing an exogenous construct’s 
contribution to an endogenous latent variable’s R2 value. f 2 values 
of 0.02, 0.15, and 0.35 indicate an exogenous construct’s small, 
medium, or large effect, respectively, on an endogenous construct.

Exhibit 6.8    Rules of Thumb for Structural Model Evaluation
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•	 Predictive relevance: Use blindfolding to obtain cross-validated 
redundancy measures for each endogenous construct. Make sure 
the number of observations used in the model estimation divided 
by the omission distance D is not an integer. Choose D values 
between 5 and 10. The resulting Q² values larger than 0 indicate 
that the exogenous constructs have predictive relevance for the 
endogenous construct under consideration.

•	 The effect size q2 allows assessing an exogenous construct’s 
contribution to an endogenous latent variable’s Q2 value. As a 
relative measure of predictive relevance, q2 values of 0.02, 0.15, 
and 0.35, respectively, indicate that an exogenous construct 
has a small, medium, or large predictive relevance for a certain 
endogenous construct.

•	 For theory testing, consider using SRMR, RMStheta, or the exact fit 
test. Apart from conceptual concerns, these measures’ behaviors 
have not been researched in a PLS-SEM context in depth, and 
threshold values have not been derived yet. Following a conservative 
approach, an SRMR (RMStheta) value of less than 0.08 (0.12) indicates 
good fit. Do not use the GoF to determine model fit.

CASE STUDY ILLUSTRATION—HOW ARE PLS-SEM 
STRUCTURAL MODEL RESULTS REPORTED?

We continue with the extended corporate reputation model as intro-
duced in Chapter 5. If you do not have the PLS path model readily 
available in SmartPLS, download the file Corporate Reputation.zip 
from the http://www.pls-sem.com website and save it on your hard 
drive. Then, run the SmartPLS software and click on File → Import 
project from backup file in the menu. In the box that appears on the 
screen, locate and open the Corporate Reputation.zip file that you just 
downloaded. Thereafter, a new project appears with the name Corpo-
rate Reputation in the SmartPLS Project Explorer window on the left-
hand side. This project contains several models (.splsm files) labeled 
Simple model, Extended model, Redundancy analysis ATTR, Redun-
dancy analysis CSOR, and so forth, plus the data file Corporate repu-
tation data.csv. Next, double-click on Extended model, and the 
extended PLS path model for the corporate reputation example opens.

The assessment of the structural model builds on the results from 
the standard model estimation, the bootstrapping routine, and the 
blindfolding procedure. After running the PLS-SEM algorithm using 
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the same algorithm and missing values settings as in the previous 
chapters, SmartPLS shows the key results of the model estimation in 
the Modeling window (Exhibit 6.9). Per default, we see the path coef-
ficients as well as the R2 values of the endogenous constructs (shown 
in the circles).

For a more detailed assessment, we need to examine the Smart-
PLS results report. Following the structural model assessment proce-
dure (Exhibit 6.1), we first need to check the structural model for 
collinearity issues by examining the VIF values of all sets of predictor 
constructs in the structural model. To do so, go to Quality Criteria 
→ Collinearity Statistic (VIF) and click on the Inner VIF Values tab. 
The results table that opens (Exhibit 6.10) shows the VIF values of 
all combinations of endogenous constructs (represented by the col-
umns) and corresponding exogenous (i.e., predictor) constructs (rep-
resented by the rows). Specifically, we assess the following sets of 
(predictor) constructs for collinearity: (1) ATTR, CSOR, PERF, and 
QUAL as predictors of COMP (and LIKE); (2) COMP and LIKE as 
predictors of CUSA; and (3) COMP, LIKE, and CUSA as predictors 
of CUSL. As can be seen in Exhibit 6.10 all VIF values are clearly 
below the threshold of 5. Therefore, collinearity among the predictor 
constructs is not a critical issue in the structural model, and we can 
continue examining the results report.

To start with, we examine the R² values of the endogenous latent 
variables, which are available under Quality Criteria → R Square 
(select the Matrix view). Following our rules of thumb, the R2 values 
of COMP (0.631), CUSL (0.562), and LIKE (0.558) can be consid-
ered moderate, whereas the R² value of CUSA (0.292) is rather weak.

To obtain the effect sizes f 2 for all structural model relationships, 
go to Quality Criteria → f Square (select the Matrix view). Exhibit 6.11 
shows the f 2 values for all combinations of endogenous constructs 
(represented by the columns) and corresponding exogenous (i.e., pre-
dictor) constructs (represented by the rows). For example, LIKE has a 
medium effect size of 0.159 on CUSA and of 0.138 on CUSL. On the 
contrary, COMP has no effect on CUSA (0.018) or CUSL (0.000). 
Please note that these results differ from a manual computation of the 
f 2 values by using the aforementioned equation with values for Rincluded

2  
and Rexcluded

2 . This difference results because SmartPLS 3 uses the latent 
variable scores of the model that includes all latent variables and then 
internally excludes latent variables to obtain the Rexcluded

2 . On the con-
trary, when manually computing the f    2 values by estimating the model 
with and without a latent variable, the model changes and, thus, the 
latent variable scores. Hence, the difference of the manually computed 
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Exhibit 6.10   VIF Values in the Structural Model

Exhibit 6.11    f 2 Effect Sizes

f 2 values results from the changes in the latent variable scores due to a 
model modification, which is, however, incorrect.

Under Final Results → Path Coefficients, we find the path coef-
ficients as shown in the modeling window. Looking at the relative 
importance of the exogenous driver constructs for the perceived com-
petence (COMP), one finds that the customers’ perception of the 
company’s quality of products and services (QUAL) is most impor-
tant, followed by its performance (PERF). In contrast, the perceived 
attractiveness (ATTR) and degree to which the company acts in 
socially conscious ways (CSOR) have very little bearing on the per-
ceived competence. These two drivers are, however, of increased 
importance for establishing a company’s likeability. Moving on in the 
model, we also find that likeability is the primary driver for the cus-
tomers’ satisfaction and loyalty, as illustrated by the increased path 
coefficients compared with those of competence.

More interesting, though, is the examination of total effects. 
Specifically, we can evaluate how strongly each of the four formative 
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driver constructs (ATTR, CSOR, PERF, and QUAL) ultimately 
influences the key target variable CUSL via the mediating constructs 
COMP, LIKE, and CUSA. Total effects are shown under Final 
Results → Total Effects in the results report. We read the table 
shown in Exhibit 6.12 column to row. That is, each column repre-
sents a target construct, whereas the rows represent predecessor 
constructs. For example, with regard to loyalty, we can see that 
among the four exogenous driver constructs, quality has the stron
gest total effect on loyalty (0.248), followed by corporate social 
responsibility (0.105), attractiveness (0.101), and performance 
(0.089). Therefore, it is advisable for companies to focus on market-
ing activities that positively influence the customers’ perception of 
the quality of their products and services. By also taking the con-
struct’s indicator weights into consideration, we can even identify 
which specific element of quality needs to be addressed. Looking at 
the outer weights (Final Results → Outer Weights) reveals that 
qual_6 has the highest outer weight (0.398). This item relates to the 
survey question “[the company] is a reliable partner for customers.” 
Thus, marketing managers should try to enhance the customers’ 
perception of the reliability of their products and services by means 
of marketing activities.

The analysis of structural model relationships showed that sev-
eral path coefficients (e.g., COMP → CUSL) had rather low values. 
To assess whether these relationships are significant, we run the boot-
strapping procedure. The extraction of bootstrapping results for the 
structural model estimates is analogous to the descriptions in the 
context of formative measurement model assessment (Chapter 5). To 
run the bootstrapping procedure, go to Calculate → Bootstrapping in 

Exhibit 6.12    Total Effects
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the SmartPLS menu or go to the Modeling window and click on the 
Calculate icon, followed by Bootstrapping (note that you first may 
need to go back to the Modeling window before the Calculate icon 
appears). We retain all settings for missing value treatment and the 
PLS-SEM algorithm as in the initial model estimation and select 
the No Sign Changes option, 5,000 bootstrap samples and select the 
Complete Bootstrapping option. In the advanced settings, we choose 
Bias-Corrected and Accelerated (BCa) Bootstrap, two-tailed testing, 
and a significance level of 0.05. Next, we click Start Calculation.

After running the procedure, SmartPLS shows the bootstrapping 
results for the measurement models and structural model in the Mod-
eling window. Using the Calculation Results box at the bottom left of 
the screen, you can choose whether SmartPLS should display t values 
or p values in the Modeling window. Exhibit 6.13 shows p values for 
the structural model relationships as resulting from the bootstrapping 
procedure. Note that the results will differ from your results and will 
change again when rerunning bootstrapping as the procedure builds 
on randomly drawn samples.

Assuming a 5% significance level, we find that all relationships in 
the structural model are significant, except PERF → LIKE (p = 0.084), 
ATTR → COMP (p = 0.102), CSOR → COMP (p = 0.261), and 
COMP → CUSL (p = 0.920). These results suggest that companies 
should concentrate their marketing efforts on enhancing their likeabil-
ity (by strengthening customers’ quality perceptions) rather than their 
perceived competence to maximize customer loyalty. This is not sur-
prising, considering that customers rated mobile network operators. 
As their services (provision of network capabilities) are intangible, 
affective judgments play a much more important role than cognitive 
judgments for establishing customer loyalty. Furthermore, we learn 
that ATTR and CSOR only influence LIKE, which is also not surpris-
ing since these two driver constructs are also more affective in nature.

By going to the bootstrapping report, we get a more detailed 
overview of the results. The table under Final Results → Path Coef-
ficients provides us with an overview of results, including standard 
errors, bootstrap mean values, t values and p values. Clicking on the 
Confidence Intervals tab in the bootstrapping results report shows the 
confidence interval as derived from the BCa method (Exhibit 6.14; 
again, your results will look slightly different because bootstrapping 
is a random process). In addition, you can access the bias-corrected 
confidence interval by clicking the corresponding tab.

Finally, clicking on the Samples tab in the bootstrapping 
results report shows the results of each bootstrap run as shown in 
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Exhibit 6.15. Note that the exhibit displays only a fraction of the 
results table (i.e., the first 20 bootstrap samples). The full table 
includes the estimates of all the path coefficients for all 5,000 sub-
samples. These estimates are used to compute the bootstrapping 
mean values, standard errors, t values, and p values of all the path 
coefficients, shown in the Mean, STDEV, T-Values, P-Values table 
of the bootstrapping results report.

Exhibit 6.16 provides a summary of the path coefficient esti-
mates, t values, p values, and confidence intervals. Again, the user 
usually reports either the t values (and their significance levels) or the 
p values or the confidence intervals. We find that all criteria come to 
the same outcome for the significance of path coefficients. Otherwise, 
we recommend relying on the bootstrap confidence intervals for sig-
nificance testing (see Chapter 5 for details); Exhibit 6.16 only shows 
all results for illustrative purposes.

To examine the bootstrapping results for the total effects, go to 
Final Results → Total Effects. Exhibit 6.17 summarizes the results for 
the total effects of the exogenous constructs ATTR, CSOR, PERF, 
and QUAL on the target constructs CUSA and CUSL taken from the 
Mean, STDEV, T-Values, P-Values table of the bootstrapping results 
report. As can be seen, all total effects are significant at a 5% level.

Next, we run the blindfolding procedure to assess the predictive 
relevance of the path model. To run the procedure, go to Calculate → 
Blindfolding in the SmartPLS menu or go to the Modeling window 
and click on the Calculate icon, followed by Blindfolding. In the 
dialog box that opens, we keep all the information of the missing 
value treatment and the PLS-SEM algorithm as in the initial model 
estimation in the Partial Least Squares and Missing Values tabs. How-
ever, in the Setup tab, we need to specify the omission distance D. 
Remember that dividing the sample size by D must not yield an inte-
ger. As we have 344 observations, we can choose an omission distance 
of D = 7. Finally, click on Start Calculation.

Exhibit 6.18 shows the blindfolding results report. The only 
results table we need to focus on is the one for the Construct Cross-
validated Redundancy estimates. The first tab of the results table (as 
displayed on the right in Exhibit 6.18) presents the summary with the 
total outcomes of the blindfolding procedure (the other tabs labeled 
Case1 to Case7 show the outcomes of each of the seven blindfolding 
rounds). In the table, SSO shows the sum of the squared observations, 
SSE the sum of the squared prediction errors, and the last column (i.e., 
1 – SSE/SSO) the final value Q², which we interpret to judge the 

(Text continues on page 220)
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Path 
Coefficients t Values p Values

95% Confidence 
Intervals

Significancea 
(p < 0.05)?

ATTR → COMP 0.086 1.636 0.102 [–0.013, 0.187] No

ATTR → LIKE 0.167 2.724 0.007 [0.032, 0.273] Yes

COMP → CUSA 0.146 2.211 0.027 [0.033, 0.275] Yes

COMP → CUSL 0.006 0.100 0.920 [–0.111, 0.113] No

CSOR → COMP 0.059 1.126 0.261 [–0.036, 0.156] No

CSOR → LIKE 0.178 3.472 0.001 [0.084, 0.288] Yes

CUSA → CUSL 0.505 12.329 0.000 [0.428, 0.580] Yes

LIKE → CUSA 0.436 7.469 0.000 [0.312, 0.544] Yes

LIKE → CUSL 0.344 5.989 0.000 [0.241, 0.453] Yes

PERF → COMP 0.295 4.578 0.000 [0.172, 0.417] Yes

PERF → LIKE 0.117 1.731 0.084 [–0.012, 0.254] No

QUAL → COMP 0.430 6.661 0.000 [0.295, 0.560] Yes

QUAL → LIKE 0.380 6.018 0.000 [0.278, 0.514] Yes

aWe refer to the bootstrap confidence intervals for significance testing, as described in Chapter 5.

Exhibit 6.16 Significance Testing Results of the Structural 
Model Path Coefficients

Total Effect t Values p Values
95% Confidence 

Intervals
Significancea 
(p < 0.05)?

ATTR → CUSA 0.086 2.856 0.004 [0.024, 0.133] Yes

ATTR → CUSL 0.101 2.783 0.006 [0.026, 0.166] Yes

CSOR → CUSA 0.086 3.321 0.001 [0.044, 0.144] Yes

CSOR → CUSL 0.105 3.369 0.001 [0.053, 0.169] Yes

PERF → CUSA 0.094 2.492 0.013 [0.027, 0.173] Yes

PERF → CUSL 0.089 2.026 0.043 [0.011, 0.179] Yes

QUAL → CUSA 0.228 6.390 0.000 [0.172, 0.310] Yes

QUAL → CUSL 0.248 5.970 0.000 [0.186, 0.344] Yes

aWe refer to the bootstrap confidence intervals for significance testing, as described in Chapter 5.

Exhibit 6.17    Significance Testing Results of the Total Effects
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Exhibit 6.18    Q2 Values

model’s predictive relevance with regard to each endogenous con-
struct. As can be seen, the Q2 values of all four endogenous constructs 
are considerably above zero. More precisely, CUSL and COMP have 
the highest Q2 values (0.415), followed by LIKE (0.406) and, finally, 
CUSA (0.280). These results provide clear support for the model’s 
predictive relevance regarding the endogenous latent variables.

The final assessment addresses the q² effect sizes. These must be 
computed manually because the SmartPLS software does not pro-
vide them. To compute the q² value of a selected endogenous latent 
variable, we need the Qincluded

2  and Qexcluded
2  values. The Qincluded

2  results 
from the previous blindfolding estimation are available from 
Exhibit 6.18. The Qexcluded

2  value is obtained from a model reestima-
tion after deleting a specific predecessor of that endogenous latent 
variable. For example, the endogenous latent variable CUSL has an 
original Q² value of 0.415 (Qincluded

2 ). When CUSA is deleted from the 
path model and the model is reestimated, the Q² of CUSL drops to 
0.281 (Qexcluded

2 ). These two values are the inputs for computing the 
q² effect size of CUSA on CUSL:

q
Q Q

QCUSA CUSL→ =
−

−
=

−2
2 2

21
0 415 0 281

1
included excluded

included

. .
−−

=
0 415

0 229
.

. .

Following the rules of thumb, the q2 effect size for this relation-
ship can be considered medium. Exhibit 6.19 summarizes the results 
of the q² effect sizes with respect to all the relationships in the model. 
The endogenous constructs appear in the first row, whereas the  
predictor constructs are in the first column.
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SUMMARY

•	 Understand the concept of model fit in a PLS-SEM con-
text. The notion of model fit as known from CB-SEM is not fully 
transferrable to PLS-SEM as the method follows a different aim 
when estimating model parameters (i.e., maximizing the explained 
variance instead of minimizing the divergence between covari-
ance matrices). Instead, the structural model is primarily assessed 
on the basis of heuristic criteria that are determined by the 
model’s predictive capabilities. These criteria, by definition, do 
not allow for testing the overall goodness of the model fit in a 
CB-SEM sense. Rather, the model is assessed in terms of how well 
it predicts the endogenous variables/constructs. Nevertheless, 
research has brought forward several PLS-SEM–based model fit 
measures such as SRMR, RMStheta, and the exact fit test. While 
these measures have been shown to identify model misspecifica-
tions in various model settings, they are still in the early stages of 
development. 

•	 Assess the path coefficients in the structural model. When 
initially assessing the PLS-SEM results for the structural model, the 
first issues to examine are the significance and the relevance of coef-
ficients. Testing for significance requires application of the boot-
strapping routine and examination of t values, p values, or 
bootstrapping confidence intervals. Next, the relative sizes of path 

COMP CUSA CUSL LIKE

ATTR 0.000 0.016

COMP 0.006 –0.002

CSOR –0.005 0.018

CUSA 0.229

LIKE 0.151 0.077

PERF 0.039 0.003

QUAL 0.052 0.050

Exhibit 6.19    q2 Effect Sizes
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coefficients are compared, as well as the total effects, f ² effect size, 
and q² effect size. By interpreting these results, you can identify the 
key constructs with the highest relevance to explain the endogenous 
latent variable(s) in the structural model.

•	 Evaluate the coefficients of determination (R² values). The 
PLS-SEM method was developed primarily for prediction purposes. 
The R² values (i.e., coefficients of determination) represent the 
amount of explained variance of the endogenous constructs in the 
structural model. A well-developed path model to explain certain 
key target constructs (e.g., customer satisfaction, customer loyalty, 
or technology acceptance) should deliver sufficiently high R² values. 
The exact interpretation of the R² value depends on the particular 
research discipline. In general, R² values of 0.25, 0.50, and 0.75 for 
target constructs are considered as weak, medium, and substantial, 
respectively.

•	 Understand and evaluate the f ² effect size. The f ² effect size 
enables you to analyze the relevance of constructs in explaining selected 
endogenous constructs. More specifically, you analyze how much a 
predictor construct contributes to the R² value of a target construct in 
the structural model. Initially, you estimate the R² value with a 
particular predecessor construct. Without the predecessor construct, 
the result is a lower R² value. On the basis of the difference of the R² 
values for estimating the model with and without the predecessor 
construct, you obtain the f² effect size. Results of 0.02, 0.15, and 0.35 
are interpreted as small, medium, and large f² effect sizes, respectively.

•	 Use the blindfolding procedure for assessing the predictive 
relevance (Q² value) of the path model. The blindfolding 
procedure is a resampling technique that systematically deletes 
and predicts every data point of the indicators in the reflective 
measurement model of endogenous constructs. By comparing the 
original values with the predictions, the prediction error of the 
path model for this particular reflective target construct is 
obtained. The computation of the Q² value for assessing 
predictive relevance uses this prediction error. The path model 
has predictive relevance for a selected reflective endogenous 
construct if the Q² value is above zero. In accordance with the f ² 
effect size for the R² values, you can also compute the q² effect 
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size for the Q² values. The q² effect size of a selected construct 
and its relationship to an endogenous construct in the structural 
model use the same critical values for assessment used for the f ² 
effect size evaluation.

•	 Learn how to report and interpret structural model results. 
By extending the example on corporate reputation to include addi-
tional constructs, you can learn to systematically apply the struc-
tural model assessment criteria. The SmartPLS 3 software provides 
all relevant results for the evaluation of the structural model. The 
tables and figures for this example described in the chapter demon-
strate how to correctly interpret and report the PLS-SEM results. 
The hands-on example not only summarizes the previously intro-
duced concepts but also provides additional insights for practical 
applications of PLS-SEM.

REVIEW QUESTIONS

	 1.	 What are the key criteria for assessing the results of the struc-
tural model?

	 2.	 Why do you assess the significance of path coefficients?

	 3.	 What is an appropriate R² value level?

	 4.	 Which is the critical Q² value to establish predictive 
relevance?

	 5.	 What are the critical values for interpreting the f² and q² 
effect sizes?

CRITICAL THINKING QUESTIONS

	 1.	 What problems do you encounter in evaluating the struc-
tural model results of PLS-SEM? How do you approach this 
task?

	 2.	 Why is the use of the GoF index for PLS-SEM not advisable? 
Which other means for model fit testing have been  
proposed?
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	 3.	 Why use the bootstrapping routine for significance testing? 
Explain the algorithm options and parameters you need to 
select.

	 4.	 Explain the f² effect size.

	 5.	 How does the blindfolding procedure function and what are 
the consequences of increasing and decreasing the omission 
distance D? Explain the Q² value and the q² effect size results.

KEY TERMS

SUGGESTED READINGS

Albers, S. (2010). PLS and success factor studies in marketing. In V. Esposito 
Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial 
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2

Blindfolding
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Hypothesized relationships
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One-tailed test

Out-of-sample predictive power
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Prediction error

q² effect size
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Relevance of significant 
relationships

RMStheta

Root mean square residual  
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SRMR

Significance testing

Standard error
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Total effect

Two-tailed test
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LEARNING OUTCOMES

1. Understand the basic concepts of mediation in a PLS-SEM 
context.

2. Execute a mediation analysis using SmartPLS.

3. Comprehend the basic concepts of moderation in a PLS-SEM 
context.

4.  Use the SmartPLS software to run a moderation analysis.

CHAPTER PREVIEW

Cause-effect relationships in PLS path models imply that exogenous 
constructs directly affect endogenous constructs without any system-
atic influences of other variables. In many instances, however, this 
assumption does not hold, and including a third variable in the analy-
sis can change our understanding of the nature of the model relation-
ships. The two most prominent examples of such extensions include 
mediation and moderation. 

Mediation occurs when a third variable, referred to as a mediator 
variable, intervenes between two other related constructs. More pre-
cisely, a change in the exogenous construct results in a change of the 
mediator variable, which, in turn, changes the endogenous construct. 
Analyzing the strength of the mediator variable’s relationships with 

C H A P T E R  7

Mediator and 
Moderator Analysis
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the other constructs allows substantiating the mechanisms that under-
lie the cause-effect relationship between an exogenous construct and 
an endogenous construct. In the simplest form, the analysis considers 
only one mediator variable, but the path model can include a 
multitude of mediator variables simultaneously. 

When moderation is present, the strength or even the direction of 
a relationship between two constructs depends on a third variable. In 
other words, the nature of the relationship differs depending on the 
values of the third variable. As an example, the relationship between 
two constructs is not the same for all customers but differs depending 
on their income. As such, moderation can (and should) be seen as a 
means to account for heterogeneity in the data. 

Mediation and moderation are similar in that they describe situ-
ations in which the relationship between two constructs depends on 
a third variable. There are fundamental differences, however, in terms 
of their theoretical foundation, modeling, and interpretation. In this 
chapter, we explain and differentiate mediation and moderation, as 
well as illustrate their implementation using the corporate reputation 
PLS path model.

MEDIATION

Introduction

Mediation occurs when a third mediator variable intervenes 
between two other related constructs. More precisely, a change in the 
exogenous construct causes a change in the mediator variable, which, 
in turn, results in a change in the endogenous construct in the PLS 
path model. Thereby, a mediator variable governs the nature (i.e., the 
underlying mechanism or process) of the relationship between two 
constructs. Strong a priori theoretical/conceptual support is a key 
requirement to explore meaningful mediating effects. When that  
support is present, mediation can be a useful statistical analysis, if 
carried out properly. 

Consider Exhibit 7.1 for an illustration of mediating effects in 
terms of direct and indirect effects. Direct effects are the relationships 
linking two constructs with a single arrow. Indirect effects are those 
relationships that involve a sequence of relationships with at least one 
intervening construct involved. Thus, an indirect effect is a sequence 
of two or more direct effects and is represented visually by multiple 
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arrows. Exhibit 7.1 shows both a direct effect p3 between Y1 and Y3 
and an indirect effect of Y1 on Y3 in the form of a Y1 → Y2 → Y3 
sequence. The indirect effect of p1 ∙ p2 represents the mediating effect 
of the construct Y2 on the relationship between Y1 and Y3. 

To understand the conceptual basis of mediation, consider the 
following example of the relationship between seawater temperature 
and the number of incidents (e.g., swimmers needing to be rescued). 
We could, for example, hypothesize the following (H1): The higher the 
seawater temperature (Y1), the lower the number of incidents (e.g., 
swimmers needing to be rescued) (Y3). The rationale behind this 
hypothesis is that the body temperature declines much faster in cold 
water and, thus, exhausts swimmers more quickly. Therefore, they are 
more likely to misjudge their chances of swimming out in the sea and 
returning safely. Hence, in accordance with H1, we assume that swim-
ming in warmer water is less dangerous. The logic of this simple 
cause-effect relationship is shown in Exhibit 7.2.

Many coastal cities and lifeguard organizations have daily empir-
ical data readily available on the seawater temperature and the num-
ber of swimming incidents over many years. When using these data 
and estimating the relationship (i.e., the correlation between the sea-
water temperature and the number of incidents), however, either a 
nonsignificant or a significantly positive result for the hypothesized 
relationship is generally obtained. In the latter case, we may conclude 
that swimming in warmer water is more dangerous. Since we had 

Y2

p3

p2
p1

Y1 Y3

Exhibit 7.1    General Mediation Model



230      A Primer on Partial Least Squares

theoretical reasoning suggesting a negative relationship, there must be 
something we do not understand about the model. 

This finding reminds us that simple data exploration may lead to 
misleading and false conclusions. A priori theoretical assumptions 
and logical reasoning are key requirements when applying multivari-
ate analysis techniques. When the results do not match the expecta-
tions, researchers may find an explanation based on (1) theoretical/
conceptual considerations, (2) certain data-related issues, and/or (3) 
technical peculiarities of the statistical method used. In this example, 
theoretical/conceptual considerations enable us to adjust our previous 
considerations. 

