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Preface

Origins and Background

This book had its origin over 30 years ago, when it became apparent to Jack Cohen that there
were relationships between multiple regression and correlation (MRC) on the one hand and
the analysis of variance (ANOVA) on the other which were undreamed of (or at least did not
appear) in the standard textbooks with which he was familiar. On the contrary, the texts of the
era treated MRC and ANOVA as wholly distinct systems of data analysis intended for types of
research that differed fundamentally in design, goals, and types of variables. Some research,
both statistical and bibliographic, confirmed the relationships noted and revealed yet others.
These relationships served to enrich both systems in many ways, but it also became clear that
multiple regression/correlation was potentially a very general system for analyzing data in
the behavioral sciences, one that could incorporate the analysis of variance and covariance as
special cases. An article outlining these possibilities was published in the quantitative methods
section of Psychological Bulletin (J. Cohen, 1968),1 and it has gone on to become one of the
most cited articles in the Bulletin's history (Sternberg, 1992).2 The volume and sources of
early reprint requests and requests to reprint the article suggested that a responsive chord had
been struck among behavioral scientists in diverse areas. It was also obvious that a book-length
treatment was needed for adequacy of both systematic coverage and expository detail.

In 1969 Jack and Pat were married and began a happy collaboration, one of whose chief
products is this book. (Another has been saluted on the dedication page of each edition.) During
the preparation of the first edition of the book, the ideas of the 1968 paper were expanded,
further systematized, tried out on data, and hardened in the crucible of our teaching, research,
and consulting. We find this system, which has now attained broad usage in the behavioral
sciences, to be surprisingly easy to teach and learn. The first edition of this book was published
in 1975 and, following further development and revision of the ideas, the second edition was
published in 1983.

Despite the continuing popularity of the second edition of this text, by the early 1990s Jack
and Pat were very aware of the need to update and extend its coverage of new methods, options,

^ohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin, 70,426-443.
2Stemberg, R. J. (1992). Psychological Bulletin's top 10 "hit parade". Psychological Bulletin, 112, 387-388.
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and graphics in the regression field. The methods that Jack had done so much to promote
were becoming so familiar to scientists in the field that they no longer needed an extensive
elaboration of their virtues. New improved methods of regression diagnostics and graphics,
multilevel analyses, logistic and other nominal dependent variable methods of regression, and
treatment of longitudinal data made updating seem critical. New generations of computer
software for multiple regression analysis had been developed, including "point and click"
computer programs that now reside on the desktop computer of every researcher and student.
These new programs have combined the wonderful virtues of flexibility and ease of use that have
made multiple regression analysis even more accessible. However, this increased accessibility
has also increased the risk that multiple regression may be used in a mindless manner by
those unfamiliar with its basic concepts. This development made the need for continued clear
coverage of the basic concepts of multiple regression even more apparent.

Because Jack and Pat were aware of the magnitude of the revisions that should be made, and
because they wanted statistical experts who were working in fields central to psychological
research, they invited Drs. Leona Aiken and Stephen West, another "multivariate couple," to
collaborate on the revision. Jack and Pat particularly admired Aiken and West's book Multiple
Regression: Testing and Interpreting Interactions and its extensive use of graphical presen-
tations. Not surprisingly, when we all started to work together, we found that the revisions
that Jack and Pat had originally envisioned were not sufficient to cover all the changes that we
collectively thought to be important.

Jack's death in 1998 has made this revision much more difficult for the remaining three of us
and, in some ways, more important. The four of us had planned the changes together, divided
the tasks, and were well started, but there was still a lot of work to be done. We wanted to
decrease the emphasis on significance tests and increase the recommendations for confidence
intervals and effect size measures, which Jack was so active in promoting. Some of his last
writing could be incorporated, but in other cases we needed to work these ideas in without
his help.

The Audience for the Book

To describe the primary audience for whom this book is intended requires two dimensions.
Substantively, this book is addressed to behavioral and social scientists. These terms have
no sharply defined reference, but we intend them in the most inclusive sense to include the
academic sciences of psychology, sociology, economics, branches of biology, political sci-
ence, anthropology, and social epidemiology, as well as to those in business, health sciences,
communication and other applied fields of behavioral research.

The other dimension of our intended audience, amount of background in statistics and
research, covers an equally broad span. We are very pleased that the book serves both as a
textbook for students and as a handbook for researchers. One particular feature of this book
will be appreciated by many in both groups of readers: Its orientation is nonmathematical,
applied, and data-analytic. This orientation is discussed in the introductory chapter, and will
not be belabored here. Our experience has been that with few exceptions, both students and
substantive researchers in the behavioral and social sciences often approach statistics with
considerable wariness, and profit most from a verbal-conceptual exposition, rich in redundancy
and concrete examples. This we have sought to supply.

As a textbook, whether used in a course at the graduate or advanced undergraduate level, it
is assumed that students have already had a semester's introductory statistics course. Roughly
the first half of the book can be used as the foundation of a solid one semester regression
course. We anticipate that two full semesters would be necessary to cover the entire book. As a
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manual, the researcher's specific interests may dictate the sequence of reference to the chapters
that follow. As much as possible, we attempted to write the book in a manner that minimizes
the need to refer to previous chapters.

The Third Edition: Old and New

The text of this revision remains very much in the spirit of the previous editions: that is, in the
words of one of us, "multiple regression in the service of the ego" (J. Cohen, 1964).3 We are
delighted that the behavioral and social sciences have increasingly moved away from the use
of statistical tests as a kind of mathematical blessing on an investigation, and toward a data-
analytic point of view that focuses on answering the questions that motivated the investigation.
While we have tried to keep the overall conceptual tone of previous editions of the book,
we have felt it necessary to make many modifications to reflect the current and developing
practices in the field. These have included an increased emphasis on graphical presentations
throughout. We have somewhat down-played the comparison of MRC to ANOVA, feeling that
the battle between these methods is as close to being resolved as it will ever be, and that MRC
is now clearly recognized as the more general method (as well as sometimes being supplanted
by other methods that better address failure of its assumptions). In addition, we recognize
that although ANOVA may still hold sway in some experimental fields, many of our readers
in other behavioral sciences will not be very familiar with these statistical models. We also
believe that the behavioral sciences have developed to the point where it is appropriate to begin
emphasizing the reporting of regression results in meaningful units rather than relying heavily
on correlational statistics.