To better understand the relationship between the seawater tem-
perature (Y1) and the number of incidents (Y3), it makes sense to 
include the number of swimmers at the selected shoreline (Y2) in the 
modeling considerations. More specifically, the higher the seawater 
temperature, the more swimmers there will be at the specific beach 
(H2). Moreover, the more swimmers there are in the water, the higher 
the likelihood of incidents occurring in terms of swimmers needing to 
be rescued (H3). Exhibit 7.3 illustrates this more complex cause-effect 
relationship.

Empirical data might substantiate the positive effects illustrated 
in Exhibit 7.3. When the complex cause-effect relationship is exam-
ined, however, it is still possible to conclude that swimming in warmer 
water is more dangerous than swimming in colder water since the two 
relationships both have a positive sign. We therefore combine the 
simple and the more complex cause-effect relationship models in the 
mediation model shown in Exhibit 7.4, which includes the mediator 
variable (Y2). In addition to H1, H2, and H3, we could propose the 
following hypothesis (H4): The direct relationship between the seawa-
ter temperature and number of incidents is mediated by the number 
of swimmers.

−
Number of
Incidents

(Y3)

Seawater
Temperature

(Y1)

Exhibit 7.2    Simple Cause-Effect Relationship
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If we use the available data to empirically estimate the model in 
Exhibit 7.4, we may obtain the estimated relationships with the 
expected signs. The counterintuitive positive relationship between the 
seawater temperature and the number of incidents becomes negative, 
as expected, when extending the model by the mediator variable 
number of swimmers. In this mediation model, the number of swim-
mers represents an appropriate mechanism to explain the relationship 
between the seawater temperature and the number of incidents. 

Number of
Swimmers

(Y2)

++

Number of
Incidents

(Y3)

Seawater
Temperature

(Y1)

Exhibit 7.3     Complex Cause-Effect Relationship

Number of
Swimmers

(Y2)

+

−

+

Number of
Incidents

(Y3)

Seawater
Temperature

(Y1)

Exhibit 7.4    Mediation Model
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Hence, the positive indirect effect via the mediator variable reveals the 
“true” relationship between the seawater temperature and the num-
ber of incidents. 

This example points out that mediation is a challenging field. An 
estimated cause-effect relationship may not be the “true” effect because 
a systematic influence—a certain phenomenon (i.e., a mediator)—has 
not been accounted for in the model. Many PLS path models include 
mediation effects, but these are usually not explicitly hypothesized 
and tested (Hair, Sarstedt, Ringle, et al., 2012). Only when the possi-
ble mediation is theoretically taken into account and also empirically 
tested can the nature of the cause-effect relationship be fully and 
accurately understood. Again, theory is always the foundation of 
empirical analyses.

Types of Mediation Effects

The question of how to test mediation has attracted considerable 
attention in methodological research over the past decades. Three dec-
ades ago, Baron and Kenny (1986) presented an approach to media-
tion analysis, which many researchers still routinely draw upon. More 
recent research, however, points to conceptual and methodological 
problems with Baron and Kenny’s (1986) approach (e.g., Hayes, 2013). 
Against this background, our description builds on Zhao, Lynch, and 
Chen (2010), who offer a synthesis of prior research on mediation 
analysis and corresponding guidelines for future research (see also 
Nitzl, Roldán, & Cepeda, in press). The authors characterize two types 
of nonmediation:

•	 Direct-only nonmediation: The direct effect is significant but 
not the indirect effect.

•	 No-effect nonmediation: Neither the direct nor indirect 
effect are significant. 

In addition, they identify three types of mediation:

•	 Complementary mediation: The indirect effect and the 
direct effect both are significant and point in the same 
direction.

•	 Competitive mediation: The indirect effect and the direct effect 
both are significant and point in opposite directions.

•	 Indirect-only mediation: The indirect effect is significant but 
not the direct effect.
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Hence, mediation may not exist at all (i.e., direct-only nonmedi-
ation and no-effect nonmediation) or, in case of a mediation, the 
mediator construct accounts either for some (i.e., complementary 
and competitive mediation) or for all of the observed relationship 
between two latent variables (i.e., indirect-only mediation). In that 
sense, Zhao et al.’s (2010) procedure closely corresponds to Baron 
and Kenny’s (1986) concept of partial mediation and full 
mediation.

Testing for the type of mediation in a model requires running a 
series of analyses, which Exhibit 7.5 illustrates. The first step addresses 
the significance of the indirect effect (p1 · p2) via the mediator variable 
(Y2). If the indirect effect is not significant (right-hand side of 
Exhibit 7.5), we conclude that Y2 does not function as a mediator in 
the tested relationship. While this result may seem disappointing at 
first sight, as it does not provide empirical support for a hypothesized 
mediating relationship, further analysis of the direct effect p3 can 
point to as yet undiscovered mediators. Specifically, if the direct effect 
is significant, we can conclude it is possible there is an omitted media-
tor, which potentially explains the relationship between Y1 and Y3 
(direct-only nonmediation). If the direct effect is also nonsignificant 
(no-effect nonmediation), however, we have to conclude that our 
theoretical framework is flawed. In this case, we should go back to 
theory and reconsider the path model setup. Note that this situation 
can occur despite a significant total effect of Y1 on Y3.

Is
p1 · p2

significant
?

Is p3
significant

?

Is p3
significant

?

Is
p1 · p2 · p3
positive?

Complementary
(partial mediation)

No effect
(no mediation)

Competitive
(partial mediation)

Indirect-only
(full mediation)

Direct-only
(no mediation)

Yes

Yes Yes

Yes

No

NoNo

No

Exhibit 7.5    Mediation Analysis Procedure
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We may, however, find general support for a hypothesized medi-
ating relationship in our initial analysis based on a significant indirect 
effect (left-hand side of Exhibit 7.5). As before, our next interest is 
with the significance of the direct effect p3. If the direct effect is non-
significant, we face the situation of indirect-only mediation. This situ-
ation represents the best-case scenario as it suggests that our mediator 
fully complies with the hypothesized theoretical framework. If the 
direct effect p3 is significant, we still find support for the hypothesized 
mediating relationship. However, this result may point to a potentially 
incomplete theoretical framework as there is likely another mediator, 
which potentially explains a greater share of the relationship between 
Y1 and Y3. 

When both the direct and indirect effects are significant, we 
can distinguish between complementary and competitive media-
tion. Complementary mediation describes a situation in which the 
direct effect and the indirect effect p1 · p2 point in the same direc-
tion. In other words, the product of the direct effect and the indi-
rect effect (i.e., p1 · p2 · p3) is positive (Exhibit 7.5). While providing 
support for the hypothesized mediating relationship, complemen-
tary mediation also provides a cue that another mediator may have 
been omitted whose indirect path has the same direction as the 
direct effect. 

On the contrary, in competitive mediation—also referred to as 
inconsistent mediation (MacKinnon, Krull, & Lockwood, 2000)—the 
direct effect p3 and either indirect effect p1 or p2 have opposite signs. 
In other words, the product of the direct effect and the indirect effect 
p1 · p2 · p3 is negative (Exhibit 7.5). Competitive mediation provides 
support for the hypothesized mediating effect but also suggests that 
another mediator may be present whose indirect effect’s sign equals 
that of the direct effect. It is important to note that in competitive 
mediation, the mediating construct acts as a suppressor variable, 
which substantially decreases the magnitude of the total effect of Y1 
on Y3. Therefore, when competitive mediation occurs, researchers 
need to carefully analyze the theoretical substantiation of all effects 
involved. Our introductory example on the relationship between 
seawater temperature and number of incidents as mediated by the 
number of swimmers constitutes a case of competitive mediation. The 
opposite signs of the direct and indirect effects can offset each other, 
so that the total effect of seawater temperature on the number of 
incidents is relatively small. 
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Testing Mediating Effects

Prior testing of the significance of mediating effects relied on the 
Sobel (1982) test. The Sobel test compares the direct relationship 
between the independent variable and the dependent variable with the 
indirect relationship between the independent variable and dependent 
variable that includes the mediation construct (Helm et al., 2010). 
The Sobel test assumes a normal distribution that is not, however, 
consistent with the nonparametric PLS-SEM method. Moreover, the 
parametric assumptions of the Sobel test usually do not hold for the 
indirect effect p1 · p2, since the multiplication of two normally distrib-
uted coefficients results in a nonnormal distribution of their product. 
Furthermore, the Sobel test requires unstandardized path coefficients 
as input for the test statistic and lacks statistical power, especially 
when applied to small sample sizes. For these reasons, research has 
dismissed the Sobel test for evaluating mediation analysis, especially 
in PLS-SEM studies (e.g., Klarner et al., 2013; Sattler et al., 2010). 

Instead of using the Sobel test, researchers should bootstrap the 
sampling distribution of the indirect effect. This approach has also 
been brought forward in a regression context (Preacher & Hayes, 
2004, 2008a) and has been implemented in Hayes’s SPSS-based PRO-
CESS macro (http://www.processmacro.org/). Bootstrapping makes 
no assumptions about the shape of the variables’ distribution or the 
sampling distribution of the statistics and can be applied to small 
sample sizes with more confidence. The approach is therefore  
perfectly suited for the PLS-SEM method and implemented in the  
SmartPLS 3 software. In addition, bootstrapping the indirect effect 
yields higher levels of statistical power compared with the Sobel test. 

Measurement Model Evaluation  
in Mediation Analysis

Evaluating mediation models requires that all quality criteria of 
the measurement models as discussed in Chapters 4 to 6 have been 
met. For example, a lack of the mediator construct’s discriminant 
validity with the exogenous and/or endogenous latent variable may 
entail a strong and significant but substantially biased indirect effect, 
leading to incorrect implications regarding the mediation. Moreover, 
lack of reliability in the case of reflective mediator constructs has a 
strong effect on the estimated relationships in the PLS path model 
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(i.e., the indirect paths can become considerably smaller than 
expected). For this reason, it is important to ensure a high reliability 
of reflective mediator constructs. 

After establishing reliable and valid measurement models for the 
mediator construct as well as the exogenous and the endogenous 
latent variables, it is important to consider all structural model evalu-
ation criteria. For instance, it is important to ensure that collinearity 
is not at a critical level, which, otherwise, may entail substantially 
biased path coefficients. Thus, as a result of collinearity, the direct 
effect may become nonsignificant, suggesting nonmediation even 
though, for example, a complementary mediation may be present. 
Likewise, high collinearity levels may result in unexpected sign 
changes, rendering any differentiation between complementary and 
competitive mediation useless. 

Multiple Mediation

In the previous sections, we considered the case of a single media-
tor variable, which accounts for the relationship between an exoge-
nous and an endogenous construct. Analyzing such a model setup is 
also referred to as simple mediation analysis. More often than not, 
however, when evaluating structural models, exogenous constructs 
exert their influence through more than one mediating variable. This 
situation requires running multiple mediation analyses. For an exam-
ple of multiple mediation with two mediators, consider Exhibit 7.6. 
In the model, p3 represents the direct effect between the exogenous 
construct and the endogenous construct. The specific indirect effect of 
Y1 on Y3 via mediator Y2 is quantified as p1 ∙ p2, whereas for the sec-
ond mediator Y4, the specific indirect effect is given by p4 ∙ p5. The 
total indirect effect is the sum of the specific indirect effects (i.e., p1 ∙ 
p2 + p4 ∙ p5). Finally, the total effect of Y1 on Y3 is the sum of the direct 
effect and the total indirect effects (i.e., p3 + p1 ∙ p2 + p4 ∙ p5). 

To test a model such as the one shown in Exhibit 7.6, researchers 
may be tempted to run a set of simple mediation analyses, one for 
each proposed mediator. However, as Preacher and Hayes (2008a, 
2008b) point out, this approach is problematic for at least two rea-
sons. First, one cannot simply add up the indirect effects calculated in 
several simple mediation analyses to derive the total indirect effect, as 
the mediators in a multiple mediation model typically will be corre-
lated. As a result, the specific indirect effects estimated using several 
simple mediation analyses will be biased and will not sum to the total 
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indirect effect through the multiple mediators. Second, hypothesis 
tests and confidence intervals calculated for specific indirect effects 
may not be accurate due to the omission of other, potentially impor-
tant mediators. The latter situation is equivalent to complementary 
and competitive mediation, as described in Zhao et al. (2010). 

By considering all mediators simultaneously in one model, we 
gain a more complete picture of the mechanisms through which an 
exogenous construct affects an endogenous construct. In a multiple 
mediation model, a specific indirect effect can be interpreted as the 
indirect effect of Y1 on Y3 through a given mediator, controlling for all 
other included mediators. Note that this indirect effect is different 
from the one we would obtain when examining multiple mediators 
separately in a simple mediation analysis. In the latter case, the indi-
rect effect may be significantly inflated except in the very unlikely 
circumstance that all other mediators are uncorrelated with the medi-
ator under consideration. 

The analysis of a multiple mediation model follows the same 
steps as shown in Exhibit 7.5 for simple mediation. That is, research-
ers should test the significance of each indirect effect (i.e., the specific 
indirect effects) and the direct effect between the exogenous construct 

Y2

p3

p4 p5

p2

p1

Y1 Y3

Y4

Exhibit 7.6    Multiple Mediation Model
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and the endogenous construct. In addition, the researcher should test 
whether the total indirect effect is significant. Assessing the signifi-
cance of the total indirect effect and the direct effect can be immedi-
ately done using the SmartPLS 3 outputs. In multiple mediation 
models, however, the total indirect effect may consist of several spe-
cific indirect effects. Assessing the significance of the specific indirect 
effects requires manually calculating each effect’s standard error. For 
this purpose, use the SmartPLS 3 results report from the bootstrap-
ping routine and simply copy and paste the path coefficients of all 
bootstrap samples into spreadsheet software such as Microsoft Excel. 
The spreadsheet software’s formula tool enables you to manually cal-
culate the specific indirect effects of all bootstrap samples. By using the 
manually calculated bootstrapping results as input, you can compute 
the standard error (i.e., which equals the standard deviation in boot-
strapping) of each specific indirect effect in the multiple mediation 
model. Dividing the specific indirect effect—as obtained when multiply-
ing the direct effects from the standard PLS-SEM analysis of the path 
model—by the standard error yields the t value of the specific indirect 
effect. Please visit the Download section at http://www.pls-sem.com, 
where you can download an Excel file, which illustrates the testing of 
multiple mediation using a modified version of the corporate reputa-
tion model. See Nitzl, Roldán, and Cepeda (in press) for more details.

Exhibit 7.7 summarizes the rules of thumb for running a media-
tion analysis in PLS-SEM. 

Case Study Illustration—Mediation

To illustrate the estimation of mediating effects, let’s consider the 
extended corporate model again. If you do not have the model readily 
available, please go back to the case study in the previous chapter and 
import the SmartPLS Project file Corporate Reputation.zip by going 
to File → Import Project from Backup File in the SmartPLS menu. 
Next, open the model by double-clicking on Extended Model. The 
model shown in Exhibit 7.8 will appear in the Modeling window. 

In the following discussion, we will further explore the relation-
ship between the two dimensions of corporate reputation (i.e., likea-
bility and competence) and the target construct customer loyalty. 
According to Festinger’s (1957) theory of cognitive dissonance, cus-
tomers who perceive that a company has a favorable reputation are 
likely to show higher levels of satisfaction in an effort to avoid cogni-
tive dissonance. At the same time, previous research has demonstrated 
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that customer satisfaction is the primary driver of customer loyalty. 
Therefore, we expect that customer satisfaction mediates the relation-
ship between likeability and customer loyalty as well as competence 
and customer loyalty. To test this notion, we apply the procedure 
shown in Exhibit 7.5.

To begin the mediation analysis, we test the significance of the 
indirect effects. The indirect effect from COMP via CUSA to CUSL 
is the product of the path coefficients from COMP to CUSA and from 
CUSA to CUSL (Mediation Path 1). Similarly, the indirect effect from 
LIKE via CUSA to CUSL is the product of the path coefficients from 
LIKE to CUSA and from CUSA to CUSL (Mediation Path 2). To test 
the significance of these path coefficients’ products, we run the boot-
strap routine. To do so, go to Calculate → Bootstrapping in the 
SmartPLS menu or click on the Calculate icon, above the Modeling 
window, followed by Bootstrapping (note that you first may need to 
go back to the Modeling window before the Calculate icon appears). 
We retain all settings for the PLS-SEM algorithm and the missing 
value treatment as before and select the No Sign Changes option, 
5,000 bootstrap samples and select the Complete Bootstrapping 
option. In the advanced settings, we choose Bias-Corrected and Accel-
erated (BCa) Bootstrap, two-tailed testing and a significance level of 
0.05. Next, we click Start Calculation.

After running the procedure, open the SmartPLS bootstrapping 
report. The table under Final Results → Indirect Effects provides us 
with an overview of results, including standard errors, bootstrap 

Exhibit 7.7    Rules of Thumb for Mediation Analyses in PLS-SEM

•	 Running mediation requires a series of analyses, which address the 
significance of the indirect and direct effects. Researchers distinguish 
between different types of mediation and nonmediation, depending 
on whether the model relationships are significant and their 
relationship to each other. 

•	 To test mediating effects, use bootstrapping instead of the Sobel test, 
which is not applicable in a PLS-SEM context.

•	 Consider all standard model evaluation criteria in the assessment of 
mediation models, such as convergent validity, discriminant validity, 
reliability, multicollinearity, R2, and so forth.

•	 To test multiple mediation models, include all mediators simultaneously 
and distinguish between specific indirect effects and total indirect 
effects.
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mean values, t values, and p values. Clicking on the Bias-Corrected 
Confidence Intervals tab in the bootstrapping results report shows the 
confidence interval as derived from the BCa method. Similarly, the 
table under Final Results → Path Coefficients offers the correspond-
ing results for the direct effects, which we need in the further analysis. 
Exhibit 7.9 summarizes the bootstrapping results for the relationships 
between COMP and CUSL as well as LIKE and CUSL. 

We find that both indirect effects are significant since neither of 
the 95% confidence intervals includes zero (see Chapter 5 for how 
to use confidence intervals for hypothesis testing). Even though it is 
not necessary to report the t value and p value when drawing on the 
bootstrap confidence intervals for significance testing, we check them 
for the completeness of our analysis. The empirical t value of the 
indirect effect (0.074) for the COMP → CUSL relationship is 2.162, 
yielding a p value of 0.031. Please note that your results will slightly 
differ due to the random nature of the bootstrapping process. Simi-
larly, for the indirect effect (0.220) of the LIKE → CUSL relationship, 
we obtain a t value of 6.207, indicating a p value of less than 0.01.

We now continue the mediation analysis procedure as shown in 
Exhibit 7.5. The next step focuses on the significance of the direct 
effects from COMP to CUSL and LIKE to CUSL. As determined in 
Chapter 6 and shown in Exhibit 7.8, the relationship from COMP to 
CUSL is weak (0.006) and statistically nonsignificant (t = 0.105; p = 
0.916). Following the mediation analysis procedure in Exhibit 7.5, we 
conclude that CUSA fully mediates the COMP to CUSL relationship. 
On the contrary, LIKE exerts a pronounced (0.344) and significant  
(t = 6.207; p < 0.001) effect on CUSL. We therefore conclude that 
CUSA partially mediates the relationship since both the direct and the 
indirect effects are significant (Exhibit 7.5). To further substantiate the 
type of partial mediation, we next compute the product of the direct 
effect and the indirect effect. Since the direct and indirect effects are 
both positive, the sign of their product is also positive (i.e., 0.344 ·  
0.220 = 0.076). Hence, we conclude that CUSA represents comple-
mentary mediation of the relationship from LIKE to CUSL.

Our findings provide empirical support for the mediating role 
of customer satisfaction in the reputation model. More specifically, 
customer satisfaction represents a mechanism that underlies the 
relationship between competence and customer loyalty. Competence 
leads to customer satisfaction, and customer satisfaction in turn 
leads to customer loyalty. For the relationship between likeability 
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and customer loyalty, customer satisfaction serves as a complemen-
tary mediator. Higher levels of likeability increase customer loyalty 
directly but also increase customer satisfaction, which in turn leads 
to customer loyalty. Hence, some of likeability’s effect on loyalty is 
explained by satisfaction.

MODERATION

Introduction

Moderation describes a situation in which the relationship between 
two constructs is not constant but depends on the values of a third  
variable, referred to as a moderator variable. The moderator variable 
(or construct) changes the strength or even the direction of a relation-
ship between two constructs in the model. For example, prior research 
has shown that the relationship between customer satisfaction and 
customer loyalty differs as a function of the customers’ income. More 
precisely, income has a pronounced negative effect on the satisfaction-
loyalty relationship—the higher the income, the weaker the relationship 
between satisfaction and loyalty. In other words, income serves as a 
moderator variable that accounts for heterogeneity in the satisfaction-
loyalty link. Thus, this relationship is not the same for all customers but 
instead differs depending on their income. As such, moderation can (and 
should) be seen as a means to account for heterogeneity in the data.

Moderating relationships are hypothesized a priori by the 
researcher and specifically tested. The testing of the moderating 
relationship depends on whether the researcher hypothesizes whether 
one specific model relationship or whether all model relationships 
depend on the scores of the moderator. In the prior example, we 
hypothesized that only the satisfaction-loyalty link is significantly 
influenced by income. These considerations also apply for the 
relationship between CUSA and CUSL in the corporate reputation 
model example. In such a setting, we would examine if and how the 
respondents’ income influences the relationship. Exhibit 7.10 shows the 
conceptual model of such a moderating relationship, which only focuses 
on the satisfaction-loyalty link in the corporate reputation model.

Alternatively, we could also hypothesize that several relationships 
in the corporate reputation model depend on some customer character-
istic, such as gender (of corporate reputation [i.e., likeability and com-
petence] on satisfaction and loyalty is different Exhibit 7.11). 
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For example, we could hypothesize that the effect of corporate reputa-
tion (i.e., likeability and competence) on satisfaction and loyalty is dif-
ferent for females compared with males. Gender would then serve as a 
grouping variable that divides the data into two subsamples, as illus-
trated in Exhibit 7.11. The same model is then estimated for each of the 
distinct subsamples. Since researchers are usually interested in compar-
ing the models and learning about significant differences between the 
subsamples, the model estimates for the subsamples are usually com-
pared by means of a multigroup analysis (Sarstedt, Henseler, & Ringle, 
2011; Chapter 8). Specifically, multigroup analysis enables the researcher 
to test for differences between identical models estimated for different 
groups of respondents (e.g., females vs. males). The general objective is 
to see if there are statistically significant differences between individual 
group models. For example, with regard to the models in Exhibit 7.11, 
the multigroup analysis would enable testing whether the 0.34 relation-
ship between LIKE and CUSL for female customers is significantly 
higher than the corresponding relationship for male customers (0.10).

In this section, our focus is on the modeling and interpretation of 
interaction effects that occur when a moderator variable is assumed 
to influence one specific relationship. In Chapter 8, we provide a brief 
introduction to the basic concepts of multigroup analysis.

Types of Moderator Variables

Moderators can be present in structural models in different forms. 
They can represent observable traits such as gender, age, or income. But 

Customer
Satisfaction

Customer
Loyalty

Income

Exhibit 7.10    Moderation (Conceptual Model)
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they can also represent unobservable traits such as risk attitude, attitude 
toward a brand, or ad liking. Moderators can be measured with a single 
item or multiple items and using reflective or formative indicators. The 
most important differentiation, however, relates to the moderator’s 
measurement scale, which involves distinguishing between categorical 
(typically dichotomous) and continuous moderators. 

In the case study on corporate reputation in the mobile phone 
industry, we could, for example, use the service-type variable (contract 
vs. prepaid) as a categorical moderator variable. These categorical vari-
ables are usually dummy coded (i.e., 0/1), whereby the zero represents 
the reference category. Note that a categorical moderator does not 
necessarily have to represent only two groups. For example, in the case 
of three groups (e.g., short-term contract, long-term contract, and pre-
paid), we could split up the moderator into two dummy variables, 
which are simultaneously included in the model. In the latter case, both 
dummy variables would take the value zero for the reference category 
(e.g., prepaid). The other two categories would be indicated by the 
value 1 in the corresponding dummy variable. Similar to OLS regres-
sions, categorical moderators can be included in a PLS path model to 
affect a specific relationship. For example, in the case study on corpo-
rate reputation, we could evaluate whether the customers’ gender has 
a significant bearing on the satisfaction-loyalty link. In most cases, 
however, researchers use a categorical moderator variable to split up 
the data set into two or more groups and estimate the models separately 

CUSLCUSA

COMP

LIKE

CUSLCUSA

COMP

LIKE

PLS Path Model Estimates
for Male Customers

PLS Path Model Estimates
for Female Customers

0.21 0.19

0.56 0.64

0.10
0.34

0.11 0.09

0.220.38

Exhibit 7.11    Multigroup Analysis
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for each group of data. Running a multigroup analysis enables identi-
fication of model relationships that differ significantly between the 
groups (Chapter 8). This approach offers a more complete picture of 
the moderator’s influence on the analysis results as the focus shifts from 
examining its impact on one specific model relationship to examining 
its impact on all model relationships. As indicated earlier, however, such 
an analysis must be grounded in theory. 

In many situations, researchers have a continuous moderator 
variable they believe can affect the strength of one specific relation-
ship between two latent variables. Returning to our case study on 
corporate reputation, we could, for example, hypothesize that the 
relationship between satisfaction and loyalty is influenced by the 
customers’ income. More precisely, we could hypothesize that the 
relationship between customer satisfaction and customer loyalty is 
weaker for high-income customers and stronger for low-income cus-
tomers. Such a moderator effect would indicate that the satisfaction-
loyalty relationship changes, depending on the level of the income. If 
this moderator effect is not present, we would assume that the strength 
of the relationship between satisfaction and loyalty is constant. 

Continuous moderators are typically measured with multiple 
items but can, in principle, also be measured using only a single item. 
When the moderator variable represents some abstract unobservable 
trait (as opposed to some observable phenomenon such as income), 
however, we clearly advise against the use of single items for construct 
measurement. Single items significantly lag behind multi-item scales 
in terms of predictive validity (Diamantopoulos et al., 2012; Sarstedt 
et al., in press), which can be particularly problematic in the context 
of moderation. The reason is that moderation is usually associated 
with rather limited effect sizes (Aguinis, Beaty, Boik, & Pierce, 2005) 
so that any lack of predictive power will make it harder to identify 
significant relationships. Furthermore, when modeling moderating 
effects, the moderator’s measurement model is included twice in the 
model—in the moderator variable itself as well as in the interaction 
term (see next section). This characteristic amplifies the limitations of 
single-item measurement in the context of moderation. 

Modeling Moderating Effects

To gain an understanding of how moderating effects are modeled, 
consider the path model shown in Exhibit 7.12. This model illustrates 
our previous example in which income serves as a moderator variable 
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(M), influencing the relationship between customer satisfaction (Y1) 
and customer loyalty (Y2). The moderating effect (p3) is represented by 
an arrow pointing at the effect p1 linking Y1 and Y2. Furthermore, when 
including the moderating effect in a PLS path model, there is also a 
direct relationship (p2) from the moderator to the endogenous con-
struct. This additional path is important (and a frequent source of 
mistake) as it controls for the direct impact of the moderator on the 
endogenous construct. If the path p2 were to be omitted, the effect of M 
on the relationship between Y1 and Y2 (i.e., p3) would be inflated. As 
can be seen, moderation is similar to mediation in that a third variable 
(i.e., a mediator or moderator variable) affects the strength of a rela-
tionship between two latent variables. The crucial distinction between 
both concepts is that the moderator variable does not depend on the 
exogenous construct. In contrast, with mediation there is a direct effect 
between the exogenous construct and the mediator variable.

The path model in Exhibit 7.12 can also be expressed mathemati-
cally using the following formula:

Y2 = (p1 + p3 · M) · Y1 + p2 · M.

As can be seen, the influence of Y1 on Y2 depends not only on the 
strength of the simple effect p1 but also on the product of p3 and M. 
To understand how a moderator variable can be integrated in the 
model, we need to rewrite the equation as follows:

Y2 = p1 · Y1+ p2 · M + p3 · (Y1 · M).

This equation shows that including a moderator effect requires 
the specification of the effect of the exogenous latent variable  

Y1 Y2

p2p3

p1

M

Exhibit 7.12    Example of a Moderating Effect
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(i.e., p1 · Y1), the effect of the moderator variable (i.e., p2 · M), and 
the product term p3 · (Y1 · M), which is also called the interaction 
term. As a result, the coefficient p3 expresses how the effect  
p1 changes when the moderator variable M is increased or decreased 
by one standard deviation. Exhibit 7.13 illustrates the concept of an 
interaction term. As can be seen, the model includes the interaction 
term as an additional latent variable covering the product of the 
exogenous latent variable Y1 and the moderator M. Because of this 
interaction term, researchers often refer to interaction effects when 
modeling moderator variables.

So far, we have looked at a two-way interaction because the mod-
erator interacts with one other variable, the exogenous latent variable 
Y1. However, it is also possible to model higher levels of interaction 
where the moderating effect is again moderated. Such a setup is also 
referred to as cascaded moderator analysis. The most common form 
of a cascaded moderator analysis is a three-way interaction. For 
example, we could imagine that the moderating effect of income is not 
constant but is itself influenced by some other variable such as age, 
which would serve as a second moderator variable in the model. See 
Henseler and Fassott (2010) for more details.

Creating the Interaction Term

In the previous section, we introduced the concept of an interac-
tion term to facilitate the inclusion of a moderator variable in the PLS 
path model. But one fundamental question remains: How should the 

Y2
Y1 p1

p2 p3

M

Y1
. M

Exhibit 7.13    Interaction Term in Moderation
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interaction term be operationalized? Research has proposed several 
approaches for creating the interaction term (e.g., Henseler & Chin, 
2010; Henseler & Fassott, 2010; Rigdon et al., 2010). In the follow-
ing pages, we discuss three prominent approaches: (1) the product 
indicator approach, (2) the orthogonalizing approach, and (3) the 
two-stage approach.

Product Indicator Approach

The product indicator approach is the standard approach for 
creating the interaction term in regression-based analyses and 
also features prominently in PLS-SEM. As we will describe later, 
however, its use is not universally recommended in PLS-SEM. 
The product indicator approach involves multiplying each indi-
cator of the exogenous latent variable with each indicator of the 
moderator variable (Chin, Marcolin, & Newsted, 2003). These 
so-called product indicators become the indicators of the interac-
tion term. Exhibit 7.14 illustrates the interaction term when both 
Y1 and M are measured by means of two indicators. Thus, the 
interaction term has four product indicators. The indicator mul-
tiplication builds on the assumption that the indicators of the 
exogenous construct and the moderator each stem from a certain 
construct domain and are in principle interchangeable. There-
fore, the product indicator approach is not applicable when the 
exogenous construct and/or the moderator are measured forma-
tively. Since formative indicators do not have to correspond to a 
predefined theoretical concept, multiplying them with another 
set of indicators will confound the conceptual domain of the 
interaction term.

The product indicator approach requires the indicators of the 
exogenous construct and the moderator variable to be reused in the 
measurement model of the interaction term. This procedure, however, 
inevitably introduces collinearity in the path model. To reduce col-
linearity problems, researchers typically standardize the indicators of 
the moderator prior to creating the interaction term. Standardization 
converts each variable to a mean of 0 and a standard deviation of 1, 
which reduces the collinearity that is introduced by indicator reuse. 
Furthermore, standardizing the indicators facilitates the interpreta-
tion of the moderating effect, a characteristic that we will discuss later 
in this chapter in greater detail. 
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Orthogonalizing Approach

The orthogonalizing approach is an extension of the product 
indicator approach. Little, Bovaird, and Widaman (2006) developed 
the approach to address two issues that are the result of the standardi-
zation of variables as implemented in the product indicator approach. 
First, while indicator standardization reduces the level of collinearity 
in the PLS path model, it does not fully eliminate it. So despite the 
standardization, collinearity in the path model may still be substan-
tial, yielding inflated standard errors or biased path coefficient esti-
mates (Chapter 6). Second, when the variables are standardized, one 
cannot readily compare the direct effect between Y1 and Y2 when no 
interaction term is included (i.e., the main effect), with the effect 
between Y1 and Y2 when the interaction term is included (i.e., the 
simple effect). We will further clarify the distinction between main 
effect and simple effect when discussing the interpretation of results. 

The orthogonalizing approach builds on the product indicator 
approach and requires creating all product indicators of the interac-
tion term. For the model in Exhibit 7.15, this would mean creating 
four product indicators: x1 · m1, x1 · m2, x2 · m1, and x2 · m2. The next 
step is to regress each product indicator on all indicators of the exog-
enous construct and the moderator variable. For the example in 

M

Y1 × M

Y2Y1

x3

x1 . m1

x1

x2

x1 . m2

x2 . m1

x2 . m2

m2

m1

p1

p2
p3

x4

Exhibit 7.14    Product Indicator Approach
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Exhibit 7.15, we would need to establish and estimate the following 
four regression models:

⋅ = ⋅ + ⋅ + ⋅ + ⋅ +

⋅ = ⋅ + ⋅ + ⋅ + ⋅ +

⋅ = ⋅ + ⋅ + ⋅ + ⋅ +

⋅ = ⋅ + ⋅ + ⋅ + ⋅ +

x m b x b x b m b m e

x m b x b x b m b m e

x m b x b x b m b m e

x m b x b x b m b m e

1 1 1,11 1 2,11 2 3,11 1 4,11 2 11

1 2 1,12 1 2,12 2 3,12 1 4,12 2 12

2 1 1,21 1 2,21 2 3,21 1 4,21 2 21

2 2 1,22 1 2,22 2 3,22 1 4,22 2 22

In each regression model, a product indicator (e.g., x1 · m1) rep-
resents the dependent variable, while all indicators of the exogenous 
construct (here, x1 and x2) and the moderator (here, m1 and m2) act as 
independent variables. When looking at the results, we are not inter-
ested in the regression coefficients b. Rather, the residual term e is the 
outcome of interest. The orthogonalizing approach uses the standard-
ized residuals e as indicators for the interaction term, as shown in 
Exhibit 7.15. 

This analysis ensures that the indicators of the interaction term 
do not share any variance with any of the indicators of the exogenous 
construct and the moderator. In other words, the interaction term is 
orthogonal to the other two constructs, precluding any collinearity 
issues among the constructs involved. Another consequence of the 
orthogonality is that the path coefficient estimates in the model with-
out the interaction term are identical to those with the interaction 
term. This characteristic greatly facilitates the interpretation of the 
moderating effect’s strength compared with the product indicator 
approach. However, because of its reliance on product indicators, the 
orthogonalizing approach is only applicable when the exogenous 
construct and the moderator variable are measured reflectively.

Two-Stage Approach

Chin et al. (2003) proposed the two-stage approach as a means 
to run a moderation analysis when the exogenous construct and/or 
the moderator are measured formatively. The general applicability of 
the two-stage approach has its roots in its explicit exploitation of PLS-
SEM’s advantage to estimate latent variable scores (Henseler & Chin, 
2010; Rigdon et al., 2010). The two stages are as follows:

Stage 1: The main effects model (i.e., without the interaction 
term) is estimated to obtain the scores of the latent variables. These 
are saved for further analysis in the second stage.
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Stage 2: The latent variable scores of the exogenous latent vari-
able and moderator variable from Stage 1 are multiplied to create a 
single-item measure used to measure the interaction term. All other 
latent variables are represented by means of single items of their latent 
variable scores from Stage 1.

Exhibit 7.16 illustrates the two-stage approach for our previous 
model, but two formative indicators are used in Stage 1 to measure 
the moderator variable. The main effects model in Stage 1 is run to 
obtain the latent variable scores for Y1, Y2, and M (i.e., LVS(Y1), 
LVS(Y2), and LVS(M)). The latent variable scores of Y2 and M are 
then multiplied to form the single item used to measure the interac-
tion term Y1 ∙ M in Stage 2. The latent variables Y1, Y2, and M are 
each measured with a single item of the latent variable scores from 
Stage 1. It is important to note that the limitations identified when 
using single items do not apply in this case, since the single item 
represents the latent variable scores as obtained from a multi-item 
measurement in Stage 1.

Guidelines for Creating the Interaction Term

Which approach should be preferred to create the interaction 
term? To answer this question, Henseler and Chin (2010) ran an 
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Exhibit 7.15    The Orthogonalizing Approach
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extensive simulation study, comparing the approaches in terms of 
their statistical power, point estimation accuracy, and prediction accu-
racy. Exhibit 7.17 summarizes their results, taking into account  
conceptual differences between the approaches as outlined before. 

To begin with, neither the product indicator approach nor the 
orthogonalizing approach is applicable when the exogenous construct 
and/or the moderator have a formative measurement model. There-
fore, when formative measures are involved, the two-stage approach 
must be used. If the exogenous construct and the moderator are mea
sured reflectively, the further choice of method depends on the aim of 
the analysis. When the objective is to determine whether or not the 
moderator exerts a significant effect on the relationship, the two-stage 
approach is preferred. This approach yields high levels of statistical 
power compared with the orthogonalization approach and especially 
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Exhibit 7.16    Two-Stage Approach
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to the product indicator approach. However, when the primary con-
cern is minimizing estimation bias, the orthogonalizing approach 
should be preferred as it performs best in terms of point accuracy. 
Similarly, when the aim is to maximize prediction of the endogenous 
construct, researchers should apply the orthogonalizing approach as 
this approach yields high prediction accuracy. 

Henseler and Chin’s (2010) study also points out that when using 
the product indicator approach, the path coefficient of the interaction 
term must not be used to quantify the strength of the moderating effect. 
Because of the PLS-SEM algorithm’s characteristic, the coefficient needs 
to be adjusted. This adjustment is, however, not implemented in stan
dard PLS-SEM software programs, including SmartPLS 3. Against this 
background and in light of Henseler and Chin’s (2010) simulation 
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Exhibit 7.17    Guidelines for Creating the Interaction Term
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results, we generally advise against the use of the product indicator 
approach. Instead, the orthogonalizing approach and particularly the 
two-stage approach are viable alternatives. The latter stands out due 
to its universal applicability, regardless of whether the moderator 
variable and/or the exogenous construct are measured formatively. 
Since the two-stage approach also exhibits a higher level of statistical 
power compared with the orthogonalizing approach, we generally 
recommend using it for modeling the interaction term. 

Model Evaluation

Measurement and structural model evaluation criteria, as dis-
cussed in Chapters 4 to 6, also apply to moderator models. When 
assessing reflective measurement models, the moderator variable must 
meet all relevant criteria in terms of internal consistency reliability, 
convergent validity, and discriminant validity. Similarly, all formative 
measurement model criteria universally apply to the moderator vari-
able. For the interaction term, however, there is no such requirement. 
The product indicator approach and the orthogonalizing approach 
require multiplying the indicators from two conceptual domains (see 
domain sampling model; Chapter 2) to form the interaction term. 
This does not imply that the product of the indicators stems from one 
specific conceptual domain. Rather, the interaction term’s measure-
ment model should be viewed as an auxiliary measurement that 
incorporates the interrelationships between the moderator and the 
exogenous construct in the path model. This characteristic, however, 
renders any measurement model assessment of the interaction term 
meaningless. Furthermore, reusing the indicators of the moderator 
variable and exogenous construct introduces high construct correla-
tions by design, violating common discriminant validity standards. 
Similarly, common measurement model evaluation standards do not 
apply when using the two-stage approach since the interaction term 
is measured with a single item. Therefore, the interaction term does 
not have to be assessed in the measurement model evaluation step.

Finally, it is also important to consider the standard criteria for 
structural model assessment. In the context of moderation, particular 
attention should be paid to the f ² effect size of the interaction effect. 
As explained in Chapter 6, this criterion enables an assessment of the 
change in the R² value when an exogenous construct is omitted from 
the model. In case of the interactions effect, the f  ² effect size indicates 
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how much the moderation contributes to the explanation of the 
endogenous latent variable. Recall that the effect size can be calcu-
lated as

f
R R

R
2

2 2

21
=

−
−

included excluded

included

,

where Rincluded
2  and Rexcluded

2  are the R² values of the endogenous latent 
variable when the interaction term of the moderator model is included 
in or excluded from the PLS path model. General guidelines for 
assessing ƒ² suggest that values of 0.02, 0.15, and 0.35 represent 
small, medium, and large effect sizes, respectively (Cohen, 1988). 
However, Aguinis et al. (2005) have shown that the average effect size 
in tests of moderation is only 0.009. Against this background, Kenny 
(2016) proposes that 0.005, 0.01, and 0.025 constitute more realistic 
standards for small, medium, and large effect sizes, respectively, but 
also points out that even these values are optimistic given Aguinis  
et al.’s (2005) review.

Results Interpretation

When interpreting the results of a moderation analysis, the pri-
mary interest is with the significance of the interaction term. If the 
interaction term’s effect on the endogenous construct is significant, we 
conclude that the moderator M has a significant moderating effect on 
the relationship between Y1 and Y2. The bootstrapping procedure, as 
explained in Chapters 5 and 6, facilitates this assessment. In case of a 
significant moderation, the next step is to determine the strength of 
the moderating effect. This analysis depends on the way the interac-
tion term was created. Specifically, we need to distinguish between the 
product indicator approach and the two-stage approach, on one 
hand, and the orthogonalizing approach, on the other.

In a model without moderation (i.e., without the moderator 
variable M) where there is only an arrow linking Y1 and Y2, the 
effect p1 is referred to as a direct effect or main effect. In the case of 
the product indicator and the two-stage approaches, such main 
effects are, however, different from the corresponding relationship 
in a moderator model shown in Exhibit 7.14 (product indicator 
approach) and Exhibit 7.16 (two-stage approach). Here, in con-
trast, p1 is referred to as a simple effect, expressing the effect of  
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Y1 on Y2 that is moderated by M. More specifically, the estimated 
value of p1 represents the strength of the relationship between  
Y1 and Y2 when the moderator variable M has a value of zero. If the 
level of the moderator variable is increased (or decreased) by one 
standard deviation unit, the simple effect p1 is expected to change 
by the size of p3. For example, if the simple effect p1 equals 0.30 and 
the moderating effect p3 has a value of −0.10, one would expect the 
relationship between Y1 and Y2 to decrease to a value of 0.30 + 
(−0.10) = 0.20, if (ceteris paribus) the mean value of the moderator 
variable M increases by one standard deviation unit (Henseler & 
Fassott, 2010).

In many model setups, however, zero is not a number on the scale 
of M or, as in the case in our example, is not a sensible value for the 
moderator. If this is the case, the interpretation of the simple effect 
becomes problematic. This is the reason why we need to standardize 
the indicators of the moderator as described earlier. Standardization 
is done by subtracting the variable’s mean from each observation and 
dividing the result by the variable’s standard error (Sarstedt & Mooi, 
2014). The standardization shifts the reference point from an income 
of zero to the average income and thus facilitates interpretation of the 
effects. Furthermore, as indicated before, the standardization reduces 
collinearity among the interaction term, the moderator, and the exog-
enous constructs, resulting from the reuse of indicators in the case of 
the product indicator approach.

As the nature of the effect between Y1 and Y2 (i.e., p1) differs for 
models with and without the moderator when using the product 
indicator or two-stage approach, we need to include an important 
note of caution. If one is interested in testing the significance of the 
main effect p1 between Y1 and Y2, the PLS-SEM analysis should be 
initially executed without the moderator. The evaluation and interpre-
tation of results should follow the procedures outlined in Chapter 6. 
Then, the moderator analysis follows as complementary analysis for 
the specific moderating relationship. This issue is important because 
the direct effect becomes a simple effect in the moderator model, 
which differs in its estimated value, meaning, and interpretation. The 
simple effect represents the relationship between an exogenous and 
an endogenous latent variable when the moderator variable’s value is 
equal to its mean value (provided standardization has been applied). 
Hence, interpreting the simple effect results of a moderator model as 
if it were a direct effect (e.g., for testing the hypothesis of a significant 
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relationship p1 between Y1 and Y2) may involve incorrect and mislead-
ing conclusions (Henseler & Fassott, 2010).

The above considerations are relevant only when using the 
product indicator or two-stage approach for creating the interaction 
term. The situation is different when using the orthogonalizing 
approach. As a consequence of the orthogonality of the interaction 
term, the estimates of the simple effect in a model with an interac-
tion term are (almost) identical to the parameter estimates of the 
direct effect in a model without interaction. That is, for example, the 
differentiation between a direct effect or main effect and a simple 
effect is not relevant when the orthogonalizing approach has been 
used. Hypotheses relating to the direct and the moderating effect can 
be assessed in one model.

Beyond understanding these aspects of moderator analysis, 
interpretation of moderation results is often quite challenging. For 
this reason, graphical illustrations of results support understanding 
them and drawing conclusions. A common way to illustrate the 
results of a moderation analysis is by slope plots. Webpages such 
as those by Jeremy Dawson (http://www.jeremydawson.co.uk/
slopes.htm) or Kristopher Preacher (http://quantpsy.org/interact/
mlr2.htm) provide online tools for corresponding computations 
and simple slope plot extractions. In our example of a two-way 
interaction (Exhibit 7.13), suppose that the relationship between 
Y1 and Y2 has a value of 0.50, the relationship between M and Y2 
has a value of 0.10, and the interaction term (Y1 · M) has a 0.25 
relationship with Y2. Exhibit 7.18 shows the slope plot for such a 
setting, where the x-axis represents the exogenous construct (Y1) 
and the y-axis the endogenous construct (Y2). 

The two lines in Exhibit 7.18 represent the relationship between 
Y1 and Y2 for low and high levels of the moderator construct M. Usu-
ally, a low level of M is one standard deviation unit below its average 
(straight line in Exhibit 7.18) while a high level of M is one standard 
deviation unit above its average (dotted line in Exhibit 7.18). Because 
of the positive moderating effect as expressed in the 0.25 relationship 
between the interaction term and the endogenous construct, the high 
moderator line’s slope is steeper. That is, the relationship between Y1 
and Y2 becomes stronger with high levels of M. For low levels of M, 
the slope is much flatter, as shown in Exhibit 7.18. Hence, with low 
levels of the moderator construct M, the relationship between Y1 and 
Y2 becomes weaker. 
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Moderated Mediation and Mediated Moderation

With the advent of mediation and moderation analyses, there 
have been occasional discussions of how to combine these two ana-
lytic strategies in theoretically interesting ways. These analyses are 
framed in terms of a moderated mediation or a mediated moderation, 
depending on the way the researcher defines the influence of the  
moderator or mediator variable. 

Moderated mediation occurs when a moderator variable inter-
acts with a mediator variable such that the value of the indirect effect 
changes depending on the value of the moderator variable. Such a 
situation is also referred to as a conditional indirect effect because the 
value of the indirect effect is conditional on the value of the modera-
tor variable. In other words, if the mechanism linking an exogenous 
construct to an endogenous construct through a mediator is a func-
tion of another variable, then it can be said to be moderated by that 
variable. Consider Exhibit 7.19 for an example of a moderated 
mediation. In this model, the relationship between the exogenous 
construct Y1 and the mediator variable Y2 is assumed to be moderated 
by M. Following the standard approach for testing moderation in a 
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path model, we would establish an interaction term of the indicators 
measuring the moderator variable M and the exogenous construct Y1, 
as shown in Exhibit 7.20.

To claim that mediation is moderated, researchers traditionally 
note that there needs to be evidence of a significant moderation of the 
path linking Y1 to Y2 (e.g., Muller, Judd, & Yzerbyt, 2005; Preacher, 
Rucker, & Hayes, 2007), which is equivalent to observing a signifi-
cant path p5 in Exhibit 7.20. More recently, however, Hayes (2015) 
has stressed that a nonsignificant moderation does not necessarily 
imply that the indirect effect of Y1 on Y3 is not moderated by M. The 
author points out that researchers have to consider the moderator’s 
impact on the indirect effect as a whole rather than on one element of 
the mediating effect in isolation (in this case, the path p2). To formally 
test such an impact, Hayes (2015) proposes the index of moderated 
mediation, which is defined as follows:

w = p1 · p2 + p2 · p5 · M.

In this formula, the path coefficients refer to the relationships 
between the constructs, as shown in Exhibit 7.20, while M refers to 
the latent variable scores of the moderator variable. If the index w is 
significantly different from zero, we can conclude that the indirect 
effect of Y1 on Y3 through Y2 is not independent of M but, rather, 
depends on M. To test whether this is the case, we can use the boot-
strap sample–specific path coefficients and latent variable scores of M 
as input to compute w for each bootstrap sample. Using this informa-
tion, we can easily derive a standard error and t value for w.

Y1 Y3

Y2

M

Exhibit 7.19     Moderated Mediation (Conceptual Model)
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Other types of moderated mediation can occur such as when the 
relationship between the mediator Y2 and the endogenous construct 
Y3 is moderated or when M additionally influences the simple effect 
between Y1 and Y3. Furthermore, moderation can also occur in mul-
tiple mediation models, affecting one or more model relationships. See 
Hayes (2015) for further details and Coelho and Henseler (2012) for 
an application of a moderated mediation model in the field of 
marketing.

The second way of combining mediation and moderation is by 
means of a mediated moderation. Again, consider the moderator 
model in Exhibit 7.13. In the case of a mediated moderation, the mod-
erating effect p3 from the interaction term Y1 · M to the dependent 
variable Y2 is mediated by another construct. Hence, the mediator 
variable intervenes with the moderating effect in that a change in the 
interaction term results in a change of the mediator variable, which, in 
turn, translates to a variation of the dependent variable in the modera-
tor model. In other words, the mediator variable governs the nature 
(i.e., the underlying mechanism or process) of the moderating effect. 
With respect to these considerations, Hayes (2013) advises against the 
explicit testing of mediated moderation since the corresponding anal-
ysis provides no additional insights into the path model effects. More 
specifically, the interaction term in a mediated moderation model “has 

Y1 Y3

Y2

M

Y1 · M

p2p1

p3

p4

p5

Exhibit 7.20    Interaction Term in a Moderated Mediation Model
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no substantive grounding in the measurement or manipulation pro-
cess. The product does not quantify anything. And if . . . [the interac-
tion term] has no meaning and no substantive interpretation, then 
what does the indirect effect of a product mean? The answer, in my 
opinion, is that it means nothing” (Hayes, 2013, p. 388). Further-
more, it is usually very challenging and oftentimes impossible to 
establish theoretically/conceptually reasonable underpinnings of 
mediated moderation models that researchers can test empirically. For 
these reasons, we follow Hayes’s (2013) call to disregard the concept 
of mediated moderation. Instead, researchers should focus on 
moderated mediation. 

Exhibit 7.21 summarizes the rules of thumb for running a 
moderation analysis in PLS-SEM.

Case Study Illustration—Moderation

To illustrate the estimation of moderating effects, let’s consider 
the extended corporate model again, as shown in Exhibit 7.8 earlier 
in this chapter. In the following discussion, we focus on the relation-
ship between customer satisfaction and customer loyalty. Specifically, 
we introduce switching costs as a moderator variable that can be 
assumed to negatively influence the relationship between satisfaction 
and loyalty. The higher the perceived switching costs, the weaker the 
relationship between these two constructs. We use an extended form 
of Jones, Mothersbaugh, and Beatty’s (2000) scale and measure 
switching costs reflectively using four indicators (switch_1 to 
switch_4; Exhibit 7.22), each measured on a 5-point Likert scale  
(1 = fully disagree, 5 = fully agree). 

We first need to extend the original model by including the mod-
erator variable. To do so, enter a new construct in the model (see 
Chapter 2 for detailed explanations), rename it as SC (i.e., switching 
costs), and draw a path relationship from the newly added moderator 
variable to the CUSL construct. Next, we need to assign the indica-
tors switch_1, switch_2, switch_3, and switch_4 to the SC construct. 
Exhibit 7.23 shows the resulting main effects model (i.e., the extended 
model plus SC linked to CUSL) in the SmartPLS Modeling window.

In the next step, we need to create the interaction term. The 
SmartPLS 3 software offers an option to automatically include an 
interaction term based on the product indicator, orthogonalizing, or 
two-stage approach. In this case study, our primary concern is with 
disclosing the significance of a moderating effect (which is usually the 
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case in PLS-SEM applications), making the two-stage approach the 
method of choice. Furthermore, the two-stage approach is the most 
versatile approach as it also works when the exogenous construct 
and/or the moderator are measured formatively. To include an inter-
action term, right-click in the target construct CUSL and choose the 
option Add Moderating Effect (Exhibit 7.24).

In the screen that follows, specify SC as the Moderator Variable 
and CUSA as the Independent Variable and choose the Two-Stage 
option as well as Standardized and Automatic under Advanced  
Settings (Exhibit 7.25). 