Because of the widely positive response to our presentation of the basic regression ideas,
Chapters 1 through 3 are only moderately modified. Chapter 1 begins with an outline of the
general system of data analysis made possible by multiple regression/correlation methods.
Beginning students may benefit from rereading Chapter 1 after they gain greater familiarity
with the specifics of this system through their reading of later chapters. Chapter 2 begins "from
scratch" with bivariate correlation and regression, and reviews elementary statistical concepts
and terminology. Chapter 2 is not really intended to be a thorough, basic exposition, but rather
its purpose is to refresh the reader's memory, and to affix the basic meanings of regression
and correlation so firmly in the reader's mind that later exposition will be readily understood.
Chapter 3 extends this basic understanding to models with multiple independent variables.
Chapter 4, new to this edition, considers the assumptions of multiple regression and outlines
alternative procedures that may be taken when they are not met. We have organized old and
new issues of data-analytic strategy into an independent Chapter 5. The chapters on curvilinear
relationships and transformations (Chapter 6) and interactions between continuous variables
(Chapter 7) have been substantially rewritten to reflect a variety of new developments in these
areas. Chapter 8 on nominal (group) variables has been moderately rewritten and Chapter
9 on group by continuous variable interactions has been extensively rewritten to reflect new
developments. Chapter 10, new to this edition, considers the potential problems of outliers
and multicollinearity and their remedies. Chapter 11 on missing data now incorporates the
full armamentarium of new methods that have been developed to cope with this common
problem. Chapter 12 on causal analysis is updated. Chapter 13, new to this edition, covers
a variety of techniques including logistic regression and Poisson regression that are useful

3Cohen, J. (1964). Lecture given at the New York Academy of Medicine. Published as J. Cohen(1968). Prognostic
factors in functional psychosis: A study in multivariate methodology. Transactions of the New York Academy of
Sciences, 30(6), 833-840.



XXVJii PREFACE

in addressing data sets in which the dependent variables are binary, ordered categories, or
counts. Chapter 14, also new to this edition, provides an introduction to multilevel models
for clustered data. Another new Chapter (15) introduces the reader to the many methods
of answering research questions using longitudinal data. Finally, Jack's Chapter 16 on set
correlation analysis of multiple dependent variables has been revised based on his presentation
in the Keren and Lewis (1993) volume.4

We have many to thank for help in this revision, including Dorothy Castille who suggested
and created the first entry list for the technical glossary, Henian Chen who programmed the
multilevel longitudinal examples, Tom Crawford who matched the SEM models of longitudinal
data with the multilevel models and assisted on other path models, Larkin McReynold who
volunteered with the SPSS programming of many examples. Steven C. Pitts developed many
of the key numerical examples in Chapters 2, 3, 7, and 10 as well as graphical displays used in
Chapters 6,7,10,13, and 14, and Kathy Gordon did these jobs for other examples in Chapters
2, 3, 5, 9, 11, 12, and 15. Jennifer L. Krull developed the multilevel example in Chapter 14.
Oi-Man Kwok and Jonathan Butner wrote the computer syntax for examples in a number of
chapters. Technical production help was also provided by Jonathan Butner, Kathy Gordon,
Steven C. Pitts, and Justin McKenzie. We are thankful for the substantial guidance on each
new or rewritten chapter that we were able to get from experts, many of whom were drawn from
our friends and colleagues in the Society for Multivariate Experimental Psychology. Thanks
are due to the following colleagues who reviewed some of the chapters for us, including
(in alphabetical order) Jeremy Biesanz, Barbara Byrne, Dianne Chambless, Patrick Curran,
Mindy Erchull, John W. Graham, Fumiaki Hamagami, Siek-Toon Khoo, Bruce Levin, William
Mason, John J. McArdle, Roger Millsap, John Nesselroade, Jason Newsom, Abigail Panter,
Mark Reiser, David Rindskopf, Patrick Shrout, and Aaron Taylor. We give special thanks to
William F. Chaplin, Daniel W. King, Lynda A. King, Harry Reis, Steven Reise, and Leland
Wilkinson, who provided insightful and informative reviews of the entire volume. Of course,
the errors that may remain are entirely our own.

JACOB COHEN
PATRICIA COHEN

STEPHEN G. WEST
LEONA S. AIKEN

4Keren, G., and Lewis, C. (Eds.)- (1993). A handbook for data analysis in the behavioral sciences: Statistical
issues. Hillsdale, NJ: Erlbaum.
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1
Introduction

1.1 MULTIPLE REGRESSION/CORRELATION
AS A GENERAL DATA-ANALYTIC SYSTEM

1.1.1 Overview

Multiple regression/correlation analysis (MRC) is a highly general and therefore very flexible
data analytic system. Basic MRC may be used whenever a quantitative variable, the dependent
variable (Y), is to be studied as a function of, or in relationship to, any factors of interest, the
independent variables (IVs).1 The broad sweep of this statement is quite intentional.

1. The form of the relationship is not constrained: it may be simple or complex, for example,
straight line or curvilinear, general or conditional, or combinations of these possibilities.

2. The nature of the research factors expressed as independent variables is also not con-
strained. They may be quantitative or qualitative, main effects or interactions in the analysis of
variance (ANOVA) sense, or covariates in the analysis of covariance (ANCOVA) sense. They
may be correlated with each other or uncorrelated as in balanced factorial designs in ANOVA
commonly found in laboratory experiments. They may be naturally occurring ("organismic"
variables) like sex, diagnosis, IQ, extroversion, or years of education, or they may be planned
experimental manipulations (treatment conditions). In short, virtually any information whose
bearing on the dependent variable is of interest may be expressed as research factors.