When you click on OK, SmartPLS will include the interaction 
term labeled Moderating Effect 1 in the Modeling window. If you like, 
you can right-click on this construct and select the Rename option to 
choose a different name (e.g., CUSA * SC) for the interaction term. 

Exhibit 7.21    Rules of Thumb for Moderator Analyses in PLS-SEM

•	 For the creation of the interaction term, use the two-stage approach 
when the exogenous construct and/or the moderator are measured 
formatively or when the aim is to disclose a significant moderating 
effect. Alternatively, use the orthogonalizing approach, especially 
when the aim is to minimize estimation bias of the moderating effect 
or to maximize prediction. Independent from these aspects, the 
two-stage approach is very versatile and should generally be given 
preference for creating the interaction term.

•	 The moderator variable must be assessed for reliability and validity 
following the standard evaluation procedures for reflective and 
formative measures. However, this does not hold for the interaction 
term, which relies on an auxiliary measurement model generated 
by reusing indicators of the exogenous construct and the moderator 
variable.

•	 Standardize the data when running a moderator analysis.

•	 In the results interpretation and testing of hypotheses, differentiate 
between the direct effect (or main effect), on one hand, and simple 
effect, on the other. The direct effect expresses the relationship 
between two constructs when no moderator is included. On the 
contrary, the simple effect expresses the relationship between two 
constructs when moderated by a third variable, and this moderator 
has an average value (provided the data are standardized).

•	 When testing a moderated mediation model, use Hayes’s (2015) 
index of moderated mediation. 

•	 Do not use mediated moderation models. 



264      A Primer on Partial Least Squares

Its different color also indicates that this construct is an interaction 
term. Again, right-click on the interaction term and choose the menu 
option Show Indicators of Selected Constructs. The indicator  

Exhibit 7.22    Indicators for Measuring Switching Costs

switch_1 It takes me a great deal of time to switch to another 
company.

switch_2 It costs me too much to switch to another company.

switch_3 It takes a lot of effort to get used to a new company with its 
specific “rules” and practices.

switch_4 In general, it would be a hassle switching to another 
company.

COMP

CUSLCUSA

cusa

comp_1 comp_2 comp_3

switch_1

switch_2

switch_3

switch_4

cusl_1

cusl_2

cusl_3

SC

LIKE

like_1 like_2 like_3

Exhibit 7.23    Main Effects Model
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CUSA * SC generated in the second stage of the two-stage approach 
will then appear in the Modeling window. We can now proceed with 
the analysis by running the PLS-SEM algorithm (using the path 
weighting scheme and mean value replacement for missing values) as 
described in the earlier chapters. Exhibit 7.26 shows the results in the 
Modeling window. 

The evaluation of the moderator variable’s measurement model 
shows that the construct measures are reliable and valid. All indicator 
loadings are above 0.70, and the convergent validity assessment yields 
an AVE of 0.705, providing support for convergent validity of the 
switching cost moderator (SC). Cronbach’s alpha and composite reli-
ability are 0.858 and 0.905, respectively, indicating internal consis
tency reliability. In terms of discriminant validity, SC exhibits increased 
HTMT values only with COMP (0.850) and LIKE (0.802). A further 
analysis of these HTMT values using bootstrapping (no sign changes, 
complete bootstrapping, BCa bootstrap, two-tailed testing, and stan
dard settings for the PLS-SEM algorithm and missing value treat-
ment), however, shows that the bias-corrected 95% confidence 
intervals of SC’s HTMT values do not include 1. This result provides 

Exhibit 7.24    Add Moderating Effect Menu Option
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support for the measures’ discriminant validity. Due to the inclusion of 
additional constructs in the path model (i.e., SC and the interaction 
term), the measurement properties of all other constructs in the path 
model will change (even though changes will likely be marginal). Reana-
lyzing all measurement models provides support for the measures’ reli-
ability and validity. Note that the measurement model results shown in 
the Modeling window stem from Stage 1 of the two-stage approach. 
The structural model results, however, stem from Stage 2 of the two-
stage approach when all constructs are measured with single items.

Our next concern is with the size of the moderating effect. As can 
be seen in Exhibit 7.26, the interaction term has a negative effect on 

0.398 0.229 0.190

0.824 0.821 0.844
0.895

0.743
0.819

0.892

0.631

0.146 -0.020 0.070

COMP

0.430

0.295

0.059 0.380

0.117 0.086

0.178

0.167

0.558

0.880 0.844

0.436

1.000 0.292 0.571

cusl_1

switch_4

switch_3

switch_2

switch_1

cusl_2

cusl_3

CUSA

cusa

0.319

0.467

0.834

0.917

0.841

-0.071
CUSL

Moderating Effect
1

[+]

0.869
LIKE

comp_1 comp_2 comp_3

SC

Exhibit 7.26    Moderator Analysis Results in SmartPLS
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CUSL (–0.071), whereas the simple effect of CUSA on CUSL is 
0.467. Jointly, these results suggest that the relationship between 
CUSA and CUSL is 0.467 for an average level of switching costs. For 
higher levels of switching costs (e.g., SC is increased by one standard 
deviation unit), the relationship between CUSA and CUSL decreases 
by the size of the interaction term (i.e., 0.467 – 0.071 = 0.396). On 
the contrary, for lower levels of switching costs (e.g., SC is decreased 
by one standard deviation point), the relationship between CUSA and 
CUSL becomes 0.467 + 0.071 = 0.538. To better comprehend the 
results of the moderator analysis, go to Final Results → Simple Slope 
Analysis. The simple slope plot that follows visualizes the two-way 
interaction effect (Exhibit 7.27).

The three lines shown in Exhibit 7.27 represent the relationship 
between CUSA (x-axis) and CUSL (y-axis). The middle line repre-
sents the relationship for an average level of the moderator variable 
SC. The other two lines represent the relationship between CUSA and 
CUSL for higher (i.e., mean value of SC plus one standard deviation 
unit) and lower (i.e., mean value of SC minus one standard deviation 
unit) levels of the moderator variable SC. As we can see, the relation-
ship between CUSA and CUSL is positive for all three lines as indi-
cated by their positive slope. Hence, higher levels of customer 
satisfaction go hand in hand with higher levels of customer loyalty. 

In addition, we can analyze the moderating effect’s slope in greater 
detail. The upper line, which represents a high level of the moderator 
construct SC, has a flatter slope while the lower line, which represents 
a low level of the moderator construct SC, has a steeper slope. This 
makes sense since the interaction effect is negative. As a rule of thumb 
and an approximation, the slope of the high level of the moderator 
construct SC is the simple effect (i.e., 0.467) plus the interaction effect 
(−0.071), while the slope of the low level of the moderator construct 
SC is the simple effect (i.e., 0.467) minus the interaction effect (−0.071). 
Hence, the simple slope plot supports our previous discussion of the 
negative interaction term: Higher SC levels entail a weaker relationship 
between CUSA and CUSL, while lower levels of SC lead to a stronger 
relationship between CUSA and CUSL. 

Next, we assess whether the interaction term is significant. For this 
purpose, we run the bootstrapping procedure with 5,000 bootstrap 
samples, using the No Sign Changes option, BCa bootstrap, two-tailed 
testing, and the standard settings for the PLS-SEM algorithm and the 
missing value treatment. The analysis yields a p value of 0.027 for the 
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path linking the interaction term and CUSL (Exhibit 7.28). Similarly, 
the 95% bias-corrected bootstrap confidence interval of the interaction 
term’s effect is [–0.135, –0.016]. As the confidence interval does not 
include zero, we conclude that the effect is significant. Again, note that 
these results will slightly differ from yours due to the random nature of 
the bootstrapping process. Overall, these results provide clear support 
that SC exerts a significant and negative effect on the relationship 
between CUSA and CUSL. The higher the switching costs, the weaker 
the relationship between customer satisfaction and customer loyalty.

For the completeness of the results representation, the final step 
addresses the moderator’s f  ² effect size. By going to Quality Criteria →  
f Square in the SmartPLS algorithm results report, we learn that the 
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0.000 0.000
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0.000
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0.000
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0.000
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like_1 like_2 like_3

0.000 0.000
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Exhibit 7.28    Bootstrapping Results of the Moderator Analysis
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interaction term’s f ² effect size has a value of 0.014. According to 
Kenny (2016), the value indicates a medium effect. 

SUMMARY

•	 Understand the basic concepts of mediation in a PLS-SEM 
context. Mediation occurs when a third variable, referred to as a 
mediator variable, intervenes between two other related constructs. 
More precisely, a change in the exogenous construct results in a 
change in the mediator variable, which, in turn, affects the endoge-
nous construct in the model. Analyzing the strength of the mediator 
variable’s relationships with the other constructs enables the 
researcher to better understand the mechanisms that underlie the 
relationship between an exogenous construct and an endogenous 
construct. In the simplest form, the path model analysis considers 
only one mediator variable, but the model can involve multiple 
mediator variables that can be analyzed simultaneously.

•	 Execute a mediation analysis using SmartPLS. Mediating 
effects must be theoretically/conceptually postulated a priori. The 
analysis then focuses on testing such hypothesized relationships 
empirically. Researchers distinguish between five types of mediation 
and nonmediation: direct-only nonmediation, no-effect nonmedia-
tion, complementary mediation, competitive mediation, and indi-
rect-only mediation. Testing for the type of mediation requires a 
series of analyses to assess whether the indirect effect and/or direct 
effect are significant.

•	 Comprehend the basic concepts of moderation in a PLS-SEM 
context. Moderation occurs when the strength or even the direction 
of a relationship between two constructs depends on a third varia-
ble. In other words, the nature of the relationship differs depending 
on the values of the third variable. Thus, the relationship is not the 
same for all customers but differs depending on the moderating vari-
able, which could be, for example, customer income, age, gender, 
and so forth. As such, moderation can (and should) be seen as a 
means to account for heterogeneity in the data.

•	 Use the SmartPLS software to run a moderation analysis. 
Modeling moderator variables in PLS-SEM requires researchers to 
include an interaction term that accounts for the interrelation 
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between the exogenous latent variable and the moderator variable. 
The product indicator approach, the orthogonalizing approach, and 
the two-stage approach are three popular approaches to model the 
interaction term. The product indicator and orthogonalizing 
approaches are restricted to setups where the exogenous latent vari-
able and moderator variable are both measured reflectively. The 
two-stage approach can be used when formative measures are 
involved. The orthogonalizing approach proves valuable when the 
objective of the analysis is to minimize estimation bias of the mod-
erating effect or to maximize prediction. However, when the objec-
tive is to identify the statistical significance of the moderator, the 
two-stage approach should be preferred. Generally, the two-stage 
approach is the most versatile approach and should generally be 
preferred.

REVIEW QUESTIONS

	 1.	 What does mediation mean? 

	 2.	 What are the necessary conditions for substantiating an 
indirect-only mediation?

	 3. 	What is the difference between complementary and com-
petitive mediation?

	 4.	 What is the most versatile approach for creating an interac-
tion term with regard to the measurement models of the 
exogenous construct and the moderator variable?

	 5.	 Why should the indicators be standardized when generating 
an interaction term in a moderator analysis?

	 6.	 What is the interaction term and what does its value mean?

CRITICAL THINKING QUESTIONS

	 1.	 Give an example of a mediation model and establish the 
relevant hypotheses. 

	 2.	 Why is it necessary to draw a direct relationship between the 
moderator and the endogenous construct?
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	 3.	 Explain what the path coefficients in a moderator model 
mean.

	 4.	 Explain the similarities and differences between mediation 
and moderation.

KEY TERMS

Cascaded moderator analysis

Categorical moderator variable

Competitive mediation

Complementary mediation

Conditional indirect effect

Continuous moderator variable

Direct-only nonmediation

Full mediation

Heterogeneity

Inconsistent mediation

Index of moderated mediation

Indirect-only mediation

Interaction effect

Interaction term

Main effect

Mediating effect

Mediated moderation

Mediation

Mediation model

Mediator variable

Moderated mediation

Moderating effect

Moderation 

Moderator variable

Multiple mediation analysis

No-effect nonmediation

Orthogonalizing approach

Partial mediation

Product indicator approach

Product indicators

Simple effect

Simple mediation analysis

Sobel test

Specific indirect effect

Suppressor variable

Three-way interaction

Total indirect effect

Two-stage approach

Two-way interaction
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LEARNING OUTCOMES

1. Comprehend the usefulness of a PLS-SEM importance-performance 
map analysis (IPMA).

2. Understand hierarchical component models (HCMs) and how to 
apply this concept in PLS-SEM.

3. Get to know how to assess the mode of measurement model with 
the confirmatory tetrad analysis in PLS-SEM (CTA-PLS). 

4. Understand multigroup analysis in PLS-SEM.

5. Learn about techniques to identify and treat unobserved 
heterogeneity.

6. Understand measurement model invariance and its assessment in 
PLS-SEM.

7. Become familiar with consistent partial least squares (PLSc).

CHAPTER PREVIEW

This primer focuses on PLS-SEM’s foundations. With the knowledge 
gained from Chapters 1 to 6, researchers have the understanding for 
using more advanced techniques that complement the basic PLS-SEM 
analyses. While Chapter 7 introduced the broadly applied mediator 
and moderator analysis techniques, this chapter offers a brief 

C H A P T E R  8

Outlook on 
Advanced Methods
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overview of some other useful and less frequently used advanced 
methods. To start with, the importance-performance map analysis 
represents a particularly valuable tool to extend the results presenta-
tion of the standard PLS-SEM estimations by contrasting the total 
effects of the latent variables on some target variable with their latent 
variable scores. The graphical representation of outcomes enables 
researchers to easily identify critical areas of attention and action. The 
next topic focuses on hierarchical component models, which enable 
researchers to represent constructs measured on different levels of 
abstraction in a PLS path model. From a conceptual perspective, using 
hierarchical component models is often more appropriate than relying 
on standard one-dimensional constructs. Their use typically allows 
reducing the number of structural model relationships, making the 
PLS path model more parsimonious and easier to grasp. The method 
that follows, confirmatory tetrad analysis, is a useful tool to empiri-
cally substantiate the mode of a latent variable’s measurement model 
(i.e., formative or reflective). The application of confirmatory tetrad 
analysis enables researchers to avoid incorrect measurement model 
specification. The following sections address ways of dealing with 
heterogeneity in the data. We first discuss multigroup analysis, which 
enables testing for significant differences among path coefficients, 
typically between two groups. We also deal with unobserved hetero-
geneity, which, if neglected, is a threat to the validity of PLS-SEM 
results. We also introduce standard as well as more recently proposed 
latent class techniques and make recommendations regarding their 
use. Comparisons of PLS-SEM results across different groups are only 
reasonable if measurement invariance is confirmed. For this purpose, 
the measurement invariance of composite procedure provides a useful 
tool in PLS-SEM. Finally, we introduce consistent PLS, which applies 
a correction for attenuation to PLS path coefficients. When applied, 
PLS path models with reflectively measured latent variables estimate 
results that are the same as CB-SEM, while retaining many of the 
well-known advantages of PLS-SEM.

IMPORTANCE-PERFORMANCE MAP ANALYSIS

The importance-performance map analysis (IPMA; also called 
importance-performance matrix analysis and impact-performance 
map analysis) extends the standard PLS-SEM results reporting of path 
coefficient estimates by adding a dimension to the analysis that 
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considers the average values of the latent variable scores (Fornell, John-
son, Anderson, Cha, & Bryant, 1996; Höck, Ringle, & Sarstedt, 2010; 
Kristensen, Martensen, & Grønholdt, 2000; Slack, 1994). More pre-
cisely, the IPMA contrasts structural model total effects on a specific 
target construct (i.e., a specific endogenous latent variable in the PLS 
path model such as Y4 in Exhibit 8.1) with the average latent variable 
scores of this construct’s predecessors (e.g., Y1, Y2, and Y3 in Exhibit 8.1). 
The total effects represent the predecessor constructs’ importance in 
shaping the target construct (Y4), while their average latent variable 
scores represent their performance. The goal is to identify predecessors 
that have a relatively high importance for the target construct (i.e., those 
that have a strong total effect) but also a relatively low performance (i.e., 
low average latent variable scores). The aspects underlying these con-
structs represent potential areas of improvement that may receive high 
attention. Here, we do not explain all of the technical details of IPMA 
but refer the interested reader to the comprehensive explications in, for 
example, Höck et al. (2010) and Ringle and Sarstedt (in press).

An IPMA relies on total effects and the rescaled latent variable 
scores, both in an unstandardized form. Rescaling the latent variable 
scores is important to facilitate the comparison of latent variables 
measured on different scale levels. For example, rescaling is relevant 
if the indicators of one construct use an interval scale with values 
from 1 to 5 (e.g., Y1) while the indicators of another construct (e.g., 
Y2) use an interval scale with values from 1 to 7. Rescaling adjusts 
each latent variable score so that it can take on values between 0 and 
100 (e.g., Höck et al., 2010; Kristensen et al., 2000). The mean values 

Y1
(56)

Y2
(76)

Y3
(82)

Y4
(69)

0.50

0.50

0.50 0.25

0.25

0.25

Exhibit 8.1    IPMA Model
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of these scores indicate the construct’s performance, with 0 represent-
ing the lowest and 100 representing the highest performance. Since 
most researchers are familiar with interpreting percentage values, this 
kind of performance scale is easy to understand. In our example, Y1 
has a performance of 56, Y2 of 76, Y3 of 82, and Y4 of 69. Hence, 
constructs Y2 and Y3 show a relatively high performance, while Y4 and 
Y1 have a medium and low (relative) performance, respectively.

Next, we need to determine each predecessor construct’s impor-
tance in terms of its total effect on the target construct. Recall that the 
total effect of a relationship between two constructs is the sum of the 
direct and indirect effects in the structural model. For example, to 
determine the total effect of Y1 on Y4 (Exhibit 8.1), we have to con-
sider the direct effect between these two constructs (0.50) and the 
following three indirect effects via Y2 and Y3, respectively: 

	 Y1 → Y2 → Y4	 = 0.50 ∙ 0.50	 = 0.25,
	 Y1 → Y2 → Y3 → Y4	 = 0.50 ∙ 0.25 ∙ 0.25 	= 0.03125, and
	 Y1 → Y3 → Y4	 = 0.25 ∙ 0.25	 = 0.0625.

Adding up the individual indirect effects yields the total indirect 
effect of Y1 on Y4, which is approximately 0.34. Therefore, the total 
effect of Y1 on Y4 is 0.84 (0.50 + 0.34). This total effect expresses Y1’s 
importance in predicting the target construct Y4. Exhibit 8.2 summa-
rizes the direct, indirect, and total effects of the constructs Y1, Y2, and 
Y3 on the target construct Y4 as shown in Exhibit 8.1. Note that in an 
IPMA, the direct, indirect, and total effects (just like the latent varia-
ble scores) come in an unstandardized form and can take on values 
much greater than 1. The use of unstandardized total effects allows us 
to interpret the IPMA in the following way: A one-unit increase of the 
predecessor’s performance increases the performance of the target 
construct by the size of the predecessor’s unstandardized total effect, 
if everything else remains equal (ceteris paribus). 

Exhibit 8.2    Direct, Indirect, and Total Effects in the IPMA

Predecessor 
Construct

Direct Effect 
on Y4

Indirect Effect 
on Y4

Total Effect  
on Y4

Y1 0.50 0.34 0.84

Y2 0.50 0.06 0.56

Y3 0.25 — 0.25
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In the final step, we combine the importance and performance 
data, which we summarize in Exhibit 8.3. 

Using the IPMA data allows us to create an importance- 
performance map as shown in Exhibit 8.4. The x-axis represents the 
(unstandardized) total effects of Y1, Y2, and Y3 on the target con-
struct Y4 (i.e., their importance). The y-axis depicts the average 
rescaled (and unstandardized) latent variable scores of Y1, Y2, and 
Y3 (i.e., their performance). 

As can be seen, constructs in the lower right area of the importance- 
performance map have a high importance for the target construct but 
show a low performance. Hence, there is a particularly high potential 
for improving the performance of the constructs positioned in this 
area. Constructs with lower importance, relative to the other con-
structs in the importance-performance map, have a lower priority for 

Exhibit 8.3    Summary of the IPMA Data

Importance Performance

Y1 0.84 56

Y2 0.56 76

Y3 0.25 82
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Exhibit 8.4 Importance-Performance Map for the Target 
Construct Y4 
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performance improvements. In fact, investing into the performance 
improvement of a construct that has a very small importance for the 
target construct would not be logical, since it would have little 
impact in changing (improving) the target construct. In our example, 
Y1 is particularly important for explaining the target construct Y4. In 
a ceteris paribus situation, a one-unit increase in the performance of 
Y1 increases the performance of Y4 by the value of the total effect, 
which is 0.84. At the same time, the performance of Y1 is relatively 
low, so there is substantial room for improvement. Consequently, in 
the PLS path model example, construct Y1 is the most relevant for 
managerial actions. 

IPMA is not limited to the construct level. We can also conduct 
an IPMA on the indicator level to identify relevant and even more 
specific areas of improvement. More precisely, we can interpret the 
unstandardized outer weights as the relative importance of an 
indicator compared with the other indicators in the measurement 
model, no matter whether the measurement model is reflective or 
formative. In our example, such an analysis would be particularly 
useful for the indicators of the Y1 construct because of its strong 
total effect on Y4.

Applications of the IPMA need to meet two requirements: First, 
all the indicator coding must have the same direction; a low value 
represents a negative outcome and a high value a positive outcome. 
Otherwise, we cannot conclude that higher latent variable values 
represent a better performance. If this is not the case, the indicator 
coding needs to be changed by reversing the scale (e.g., on a 5-point 
scale, 1 becomes 5 and 5 becomes 1, 2 becomes 4 and 4 becomes 2, 
and 3 remains unchanged). Second, no matter whether the measure-
ment model is formative or reflective, the outer weights must not 
be negative. If the outer weights are positive, the performance val-
ues will be on a scale of 0 to 100. However, if outer weights are 
negative, the performance values will not be in this specific range 
but, for example, between –5 and 95. Negative weights might be a 
result of indicator collinearity. In this case, the researcher may care-
fully consider removing that indicator (see Chapter 5).

For further example IPMA applications, see Höck et al. (2010) 
and Kristensen et al. (2000). Other researchers have used the IPMA 
to better compare the group-specific outcomes of a PLS-SEM–based 
multigroup analysis (e.g., Rigdon et al., 2011; Schloderer et al., 2014; 
Völckner, Sattler, Hennig-Thurau, & Ringle, 2010).
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HIERARCHICAL COMPONENT MODELS 

The previous chapters dealt with first-order models, which consider a 
single layer of constructs. In some instances, however, the constructs 
that researchers wish to examine are quite complex and can also be 
operationalized at higher levels of abstraction. Establishing such 
higher-order models or hierarchical component models (HCMs), as 
they are usually called in the context of PLS-SEM (Lohmöller, 1989), 
most often involves testing higher-order structures that contain two 
layers of constructs. 

Let us consider the example of the customer satisfaction con-
struct, which can consist of numerous more concrete constructs that 
capture separate attributes of satisfaction (see Chapter 2). In the 
context of services, these might include satisfaction with the quality 
of the service, the service personnel, the speed of service, or the ser-
vicescape. It is then possible to define satisfaction at two levels of 
abstraction. These concrete components at the first level of abstrac-
tion (i.e., first-order) form the more abstract higher-order (i.e.,  
second-order) satisfaction component.

There are three main reasons to include an HCM in a PLS path 
model. First, by establishing HCMs, researchers can reduce the num-
ber of relationships in the structural model, making the PLS path 
model more parsimonious and easier to grasp. Second, HCMs prove 
valuable if the first-order constructs are highly correlated. When this 
situation is present, estimations of the structural model relationships 
may be biased as a result of collinearity issues, and discriminant 
validity may not be established. In situations characterized by col-
linearity among constructs, establishing a higher-order structure can 
reduce collinearity issues and may solve discriminant validity prob-
lems. Third, establishing HCMs can also prove valuable if formative 
indicators exhibit high levels of collinearity. Provided that theory 
supports this step, researchers can split the set of indicators and 
establish separate first-order constructs that jointly form a higher-
order structure.

Exhibit 8.5 illustrates the four main types of HCMs discussed in 
the extant literature (Jarvis et al., 2003; Wetzels et al., 2009) and used 
in SEM applications (Ringle et al., 2012). HCMs have two elements: 
the higher-order component (HOC), which captures the more abstract 
higher-order entity, and the lower-order components (LOCs), which 
capture the subdimensions of the higher-order entity. Each HCM type 
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can be characterized by different relationships between (1) the HOC 
and the LOCs, and (2) the constructs and their indicators. For exam-
ple, the reflective-reflective HCM type indicates a (reflective) relation-
ship between the HOC and the LOCs, and all first-order constructs 
are measured by reflective indicators. Conversely, the reflective- 
formative HCM type indicates (formative) relationships between the 
LOCs and the HOC, and all first-order constructs are measured by 
reflective indicators. Two other alternative HCMs researchers may 
employ are a formative-reflective and formative-formative HCM. The 
selection of the appropriate type of HCM is based on a priori estab-
lished theoretical/conceptual considerations. 

As can be seen in Exhibit 8.5, the HOCs and LOCs have a meas-
urement model that can be either reflective or formative but does not 

Reflective-Reflective Type Reflective-Formative Type

Formative-Reflective Type Formative-Formative Type
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Exhibit 8.5 Types of Hierarchical Component Models

Source: Ringle, CM, Sarstedt, M and Straub, DW (2012) A Critical Look at the Use of PLS-SEM 
in MIS Quarterly. MIS Quarterly 36: iii–xiv.; permission conveyed through Copyright Clearance 
Center, Inc.

Note: LOC = lower-order component; HOC = higher-order component.
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have to be the same at both levels. To represent the HOC’s measure-
ment model, researchers usually assign all the indicators from the 
LOCs to the HOC in the form of a repeated indicators approach. In 
the HCM examples in Exhibit 8.5, the HOC uses the indicators x1  
to x9 of its underlying components LOC1, LOC2, and LOC3 in the 
measurement model.