3. The nature of the dependent variable is also not constrained. Although MRC was orig-
inally developed for scaled dependent variables, extensions of the basic model now permit
appropriate analysis of the full range of dependent variables including those that are of the
form of categories (e.g., ill vs. not ill) or ordered categories.

4. Like all statistical analyses, the basic MRC model makes assumptions about the nature
of the data that are being analyzed and is most confidently conducted with "well-behaved" data
that meet the underlying assumptions of the basic model. Statistical and graphical methods
now part of many statistical packages make it easy for the researcher to determine whether

l]j\ this book we typically employ Y to indicate a dependent variable and IV to represent an independent variable
to indicate their role in the statistical analysis without any necessary implication of the existence or direction of causal
relationship between them.

1



2 1. INTRODUCTION

estimates generated by the basic MRC model are likely to be misleading and to take appropriate
actions. Extensions of the basic MRC model include appropriate techniques for handling
"badly behaved" or missing data and other data problems encountered by researchers.

The MRC system presented in this book has other properties that make it a powerful analytic
tool. It yields measures of the magnitude of the total effect of a factor on the dependent
variable as well as of its partial (unique, net) relationship, that is, its relationship over and
above that of other research factors. It also comes fully equipped with the necessary apparatus
for statistical hypothesis testing, estimation, construction of confidence intervals, and power
analysis. Graphical techniques allow clear depictions of the data and of the analytic results.
Last, but certainly not least, MRC is a major tool in the methods of causal (path, structural
equation) analysis. Thus, MRC is a versatile, all-purpose system of analyzing the data over
a wide range of sciences and technologies.

1.1.2 Testing Hypotheses Using Multiple Regression/Correlation:
Some Examples

Multiple regression analysis is broadly applicable to hypotheses generated by researchers in
the behavioral sciences, health sciences, education, and business. These hypotheses may come
from formal theory, previous research, or simply scientific hunches. Consider the following
hypotheses chosen from a variety of research areas:

1. In health sciences, Rahe, Mahan, and Arthur (1970) hypothesized that the amount of
major life stress experienced by an individual is positively related to the number of days of
illness that person will experience during the following 6 months.

2. In sociology, England, Farkas, Kilbourae, and Dou (1988) predicted that the size of
the positive relationship between the number of years of job experience and workers' salaries
would depend on the percentage of female workers in the occupation. Occupations with a higher
percentage of female workers were expected to have smaller increases in workers' salaries than
occupations with a smaller percentage of female workers.

3. In educational policy, there is strong interest in comparing the achievement of students
who attend public vs. private schools (Coleman, Hoffer, & Kilgore, 1982; Lee & Bryk, 1989).
In comparing these two "treatments" it is important to control statistically for a number of
background characteristics of the students such as prior academic achievement, IQ, race, and
family income.

4. In experimental psychology, Yerkes and Dodson (1908) proposed a classic "law" that
performance has an inverted U-shaped relationship to physiological arousal. The point at
which maximum performance occurs is determined by the difficulty of the task.

5. In health sciences, Aiken, West, Woodward, and Reno (1994) developed a predictive
model of women's compliance versus noncompliance (a binary outcome) with recommenda-
tions for screening mammography. They were interested in the ability of a set of health beliefs
(perceived severity of breast cancer, perceived susceptibility to breast cancer, perceived ben-
efits of mammography, perceived barriers to mammography) to predict compliance over and
above several other sets of variables: demographics, family medical history, medical input,
and prior knowledge.

Each of these hypotheses proposes some form of relationship between one or more factors
of interest (independent variables) and an outcome (dependent) variable. There are usually
other variables whose effects also need to be considered, for reasons we will be discussing in
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this text. This book strongly emphasizes the critical role of theory in planning MRC analyses.
The researcher's task is to develop a statistical model that will accurately estimate the rela-
tionships among the variables. Then the power of MRC analysis can be brought to bear to test
the hypotheses and provide estimations of the size of the effects. However, this task cannot
be carried out well if the actual data are not evaluated with regard to the assumptions of the
statistical model.

1.1.3 Multiple Regression/Correlation in Prediction Models

Other applications of MRC exist as well. MRC can be used in practical prediction problems
where the goal is to forecast an outcome based on data that were collected earlier. For example,
a college admissions committee might be interested in predicting college GPA based on high
school grades, college entrance examination (SAT or ACT) scores, and ratings of students
by high school teachers. In the absence of prior research or theory, MRC can be used in a
purely exploratory fashion to identify a collection of variables that strongly predict an outcome
variable. For example, coding of the court records for a large city could identify a number
of characteristics of felony court cases (e.g., crime characteristics, defendant demographics,
drug involvement, crime location, nature of legal representation) that might predict the length
of sentence. MRC can be used to identify a minimum set of variables that yield the best
prediction of the criterion for the data that have been collected (A. J. Miller, 1990). Of course,
because this method will inevitably capitalize on chance relationships in the original data
set, replication in a new sample will be critical. Although we will address purely predictive
applications of MRC in this book, our focus will be on the MRC techniques that are most
useful in the testing of scientific hypotheses.

In this chapter, we initially consider several issues that are associated with the application
of MRC in the behavioral sciences. Some disciplines within the behavioral sciences (e.g.,
experimental psychology) have had a misperception that MRC is only suitable for nonex-
perimental research. We consider how this misperception arose historically, note that MRC
yields identical statistical tests to those provided by ANOVA yet additionally provides several
useful measures of the size of the effect. We also note some of the persisting differences in
data-analytic philosophy that are associated with researchers using MRC rather than ANOVA.
We then consider how the MRC model nicely matches the complexity and variety of relation-
ships commonly observed in the behavioral sciences. Several independent variables may be
expected to influence the dependent variable, the independent variables themselves may be
related, the independent variables may take different forms (e.g., rating scales or categorical
judgments), and the form of the relationship between the independent and dependent variables
may also be complex. Each of these complexities is nicely addressed by the MRC model.
Finally, we consider the meaning of causality in the behavioral sciences and the meanings of
control. Included in this section is a discussion of how MRC and related techniques can help
rule out at least some explanations of the observed relationships. We encourage readers to con-
sider these issues at the beginning of their study of the MRC approach and then to reconsider
them at the end.

We then describe the orientation and contents of the book. It is oriented toward practical data
analysis problems and so is generally nonmathematical and applied. We strongly encourage
readers to work through the solved problems, to take full advantage of the programs for
three major computer packages and data sets included with the book, and, most important,
to learn MRC by applying these techniques to their own data. Finally, we provide a brief
overview of the content of the book, outlining the central questions that are the focus of each
chapter.
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1.2 A COMPARISON OF MULTIPLE REGRESSION/CORRELATION
AND ANALYSIS OF VARIANCE APPROACHES

MRC, ANOVA, and ANCOVA are each special cases of the general linear model in mathe-
matical statistics.2 The description of MRC in this book includes extensions of conventional
MRC analysis to the point where it is essentially equivalent to the general linear model. It thus
follows that any data analyzable by ANOVA/ANCOVA may be analyzed by MRC, whereas
the reverse is not the case. For example, research designs that study how a scaled characteristic
of participants (e.g., IQ) and an experimental manipulation (e.g., structured vs. unstructured
tasks) jointly influence the subjects' responses (e.g., task performance) cannot readily be fit
into the ANOVA framework. Even experiments with factorial designs with unequal cell sam-
ple sizes present complexities for ANOVA approaches because of the nonindependence of the
factors, and standard computer programs now use a regression approach to estimate effects in
such cases. The latter chapters of the book will extend the basic MRC model still further to
include alternative statistical methods of estimating relationships.

1.2.1 Historical Background

Historically, MRC arose in the biological and behavioral sciences around 1900 in the study of
the natural covariation of observed characteristics of samples of subjects, including Gallon's
studies of the relationship between the heights of fathers and sons and Pearson's and Yule's
work on educational issues (Yule, 1911). Somewhat later, ANOVA/ANCOVA grew out of
the analysis of agricultural data produced by the controlled variation of treatment conditions
in manipulative experiments. It is noteworthy that Fisher's initial statistical work in this area
emphasized the multiple regression framework because of its generality (see Tatsuoka, 1993).
However, multiple regression was often computationally intractable in the precomputer era:
computations that take milliseconds by computer required weeks or even months to do by
hand. This led Fisher to develop the computationally simpler, equal (or proportional) sample
size ANOVA/ANCOVA model, which is particularly applicable to planned experiments. Thus
multiple regression and ANOVA/ANCOVA approaches developed in parallel and, from the
perspective of the substantive researchers who used them, largely independently. Indeed, in
certain disciplines such as psychology and education, the association of MRC with nonexper-
imental, observational, and survey research led some scientists to perceive MRC to be less
scientifically respectable than ANOVA/ANCOVA, which was associated with experiments.

Close examination suggests that this guilt (or virtue) by association is unwarranted—the
result of the confusion of data-analytic method with the logical considerations that govern
the inference of causality. Experiments in which different treatments are applied to randomly
assigned groups of subjects and there is no loss (attrition) of subjects permit unambiguous
inference of causality; the observation of associations among variables in a group of ran-
domly selected subjects does not. Thus, interpretation of a finding of superior early school
achievement of children who participate in Head Start programs compared to nonparticipating
children depends on the design of the investigation (Shadish, Cook, & Campbell, 2002; West,
Biesanz, & Pitts, 2000). For the investigator who randomly assigns children to Head Start
versus Control programs, attribution of the effect to program content is straightforward. For
the investigator who simply observes whether children whose parents select Head Start pro-
grams have higher school achievement than those who do not, causal inference becomes less
certain. Many other possible differences (e.g., child IQ; parent education) may exist between

2For the technically minded, our primary focus will be on the "fixed" version of these models, representing the
most common usage of the general linear model in the behavioral sciences.



1.2 A COMPARISON OF MRC AND ANOVA APPROACHES 5

the two groups of children that could potentially account for any findings. But each of the
investigative teams may analyze their data using either ANOVA (or equivalently a t test of the
mean difference in school achievement) or MRC (a simple one-predictor regression analysis
of school achievement as a function of Head Start attendance with its identical t test). The
logical status of causal inference is a function of how the data were produced, not how they
were analyzed (see further discussion in several chapters, especially in Chapter 12).

1.2.2 Hypothesis Testing and Effect Sizes

Any relationship we observe, whether between independent variables (treatments) and an
outcome in an experiment or between independent variables and a "dependent" variable in an
observational study, can be characterized in terms of the strength of the relationship or its effect
size (ES). We can ask how much of the total variation in the dependent variable is produced
by or associated with the independent variables we are studying. One of the most attractive
features of MRC is its automatic provision of regression coefficients, proportion of variance,
and correlational measures of various kinds, all of which are kinds of ES measures. We venture
the assertion that, despite the preoccupation of the behavioral sciences, the health sciences,
education, and business with quantitative methods, the level of consciousness in many areas
about strength of observed relationships is at a surprisingly low level. This is because concern
about the statistical significance of effects has tended to pre-empt attention to their magnitude
(Harlow, Mulaik, & Steiger, 1997). Statistical significance only provides information about
whether the relationship exists at all, often a question of trivial scientific interest, as has been
pointed out in several commentaries (e.g., J. Cohen, 1994; Meehl, 1967). The level of statistical
significance reflects the sample size, incidental features of the design, the sampling of cases,
and the nature of the measurement of the dependent variable; it provides only a very pale
reflection of the effect size. Yet many research reports, at least implicitly, confuse the issues
of effect size and level of statistical significance, using the latter as if it meant the former
(Gigerenzer, 1993).