Several issues arise when modeling formative-formative and 
reflective-formative HCMs using the repeated indicator approach. In 
such settings, almost all of the HOC variance is explained by its 
LOCs, yielding an R² value of (close to) 1.0. As a result, any further 
path coefficients (i.e., other than those by the LOCs) for relationships 
pointing at the HOC will be very small (perhaps zero) and insignifi-
cant (Ringle et al., 2012). These situations require particular atten-
tion, since almost all of the HOC variance is explained by its LOCs 
(R² ≈ 1.0). To resolve this issue, researchers should apply a combina-
tion of the repeated indicators approach and the use of latent variable 
scores in a two-stage HCM analysis. This analysis is similar to the 
two-stage approach in moderator analyses (Chapter 7) in PLS-SEM 
(Henseler & Chin, 2010). In the first stage, the repeated indicator 
approach is used to obtain the latent variable scores for the LOCs. In 
the second stage, the LOC scores serve as manifest variables in the 
HOC measurement model (Exhibit 8.6). The LOC scores are readily 
available from the SmartPLS output. When the two-stage HCM 
analysis is applied, the HOC is embedded in the nomological net in 
such a way that it allows other latent variables (not part of the HOC) 
as predecessors to explain some of its variance. The predecessor 
latent variables could be other exogenous or endogenous variables 
that are theoretically part of the structural model. The two-stage 
HCM analysis can then identify significant path relationships that 
may not otherwise be found.

While both approaches for modeling HCMs are relatively easy to 
implement, they warrant attention in at least three respects. First, the 
number of indicators should be similar across the LOCs; otherwise, 
the relationships between the HOC and LOCs may be biased by the 
inequality of the number of indicators per LOC (Becker et al., 2012). 
For example, when an HCM has two LOCs, one with two indicators 
(LOC1) and another one with eight indicators (LOC2), the repeated 
indicator approach (either in isolation or in the first step of the two-
stage HCM analysis) requires all 10 indicators to be assigned to the 
HOC. A stronger relationship between LOC2 and the HOC 
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automatically emerges from this kind of setup since they share a large 
number of indicators in the HCM. Second, not all algorithmic weight-
ing schemes for the inner PLS path model (i.e., centroid, factor, and 
path; Chapter 3) apply when estimating HCMs in PLS-SEM. While 
the factor and path weighting schemes provide reasonable outcomes, 
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Exhibit 8.6 Two-Stage Approach for HCM Analysis

Source: Ringle, CM, Sarstedt, M and Straub, DW (2012) A Critical Look at the Use of PLS-SEM 
in MIS Quarterly. MIS Quarterly 36: iii–xiv.; permission conveyed through Copyright Clearance 
Center, Inc.

Note: LOC = lower-order component; HOC = higher-order component; Y1 = exogenous latent 
variable in the structural model (its measurement model is not further specified in this illustra-
tion); Y2 = endogenous latent variable in the structural model; p12 = standardized path coef-
ficient for the structural model relationship between the latent variables Y1 and Y2.
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researchers should not use the centroid weighting scheme (Hair, 
Sarstedt, Ringle, et al., 2012). 

Apart from the above, it is important to establish HCMs on well-
established theoretical/conceptual underpinnings before blindly using 
them in PLS path models—see Kuppelwieser and Sarstedt (2014) for 
an example of how to evaluate their implementation in a PLS-SEM 
context. The estimation, evaluation, and interpretation of HCM 
results require advanced knowledge and broad experience in using 
PLS-SEM. For instance, the research by Becker et al. (2012) provides 
some caveats associated with the estimation and interpretation of 
reflective-formative HCMs. Refer to Ringle et al. (2012) for a review 
of the HCM use in prior research. 

CONFIRMATORY TETRAD ANALYSIS

Measurement model misspecification is a threat to the validity of 
SEM results (Jarvis et al., 2003). For example, modeling latent vari-
ables reflectively when the conceptualization of the measurement 
model, and thus the item wordings, should be a formative specifica-
tion can result in biased results. The reason is that formative indica-
tors are not necessarily correlated and are often not highly correlated. 
In addition, formative indicators produce lower outer loadings 
when represented in a reflective measurement model. Since indica-
tors with lower outer loadings (<0.40) should always be eliminated 
from reflectively measured latent constructs (Chapter 4), the incor-
rect specification of a measurement model as reflective when it 
should be formative can result in deletion of indicators that should 
be retained. Any attempt to purify formative indicators based on 
correlation patterns among the indicators can have adverse conse-
quences for the content validity of the construct. Empirically, the 
results in the measurement model and structural model can signifi-
cantly change before and after eliminating indicators. For these 
reasons, researchers and practitioners must avoid measurement 
model misspecification to ensure the validity of their results concep-
tually, theoretically, and empirically. 

The primary means to decide whether to specify a measurement 
model reflectively or formatively is by theoretical reasoning. Guidelines 
such as those formulated by Jarvis et al. (2003), which we summarize 
in Chapter 2, prove helpful in this respect. However, research has 
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proposed a PLS-SEM–based statistical test that provides additional 
empirical substantiation and confirmation of the qualitative choices. 
More precisely, the confirmatory tetrad analysis in PLS-SEM (CTA-
PLS; Gudergan et al., 2008) facilitates empirical evaluation of cause-
effect relationships for latent variables and their specification of 
indicators in measurement models. When applied, the statistical test 
offers empirical information that facilitates determining a latent varia-
ble’s mode of measurement model (i.e., reflective or formative) and 
provides support for avoiding incorrect measurement model 
specification. 

CTA-PLS builds on the concept of tetrads (t), which describe 
the relationship between pairs of covariances. To better understand 
what a tetrad is, consider a reflectively measured latent variable 
with four indicators. For this construct, we obtain six covariances 
(s) between all possible pairs of the four indicators, as shown in 
Exhibit 8.7. 

A tetrad is the difference of the product of one pair of covariances 
and the product of another pair of covariances. The six covariances 
of four indicator variables result in six unique pairings that form three 
tetrads: 

	

τ σ σ σ σ
τ σ σ σ σ
τ σ σ

1234 12 34 13 24

1342 13 42 14 32

1423 14

= ⋅ − ⋅
= ⋅ − ⋅
= ⋅

,

, and

223 12 43− ⋅σ σ .
�

In reflective measurement models, each tetrad is expected to have 
a value of zero and, thereby, to vanish. The reason is that, according 
to the domain sampling model, reflective indicators represent one 

Exhibit 8.7 Covariances of Four Indicators in a Reflective 
Measurement Model
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x3 σ13 σ23

x4 σ14 σ24 σ34
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specific concept or trait equally well. However, tetrads are seldom 
exactly zero but instead have a residual value. Therefore, if only one 
tetrad’s residual value is significantly different from zero (i.e., it does 
not vanish), one can reject the reflective measurement model specifi-
cation and, instead, assume the alternative formative specification. In 
other words, the CTA is a statistical test that considers the hypothesis 
H0: t = 0 (i.e., the tetrad equals zero and vanishes) and the alternative 
hypothesis H1: t ≠ 0 (i.e., the tetrad does not equal zero). That is, the 
CTA initially assumes a reflective measurement specification. A non-
significant test statistic supports H0 involving consistency of the sam-
ple data, with the vanishing tetrads implied by a reflective measurement 
model. In contrast, a significant test statistic that supports H1 casts 
doubt on the reflective model specification in favor of the alternative 
formative specification. 

Bollen and Ting (2000) provide several numerical examples to 
illustrate the usefulness of the CTA in the context of CB-SEM. 
Although the procedures differ, the systematic application of CTA-
PLS for assessing measurement models in PLS-SEM is similar to its 
CB-SEM counterpart (Bollen & Ting, 2000). CTA-PLS involves five 
steps. 

	 1.	 Form and compute all vanishing tetrads for the measurement 
model of a latent variable.

	 2.	 Identify model-implied vanishing tetrads.
	 3.	 Eliminate model-implied redundant vanishing tetrads.
	 4.	 Perform a statistical significance test for each vanishing 

tetrad.
	 5.	 Evaluate the results for all model-implied nonredundant 

vanishing tetrads per measurement model.

In Step 1, all vanishing tetrads of the latent variables’ measure-
ment models are computed. A key consideration is that the tetrad 
construction requires at least four indicators per measurement model. 
Otherwise, the CTA-PLS will not produce results for the construct 
(Bollen & Ting, 2000, and Gudergan et al., 2008, provide some addi-
tional advice on how to deal with situations of fewer than four indica-
tors, i.e., two and three, per measurement model). Step 2 focuses on 
extracting the model-implied vanishing tetrads. This step is only 
required when measurement models are assigned additional indica-
tors to meet the minimum number of four indicators per measurement 
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model for running the CTA-PLS. As a consequence, the number of 
model-implied vanishing tetrads may change for these adjusted mea-
surement models as depicted in detail by Gudergan et al. (2008). In 
situations where measurement models meet the required number of 
at least four indicators, nothing changes in this step, and the generated 
tetrads remain unchanged. The results of Step 1 and Step 2 involve the 
generation of a large number of model-implied redundant vanishing 
tetrads. Redundancy exists whenever a selected model-implied van-
ishing tetrad can be represented by two other model-implied vanish-
ing tetrads. If this happens, the tetrad is redundant and can be 
excluded from the analysis. Step 3 reduces the complexity of the 
analysis by using algebraic substitution to exclude all model-implied 
redundant vanishing tetrads from the analysis (Bollen & Ting, 
1993). As a result, Step 3 delivers the model-implied nonredundant 
vanishing tetrads.

While the first three CTA-PLS steps deal with generating and 
selecting the model-implied nonredundant vanishing tetrads per 
measurement model, Steps 4 and 5 address their significance testing. 
In Step 4, the CTA-PLS draws on bootstrapping to test whether the 
tetrads’ residual values differ significantly from zero. Independently 
analyzing each tetrad to make this decision involves a multiple testing 
problem. The greater the number of model-implied nonredundant 
vanishing tetrads in a particular measurement model, the higher the 
likelihood that a rejection of the null hypothesis (i.e., a tetrad’s resid-
ual values that significantly differ from zero) will occur just by chance. 
For this reason, in Step 5 of CTA-PLS, the Bonferroni correction is 
applied to adjust for the multiple testing problem. This step calculates 
the Bonferroni-corrected and bias-adjusted confidence intervals of the 
model-implied nonredundant vanishing tetrads for a prespecified 
error level. A model-implied nonredundant tetrad is significantly dif-
ferent from zero if its confidence interval does not include the zero. In 
this case, we cannot reject the null hypothesis and assume a reflective 
measurement model specification. On the other hand, if only one of 
the model-implied nonredundant vanishing tetrads of a certain mea
surement model is significantly different from zero, one should con-
sider a formative measurement model specification. In any case, it is 
important to note that if the CTA-PLS does not support a reflective 
measurement model, adjustments in the model must be consistent 
with theoretical/conceptual considerations and not just the empirical 
test results. 
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Exhibit 8.8 shows an example of two reflectively measured latent 
variables Y1 and Y2 with five and four indicators, respectively. The mea
surement model of Y1 with five indicators requires analyzing five model-
implied nonredundant vanishing tetrads, while the measurement model 
of Y2 with four indicators requires considering two model-implied 
nonredundant vanishing tetrads. Exhibit 8.9 shows the vanishing tet-
rads and gives an example of their residual values as well as their addi-
tional bootstrapping results for 5,000 samples (bootstrap standard error 
and bootstrap t value for every single tetrad). 

The residuals of two tetrads (i.e., τ1235, τ1352) are significantly dif-
ferent from zero. However, these results do not account for the mul-
tiple testing problem. For this reason, the last column in Exhibit 8.9 
shows the 90% Bonferroni-corrected and bias-adjusted confidence 
intervals. Based on these results, we find that the residual of two tet-
rads (τ1235 and τ1352) of Y1 are significantly different from zero. Hence, 
the CTA-PLS rejects the null hypothesis of a reflective measurement 
model for Y1 and provides support for the alternative formative meas-
urement model. This result does not mean that one should mechani-
cally switch to a formative specification. Any change of measurement 
perspective must be substantiated by theoretical considerations, there-
fore confirming measurement theory. In contrast to Y1, all tetrads of 
Y2’s measurement model are not significantly different from zero, 
which empirically substantiates the reflective measurement model.

Gudergan et al. (2008) offer a more detailed introduction to 
CTA-PLS and its application. The CTA-PLS method is implemented 
in the SmartPLS 3 software, facilitating its straightforward use. Note 
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Exhibit 8.8    CTA-PLS Model
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that SmartPLS 3 also allows running CTA-PLS on both reflectively 
and formatively measured latent variables. In both cases, the null 
hypothesis assumes a reflective measurement model when conducting 
the statistical test. The CTA-PLS result either approves or disapproves 
the selected reflective or formative measurement model. 

DEALING WITH OBSERVED AND  
UNOBSERVED HETEROGENEITY

Applications of PLS-SEM usually analyze the full set of data, implicitly 
assuming that the used data stem from a single homogeneous popula-
tion. This assumption of relatively homogeneous data characteristics is 
often unrealistic. Individuals (e.g., in their behavior) or corporations 
(e.g., in their structure) are different, and pooling data across observa-
tions is likely to produce misleading results. Failure to consider such 
heterogeneity can be a threat to the validity of PLS-SEM results, and it 
can lead to incorrect conclusions (Becker, Rai, Ringle, et al., 2013; Hair, 
Sarstedt, Ringle, et al., 2012). For this reason, it is important to identify, 
assess, and, if present, treat heterogeneity in the data. 

Heterogeneity can come in two forms. First, it can be observed in 
that differences between two or more groups of data relate to observ-
able characteristics, such as gender, age, or country of origin. 

Exhibit 8.9    Example CTA-PLS Results

Y1

Residual  
Value

Bootstrap  
Standard  

Error
Bootstrap  

t Value p Value CI

τ1234
0.159 0.139 1.140 0.254 [–0.165, 0.483]

τ1243
0.223 0.145 1.538 0.124 [–0.116, 0.558]

τ1235
0.483 0.142 3.408 0.001 [0.151, 0.811]

τ1352
–0.346 0.121 2.856 0.004 [–0.626, –0.062]

τ1345
–0.089 0.136 0.656 0.512 [–0.404, 0.230]

Y2

τ1234
0.194 0.150 1.298 0.194 [–0.099, 0.488]

τ1243
–0.115 0.182 0.632 0.527 [–0.469, 0.245]
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Researchers can use these observable characteristics to partition the 
data into separate groups of observations and carry out group- 
specific PLS-SEM analyses. The path coefficient estimates for the 
separate group models are almost always numerically different. But 
are these differences statistically significant? To answer this question, 
researchers can carry out a multigroup analysis. Second, heterogeneity 
can be unobserved in that it does not depend on an a priori known 
observable characteristic or combinations of several characteristics. 
To identify and treat unobserved heterogeneity, research has proposed 
a multitude of approaches commonly referred to as latent class tech-
niques. These techniques have proven very useful to identify unob-
served heterogeneity and partition the data into corresponding 
groups. These groups can then be readily compared for significant 
differences, using a multigroup analysis. Alternatively, the latent class 
analysis may ascertain that the results are not influenced by unob-
served heterogeneity, providing support for an analysis of a single 
model based on the aggregate-level data. 

Multigroup Analysis 

To understand the concept of multigroup analysis, consider the 
example in Exhibit 8.10. Here, the endogenous latent variable cus-
tomer satisfaction with a product (Y3) depends on two dimensions: 
perceived quality (Y1) and perceived price (Y2). Suppose there are two 
segments of similar sample sizes. Group  1 is quality conscious, 
whereas Group 2 is price conscious, as indicated by the different 
segment-specific path coefficients. More precisely, the effect of per-
ceived quality (Y1) on customer satisfaction (Y3) is much stronger in 
Group 1 ( . ;( )p13

1 0 50=  the superscript in parentheses indicates the 
group) than in Group 2 ( . ).( )p13

2 0 10=  In contrast, perceived price (Y2) 
has a somewhat stronger influence on customer satisfaction (Y3) in 
Group 2 ( . )( )p23

1 0 35=  than in Group 1 ( . ).( )p23
2 0 25=  Importantly, 

when analyzing the data on an aggregate level (i.e., disregarding the 
grouping of data into quality and price conscious customers), per-
ceived quality and perceived price have the same influence (0.30) on 
customer satisfaction. As can be seen, disregarding heterogeneous 
data structures in this example could easily lead to false conclusions 
in terms of model relationships. More important, when heterogeneity 
is present, significantly negative and positive group-specific effects can 
cancel each other out when analyzed on the aggregate data level and 
suggest the absence of a significant relationship. 
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Path coefficients based on different samples are almost always 
numerically different, but the question is whether the differences are 
statistically significant. Multigroup analysis helps to answer this 
question. Technically, a multigroup analysis tests the null hypothesis 
H0 that the path coefficients are not significantly different (e.g., 
p p13

1
13
2( ) ( )= ), which amounts to the same as saying that the absolute 

difference between the path coefficients is zero (i.e., H0: p p13
1

13
2 0( ) ( )− = ). 

The corresponding alternative hypothesis H1 is that the path coef-
ficients are different (i.e., H1: p p13

1
13
2( ) ( )↑ ≠ p p13

1
13
2( ) ( )↑  or, put differently, H1: 

p p13
1

13
2 0( ) ( )− > ). 

Research has proposed several approaches to multigroup analysis 
that are illustrated in Exhibit 8.11 (Sarstedt, Henseler, & Ringle, 
2011). When comparing two groups of data, researchers need to dis-
tinguish between the parametric approach and several nonparametric 
approaches. The parametric approach (Keil et al., 2000) was the first 
in the field and has been widely adopted because of its ease of imple-
mentation. This approach is a modified version of a standard two 
independent samples t test, which relies on standard errors derived 
from bootstrapping. As with the standard t test, the parametric 
approach has two versions (Sarstedt & Mooi, 2014), depending on 
whether population variances can be assumed to be equal (homoske-
dastic) or unequal (heteroskedastic). Prior research suggests that the 
parametric approach is rather liberal and likely subject to Type I 
errors (Sarstedt, Henseler, & Ringle, 2011). Furthermore, from a 

Exhibit 8.11    Multigroup Analysis Approaches in PLS-SEM

PLS-MGA

Non-parametric
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Two groups

Parametric
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More than
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differences (OTG)

PLS-SEM multigroup
analysis approaches
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conceptual perspective, the parametric approach has limitations since 
it relies on distributional assumptions, which are inconsistent with 
PLS-SEM’s nonparametric nature. 

Against this background, researchers have proposed several non-
parametric alternatives to multigroup analysis; see Sarstedt, Henseler, 
and Ringle (2011) for a review. For example, the permutation test 
randomly exchanges (i.e., permutes) observations between the groups 
and reestimates the model for each permutation (Chin & Dibbern, 
2010; Dibbern & Chin, 2005). Computing the differences between 
the group-specific path coefficients per permutation enables testing 
whether these also differ in the population. Prior research indicates 
that the test performs similarly to the parametric approach but is less 
liberal in terms of rendering differences significant. Furthermore, its 
application requires the groups to be of similar size. Henseler et al. 
(2009) proposed another nonparametric multigroup analysis 
approach that builds on bootstrapping results. Their PLS-MGA 
approach compares each bootstrap estimate of one group with all 
other bootstrap estimates of the same parameter in the other group. 
By counting the number of occurrences where the bootstrap estimate 
of the first group is larger than those of the second group, the 
approach derives a probability value for a one-tailed test. PLS-MGA 
involves a great number of comparisons of bootstrap estimates (e.g., 
in a case of 5,000 bootstrap samples, there are 25,000,000 compari-
sons for each parameter) and reliably tests for group differences. At 
the same time, the test is geared toward one-sided hypothesis testing. 
Finally, for analyzing the differences of two and more groups of rela-
tionships, Sarstedt, Henseler, and Ringle (2011) proposed the omni-
bus test of group differences (OTG). The OTG uses a combination of 
bootstrapping and permutation to derive a probability value of the 
variance explained by the grouping variable. If this variance is signifi-
cantly different from zero, we can conclude that at least one group-
specific coefficient significantly differs from the others.

Research has not yet compared the different approaches to 
multigroup analysis in terms of their statistical power or Type I error 
rates using simulated data. However, the permutation test has par-
ticularly advantageous statistical properties, and has been imple-
mented in SmartPLS 3. We therefore recommend that researchers 
use it when testing the difference of parameters across two groups. 
In the case of more than two groups, the use of OTG is appropriate. 
This method has not yet been implemented in commonly used 
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software applications for PLS-SEM, but we expect that upcoming 
releases of SmartPLS will include it.

Uncovering Unobserved Heterogeneity

Researchers routinely use observable characteristics to partition 
data into groups and estimate separate models, thereby accounting 
for observed heterogeneity. However, the sources of heterogeneity in 
the data can hardly be fully known a priori. Consequently, situations 
arise in which differences related to unobserved heterogeneity prevent 
the derivation of accurate results as the analysis on the aggregate data 
level masks group-specific effects. Failure to consider heterogeneity 
can be a severe threat to the validity of PLS-SEM results (Becker, Rai, 
Ringle, et al., 2013). If unobserved heterogeneity does not affect the 
results, researchers can analyze the data on the aggregate level and 
generalize the PLS-SEM results across groups. Hence, identifying 
and—if necessary—treating unobserved heterogeneity is of crucial 
importance when using PLS-SEM. As a result, researchers have called 
for the routine application of techniques that facilitate such analyses 
(Hair, Ringle, & Sarstedt, 2011; Hair, Sarstedt, Ringle, et al., 2012; 
Hair, Ringle, & Sarstedt, 2013). 

Standard cluster analysis methods such as k-means clustering 
(Sarstedt & Mooi, 2014) only focus on the indicator data when form-
ing groups of data. They cannot, however, account for the latent vari-
ables and their structural model relationships. Moreover, identifying 
different groups of data for the indicators or latent variable scores does 
not necessarily entail uncovering significantly different path model 
relationships. Hence well-known clustering methods that only focus 
on the indicators and latent variable scores usually fail in PLS-SEM 
(Sarstedt & Ringle, 2010). For this reason, research has proposed a 
wide array of latent class techniques (frequently referred to as response-
based segmentation techniques), which generalize, for example, finite 
mixture, genetic algorithm, or hill-climbing approaches to PLS-SEM 
(see Sarstedt, 2008, for an early overview). Exhibit 8.12 shows the 
most important segment detection approaches in PLS-SEM. 

The first and most prominent latent class approach is finite mix-
ture PLS (FIMIX-PLS; Hahn, Johnson, Herrmann, & Huber, 2002; 
Sarstedt, Becker, Ringle, & Schwaiger, 2011). Drawing on the mixture 
regression concept, FIMIX-PLS simultaneously estimates the path 
coefficients of each observation’s group membership for a predefined 



296      A Primer on Partial Least Squares

number of groups. In light of the approach’s performance in prior 
studies (e.g., Ringle, Wende, & Will, 2010; Sarstedt & Ringle, 2010) 
and its availability through the software SmartPLS 3, Hair, Ringle, 
and Sarstedt (2011) have suggested that researchers should routinely 
use the technique to evaluate whether PLS-SEM results are distorted 
by unobserved heterogeneity. However, it is important to acknowl-
edge that FIMIX-PLS is restricted to capturing heterogeneity in the 
structural model. For a more detailed discussion and step-by-step 
illustration of the approach on empirical data, see Ringle, Sarstedt, 
and Mooi (2010) and Rigdon et al. (2010). Likewise, Sarstedt, Ringle, 
and Gudergan (in press) discuss aspects relevant to the use of FIMIX-
PLS. For applications of FIMIX-PLS, see, for example, Sarstedt, 
Schwaiger, and Ringle (2009), Money, Hillenbrand, Henseler, and Da 
Camara (2012), Navarro, Acedo, Losada, and Ruzo (2011), Rigdon 
et al. (2011), and Wilden and Gudergan (2015).

Since the introduction of the FIMIX-PLS approach, research has 
proposed a range of other alternatives that assign observations to 
groups based on some distance criterion. Squillacciotti (2005, 2010) 
introduced the PLS typological path modeling (PLS-TPM) procedure, 
which Esposito Vinzi, Trinchera, Squillacciotti, and Tenenhaus (2008) 
advanced by presenting the response-based procedure for detecting 
unit segments in PLS path modeling (REBUS-PLS). REBUS-PLS grad-
ually reallocates observations from one segment to the other with the 
goal of minimizing the residuals. In doing so, REBUS-PLS also takes 

Exhibit 8.12    Latent Class Techniques
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the measurement models into account but is restricted to reflectively 
measured constructs. Furthermore, PLS-TPM and REBUS-PLS reas-
sign many observations per iteration and conduct a random walk 
without systematically advancing toward the goal criterion (Ringle, 
Sarstedt, Schlittgen, & Taylor, 2013; Ringle, Sarstedt, & Schlittgen, 
2014). Becker, Rai, Ringle, et al. (2013) recognized these issues and 
presented the prediction-oriented segmentation in PLS-SEM (PLS-
POS) approach, which is applicable to all kinds of PLS path models 
regardless of whether the latent variables are based on reflective or 
formative measurement models. Their simulation study shows that 
PLS-POS performs well for segmentation purposes and provides 
favorable outcomes compared with alternative segmentation tech-
niques. Researchers can apply PLS-POS by using this method’s imple-
mentation in SmartPLS 3. Genetic algorithm segmentation in 
PLS-SEM (PLS-GAS; Ringle et al., 2013; Ringle, Sarstedt, & Schlitt-
gen, 2014) is another versatile approach to uncover and treat hetero-
geneity in measurement and structural models. This approach consists 
of two stages. The first stage uses a genetic algorithm with the aim of 
finding the partition, which minimizes the endogenous latent varia-
bles’ unexplained variance. The advantage of implementing a genetic 
algorithm is that it has the capability to escape local optimum solu-
tions and thereby covers a wide area of the potential search space 
before delivering a final best solution. In the second stage, a determin-
istic hill-climbing approach aims at delivering an even better solution. 
PLS-GAS returns excellent results that usually outperform the out-
comes of alternative segmentation methods, but it has the downside 
that it is computationally demanding. 

For the latter reason, one of the latest advances to PLS-SEM seg-
mentation introduces the iterative reweighted regressions segmenta-
tion method (PLS-IRRS; Schlittgen, Ringle, Sarstedt, & Becker, 2015). 
PLS-IRRS builds on Schlittgen’s (2011) clusterwise robust regression, 
which determines weights to downweight observations with extreme 
values and mitigates the influence of outliers in the data set. In the 
adaptation of this concept for PLS-SEM–based segmentation, outliers 
are not treated as such but as their own segment. When robust regres-
sion identifies a group of similar outliers, they may therefore become 
a data group of their own and represent a segment-specific PLS-SEM 
solution. At the same time, PLS-IRRS accentuates the impact of inho-
mogeneous observations in the computation of segment-specific PLS-
SEM solutions. Like PLS-POS and PLS-GAS, PLS-IRRS is generally 
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applicable to all kinds of PLS path models. Moreover, it returns excel-
lent results in terms of parameter recovery and predictive power, 
which fully match those of PLS-GAS (Schlittgen et al., 2015). The key 
advantage of PLS-IRRS is its speed. In comparison with PLS-GAS, 
PLS-IRRS is more than 5,000 times faster while providing highly 
similar results.