Part of the reason for this unfortunate tendency is that traditional ANOVA/ANCOVA yields
readily interpretable F and t ratios for significance testing and differences between cell means
for interpretation of the direction of the effect, but no standardized index of effect size. When
the dependent measure is in commonly understood units, such as yield of cotton per acre in
agricultural research or dollars of income in economic research, the difference in means pro-
vides an informative measure. In the social sciences mean differences may also be informative,
providing that some method of establishing meaningful measurement units has been accom-
plished. However, such unit establishment is often not the case, a problem discussed further in
Section 5.2. In such a case standardized measures of effect size provided by the MRC analysis
often permit more straightforward interpretation. Indeed, researchers in the ANOVA/ANCOVA
tradition have become aware of standardized measures of effect size because of the rise of
meta-analytic approaches that provide quantitative summaries of entire research literatures
(e.g., Rosenthal, 1991). Some journal editors have also begun to encourage or even require
inclusion of standardized effect size measures in articles published in their journals.

In addition to effect size measures in original (raw) and standardized units, the MRC system
routinely provides several measures of the proportion of variance accounted for (the squares
of simple, multiple, partial, and semipartial correlation coefficients). These measures of effect
size are unit free and are easily understood and communicated. Each of the measures comes
with its significance test value for the null hypothesis (F or t) so that no confusion between
the two issues of whether and how much need arise.
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1.3 MULTIPLE REGRESSION/CORRELATION
AND THE COMPLEXITY OF BEHAVIORAL SCIENCE

The greatest virtue of the MRC system is its capacity to represent, with high fidelity, the
types and the complexity of relationships that characterize the behavioral sciences. The word
complexity is itself used here in a complex sense to cover several issues.

1.3.1 Multiplicity of Influences

The behavioral sciences inherited from older branches of empirical inquiry the simple exper-
imental paradigm: Vary a single presumed causal factor (C) and observe its effects on the
dependent variable (7) while holding constant other potential factors. Thus, Y = /(C); that
is, to some degree, variation in Y is a function of controlled variation in C. This model has
been, and continues to be, an effective tool of inquiry in the physical sciences, engineering,
and in some areas of the behavioral sciences. A number of areas within the physical sciences
and engineering typically deal with a few distinct causal factors, each measured in a clear-cut
way, and each in principle independent of others.

However, as one moves to the broad spectrum of the basic and applied behavioral sciences
ranging from physiological psychology to cultural anthropology to evaluation of educational
programs, the number of potential causal factors increases, their representation in measures
becomes increasingly uncertain, and weak theories abound and compete. Consider the follow-
ing set of dependent variables from selected areas of the behavioral sciences, health sciences,
education, and business: number of presidential vetoes (political science), extent of women's
participation in the labor force (sociology), distance from home to work (geography), reaction
time (experimental psychology), migration rate (demography), depression (clinical psychol-
ogy), kinship system (anthropology), new business startups (economics), compliance with
medical regime (health sciences), school achievement (education), and personnel turnover
(business). A few moment's reflection about the context in which each of these is embedded
suggests the multiplicity of both the potential causal factors and the forms of their relationships
to the dependent variables. Given several research factors, C, D, E, etc., to be studied, one
might use the single-factor paradigm repeatedly in a program of research: Y = /(C), then
Y =/(£>), then Y =/(£"), etc. But MRC permits the far more efficient simultaneous examina-
tion of the influences of multiple factors; that is, Y = f(C,D,E, etc.). Moreover, techniques
such as structural equation analysis use interlocking regression equations to estimate formal
models of causal processes derived from complex substantive theories.

1.3.2 Correlation Among Research Factors and Partialing

A far more important type of complexity than the sheer multiplicity of research factors lies
in the effect of relationships among them. The simplest condition is that in which the factors
C,D,E,... are statistically unrelated (orthogonal) to each other, as is the case in experiments
in which the subject's level on each factor is under the experimenter's control and equal (or
proportional) numbers of subjects are represented at each combination of factors. The overall
importance of each factor in the experiment can be unambiguously determined because its
independence of the other factors assures that its effects on Y cannot overlap with the effects
of the others. Consider an experiment in which the apparent age (30 vs. 40) and sex (male,
female) of a communicator are manipulated and their separate and joint effects on attitude
change of male subjects is observed. The orthogonality of the factors is assured by having
equal numbers of subjects in each of the four cells defined by the possible combinations of
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gender and age of the communicator (30-year-old male, 30-year-old female, 40-year-old male,
40-year-old female). No part of the difference in overall Y means for the two communicator
ages can be attributed to their gender, nor can any part of the difference in the overall Y means
for the two sexes be attributed to their ages.

Complexity arises when one departs from equal or proportional numbers of subjects in
different conditions, because the independent variables are no longer independent. If in an
experiment, the majority of the 40-year-olds were male and the majority of the 30-year-olds
were female, then any difference between male and female communicators in the overall Y
means would be confounded with (correlated with) communicator age. The age and sex effects
would no longer be additive. Many issues in the behavioral sciences are simply inaccessible
to true experiments and can only be addressed by the systematic observation of phenomena as
they occur in their natural context. In nature, factors that influence Y are generally correlated
with one another. Thus, if attitudes toward abortion (Y) are studied in a sample of survey
respondents as a function of political party (C), religious background (£>), and socioeconomic
status (E), it is likely that C, D, and E will be correlated with each other. Relationships with
Y, taken singly, will not accurately represent their separate influences, because of correlations
among the factors (see Section 3.4). This is the familiar phenomenon of redundancy among
correlated independent variables with regard to what they explain. The Y relationship with
each of the independent variables overlaps to some degree with their relationships with other
variables in the statistical model. This, in turn, requires a concept of the unique ("partialed")
relationship of each variable with Y, in the context of the other variables in the model. This
picture is often sharply different from that provided by looking at each factor singly. For
example, it might be argued that the apparent influence of political party on attitudes toward
abortion is entirely attributable to the relationship of party affiliation to religious preference or
socioeconomic status. Such a pattern of results suggests that the apparent influence of political
party on attitudes when appraised by itself may be "spurious"; that is, within subgroups that
are homogeneous with regard to religious background and socioeconomic status, there is no
difference on the average between members of one party and members of the other. Detailed
attention to the relationships among potentially causal independent variables and how these
bear on Y is the hallmark of causal analysis, and may be accomplished by MRC.

MRC's capability for assessing unique or partial relationships is perhaps its most important
feature. Even a small number of research factors define many alternative causal systems.
Some of these causal systems will be implausible because of considerations of prior research
findings, logic, or research design (e.g., in a longitudinal design variables that occur later in
time may be ruled out as potential causes of earlier variables). However, selection among the
remaining causal systems is greatly facilitated by the ability, using MRC, of assessing the
unique effect of a research factor, statistically controlling for (partialing) the effects of any
desired set of other factors. Correlation does not prove causation; however, the absence of
correlation implies the absence of the existence of a causal relationship. Thus, the skillful use
of MRC can invalidate causal alternatives, assist researchers in choosing between competing
theories, and help disentangle multiple influences through its partialing feature.

1.3.3 Form of Information

Variables employed in MRC may represent several different levels of measurement, of which
it is often useful to distinguish the following (S. S. Stevens, 1951,1958):

1. Ratio scales. These are equal interval scales with a true zero point, a point at which
there is none of whatever the scale is measuring. Only such scales make statements such as
"John weighs twice as much as Jim" or "Mary earns two-thirds as much as Jane" sensible.
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Some examples of ratio scale measures include inches, pounds, seconds, size of group, dollars,
distance from hospital, years in prison, and literacy rate.

2. Interval scales. These scales have equal intervals but are measured from an arbitrary
point. For example, the Fahrenheit temperature scale uses the temperature at which a certain
concentration of salt water freezes to represent 0. Values on the scale of less than 0 can and
do occur. Many psychological and sociological indices are at this level, for example, scores
on tests of intelligence, special abilities, achievement, personality, temperament, vocational
interest, and social attitude. Such scales may not have a meaningful zero value at all.

3. Ordinal scales. Only the relative positions within a specific collection are signified
by the values of ordinal scales. These scales do not have either equal intervals or a true zero
point. Examples of ordinal scales include simple rankings of subjects in a sample as well as
re-expressions of such rankings into percentiles, deciles, and quartiles.

4. Nominal scales. Nominal (categorical) scales involve simple classification of sub-
jects into categories. The categories of nominal scales represent distinguishable qualities
without a natural order or other quantitative properties. Examples include ethnic group, exper-
imental treatment condition, place of birth, religion, marital status, psychiatric diagnosis, type
of family structure, political party, public versus private sector, and gender. The set of cate-
gories are usually mutually exclusive and exhaustive. Thus, nominal scales are sets of groups
that differ on some qualitative attribute.

This classification scheme is not exhaustive of quantitative scales, and others have been
proposed. For example, psychological test scores are unlikely to measure with exactly equal
intervals and it may be argued that they fall between interval and ordinal scales. Also, some
rating scales frequently used in psychological research are not covered by Stevens' conception
of levels of measurement. For example, scales like "0 = never, 1 = seldom, 2 = sometimes,
3 = often, and 4 = always" have a defined zero point, but intervals of dubious equality,
although for most purposes they are treated as if they are approximately equal.

Basic MRC analysis can potentially consider information at any single level or any mixture
of these levels of measurement. Ratio- and interval-level independent variables can be directly
included in MRC models. Nominal variables can be expressed as coded variables (e.g., male =
0; female = 1), as will be discussed in Chapters 2, 8, and 9. Ordinal IVs may be treated as
if they were interval variables in MRC models, and the results of the analyses may often be
satisfactory. However, such an employment of these variables requires special caution, as is
discussed further in Chapter 4. On the dependent variable side, Y may be measured at any of the
levels of measurement, but the basic MRC model will usually work best if the data are interval
or ratio. Some types of dependent variables may lead to violations of basic assumptions of the
MRC model. In such cases, generalizations of the basic MRC model (the generalized linear
model) can lead to improvements in the accuracy of the results over the basic MRC model
(discussed in Chapter 13). This capacity of MRC and its generalizations to use information in
almost any form, and to mix forms as necessary, is an important part of its adaptive flexibility.

1.3.4 Shape of Relationship

Consider the relationship Y = /(C), where Y is a measure of poor health such as number
of days of illness per year. For some factors the relationship may be well described by a
straight line on the usual graph, for example, if C is daily cigarette consumption. Or, adequate
description may require that the line be curved; for example, if C is age in years, the very
young and the elderly are more often sick than young and middle-aged adults. Or, the shape
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may not be definable, as when C is a nominal variable like sex, ethnic background, or religion.
When multiple research factors are being studied simultaneously, each may relate to Y (and
each other) in any of these ways. Thus, when we write Y = f(C,D,E,...),/ (as a function
of) potentially covers a variety of complex functions that are readily brought under the sway
of MRC.

How so? Many readers will know that MRC is often (and properly) referred to as linear
MRC and may well be under the impression that correlation and regression are restricted to the
study of straight-line relationships. This mistaken impression is abetted by the common usage
of linear to mean "rectilinear" (straight line) and nonlinear to mean "curvilinear" (curved
line). What is meant by linear in the MRC framework is any relationship of the form

1.3.5 General and Conditional Relationships

Some relationships between Y and some factor C remain the same in regard to both degree
and form despite variation in other factors D, E, F. In the MRC context, we will call such
relationships general or unconditional: Readers familiar with ANOVA will know them as main
effects. For example, suppose Y is a measure of visual acuity and C is age. In our example,
both the form and degree of the relationship between visual acuity and age may remain the
same under varying conditions of education level (£>), ethnic group (E), and sex (F). The
relationship between Y and C can then be said to be general insofar as the other specific factors
are concerned. Note that this generality holds regardless of the form and degree of relationship
between Y (visual acuity) and D, E, and F, between C (age) and D, E, and F, or among