Because of their existing implementation in SmartPLS 3, we sug-
gest using a combination of FIMIX-PLS and PLS-POS. To start with, 
one should apply FIMIX-PLS, which provides segment retention cri-
teria to determine the number of segments. Sarstedt, Becker, Ringle, 
and Schwaiger (2011) researched the performance of these segment 
retention criteria in depth, providing recommendations regarding their 
use. The FIMIX-PLS solution (i.e., the group assignment based on the 
probabilities of membership) then serves as a starting solution for run-
ning PLS-POS thereafter. PLS-POS improves the FIMIX-PLS solution 
and allows considering heterogeneity in the formative measurement 
models of latent variables. In addition to these explications, Becker, 
Rai, Ringle, et al. (2013) provide an overview and process of how to 
systematically uncover and explain unobserved heterogeneity. 

MEASUREMENT MODEL INVARIANCE

A primary concern in multigroup analyses is ensuring measurement 
invariance, also referred to as measurement equivalence. By establish-
ing measurement invariance, researchers can be confident that group 
differences in model estimates do not result from the distinctive con-
tent and/or meanings of the latent variables across groups. For exam-
ple, variations in the structural relationships between latent variables 
could stem from different meanings the groups’ respondents attribute 
to the phenomena being measured, rather than the true differences in 
the structural relationships. Hult et al. (2008, p. 1028) describe these 
concerns and conclude that “failure to establish data equivalence is a 
potential source of measurement error” (i.e., discrepancies between 
what is intended to be measured and what is actually measured). 
When measurement invariance is not present, it can reduce the power 
of statistical tests, influence the precision of estimators, and provide 
misleading results. In short, when measurement invariance is not 
demonstrated, any conclusions about model relationships are ques-
tionable. Hence, multigroup comparisons require establishing 
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measurement invariance to ensure the validity of outcomes and 
conclusions.

Researchers have suggested a variety of methods to assess mea
surement invariance for covariance-based SEM. Multigroup con-
firmatory factor analysis based on the guidelines of Steenkamp and 
Baumgartner (1998) and Vandenberg and Lance (2000) is by far the 
most common approach to invariance assessment. However, the well-
established measurement invariance techniques used to assess CB-
SEM’s common factor models cannot be readily transferred to 
PLS-SEM’s composite models. For this reason, Henseler, Ringle, and 
Sarstedt (in press) developed the measurement invariance of compos-
ite models (MICOM) procedure, which involves three steps: (1) con-
figural invariance (i.e., equal parameterization and way of estimation),  
(2) compositional invariance (i.e., equal indicator weights), and  
(3) equality of composite mean values and variances. The three steps 
are hierarchically interrelated, as displayed in Exhibit 8.13. 

Step  1 addresses the establishment of configural invariance to 
ensure that a composite has been specified equally for all the groups and 
emerges as a unidimensional entity in the same nomological net across 
all the groups. An initial qualitative assessment of the composites’ speci-
fication across all the groups must ensure the use of (1) identical 

Exhibit 8.13     MICOM Procedure
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can be compared across groups. 
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No
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indicators per measurement model, (2) identical data treatment, and 
(3) identical algorithm settings. Configural invariance is a precondi-
tion for compositional invariance (Step 2), which focuses on analyz-
ing whether a composite is formed equally across the groups. When 
the indicator weights are estimated for each group, it is essential to 
ensure that—despite possible differences in the weights—the scores 
of a composite are the same. The MICOM procedure applies a sta-
tistical test to ensure that the composite scores do not significantly 
differ across groups. The measurement invariance assessment should 
only continue with Step 3, the equality assessment of the composites’ 
mean values and variances, if the previous step’s results support 
measurement invariance. In the case of equal composite mean values 
and variances, one can run the analyses on the pooled data level. 
Even though pooling the data is advantageous from a statistical 
power perspective, researchers must account for potential structural 
heterogeneity by including interaction effects that serve as modera-
tors (Chapter 7).

In summary, running a multigroup analysis requires establishing 
configural (Step 1) and compositional (Step 2) invariance. If these 
two steps do not support measurement invariance, the results and 
differences of the multigroup analysis are invalid. However, if con-
figural and compositional invariance are established, partial measure-
ment invariance is confirmed, which permits comparing the path 
coefficient estimates across the groups. In addition, if partial meas-
urement invariance is confirmed and the composites have equal mean 
values and variances across the groups, full measurement invariance 
is confirmed, which supports the pooled data analysis. Henseler, 
Ringle, and Sarstedt (2015) provide full details on the MICOM pro-
cedure, including simulation study results and an empirical 
application.

CONSISTENT PARTIAL LEAST SQUARES 

In Chapter 1, we compared CB-SEM and PLS-SEM and noted that 
structural model relationships in PLS-SEM are generally slightly 
lower, and measurement model relationships are somewhat higher, 
compared with CB-SEM. Researchers will never obtain exactly the 
same results when using PLS-SEM as with CB-SEM and should not 
expect to. The statistical objective and the measurement philosophy 
of the two SEM methods are different, and thus the results will always 
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differ. Recent research has tried to merge these two SEM techniques 
to maintain PLS-SEM’s flexibility in terms of distributional assump-
tions and handling complex models, while obtaining results that are 
similar to those of CB-SEM. Two approaches have been proposed in 
recent research: the consistent and efficient PLSe2 method (Bentler & 
Huang, 2014) and consistent PLS (PLSc; Dijkstra, 2014; Dijkstra & 
Henseler, 2015a). We discuss the latter approach, as it has been ana-
lyzed in simulation studies (e.g., Dijkstra & Henseler, 2015b) and 
readily implemented in SmartPLS 3. Note that we are not implying 
that these approaches are better than the regular PLS-SEM. Rather, 
they are designed specifically for situations where the research objec-
tive is to mimic CB-SEM results, which usually is not the objective 
when applying PLS-SEM.

PLSc’s objective is to correct the correlation rY1,Y2
 between two 

latent variables Y1 and Y2 for measurement error. More precisely, 
PLSc corrects the original estimate to obtain the disattenuated (i.e., 
consistent) correlation r cY1,Y2

 by dividing the latent variable correlation 
rY1,Y2 

by the geometric mean of the latent variables’ reliabilities. 
Regarding the latter, researchers can refer to Cronbach’s alpha or 
composite reliability (see Chapter 4). Cronbach’s alpha is a conserva-
tive reliability measure, since it most likely underestimates the true 
reliability of construct measures. On the contrary, composite reliabil-
ity is generally a liberal estimate because it draws on the outer load-
ings, which are typically somewhat inflated. The true reliability of 
latent variables usually lies between Cronbach’s alpha and composite 
reliability. As a solution to this problem and building on Dijkstra 
(2010), subsequent research has proposed the exact (or consistent) 
reliability ρA (Dijkstra, 2014; Dijkstra & Henseler, 2015b), which is 
defined as

ρA := (ŵ′ŵ)2 · 
ŵ′(S − diag(S))ŵ

,
ŵ′(ŵŵ′ − diag(ŵŵ′))ŵ

where ŵ represents the outer weights estimates and S the sample 
covariance matrix.

PLSc follows a four-step approach (Exhibit 8.14). In Step 1, the 
basic PLS-SEM algorithm is run. These results are then used in Step 2 
to calculate the reliability ρA of all reflectively measured latent vari-
ables in the PLS path model (Dijkstra, 2014; Dijkstra & Henseler, 
2015b). For formatively measured constructs and single-item 
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constructs, ρA is set to 1. In Step 3, the consistent reliabilities of all 
latent variables from Step 2 are used to correct the inconsistent cor-
relation matrix of the latent variables obtained in Step  1. More 
precisely, one obtains the consistent correlation between two con-
structs by dividing their correlation from Step 1 by the geometric 
mean (i.e., the square root of the product) of their reliabilities ρA. 
This correction applies to all correlations of reflectively measured 
constructs. The correlation of two formative and/or single-item 
constructs remains unchanged. The correction for attenuation only 
applies when at least one reflectively measured latent variable with 
a consistent reliability ρA smaller than 1 is involved in the correla-
tion between two constructs in the PLS path model. In Step 4, the 
consistent correlation matrix of the latent variables allows reesti-
mating all model relationships yielding consistent path coefficients, 
corresponding R² values, and outer loadings. Note that significance 
testing in PLSc requires running an adjusted bootstrapping routine, 
which has also been implemented in SmartPLS 3. 

To illustrate how PLSc works, consider the simple PLS path 
model shown in Exhibit 8.15. In the following, we will estimate this 
model using artificially generated data with a prespecified path coef-
ficient of 0.30 for the structural model relationship p12. Using artifi-
cially generated data has the advantage that we know the true values 
of the relationship in the PLS path model (i.e., 0.30) and the resulting 
reliabilities of the constructs. In contrast, when using empirical data, 
one never knows the true values of the model. 

Exhibit 8.16 shows the PLS-SEM and PLSc results for 10 situa-
tions. All situations use a prespecified coefficient of 0.300 for the 
relationship p12 between the latent variables Y1 and Y2. The situations 
differ with regard to the prespecified correlation construct reliabilities 
ρA, which range between 0.950 and 0.700. The first situation starts 
with relatively high reliabilities ρA of 0.950 for both constructs. The 

Exhibit 8.14     PLSc Procedure
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PLS-SEM method provides an estimated p12 path coefficient of 0.285. 
This result is slightly lower than the value of 0.300 that we expected 
to obtain from the artificially generated set of data. 

To obtain the PLSc path coefficient, one needs to divide the PLS-
SEM result of p12 by the geometric mean of the two constructs’ reli-
abilities ρA. In Situation 1, the PLS-SEM result (0.285) divided by the 
geometric mean of the two reliabilities (0.950) results in a consistent 
coefficient p12 of 0.300. This result matches the expected value of the 
artificial data generation. In the subsequent situations (2 to 10), the 
geometric mean of reliabilities systematically declines. In Situation 10, 
both reliabilities have a value of 0.700. The lower reliability levels of 
the constructs result in an estimated PLS-SEM coefficient of 0.210, 
which is clearly below the expected value of 0.300. Again, the use of 
the geometric mean of the reliabilities allows obtaining a consistent 
path coefficient of 0.300 that matches the expected value. 

This illustration shows how PLSc works. In practical applica-
tions, PLSc results can be substantially influenced by low reliability 
levels of the constructs. As a result, the standardized PLSc path coef-
ficients can become very high (in some situations considerably larger 
than 1). Moreover, in more complex PLS path models, collinearity 
among the latent variables has a strong negative impact on the PLSc 
results. In some instances, the structural model relationships become 
very small. Moreover, bootstrapping can produce extreme outcomes, 
which result in high standard errors in certain relationships, increas-
ing the Type II error rate.

In light of these limitations, the question arises as to when 
researchers should use PLSc. The PLSc approach is appropriate if 
researchers assume common factor models as in confirmatory SEM 
analyses (Bollen, 2011; Bollen & Bauldry, 2011). In that case, they 

Exhibit 8.15    PLSc Path Model Example
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intend to mimic CB-SEM results by assuming that the construct rep-
resents the covariance of the underlying indicators. Simulation studies 
for such models reveal that CB-SEM and PLSc return almost identical 
results of the estimated coefficients (Dijkstra & Henseler, 2015b). 
While CB-SEM and PLSc have approximately the same accuracy of 
estimated parameters and statistical power, PLSc retains most of PLS-
SEM’s advantageous features (Chapter 2). Among others, PLSc does 
not have distributional assumptions, can handle complex models, is 
less affected by incorrect specifications in (subparts of) the model, and 
will not encounter convergence problems. PLSc and the PLSe2 algo-
rithm by Bentler and Huang (2014), which is another approach to 
obtain consistent PLS results, may therefore obtain an important role 
in extending the capabilities offered by CB-SEM for confirmatory 
SEM. However, to date, the conceptual underpinnings of PLSc’s 
approach to measurement have not been fully established, and we 
believe that research needs to clarify the use of composite versus  
common factor models before routinely applying PLSc. 

Compared with PLSc, the standard PLS-SEM method assumes a 
different and likely more realistic view regarding measurement in that 
it assumes a composite model and does not require a normal distribu-
tion. Following this measurement philosophy, the latent variable 
(more precisely the composite) is considered a proxy for a latent 
concept (Rigdon, 2012). Different from factor-based models, the cor-
responding indicators do not need to be conceptually united and 
necessarily correspond to a predefined theoretical concept. Therefore, 
researchers have to keep in mind that, when using PLSc, they follow 
a fundamentally different measurement logic. Furthermore, and dif-
ferent from PLSc, the goal of standard PLS-SEM modeling is primar-
ily to explain the variance of the target constructs and the outcomes 
of single observations, while also providing estimates of structural 
model relationships and measurement model parameters. In these 
situations, consistent and determinant latent variable scores are 
needed, and researchers should use the basic PLS-SEM results. In 
practical applications, researchers often have both goals in mind. 
Hence, future advances in SEM pave the way toward a combined use 
of PLS and PLSc in studies where both goals are emphasized. 
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SUMMARY

•	 Comprehend the usefulness of a PLS-SEM importance-
performance map analysis (IPMA). The IPMA extends the standard 
PLS-SEM results reporting of path coefficient estimates by adding a 
dimension to the analysis that considers the average values of the 
latent variable scores. The analysis contrasts the total effects of 
latent variables on a certain target variable (impact) with their 
rescaled average latent variable scores (performance). The graphical 
representation of the outcomes enables researchers to easily identify 
critical areas of (managerial) attention and action (i.e., constructs 
with high importance but low performance). The IPMA can also be 
applied on an indicator data level.

•	 Understand hierarchical component models (HCMs) and 
how to apply this concept in PLS-SEM. HCMs are used to establish 
a more general HOC that represents or summarizes the information 
of several LOCs. Four major types of HCM represent different rela-
tionships between the HOC and the LOCs as well as the measure-
ment models used to operationalize the constructs: reflective-reflective, 
reflective-formative, formative-reflective, and formative-formative. 
Generally, the HOC of reflective-reflective and reflective-formative 
HCMs represents a more general construct that simultaneously 
explains all the underlying LOCs (i.e., similar to reflective measure-
ment models; Chapters 2 and 4). Conversely, in formative-reflective 
and formative-formative HCMs (i.e., similar to formative measure-
ment models; Chapters 2 and 5), the HOC is formed by the LOCs. 
Besides this issue, each of the four HCM types must be assessed 
carefully. We usually expect to have the same (or comparable) num-
ber of indicators per LOC, while the relationship between reflective-
formative or formative-formative HOCs and other constructs in the 
PLS path model that explain it requires a two-stage HCM analysis. 
HCMs are becoming increasingly popular in research since they 
offer a means of establishing more parsimonious path models. 

•	 Get to know how to assess the mode of measurement model 
with the confirmatory tetrad analysis in PLS-SEM (CTA-PLS). CTA-
PLS is a useful tool to empirically evaluate a latent variable’s mode 
of measurement model (i.e., formative or reflective). The test requires 
at least four indicators per measurement model. In the case of reflec-
tive measurement, all model-implied nonredundant vanishing tet-
rads have a residual value that is not significantly different from 



Chapter 8    Outlook on Advanced Methods       307

zero. However, if at least one of the model-implied nonredundant 
vanishing tetrads is significantly different from zero, one should con-
sider rejecting the reflective measurement model and, instead, assume 
a formative specification. The CTA-PLS test enables researchers to 
empirically evaluate measurement models, thus providing guidance 
that may enable researchers to avoid measurement model misspecifi-
cation. When evaluating the mode of a measurement model, you 
must always include theoretical, conceptual, and practical considera-
tions along with the empirical evidence provided by CTA-PLS. 

•	 Understand multigroup analysis in PLS-SEM. Multigroup 
analysis allows testing whether differences between group-specific 
path coefficients are statistically significant. Researchers have pro-
posed different approaches to multigroup analysis with the t test–
based parametric approach being most frequently applied. 
Alternatives such as the permutation test and the PLS-MGA do not 
rely on distributional assumptions. In comparison, the permutation 
test has particularly advantageous statistical properties and we rec-
ommend this method when analyzing the difference of parameters 
across two groups. In the case of more than two groups, the use of 
OTG is appropriate.

•	 Learn about techniques to identify and treat unobserved 
heterogeneity. Unobserved heterogeneity represents a serious threat 
to the validity of PLS-SEM results. Research has proposed various 
approaches to identify and treat heterogeneity that generalize, for 
example, mixture regression, genetic algorithm, or hill-climbing 
approaches to PLS-SEM. While FIMIX-PLS constitutes the most 
widely used approach in the field, more recently proposed methods 
such as PLS-POS and PLS-GAS are more versatile and have shown 
superior performance. In light of the current state of implementa-
tion, researchers should use FIMIX-PLS to identify the number of 
segments to retain from the data and to obtain a starting partition 
for a subsequent PLS-POS analysis. Both methods have been imple-
mented in SmartPLS 3.

•	 Understand measurement model invariance and its assess-
ment in PLS-SEM. Group comparisons are valid if measurement 
invariance has been established. Thereby, researchers ensure that 
group differences in model estimates do not result from the distinc-
tive content and/or meanings of the latent variables across groups. 
When measurement invariance is not demonstrated, any conclusions 
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about model relationships are questionable. The measurement 
invariances of composites (MICOM) procedure represents a useful 
tool in PLS-SEM. The procedure comprises three steps that test dif-
ferent aspects of measurement invariance: (1) configural invariance 
(i.e., equal parameterization and way of estimation), (2) composi-
tional invariance (i.e., equal indicator weights), and (3) equality of 
composite mean values and variances.

•	 Become familiar with consistent partial least squares (PLSc). 
PLS-SEM results generally provide somewhat higher measurement 
model estimates and lower structural model estimates compared 
with CB-SEM. When the goal of the analysis is not to maximize the 
endogenous latent variables’ amount of explained variance but to 
mimic CB-SEM results in terms of parameter accuracy, PLSc permits 
correcting PLS path coefficients for attenuation. The PLSc results 
are very similar to those obtained by CB-SEM, while retaining the 
well-known advantages of PLS-SEM. Hence, besides using PLS-SEM 
for predictive modeling, researchers can use PLSc for confirmatory 
SEM studies that are designed to mimic the common factor model 
of CB-SEM. The standard PLS-SEM method assumes a different and 
likely more realistic view regarding measurement in that it assumes 
a composite model and does not require a normal distribution. 
When the goal of PLS-SEM modeling is primarily to explain the 
variance of the target constructs and the outcomes of single observa-
tions, while also providing estimates of structural model relation-
ships and measurement model parameters, standard PLS-SEM 
should be used.

REVIEW QUESTIONS

	 1.	 What is the purpose of the IPMA?

	 2.	 What is an HCM? Visualize each of the four types of HCMs 
introduced in this chapter.

	 3.	 What is the difference between observed and unobserved 
heterogeneity? Why is the consideration of heterogeneity so 
important when analyzing PLS path models?

	 4.	 What is FIMIX-PLS?

	 5.	 Why would you run a multigroup analysis in PLS-SEM?
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CRITICAL THINKING QUESTIONS

	 1.	 What kind of practical implications can you draw from 
IPMA results? Name an additional (third) interesting dimen-
sion of an IPMA that you would consider.

	 2.	 Why is a two-stage approach in a reflective-formative or 
formative-formative HCM needed if the HOC has an addi-
tional antecedent construct (other than the LOCs) in the 
structural model that predicts it?

	 3.	 Provide practical examples of the four major types of HCMs.

	 4.	 Critically comment on the following statement: “Measurement 
invariance is not an issue in PLS-SEM because of the method’s 
focus on prediction and exploration.”

	 5.	 Explain how PLSc complements and extends PLS-SEM.

KEY TERMS

Cluster analysis

Clustering

Common factor model

Compositional invariance

Configural invariance

Confirmatory tetrad analysis

Consistent PLS (PLSc)

CTA-PLS

Equality of composite mean 
values and variances

FIMIX-PLS

Finite mixture partial least 
squares (FIMIX-PLS)

Formative-formative HCM

Formative-reflective HCM

Full measurement invariance

Genetic algorithm segmentation 
in PLS-SEM (PLS-GAS)

HCM 

Hierachical component models 
(HCM)

Higher-order component 
(HOC)

HOC

Importance

Importance-performance map

Importance-performance map 
analysis (IPMA)

IPMA

Iterative reweighted regressions 
segmentation method  
(PLS-IRRS)

Latent class techniques

LOC

Lower-order component (LOC)

Measurement equivalence
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Measurement invariance

Measurement invariance 
of composite models 
(MICOM) procedure

Measurement model 
misspecification

MICOM

Model-implied nonredundant 
vanishing tetrads

Observed heterogeneity

Omnibus test of group  
differences (OTG)

OTG

Parametric approach

Partial measurement invariance

Performance

Permutation test

PLS typological path modeling 
(PLS-TPM)

PLSc

PLSe2

PLS-GAS

PLS-IRRS

PLS-MGA

PLS-POS

PLS-TPM

Prediction-oriented segmentation 
in PLS-SEM (PLS-POS)

REBUS-PLS

Reflective-formative HCM

Reflective-reflective HCM

Reliability ρA

Repeated indicators approach 
for HCM

Rescaling

Response-based procedure  
for detecting unit segments  
in PLS path modeling  
(REBUS-PLS)

Response-based segmentation 
techniques

Tetrad (τ)

Two-stage HCM analysis

Unobserved heterogeneity

Vanishing tetrad
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Glossary
10 times rule: one way to determine the minimum sample size specific to the 
PLS path model that one needs for model estimation (i.e., 10 times the number 
of independent variables of the most complex OLS regression in the structural 
or formative measurement model). The 10 times rule should be seen only as a 
rough estimate of the minimum sample size. Rather, researchers should revert 
to recommendations such as those presented by Cohen (1992) in his “Power 
Primer” article or run a power analysis specific to the model at hand.

Absolute contribution: is the information an indicator variable provides 
about the formatively measured item, ignoring all other indicators. The 
absolute contribution is provided by the loading of the indicator (i.e., its 
bivariate correlation with the formatively measured construct).

Absolute importance: see Absolute contribution.

Adjusted coefficient of determination (Radj
2 ): is a modified measure of the 

coefficient of determination that takes into account the number of predic-
tor constructs. The statistic is useful for comparing models with different 
numbers of predictor constructs, different sample sizes, or both.

Algorithmic options: offer different ways to run the PLS-SEM algorithm 
by, for example, selecting between alternative starting values, stop values, 
weighting schemes, and maximum number of iterations.

Alternating extreme pole responses: is a suspicious survey response pattern 
where a respondent uses only the extreme poles of the scale (e.g., a 7-point 
scale) in an alternating order to answer the questions.

AVE: see Average variance extracted.

Average variance extracted: a measure of convergent validity. It is the 
degree to which a latent construct explains the variance of its indicators; 
see Communality (construct).

Bias-corrected and accelerated (BCa) bootstrap confidence intervals: con-
stitute an improvement of the percentile method by adjusting for biases 
and skewness in the bootstrap distribution. The method yields very low 
Type I errors but is limited in terms of statistical power.

Blindfolding: is a sample reuse technique that omits part of the data matrix 
and uses the model estimates to predict the omitted part. It indicates a 
model’s out-of-sample predictive power.

Bootstrap cases: make up the number of observations drawn in every boot-
strap run. The number is set equal to the number of valid observations in 
the original data set.
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Bootstrap confidence interval: provides an estimated range of values that is 
likely to include an unknown population parameter. It is determined by its 
lower and upper bounds, which depend on a predefined probability of error 
and the standard error of the estimation for a given set of sample data. When 
zero does not fall into the confidence interval, an estimated parameter can be 
assumed to be significantly different from zero for the prespecified probability 
of error (e.g., 5%).

Bootstrap samples: are the number of samples drawn in the bootstrapping pro-
cedure. Generally, 5,000 or more samples are recommended.

Bootstrapping: is a resampling technique that draws a large number of sub-
samples from the original data (with replacement) and estimates models for 
each subsample. It is used to determine standard errors of coefficients to assess 
their statistical significance without relying on distributional assumptions.

Cascaded moderator analysis: is a type of moderator analysis in which the 
strength of a moderating effect is influenced by another variable (i.e., the 
moderating effect is again moderated).

Casewise deletion: an entire observation (i.e., a case or respondent) is 
removed from the data set because of missing data. It should be used when 
indicators have more than 5% missing values.

Categorical moderator variable: see Multigroup analysis.

Causal indicators: a type of indicator used in formative measurement models. 
Causal indicators do not fully form the latent variable but “cause” it. 
Therefore, causal indicators must correspond to a theoretical definition of 
the concept under investigation.

Causal links: are predictive relationships in which the constructs on the left 
predict the constructs to the right.

CB-SEM: see Covariance-based structural equation modeling.

Cluster analysis: see Clustering.

Clustering: is a class of methods that partition a set of objects with the goal 
of obtaining high similarity within the formed groups and high dissimilar-
ity across groups. 

Coding: is the assignment of numbers to scales in a manner that facilitates 
measurement.

Coefficient of determination (R²): a measure of the proportion of an endog-
enous construct’s variance that is explained by its predictor constructs.

Collinearity: arises when two variables are highly correlated.

Common factor model: assumes that each indicator in a set of observed 
measures is a linear function of one or more common factors. Exploratory 
factor analysis (EFA), confirmatory factor analysis (CFA), and CB-SEM are 
the three main types of analyses based on common factor models. 

Communality (construct): see Average variance extracted.

Communality (item): see Indicator reliability.
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Competitive mediation: a situation in mediation analysis that occurs when 
the indirect effect and the direct effect are both significant and point in 
opposite directions.

Complementary mediation: a situation in mediation analysis that occurs 
when the indirect effect and the direct effect are both significant and point 
in the same direction.

Composite indicators: a type of indicator used in formative measurement 
models. Composite indicators form the construct (or composite) fully by 
means of linear combinations. Therefore, composite indicators do not need 
to be conceptually united.