3As we will note in Section 3.3, the "fixed" model we use throughout much of this book implies that we have
generated or preselected the values of the FVs to which we wish to generalize.

where the lowercase letters are constants (either positive or negative) and the capital letters are
variables. Y is said to be "linear in the variables U, V, etc." because it may be estimated by
taking certain amounts (b, c, etc.) of each variable, and the constant a, and simply adding them
together. In the fixed regression model framework in which we operate, there is no constraint
on the nature of the IVs.3 To illustrate this, consider substituting other variables for specific
variables in the equation. For example, we could replace U and V in Eq. (1.1.1) with U and
V2, resulting in Y = a + bU + cV2. Or, we could replace W with the logarithm of Z, resulting
in Y = a + dlog(Z). Or, we could replace X with a code variable representing sex (S, which
takes values 0 = male and 1 = female), Y = a + eS. As our substitutions illustrate, the
variables may be chosen to define relationships of any shape, rectilinear or curvilinear, or
of no shape at all for unordered nominal independent variables, as well as all the complex
combinations of these which multiple factors can produce.

Multiple regression equations are, indeed, linear; they are exactly of the form of Eq. (1.1.1).
Yet they can be used to describe such a complex relationship as the length of psychiatric hospital
stay as a function of ratings of patient symptoms on admission, diagnosis, age, sex, and average
length of prior hospitalizations. This complex relationship is patently not rectilinear (straight
line), yet it is readily described by a linear multiple regression equation.

To be sure, most relationships studied in the behavioral sciences are not of this order of
complexity. But, the critical point is the capacity of MRC to represent any degree or type
of shape—complexity is yet another of the important features which make it truly a general
data-analytic system.
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D, E, and F. The Y-C relationship can thus be considered unconditional with regard to, or
independent of, D, E, and F.

Now consider the same research factors, but with Y as a measure of attitudes toward abortion.
The form and/or degree of relationship of age to Y is now almost certain to vary as a function of
one or more of the other factors: it may be stronger or shaped differently at lower educational
levels than higher (D), and/or in one ethnic group or another (F), and/or for men compared
to women (F). The relationship of Y to C is now said to be conditional on D and/or E and/or
F. In ANOVA contexts, such relationships are called interactions. For example, if the C-Y
relationship is not constant over different values of D, there is said to be a C x D (age by
educational level) interaction. Greater complexity is also possible: The C-Y relationship may
be constant over levels of D taken by themselves, and over levels of E taken by themselves, yet
may be conditional on the combination of D and E levels. Such a circumstance would define a
"three-way" interaction, represented as C x D x F. Interactions of even higher order, and thus
even more complex forms of conditionally, are theoretically possible, although rarely reliably
found because of the very large sample size typically required to detect them.

Some behavioral science disciplines have found it useful to discriminate two types of condi-
tional relationships.4 Moderation indicates that the strength of the relationship between C and
Y is reduced as the value of D increases. For example, researchers interested in the relation-
ship between stress and illness report that social support moderates (weakens or buffers) this
relationship. In contrast, augmentation or synergy means that the strength of the relationship
between C and Y is increased as the value of D increases. Thus, moderation and augmentation
describe particular forms of conditional relationships.

One facet of the complexity of the behavioral sciences is the frequency with which such
conditional relationships are encountered. Relationships among variables often change with
changes in experimental conditions (treatments, instructions, even experimental assistants),
age, sex, social class, ethnicity, diagnosis, religion, personality traits, geographic area, etc. As
essential as is the scientific task of estimating relationships between independent and dependent
variables, it is also necessary to identify the conditions under which these estimates hold or
change.

In summary, the generality of the MRC system of data analysis appropriately complements
the complexity of the behavioral sciences, which complexity includes multiplicity and correla-
tion among potential causal influences, a variety of forms in which information is couched, and
variations in the shape and conditionality of relationships. Multiple regression/correlation also
provides a full yield of measures of effect size with which to quantify various aspects of the
strength of relationships (proportions of variance and correlation and regression coefficients).
Finally, these measures are subject to statistical hypothesis testing, estimation, construction
of confidence intervals, and power-analytic procedures.

1.4 ORIENTATION OF THE BOOK

This book was written to serve as a textbook and manual in the application of the MRC system
for data analysis by students and practitioners in diverse areas of inquiry in the behavioral
sciences, health sciences, education, and business. As its authors, we had to make many

4Elsewhere moderation may be used to describe both forms of conditional relationship. Whether a relationship
may be considered to be moderated or augmented in the sense used here is entirely dependent on the (often arbitrary)
direction of scoring of the IVs involved.
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decisions about its level, breadth, emphasis, tone, and style of exposition. Readers may find it
useful, at the outset, to have our orientation and the basis for these decisions set forth.

1.4.1 Nonmathematical

Our presentation of MRC is generally as conceptually oriented and nonmathematical as we
could make it. Of course, MRC is itself a product of mathematical statistics, based on matrix
algebra, calculus, and probability theory. There is little question that such a background makes
possible a level of insight otherwise difficult to achieve. However, it is also our experience
that some mathematically sophisticated scientists may lack the conceptual frame that links
the mathematical procedures to the substantive scientific task in a particular case. When new
mathematical procedures are introduced, we attempt to convey an intuitive conceptual rather
than a rigorous mathematical understanding of the procedure. We have included a glossary at
the end of the book in which the technical terms employed repeatedly in the book are given a
brief conceptual definition. We hope that this aid will enable readers who have forgotten the
meaning of a term introduced earlier to refresh their memories. Of course, most of these same
terms also appear in the index with notation on the many times they may have been used. A
separate table at the end of the book reviews the abbreviations used for the statistical terms in
the book.