Composite reliability: a measure of internal consistency reliability, which, 
unlike Cronbach’s alpha, does not assume equal indicator loadings. It should 
be above 0.70 (in exploratory research, 0.60 to 0.70 is considered acceptable).

Composite variable: is a linear combination of several variables.

Compositional invariance: exists when indicator weights are equal across 
groups.

Conditional indirect effect: see Moderated mediation.

Confidence interval: see Bootstrap confidence interval.

Configural invariance: exists when constructs are equally parameterized 
and estimated across groups.

Confirmatory: describes applications that aim at empirically testing theo-
retically developed models.

Confirmatory tetrad analysis for PLS-SEM (CTA-PLS): is a statistical pro-
cedure that allows for empirically testing the measurement model setup 
(i.e., whether the measures should be specified reflectively or formatively).

Consistency at large: describes an improvement of precision of PLS-SEM 
results when both the number of indicators per measurement model and 
the number of observations increase.

Consistent PLS (PLSc): a variant of the standard PLS-SEM algorithm, 
which provides consistent model estimates that disattenuate the corre-
lations between pairs of latent variables, thereby mimicking CB-SEM 
results.

Construct-level sign change option: is the algorithmic option in bootstrap-
ping that corrects for extreme samples drawn in the resampling runs.

Construct scores: are columns of data (vectors) for each latent variable that 
represent a key result of the PLS-SEM algorithm. The length of every vector 
equals the number of observations in the data set used.

Constructs: measure concepts that are abstract, complex, and cannot be 
directly observed by means of (multiple) items. Constructs are represented 
in path models as circles or ovals and are also referred to as latent variables.

Content specification: is the specification of the scope of the latent variable, 
that is, the domain of content the set of formative indicators is intended 
to capture.
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Content validity: is a subjective but systematic evaluation of how well the 
domain content of a construct is captured by its indicators.

Continuous moderator variable: is a variable that affects the direction and/
or strength of the relation between an exogenous latent variable and an 
endogenous latent variable.

Convergence: is reached when the results of the PLS-SEM algorithm do not 
change much. In that case, the PLS-SEM algorithm stops when a prespecified 
stop criterion (i.e., a small number such as 0.00001) that indicates the minimal 
changes of PLS-SEM computations has been reached. Thus, convergence has 
been accomplished when the PLS-SEM algorithm stops because the prespeci-
fied stop criterion has been reached and not the maximum number of iterations.

Convergent validity: is the degree to which the formatively measured con-
struct correlates positively with an alternative (reflective or single-item) 
measure of the same construct; see Redundancy analysis.

Covariance-based structural equation modeling (CB-SEM): is used to con-
firm (or reject) theories. It does this by determining how well a proposed 
theoretical model can estimate the covariance matrix for a sample data set.

Coverage error: occurs when the bootstrapping confidence interval of a 
parameter does not correspond to its empirical confidence interval.

Critical t value: is the cutoff or criterion on which the significance of a 
coefficient is determined. If the empirical t value is larger than the critical 
t value, the null hypothesis of no effect is rejected. Typical critical t values 
are 2.57, 1.96, and 1.65 for a significance level of 1%, 5%, and 10%, 
respectively (two-tailed tests).

Critical value: see Significance testing.

Cronbach’s alpha: a measure of internal consistency reliability that assumes 
equal indicator loadings. In the context of PLS-SEM, composite reliability is 
considered a more suitable criterion of reliability. However, Cronbach’s alpha 
still represents a conservative measure of internal consistency reliability.

Cross-loadings: an indicator’s correlation with other constructs in the 
model.

Cross-validated communality: is used to obtain the Q² value based on the 
prediction of the data points by means of the underlying measurement 
model (see Blindfolding).

Cross-validated redundancy: is used to obtain the Q² value based on the 
prediction of the data points by means of the underlying structural model 
and measurement model (see Blindfolding).

CTA-PLS: see Confirmatory tetrad analysis.

Data matrix: includes the empirical data that are needed to estimate the 
PLS path model. The data matrix must have one column for every indica-
tor in the PLS path model. The rows represent the observations with their 
responses to every indicator on the PLS path model.

Davison and Hinkley’s double bootstrap: is an extension of Shi’s dou-
ble bootstrap, which introduces a bias correction based on differences  
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between parameter estimates derived from samples and corresponding 
subsamples.

Degrees of freedom (df ): is the number of values in the final calculation of 
the test statistic that are free to vary.

Diagonal lining: is a suspicious survey response pattern in which a respon-
dent uses the available points on a scale (e.g., a 7-point scale) to place the 
answers to the different questions on a diagonal line. 

Direct effect: is a relationship linking two constructs with a single arrow 
between the two.

Direct-only nonmediation: a situation in mediation analysis that occurs 
when the direct effect is significant but not the indirect effect.

Disattenuated correlation: the correlation between two constructs, if they 
were perfectly measured (i.e., if they were perfectly reliable).

Discriminant validity: is the extent to which a construct is truly distinct 
from other constructs, in terms of how much it correlates with other con-
structs, as well as how much indicators represent only a single construct.

Double bootstrapping: is a variant of regular bootstrapping in which fur-
ther subsamples are drawn from each bootstrap sample (i.e., bootstrap the 
bootstrap).

Effect indicators: see Reflective measurement.

Empirical t value: is the test statistic value obtained from the data set at 
hand (here: the bootstrapping results). See Significance testing.

Endogenous constructs: see Endogenous latent variables.

Endogenous latent variables: serve only as dependent variables or as both 
independent and dependent variables in a structural model.

Equality of composite mean values and variances: is the final requirement 
to establish full measurement invariance.

Equidistance: is given when the distance between data points of a scale is 
identical.

Error terms: capture the unexplained variance in constructs and indicators 
when path models are estimated.

Evaluation criteria: are used to evaluate the quality of the measurement 
models and the structural model results in PLS-SEM based on a set of 
nonparametric evaluation criteria and procedures such as bootstrapping 
and blindfolding.

Exact fit test: a model fit test, which applies bootstrapping to derive  
p values of the (Euclidean or geodesic) distances between the observed  
correlations and the model-implied correlations.

Exogenous constructs: see Exogenous latent variables.

Exogenous latent variables: are latent variables that serve only as indepen-
dent variables in a structural model.

Explained variance: see Coefficient of determination.
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Exploratory: describes applications that focus on exploring data patterns 
and identifying relationships.

ƒ² effect size: is a measure used to assess the relative impact of a predictor 
construct on an endogenous construct.

Factor (score) indeterminacy: means that one can compute an infinite num-
ber of sets of factor scores matching the specific requirements of a certain 
common factor model. In contrast to the explicit estimation in PLS-SEM, 
the scores of common factors are indeterminate. 

FIMIX-PLS: see Finite mixture partial least squares.

Finite mixture partial least squares (FIMIX-PLS): is a latent class approach 
that allows for identifying and treating unobserved heterogeneity in PLS 
path models. The approach applies mixture regressions to simultaneously 
estimate group-specific parameters and observations’ probabilities of seg-
ment membership. 

First-generation techniques: are statistical methods traditionally used by 
researchers, such as regression and analysis of variance.

Formative-formative HCM: has formative measurement models of all con-
structs in the HCM and path relationships from the LOCs to the HOC 
(i.e., the LOCs form the HOC).

Formative measurement: is a type of measurement model setup in which 
the indicators fully form (see Composite indicators) or cause (see Causal 
indicators) the construct, and arrows point from the indicators to the  
construct. Also referred to as Mode B in PLS-SEM.

Formative measurement model: is a type of measurement model setup in 
which the direction of the arrows is from the indicator variables to the 
construct, indicating the assumption that the indicator variables cause the 
measurement of the construct.

Formative measures: see Measurement models.

Formative-reflective HCM: has formative measurement models of all con-
structs in the HCM and path relationships from the HOC to the LOCs 
(i.e., the LOCs reflect the HOC).

Fornell-Larcker criterion: a measure of discriminant validity that compares 
the square root of each construct’s average variance extracted with its cor-
relations with all other constructs in the model.

Full measurement invariance: is confirmed when (1) configural invariance, 
(2) compositional invariance, and (3) equality of composite mean values 
and variances are demonstrated.

Full mediation: a situation in mediation analysis that occurs when the 
mediated effect is significant but not the direct effect. Hence, the media-
tor variable fully explains the relationship between an exogenous and an 
endogenous latent variable. Also referred to as indirect-only mediation.
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Genetic algorithm segmentation in PLS-SEM (PLS-GAS): is a distance-
based segmentation method in PLS-SEM that builds on genetic segmenta-
tion results.  

GoF: see Goodness-of-fit index.

Goodness-of-fit index (GoF): has been developed as an overall measure of 
model fit for PLS-SEM. However, as the GoF cannot reliably distinguish 
valid from invalid models and since its applicability is limited to certain 
model setups, researchers should avoid its use.

HCM: see Hierarchical component model.

Heterogeneity: occurs when the data underlie groups of data characterized 
by significant differences in terms of model parameters. Heterogeneity can 
be either observed or unobserved, depending on whether its source can be 
traced back to observable characteristics (e.g., demographic variables) or 
whether the sources of heterogeneity are not fully known.

Heterotrait-heteromethod correlations: are the correlations of the indica-
tors across constructs measuring different constructs.

Heterotrait-monotrait ratio (HTMT): is an estimate of what the true cor-
relation between two constructs would be, if they were perfectly measured 
(i.e., if they were perfectly reliable). HTMT is the mean of all correla-
tions of indicators across constructs measuring different constructs (i.e., 
the heterotrait-heteromethod correlations) relative to the (geometric) mean 
of the average correlations of indicators measuring the same construct (i.e., 
the monotrait-heteromethod correlations) and can be used for discriminant 
validity assessment.

Hierarchical component model (HCM): is a higher-order structure (usu-
ally second-order) that contains several layers of constructs and involves 
a higher level of abstraction. HCMs involve a more abstract higher-order 
component (HOC), related to two or more lower-order components 
(LOCs) in a reflective or formative way.

Higher-order component (HOC): is a general construct that represents all 
underlying LOCs in an HCM.

Higher-order model: see Hierarchical component model (HCM).

HOC: see Higher-order component.

HTMT: see Heterotrait-monotrait ratio.

Hypothesized relationships: are proposed explanations for constructs that 
define the path relationships in the structural model. The PLS-SEM results 
enable researchers to statistically test these hypotheses and thereby empiri-
cally substantiate the existence of the proposed path relationships.

Importance: is a term used in the context of IPMA. It is equivalent to the 
unstandardized total effect of some latent variable on the target variable.

Importance-performance map: is a graphical representation of the impor-
tance-performance map analysis.
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Importance-performance map analysis (IPMA): extends the standard PLS-
SEM results reporting of path coefficient estimates by adding a dimension 
to the analysis that considers the average values of the latent variable scores. 
More precisely, the IPMA contrasts structural model total effects on a spe-
cific target construct with the average latent variable scores of this con-
struct’s predecessors.

In-sample predictive power: see Coefficient of determination.

Inconsistent mediation: see Competitive mediation.

Index: is a set of formative indicators used to measure a construct.

Index of moderated mediation: quantifies the effect of a moderator on 
the indirect effect of an exogenous construct on an endogenous construct 
through a mediator.

Indicator reliability: is the square of a standardized indicator’s outer load-
ing. It represents how much of the variation in an item is explained by the 
construct and is referred to as the variance extracted from the item; see 
Communality (item).

Indicators: are directly measured observations (raw data), generally referred 
to as either items or manifest variables, represented in path models as rect-
angles. They are also available data (e.g., responses to survey questions or 
collected from company databases) used in measurement models to measure 
the latent variables; in SEM, indicators are often called manifest variables.

Indirect effect: represents a relationship between two latent variables via a 
third (e.g., mediator) construct in the PLS path model. If p1 is the relation-
ship between the exogenous latent variable and the mediator variable, and 
p2 is the relationship between the mediator variable and the endogenous 
latent variable, the indirect effect is the product of path p1 and path p2.

Indirect-only mediation: a situation in mediation analysis that occurs when 
the indirect effect is significant but not the direct effect. Hence, the media-
tor variable fully explains the relationship between an exogenous and an 
endogenous latent variable. Also referred to as full mediation.

Individual-level sign change option: is an algorithmic option in bootstrap-
ping that corrects for extreme samples drawn in the resampling runs.

Initial values: are the values for the relationships between the latent vari-
ables and the indicators in the first iteration of the PLS-SEM algorithm. 
Since the user usually has no information which indicators are more impor-
tant and which indicators are less important per measurement model, an 
equal weight for every indicator in the PLS path model usually serves well 
for the initialization of the PLS-SEM algorithm. In accordance, all relation-
ships in the measurement models have an initial value of +1.

Inner model: see Structural model.

Interaction effect: see Moderating effect.

Interaction term: is an auxiliary variable entered into the path model to 
account for the interaction of the moderator variable and the exogenous 
construct.



320      A Primer on Partial Least Squares

Internal consistency reliability: is a form of reliability used to judge the 
consistency of results across items on the same test. It determines whether 
the items measuring a construct are similar in their scores (i.e., if the  
correlations between the items are large).

Interpretational confounding: is a situation in which the empirically  
observed meaning between a construct and its measures differs from the 
theoretically implied meaning.

Interval scale: can be used to provide a rating of objects and has a constant 
unit of measurement so the distance between the scale points is equal.

IPMA: see Importance-performance map analysis.

Items: see Indicators.

Iterative reweighted regressions segmentation method (PLS-IRRS): is a par-
ticularly fast and high-performing distance-based segmentation method for 
PLS-SEM.

Kurtosis: is a measure of whether the distribution is too peaked (a very nar-
row distribution with most of the responses in the center).

Latent class techniques: a class of approaches that facilitates uncovering 
and treating unobserved heterogeneity. Different approaches have been 
proposed, which generalize, for example, finite mixture, genetic algorithm, 
or hill-climbing approaches to PLS-SEM.

Latent variables: are the (unobserved) theoretical or conceptual elements in 
the structural model. A latent variable that only explains other latent vari-
ables (only outgoing relationships in the structural model) is called exog-
enous, while latent variables with at least one incoming relationship in the 
structural model are called endogenous. Also see Constructs.

Listwise deletion: see Casewise deletion.

LOC: see Lower-order component.

Lower-order component (LOC): is a subdimension of the HOC in an  
HCM.

Main effect: refers to the direct effect between an exogenous and an endog-
enous construct in the path model without the presence of a moderating 
effect. After inclusion of the moderator variable, the main effect typically 
changes in magnitude. Therefore, it is commonly referred to as simple effect 
in the context of a moderator model.

Manifest variables: see Indicators.

Maximum number of iterations: is needed to ensure that the algo-
rithm stops. The goal is to reach convergence. But if convergence can-
not be reached, the algorithm should stop after a certain number  
of iterations. This maximum number of iterations (e.g., 300) should be  
sufficiently high to allow the PLS-SEM algorithm to converge.

Mean value replacement: inserts the sample mean for the missing data. 
Should only be used when indicators have less than 5% missing values.

Measurement: is the process of assigning numbers to a variable based on 
a set of rules.
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Measurement equivalence: see Measurement invariance.

Measurement error: is the difference between the true value of a variable 
and the value obtained by a measurement.

Measurement invariance: deals with the comparability of responses to 
sets of items across groups. Among other things, measurement invariance 
implies that the categorical moderator variable’s effect is restricted to the 
path coefficients and does not involve group-related differences in the mea-
surement models.

Measurement invariance of composite models (MICOM) procedure: is a 
series of tests to assess invariance of measures (constructs) across multiple 
groups of data. The procedure comprises three steps that test different aspects 
of measurement invariance: (1) configural invariance (i.e., equal parameter-
ization and way of estimation), (2) compositional invariance (i.e., equal indi-
cator weights), and (3) equality of composite mean values and variances.

Measurement model: is an element of a path model that contains the indi-
cators and their relationships with the constructs and is also called the 
outer model in PLS-SEM.

Measurement model misspecification: describes the use of a reflective mea-
surement model when it is formative or the use of a formative measurement 
model when it is reflective. Measurement model misspecification usually 
yields invalid results and misleading conclusions. 

Measurement scale: is a tool with a predetermined number of closed-ended 
responses that can be used to obtain an answer to a question.

Measurement theory: specifies how constructs should be measured with (a 
set of) indicators. It determines which indicators to use for construct mea-
surement and the directional relationship between construct and indicators.

Mediated moderation: combines a moderator model with a mediation 
model in that the continuous moderating effect is mediated. 

Mediating effect: occurs when a third variable or construct intervenes 
between two other related constructs.

Mediation: represents a situation in which one or more mediator variable(s) 
explain the processes through which an exogenous construct influences an 
endogenous construct.

Mediation model: see Mediation.

Mediator variable: see Mediation.

Metric data: represents data on a ratio scale and interval scale; see Ratio 
scale, Interval scale.

MICOM: see Measurement invariance of composite models procedure.

Minimum sample size: is the number of observations needed to represent 
the underlying population and to meet the technical requirements of the 
multivariate analysis method used. See 10 times rule. 

Missing value treatment: can employ different methods such as mean 
replacement, EM (expectation-maximization algorithm), and nearest 
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neighbor to obtain values for missing data points in the set of data used for 
the analysis. As an alternative, researchers may consider deleting cases with 
missing values (i.e., casewise deletion). 

Mode A: see Reflective measurement.

Mode B: see Formative measurement.

Model complexity: indicates how many latent variables, structural model 
relationships, and indicators in reflective and formative measurement mod-
els exist in a PLS path model. Even though PLS-SEM virtually has no limits 
of model complexity, knowledge about the most complex OLS regression is 
needed to determine the minimum sample size (10 times rule).

Model-implied nonredundant vanishing tetrads: are tetrads considered for 
significance testing in CTA-PLS. 

Moderated mediation: combines a mediation model with a moderator 
model in that the mediator relationship is moderated by a continuous mod-
erator variable. 

Moderating effect: see Moderation.

Moderation: occurs when the effect of an exogenous latent variable on 
an endogenous latent variable depends on the values of a third variable, 
referred to as a moderator variable, which moderates the relationship. 

Moderator effect: see Moderation.

Moderator variable: see Moderation.

Monotrait-heteromethod correlations: are the correlations of indicators 
measuring the same construct.

Multicollinearity: see Collinearity.

Multigroup analysis: is a type of moderator analysis where the moderator 
variable is categorical (usually with two categories) and is assumed to poten-
tially affect all relationships in the structural model; it tests whether param-
eters (mostly path coefficients) differ significantly between two groups. 
Research has proposed a range of approaches to multigroup analysis, 
which rely on the bootstrapping or permutation procedure.

Multiple mediation analysis: describes a mediation analysis in which mul-
tiple mediator variables are being included in the model.

Multivariate analyses: are statistical methods that simultaneously analyze 
multiple variables.

No-effect nonmediation: a situation in mediation analysis that occurs when 
neither the direct nor the indirect effect is significant.

No sign change option: is an algorithmic option in bootstrapping that, 
unlike the construct-level sign change option and the individual-level sign 
change option, does not correct for extreme samples drawn in the resam-
pling runs.

Nominal scale: is a measurement scale in which numbers are assigned that 
can be used to identify and classify objects (e.g., people, companies, prod-
ucts, etc.).
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Observed heterogeneity: occurs when the sources of heterogeneity are 
known and can be traced back to observable characteristics such as demo-
graphics (e.g., gender, age, income).

Omission distance (D): determines which data points are deleted when 
applying the blindfolding (see Blindfolding) procedure. An omission  
distance D of 9, for example, implies that every ninth data point, and thus 
1/9 = 11.11% of the data in the original data set, is deleted during each 
blindfolding round. The omission distance should be chosen so that the 
number of observations used from model estimation divided by D is not an 
integer. Furthermore, D should be between 5 and 10.

Omnibus test of group differences (OTG): is a PLS-SEM–based mul-
tigroup analysis method that compares the parameter results of two or 
more groups at the same time. It corresponds to the F test in regression or 
ANOVA.

One-tailed test: see Significance testing.

Ordinal scale: is a measurement scale in which numbers are assigned that 
indicate relative positions of objects in an ordered series.

Orthogonalizing approach: is an approach to model the interaction term 
when including a moderator variable in the model. It creates an interaction 
term with orthogonal indicators. These orthogonal indicators are not cor-
related with the indicators of the independent variable and the moderator 
variable in the moderator model. 

OTG: see Omnibus test of group differences.

Out-of-sample predictive power: see Q² value.

Outer loadings: are the estimated relationships in reflective measurement 
models (i.e., arrows from the latent variable to its indicators). They deter-
mine an item’s absolute contribution to its assigned construct. Loadings are 
of primary interest in the evaluation of reflective measurement models but 
are also interpreted when formative measures are involved.

Outer models: see Measurement model.

Outer weights: are the results of a multiple regression of a construct on its 
set of indicators. Weights are the primary criterion to assess each indica-
tor’s relative importance in formative measurement models.

Outlier: is an extreme response to a particular question or extreme 
responses to all questions.

p value: is, in the context of structural model assessment, the probability 
of error for assuming that a path coefficient is significantly different from 
zero. In applications, researchers compare the p value of a coefficient with 
a significance level selected prior to the analysis to decide whether the path 
coefficient is statistically significant.

Pairwise deletion: uses all observations with complete responses in the cal-
culation of the model parameters. As a result, different calculations in the 
analysis may be based on different sample sizes, which can bias the results. 
The use of pairwise deletion should generally be avoided. 
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Parameter settings: see Algorithmic options.

Parametric approach: is a multigroup variant, representing a modified ver-
sion of a two independent samples t test.

Parsimonious models: are models with as few parameters as possible for a 
given quality of model estimation results.

Partial least squares structural equation modeling (PLS-SEM): is a vari-
ance-based method to estimate structural equation models. The goal is to 
maximize the explained variance of the endogenous latent variables.

Partial measurement invariance: is confirmed when only (1) configural 
invariance and (2) compositional invariance are demonstrated.

Partial mediation: occurs when a mediator variable partially explains the 
relationship between an exogenous and an endogenous construct. Partial 
mediation can come in the form of complementary and competitive media-
tion, depending on the relationship between the direct and indirect effects. 

Path coefficients: are estimated path relationships in the structural model 
(i.e., between the constructs in the model). They correspond to standard-
ized betas in a regression analysis.

Path models: are diagrams that visually display the hypotheses and vari-
able relationships that are examined when structural equation modeling 
is applied.

Percentile method: is an approach for constructing bootstrap confidence 
intervals. Using the ordered set of parameter estimates obtained from boot-
strapping, the lower and upper bounds are directly computed by excluding 
a certain percentage of lowest and highest values (e.g., 2.5% in the case of 
the 95% bootstrap confidence interval). The method has a high statistical 
power but may yield Type I errors.

Performance: is a term used in the context of IPMA. It is the mean value of 
the unstandardized (and rescaled) scores of a latent variable or an indicator.

Permutation test: is a multigroup analysis variant. The test randomly per-
mutes observations between the groups and reestimates the model to derive 
a test statistic for the group differences.

PLS path modeling: see Partial least squares structural equation modeling.

PLS regression: is an analysis technique that explores the linear relation-
ships between multiple independent variables and a single or multiple 
dependent variable(s). In developing the regression model, it constructs 
composites from both the multiple independent variables and the depen-
dent variable(s) by means of principal component analysis.

PLS typological path modeling (PLS-TPM): is the first distance-based  
segmentation method developed for PLS-SEM.

PLSc: see Consistent PLS.

PLSe2: is a variant of the original PLS-SEM algorithm. Similar to PLSc, 
it makes the model estimates consistent in a common factor model sense.

PLS-GAS: see Genetic algorithm segmentation in PLS-SEM.

PLS-IRRS: see Iterative reweighted regressions segmentation method.
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PLS-MGA: is a bootstrap-based multigroup analysis technique that further 
improves Henseler’s MGA.

PLS-POS: see Prediction-oriented segmentation approach in PLS-SEM.

PLS-SEM: see Partial least squares structural equation modeling.

PLS-SEM algorithm: is the heart of the method. Based on the PLS path 
model and the indicator data available, the algorithm estimates the scores 
of all latent variables in the model, which in turn serve for estimating all 
path model relationships.

PLS-SEM bias: refers to PLS-SEM’s property that structural model rela-
tionships are slightly underestimated and relationships in the measurement 
models are slightly overestimated compared with CB-SEM. This difference 
can be attributed to the methods’ different handling of the latent variables 
in the model estimation but is negligible in most settings typically encoun-
tered in empirical research.

PLS-TPM: see PLS typological path modeling segmentation.

Prediction: is the primary goal of the PLS-SEM method. The higher the R² 
value (R² values) of endogenous constructs (latent variables), the better 
their prediction by the PLS path model.

Prediction error: measures the difference between the prediction of a data 
point and its original value in the sample.

Prediction-oriented segmentation in PLS-SEM (PLS-POS): is a distance-
based segmentation method for PLS-SEM. 

Predictive relevance (Q²): is a measure of a model’s predictive power. It 
examines whether a model accurately predicts data not used in the estima-
tion of model parameters. This characteristic makes Q2 a measure of out-
of-sample predictive power (i.e., predictive relevance).

Product indicator approach: is an approach to model the interaction term 
when including a moderator variable in the model. It involves multiplying 
the indicators of the moderator with the indicators of the exogenous latent 
variable to establish a measurement model of the interaction term. The 
approach is only applicable when both moderator and exogenous latent 
variables are operationalized reflectively. 

Product indicators: are indicators of an interaction term, generated by mul-
tiplication of each indicator of the exogenous construct with each indicator 
of the moderator variable. See Product indicator approach.

q² effect size: is a measure to assess the relative predictive relevance of a 
predictor construct on an endogenous construct.

Q² value: is a measure of a model’s predictive power. The computation of 
Q2 draws on the blindfolding technique, which uses a subset of the avail-
able data to estimate model parameters and then predicts the omitted data. 
Q2 examines whether a model accurately predicts data not used in the 
estimation of model parameters (i.e., out-of-sample predictive power or 
predictive relevance).

Radj
2 value: see Adjusted coefficient of determination.
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R² values: are the amount of explained variance of endogenous latent vari-
ables in the structural model. The higher the R² values, the better the con-
struct is explained by the latent variables in the structural model that point 
at it via structural model path relationships. High R² values also indicate 
that the values of the construct can be well predicted via the PLS path 
model. See Coefficient of determination.

Ratio scales: are the highest level of measurement because they have a con-
stant unit of measurement and an absolute zero point; a ratio can be calcu-
lated using the scale points.

Raw data: are the unstandardized observations in the data matrix that is 
used for the PLS path model estimation.

REBUS-PLS: see Response-based procedure for detecting unit segments in 
PLS path modeling.

Redundancy analysis: is a measure of a formative construct’s convergent 
validity. It tests whether a formatively measured construct is highly cor-
related with a reflective measure of the same construct.

Reflective-formative HCM: has reflective measurement models of all con-
structs in the HCM and path relationships from the LOCs to the HOC 
(i.e., the LOCs form the HOC).

Reflective measure: see Reflective measurement.

Reflective measurement: is a type of measurement model setup in which 
measures represent the effects (or manifestations) of an underlying con-
struct. Causality is from the construct to its measures (indicators). Also 
referred to as Mode A in PLS-SEM.

Reflective measurement model: See Reflective measurement

Reflective-reflective HCM: has reflective measurement models of all con-
structs in the HCM and path relationships from the HOC to the LOCs 
(i.e., the LOCs reflect the HOC).

Relative contribution: is the unique importance of each indicator by par-
tializing the variance of the formatively measured construct that is pre-
dicted by the other indicators. An item’s relative contribution is provided 
by its weight.

Relevance of significant relationships: compares the relative importance of 
predictor constructs to explain endogenous latent constructs in the struc-
tural model. Significance is a prerequisite for the relevance, but not all con-
structs and their significant path coefficients are highly relevant to explain 
a selected target construct.

Reliability: is the consistency of a measure. A measure is reliable (in the 
sense of test-retest reliability) when it produces consistent outcomes under 
consistent conditions. The most commonly used measure of reliability is 
the internal consistency reliability.

Reliability ρA: is the exact reliability of common factor models.
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Repeated indicators approach for HCM: is a type of measurement model 
setup in HCM that uses the indicators of the LOCs as indicators of the 
HOC to create an HCM in PLS-SEM.

Rescaling: changes the values of a variable’s scale to fit a predefined range 
(e.g., 0 to 100).

Response-based procedure for detecting unit segments in PLS path model-
ing (REBUS-PLS): is a distance-based segmentation method for PLS-SEM 
that builds on PLS-TPM.

Response-based segmentation techniques: see Latent class techniques.

RMStheta: see Root mean square residual covariance.

Root mean square residual covariance (RMStheta): is a model fit measure, 
which is based on the (root mean square) discrepancy between the observed 
covariance and the model-implied correlations. In CB-SEM, an SRMR 
value indicates good fit, but no threshold value has been introduced in a 
PLS-SEM context yet. Initial simulation results suggest a (conservative) 
threshold value for RMStheta of 0.12. That is, RMStheta values below 0.12 
indicate a well-fitting model, whereas higher values indicate a lack of fit.

Sample: is the selection of individuals that represents the underlying population.

Scale: is a set of reflective indicators used to measure a construct.

Second-generation techniques: overcome the limitations of first-generation 
techniques, for example, in terms of accounting for measurement error. 
SEM is the most prominent second-generation data analysis technique.

SEM: see Structural equation modeling.

Shi’s double bootstrap: translates the percentile method to double boot-
strapping, accounting for coverage errors. The method has proven to 
be accurate in various data constellations but is also computationally 
demanding.

Sign indeterminacy: is a characteristic of PLS-SEM that causes arbitrary 
sign changes in the bootstrap estimates of path coefficients, loadings, and 
weights compared with the estimates obtained from the original sample.

Significance testing: is the process of testing whether a certain result likely 
has occurred by chance. In the context of structural model evaluation, it 
involves testing whether a path coefficient is truly different from zero in 
the population. Assuming a specified significance level, we reject the null 
hypothesis of no effect (i.e., the path coefficient is zero in the population) 
if the empirical t value (as provided by the data) is larger than the critical 
value. Commonly used critical values for two-tailed tests (derived from 
the normal distribution) are 2.57, 1.96, and 1.65 for significance levels of 
1%, 5%, and 10%, respectively. For these significance levels and one-tailed 
tests, the critical values are 2.33, 1.65, and 1.28, respectively.

Simple effect: is a cause-effect relationship in a moderator model. The 
parameter estimate represents the size of the relationship between the 
exogenous and endogenous latent variable when the moderator variable is 
included in the model. For this reason, the main effect and the simple effect 
usually have different sizes.
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Simple mediation analysis: describes a mediation analysis in which only 
one mediator variable is being included in the model.

Single-item construct: a construct that has only a single item measuring 
it. Since the construct is equal to its measure, the indicator loading is 
1.00, making conventional reliability and convergent validity assessments 
inappropriate.

Singular data matrix: occurs when a variable in a measurement model is a 
linear combination of another variable in the same measurement model or 
when a variable has identical values for all observations. In this case, the 
variable has no variance and the PLS-SEM approach cannot estimate the 
PLS path model.

Skewness: is the extent to which a variable’s distribution is symmetrical 
around its mean value.

Sobel test: is a test that has been proposed to assess the significance of 
the indirect effect in a mediation model. Due to its parametric nature and 
reliance on unstandardized path coefficients, the test is not applicable in a 
PLS-SEM context. 

Specific indirect effect: describes an indirect effect via one single mediator 
in a multiple mediation model.

SRMR: see Standardized root mean square residual.

Standard error: is the standard deviation of the sampling distribution of a 
given statistic. Standard errors are important to show how much sampling 
fluctuation a statistic has.

Standardized data: have a mean value of 0 and a standard deviation of 1 
(z-standardization). The PLS-SEM method usually uses standardized raw 
data. Most software tools automatically standardize the raw data when 
running the PLS-SEM algorithm.

Standardized root mean square residual (SRMR): is a model fit measure, 
which is defined as the root mean square discrepancy between the observed 
correlations and the model-implied correlations. In CB-SEM, an SRMR 
value below 0.08 indicates good fit, but no threshold value has been intro-
duced in a PLS-SEM context yet.

Standardized values: indicate how many standard deviations an observa-
tion is above or below the mean.

Statistical power: the probability to detect a significant relationship when the 
relationship is in fact significant in the population.

Stop criterion: see Convergence.

Straight lining: describes a situation in which a respondent marks the same 
response for a high proportion of the questions.

Structural equation modeling (SEM): is used to measure relationships 
between latent variables.

Structural model: represents the theoretical or conceptual element of the 
path model. The structural model (also called inner model in PLS-SEM) 
includes the latent variables and their path relationships.
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Structural theory: specifies how the latent variables are related to each 
other. That is, it shows the constructs and the paths between them.

Studentized bootstrap method: computes confidence intervals similarly to 
a confidence interval based on the t distribution, except that the standard 
error is derived from the bootstrapping results. Its performance parallels 
that of the percentile method.

Sum scores: represent a naive way to determine the latent variable scores. 
Instead of estimating the relationships in the measurement models, sum 
scores use the same weight for each indicator per measurement model 
(equal weights) to determine the latent variable scores. 

Suppressor variable: describes the mediator variable in competitive media-
tion, which absorbs a significant share of or the entire direct effect, thereby 
substantially decreasing the magnitude of the total effect.

Tetrad (τ): is the difference of the product of a pair of covariances and the 
product of another pair of covariances. In reflective measurement models, 
this difference is assumed to be zero or at least close to zero; that is, they 
are expected to vanish. Nonvanishing tetrads in a latent variable’s measure-
ment model cast doubt on its reflective specification, suggesting a formative 
specification.  

Theoretical t value: see Critical t value.

Theory: is a set of systematically related hypotheses developed following 
the scientific method that can be used to explain and predict outcomes and 
can be tested empirically.

Three-way interaction: is an extension of two-way interaction where the 
moderator effect is again moderated by another moderator variable.

TOL: see Variance inflation factor.

Tolerance: see Variance inflation factor.

Total effect: is the sum of the direct effect and the indirect effect between an 
exogenous and an endogenous latent variable in the path model.

Total indirect effect: is the sum of all specific indirect effects in a multiple 
mediation model.

Two-stage approach: is an approach to model the interaction term when 
including a moderator variable in the model. The approach can be used 
when the exogenous construct and/or the moderator variable are measured 
formatively.

Two-stage HCM analysis: is an approach to modeling and estimating an 
HCM in PLS-SEM. It is needed to estimate path relationships between an 
exogenous latent variable and a reflective-formative HCM or a formative-
formative HCM in PLS-SEM.

Two-tailed test: see Significance testing.

Two-way interaction: is the standard approach to moderator analysis where 
the moderator variable interacts with one other exogenous latent variable.

Unobserved heterogeneity: occurs when the sources of heterogeneous data 
structures are not (fully) known.
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Validity: is the extent to which a construct’s indicators jointly measure 
what they are supposed to measure.

Vanishing tetrad: see Tetrad.

Variance-based SEM: see Partial least squares structural equation modeling.

Variance inflation factor (VIF): quantifies the severity of collinearity among 
the indicators in a formative measurement model. The VIF is directly 
related to the tolerance value (VIFi = 1/tolerancei).

Variate: see Composite variable.

VIF: see Variance inflation factor.

Weighting scheme: describes a particular method to determine the rela-
tionships in the structural model when running the PLS-SEM algorithm. 
Standard options are the centroid, factor, and path weighting schemes. The 
final results do not differ much, and one should use the path weighting 
scheme as a default option since it maximizes the R² values of the PLS path 
model estimation.
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IBM SPSS Statistics, 60, 68
Importance-performance map 

analysis (IPMA), 109,  
276–280, 306
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Independent variables, 14

path model sequence, 14,  
37–39

See also Exogenous latent 
variables

Index of moderated mediation, 260
Indicators, 6
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PLS-SEM, 16

causal, 47–48, 145–146
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113–114
formative, 47–48. See also 

Composite indicators; 
Formative measurement 
models and constructs

importance-performance map 
analysis, 280

measurement model 
specification, 45–46

metric scale requirements, 27
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weights, 146–147
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raw data input, 82
redundant, 112, 140
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Reflective measurement 
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236–238
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analysis
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See also Mediation
Indirect-only mediation, 232
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Interaction effects, 244, 246

model evaluation criteria and, 
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See also Moderation
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confounding, 146
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Kurtosis assessment, 11
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295–298
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CB-SEM, 15–17
data matrix, 82
importance-performance map 

analysis, 276–280
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algorithm, 89–91
measurement theory, 13
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Moderation
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37–39
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requirement, 90
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Lower-order components (LOCs), 

281–283
LVPLS, 86, 90

Main effect, 256
Mean value replacement, 57
Measurement, 5–7
Measurement equivalence, 298–300
Measurement error, 7

measurement model evaluation, 
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measurement model  
invariance, 298

PLS-SEM advantages in 
accounting for, 15

PLS-SEM bias, 88
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procedure, 299–300

Measurement model evaluation, 
104–110, 133

case study illustration, 122–132, 
159–184

content specification, 139
formative measurement models, 
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important metrics, 105, 111
measurement error, 106–107
moderation effects 

considerations, 255–256
reflective and formative 

constructs, 107–108
reflective measurement models, 

111–134
rules of thumb, 110, 122
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108–109
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model evaluation; 
Reflective measurement 
model evaluation

Measurement model invariance, 
276, 298–300, 307–308

Measurement model 
misspecification, 285

Measurement models, 12, 37, 
44–45
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also Measurement model 
evaluation

multivariate measurement, 106
PLS path model estimation, 

83–84
PLS-SEM bias, 21, 88
PLS-SEM capabilities, 28–29

Measurement model specification, 
44–55, 76–77

case study illustration, 64–66
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51, 110, 276–280,  
285–290
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46–51
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single-item measures, 51–53, 54
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44–46
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Mediation, 39–41, 227–232, 271

discriminant validity and, 235
moderated, 259–261
suppressor variables, 234
total effect interpretation, 

197–198
types of mediation effects, 

232–234
Mediation analysis, 233, 271

bootstrapping, 235, 238–241
case study illustration, 238–243
measurement model evaluation, 

235–236
multiple mediation, 236–238
rules of thumb, 239
testing mediating effects, 235

Mediator variables, 227–228
validity and reliability,  

235–236
See also Mediation

Metric data requirements, 27
MICOM procedure, 299–300
Microsoft Excel, 238
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blindfolding procedure, 202
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Mode A measurement, 46. See 
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models and constructs

Mode B measurement, 47. See 
also Formative measurement 
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Moderated mediation, 259–261
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243–245, 271
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mediated, 259–261
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types of moderator variables, 
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Moderator analysis, 271–272

bootstrapping, 256, 269–270
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analysis, 248
case study illustration,  

262–271
model evaluation criteria and, 

255–256
multigroup analysis, 42, 244
orthogonalizing approach,  

250–251, 252, 255, 258
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249, 255
results interpretation, 256–259
rules of thumb, 263
slope plots, 258, 259, 268, 269
two-stage approach,  
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model evaluation criteria and, 
255–256
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See also Moderation

Monotrait-heteromethod 
correlations, 118, 120

Multicollinearity, 142

Multigroup analysis, 42, 110, 244, 
276, 291–295, 307

assessing measurement 
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Multiple mediation analysis, 
236–238

Multivariate analysis, 2
first- and second-generation 

methods, 3–4
PLS regression, 17
See also Structural equation 

modeling
Multivariate analysis, 

considerations in method 
selection, 4–11, 31

coding, 9–10
composite variables, 5
data distributions, 10–11.  

See also Normal 
distributions

measurement, 5–7
PLS-SEM application issues, 

17–20
sample size, 22–25

No-effect nonmediation, 232
Nominal (or categorical) scale, 

7–8
Nonparametric multigroup 

analysis, 294
Normal distributions

bootstrapping and nonnormal 
data, 61

mediation analysis assumptions, 
235

SEM assumptions, 11, 18, 25, 
27, 60–61, 87, 149

tests for normality, 11, 61
No sign change option, 154

Omission distance (D), 202–204
Omnibus test of group differences 

(OTG), 294
One-tailed test critical  

values, 195
Online data collection, 57
Ordinal scale, 8

PLS-SEM application issues, 27
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collinearity influences, 27, 
191–192

PLS-SEM predictive advantages, 
17

PLS-SEM results, 91–92
PLS-SEM statistical properties, 

86–89
Orthogonalizing approach,  

250–251, 252, 255, 258
Outer loadings

indicator reliability and,  
113–114

PLS path model estimation,  
84, 86

PLS-SEM results, 91–92, 124
relevance testing, 114

Outer model, 12, 44. See also 
Measurement models
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bootstrapping confidence 

intervals, 183
bootstrapping results, 182
collinearity issues, 144
implications of numbers of 

indicators used, 146–147
importance-performance map 

analysis and, 280
indicator significance and 

relevance, 144–149
initial values, 154
PLS path model estimation, 

83–84, 86
PLS-SEM results, 91–92
significant and nonsignificant 

weights, 147–149
See also Weights

Outliers, 27, 59–60, 68
Out-of-sample predictive power 
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202–207

Pair-wise deletion, 57–58
Parametric approach, multigroup 

analysis, 293–294
Parsimonious models, 199
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regression, 17
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equation modeling  
(PLS-SEM), xi–xii, 4, 14,  
21, 32
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27, 64
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CB-SEM, xiii–xiv, 14–18, 
21–22, 32–33, 88–89, 
300–301

composite-based approach, 15
critical considerations in 

application, 17–20
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56–62, 77–78
fit measures, 18, 21,  

86–87, 105, 192,  
193–194, 221
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limitations of, 18, 20
maximization of explained 

variance, 82, 86, 92, 105, 
192. See also Coefficient of 
determination
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105. See also Measurement 
model evaluation

modeling capabilities, 27–29
nonparametric distributional 

assumptions, 11, 18, 27, 
60–61, 87, 149

path modeling with latent 
variables, 11–13

PLS regression and, 17
PLS-SEM bias, 21, 88–89
predictive capabilities, 17, 

86–87
sample size considerations, 18, 

22–25, 26, 83
statistical properties, 86–89, 

100–101
structural model metrics, 

105. See also Structural 
measurement model 
evaluation
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See also Path model estimation; 

Path model specification; 
PLS-SEM algorithm

Partial measurement  
invariance, 300

Partial mediation, 233
Path coefficients

calculation, 86
standardized values, 90, 195
structural measurement model 

evaluation, 195–198,  
212–217, 221–222

Path model estimation, 81,  
92–99

advanced analyses, 109–110
case study illustration,  

92–99
convergence and stopping 

criterion, 91, 123
measurement model 

calculations, 83
minimum sample size, 83
model assessment. See 

Measurement model 
evaluation; Structural 
measurement model 
evaluation

options and parameter settings, 
89–91, 93–94

PLS-SEM algorithm, 82–89
results, 91–92, 95–99, 101

Path models, 11–13, 37
assessment of results. See 

Measurement model 
evaluation; Structural 
measurement model 
evaluation

causal links, 39
dependent and independent 

variable sequence, 14
theory-based development, 13

Path model specification, 36–37
case study illustration, 62–76
content specification, 139
data collection and 

examination, 56–62,  
66–68, 77–78

guidelines, 55
indicator selection, 45–46
measurement models, 44–55, 

64–66, 76–77. See also 
Measurement model 
specification

mediating effects, 39–41.  
See also Mediation

moderator effects, 41–43.  
See also Moderation

sequence of constructs, 14, 
37–39

structural models, 37–44,  
63–64, 76. See also 
Structural model specification

using SmartPLS software, 68–76
Path weighting scheme, 89
Percentile method, 155–156, 159
Permutation test, 294
PLSe2, 301, 305
PLS-Graph, 86, 90
PLS-GUI, 86
PLS-IRRS, 297–298
PLS-MGA, 294
PLSPM, 86
PLS-POS, 297–298
PLS-SEM algorithm, 82–86, 

99–100
construct scores computation, 

82, 87–88
convergence and stopping 

criterion, 91, 123, 167
initial values, 89–91, 154
options and parameter settings, 

89–91, 93–94, 100, 168
raw data input, 82
software programs, 86. See also 

SmartPLS 3
statistical properties, 86–89, 

100–101
weighting schemes, 89–90
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PLS-SEM model assessment. 

See Measurement model 
evaluation; Structural 
measurement model 
evaluation

PLS-TPM, 296–297
PLS typological path modeling 

(PLS-TPM), 296–297
Postcoding, 9
Precoding, 9
Prediction, PLS-SEM capabilities, 

17, 86–87
Prediction-oriented segmentation 

in PLS-SEM (PLS-POS), 
297–298

Predictive power, 198–200
moderator variables and, 246
See also Coefficient of 

determination; Predictive 
relevance

Predictive relevance (Q2), 109, 
202–207, 217, 220, 222

Primary data sources, 56
Principal component analysis, 17
Product indicator approach,  

249, 255
p values, 153

bootstrapping, 177, 181, 196

Q2 (predictive relevance),  
109, 202–207, 217,  
220, 222

q2 effect size, 109, 207–208,  
220, 221

Quasi-metric scales, 27

R2. See Coefficient of 
determination

Ratio scales, 9, 27
Raw data input, 82
Raw data transformation, 90
REBUS-PLS, 296–297
Redundancy analysis, 140–141, 

172–175
Redundant indicators, 112, 140
Reflective-formative HCM, 282

Reflective measurement model 
evaluation, 108, 111,  
133–134

bootstrapping, 119–120, 130
case study illustration, 122–132, 

169–172
composite reliability, 111–112
convergent validity, 112–115, 

126, 140–141
discriminant validity, 115–122, 

126–132, 171
formative measure assessment 

and, 138
important metrics, 111
internal consistency reliability, 

108, 111–112, 126
rules of thumb, 122

Reflective measurement models 
and constructs, 13, 46, 
107–108

confirmatory tetrad analysis, 
285–290

formative/reflective mode 
specification, 50–51, 52, 
285–286

measurement specification, 
46–51

moderator analysis and, 253
PLS path model estimation, 83
PLS-SEM capabilities, 28
selecting suitable measures, 

140–141
Reflective-reflective HCM, 282
Regression, partial least squares 

(PLS), 17
Regressions based on sum scores, 

14–16, 18, 53–55
Relevance of significant 

relationships, 197
Reliability, 107, 108

case study illustration,  
124–126

composite, 111–112,  
124, 125

consistent PLS (PLSc), 301–302
Cronbach’s alpha, 53, 111–112, 

126, 127, 301
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106. See also Measurement 
model evaluation
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301–302

internal consistency, 108,  
111–112, 126

measurement error and, 107
mediator constructs, 236
outer loadings and, 113–114
single-item measures and,  

51, 109
Repeated indicators  

approach, 283
Rescaling latent variable  

scores, 277
Response-based procedure for 

detecting unit segments in 
PLS path modeling  
(REBUS-PLS), 296–297

Response-based segmentation 
techniques, 295–298

Root mean square residual 
covariance (RMStheta),  
193–194

R program, 86
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Sample size

bootstrapping procedure, 149
collinearity issues, 142
PLS-SEM application 

considerations, 18, 22–25, 
26, 83

PLS-SEM versus CB-SEM 
performance and, 88–89

rules of thumb, 24–25, 83
single-item measures  

and, 53
Scales of reflective measures, 47
Screening questions, 59
Secondary data sources, 56
Second-generation statistical 

techniques, 3–4
semPLS, 86
Shapiro-Wilk test, 11, 61
Sign change options, 154

Significance testing
bootstrapping, 138, 149–159, 

160, 175–180, 185–186, 
239–241

critical values, 153
formative indicators and,  

144–149, 175–184
p values, 153
relevance of relationships, 197
significant and nonsignificant 

weights, 147–149
structural model path coefficients, 

195–198, 213–217
Sign indeterminacy, 153–154
Simple effect, 256–258
Single-item constructs, 7, 51–53, 

54, 77, 106, 108–109
evaluating reliability and 

validity, 109
moderator variables and, 246
redundancy analysis and, 140–141

Singular Data Matrix, 95, 142
Skewness assessment, 11
Slope plots, 258, 259, 268, 269
SmartPLS 3, xii, xv, 68–69, 86

bootstrapping, 130, 131, 157, 
175–180, 213–217

confirmatory tetrad analysis, 
289–290

estimation results, 95–99
extended model in, 164, 240
formative measurement model 

evaluation, 163–169,  
173–184, 186

handling missing data, 57, 70
initialization setup, 90–91
latent class techniques, 298
mediation, 238–243
moderator analysis, 262–271
path model estimation, 92–99
path model specification, 68–76
reflective measurement model 

evaluation, 122–132, 
169–172

structural measurement model 
evaluation, 209–221

website, 69
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Sobel test, 235
Soft modeling, 25, 27
Software programs for  
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SmartPLS 3

SPAD-PLS, 86
Specific indirect effect, 236
SPSS, 60, 68
Standard error

bootstrap, 151, 155, 157,  
185, 195

collinearity issues,  
142–143

Standardized moderator 
indicators, 257

Standardized root mean square 
residual (SRMR), 18, 20, 
193–194

Standardized scores, 90
Standardized values for path 

coefficients, 195
Statistical power, PLS-SEM 

advantages, 18, 89
Stopping criterion for PLS-SEM 

algorithm, 91, 123, 167
Straight lining, 58–59
Structural equation modeling 

(SEM), xiii, 1, 31
comparing approaches, 14–18, 

21–22
considerations in method 

selection, 4–11. See also 
Multivariate analysis, 
considerations in method 
selection

distributional considerations, 
11. See also Normal 
distributions

second-generation statistical 
techniques, 3–4

variance-based approach, 17
See also Covariance-based 
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modeling; Partial least 
squares structural equation 
modeling

Structural measurement model 
evaluation, 109, 190–192

blindfolding and predictive 
relevance Q2, 202–207, 
217, 220, 222

bootstrapping, 196–197, 
213–217

case study illustration, 209–221
collinearity assessment,  

191–192, 194, 195, 210
f2 effect size, 201–202, 210, 

222, 255–256
important metrics, 105,  

109, 192
mediating effects, 198. See also 

Mediation
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considerations, 255–256
overview of procedure, 191
path coefficients, 195–198, 

212–217, 221–222
q2 effect size, 207–208,  

220, 221
R2 values, 198–200, 210, 222
relevance of relationships, 197
rules of thumb, 110, 208–209
significance of relationships, 

195–197
systematic procedure, 106

Structural models, 11–12, 37
mediation effects. See Mediation
moderation effects. See 

Moderation
PLS path model estimation, 

84–85
sample size considerations, 24

Structural model specification, 76
case study illustration, 63–64
hierarchical component models, 

43–44
sequence of constructs, 14, 

37–39
Structural theory, 13–14
Studentized bootstrap  

method, 157
Student’s t test, 151
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Sum scores, 14–16, 18, 53–55
Suppressor variables, 234
Survey response issues, 58–60
Suspicious response patterns, 

58–59
Symmetric scaling, 9–10

t distribution, 153
Technology acceptance model 

(TAM), 21
10 times rule, 24, 83
Tetrads, 286–288
Theory-based path model 

development, 13
Three-way interaction, 248
Tolerance (TOL), 143, 194
Total effects, 197–198, 212–213

importance-performance map 
analysis, 276–280

Total indirect effect, 236–238
Two-stage approach for 

moderator analysis,  
251–255, 258

Two-stage HCM analysis,  
283–284

Two-tailed test critical values, 195
Two-way interaction, 248

Unexplained variance, 12, 32
Unobserved heterogeneity, 276, 

291, 307
latent class techniques, 291, 

295–298

Validity, 107, 108
case study illustration, 126–132
content, 108, 113–114,  

138–139
convergent, 108, 112–115, 126, 

140–141, 172–175
criterion, 109
discriminant, 111, 115–122, 

126–132, 171, 235

evaluating measurement models, 
106. See also Measurement 
model evaluation

measurement error and, 107
measurement invariance and, 

298–299
measurement model 

misspecification and, 285
mediator constructs, 235–236
single-item measures and, 109
unobserved heterogeneity and, 

295
Vanishing tetrad, 287–288
Variance-based approach to SEM, 

17. See also Partial least 
squares structural equation 
modeling

Variance inflation factor (VIF), 
143–144, 145, 175, 194, 212

VisualPLS, 86

WarpPLS, 86
Weights, 5

algorithm weighting schemes, 
89–90

case study model, 93–94
collinearity and, 142
hierarchical component models, 

284–285
implications of numbers of 

indicators used, 146–147
initialization, 154
PLS path model estimation, 

83–84, 86
regression based on sum scores, 

15–16
significant and nonsignificant 

weights, 147–149
See also Outer weights

XLSTAT, 86

z-standardization, 90
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