We thus abjure mathematical proofs, as well as unnecessary offhand references to math-
ematical concepts and methods not likely to be understood by the bulk of our audience. In
their place, we heavily emphasize detailed and deliberately redundant verbal exposition of
concrete examples. Our experience in teaching and consulting convinces us that our audience
is richly endowed in the verbal, logical, intuitive kind of intelligence that makes it possible
to understand how the MRC system works, and thus use it effectively (Dorothy Parker said,
"Flattery will get you anywhere.") This kind of understanding is eminently satisfactory (as
well as satisfying), because it makes possible effective use of the system. We note that to drive
a car, one does not need to be a physicist, nor an automotive engineer, nor even a highly skilled
auto mechanic, although some of the latter's skills are useful when one is stuck on the highway.
That is the level we aim for.

We seek to make up for the absence of mathematical proofs by providing demonstrations
instead. For example, the regression coefficient for a dichotomous or binary (e.g., male-female)
independent variable that is scored 0-1 equals the difference between the two groups' Y means.
Instead of offering the six or seven lines of algebra that would constitute a mathematical proof,
we demonstrate that it holds using a small set of data. True, this proves nothing, because the
result may be accidental, but curious readers can check it out using their own or our data (and
we urge that such checks be made throughout). Whether it is checked or not, we believe that
most of our audience will profit more from the demonstration than the proof. If the absence
of formal proof bothers some readers from Missouri (the "show me" state), all we can do is
pledge our good faith.

1.4.2 Applied

The first word in this book's title is applied. Our heavy stress on illustrations serves not only
the function of clarifying and demonstrating the abstract principles being taught, but also that
of exemplifying the kinds of applications possible. We attend to statistical theory only insofar
as sound application makes it necessary. The emphasis is on "how to do it." This opens us to
the charge of writing a "cookbook," a charge we deny because we do not neglect the whys and
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wherefores. If the charge is nevertheless pressed, we can only add the observation that in the
kitchen, cookbooks are likely to be more useful than textbooks in organic chemistry.

1.4.3 Data-Analytic

Mathematical statisticians proceed from exactly specified premises such as independent ran-
dom sampling, normality of distributions, and homogeneity of variance. Through the exercise
of ingenuity and appropriate mathematical theory, they arrive at exact and necessary conse-
quences (e.g., the F distribution, statistical power functions). They are, of course, fully aware
that no set of real data will exactly conform to the formal premises from which they start,
but this is not properly their responsibility. As all mathematicians do, they work with abstrac-
tions to produce formal models whose "truth" lies in their self-consistency. Borrowing their
language, we might say that inequalities are symmetrical: Just as behavioral scientists are not
mathematicians, mathematicians are not behavioral scientists.

The behavioral scientist relies very heavily on the fruits of the labors of theoretical sta-
tisticians. Taken together with contributions from substantive theory and previous empirical
research, statistical models provide guides for teasing out meaning from data, setting limits on
inference, and imposing discipline on speculation (Abelson, 1995). Unfortunately, in the text-
books addressed to behavioral scientists, statistical methods have often been presented more
as harsh straightjackets or Procrustean beds than as benign reference frameworks. Typically,
a method is presented with some emphasis on its formal assumptions. Readers are advised
that the failure of a set of data to meet these assumptions renders the method invalid. Alter-
native analytic strategies may not be offered. Presumably, the offending data are to be thrown
away.

Now, this is, of course, a perfectly ridiculous idea from the point of view of working
scientists. Their task is to contrive situations that yield information about substantive scientific
issues—they must and will analyze their data. In doing so, they will bring to bear, in addition to
the tools of statistical analysis and graphical display of the data, their knowledge of theory, past
experience with similar data, hunches, and good sense, both common and uncommon (Krantz,
1999). They attempt to apply the statistical model that best matches their data; however, they
would rather risk analyzing their data using a less than perfect model than not at all. For
them, data analysis is not an end in itself, but the next-to-last step in a scientific process that
culminates in providing information about the phenomenon. This is by no means to say that
they need not be painstaking in their efforts to generate and perform analyses of the data. They
need to develop statistical models to test their preferred scientific hypothesis, to rule out as
many competing explanations for the results as they can, and to detect new relationships that
may be present in the data. But, at the end they must translate these efforts into substantive
information.

Most happily, the distinction between data analysis and statistical analysis has been made
and given both rationale and respectability by one of our foremost mathematical statisticians,
John Tukey. In his seminal The Future of Data Analysis (1962), Tukey describes data analysis
as the special province of scientists with substantial interest in methodology. Data analysts
employ statistical analysis as the most important tool in their craft, but they employ it together
with other tools, and in a spirit quite different from that which has come to be associated
with it from its origins in mathematical statistics. Data analysis accepts "inadequate" data,
and is thus prepared to settle for "indications" rather than conclusions. It risks a greater fre-
quency of errors in the interest of a greater frequency of occasions when the right answer is
"suggested." It compensates for cutting some statistical corners by using scientific as well as
mathematical judgment, and by relying upon self-consistency and repetition of results. Data
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analysis operates like a detective searching for clues that implicate or exonerate likely suspects
(plausible hypotheses) rather than seeking to prove out a balance. In describing data analysis,
Tukey has provided insight and rationale into the way good scientists have always related
to data.

The spirit of this book is strongly data-analytic, in exactly this sense. We offer a variety of
statistical models and graphical tools that are appropriate for common research questions in
the behavioral sciences. We offer straightforward methods of examining whether the assump-
tions of the basic fixed-model MRC are met, and provide introductions to alternative analytic
approaches that may be more appropriate when they are not. At the same time, we are aware
that some data sets will fail to satisfy the assumptions of any standard statistical model, and
that even when identified there may be little that the data analyst can do to bring the data "into
line." We recognize the limits on inference in such cases but are disposed to treat the limits
as broad rather than narrow. We justify this by mustering whatever technical evidence there
is in the statistical literature (especially evidence of the "robustness" of statistical tests), and
by drawing upon our own and others' practical experience, even upon our intuition, all in the
interest of getting on with the task of making data yield their meaning. If we risk error, we are
more than compensated by having a system of data analysis that is general, sensitive, and fully
capable of reflecting the complexity of the behavioral sciences and thus of meeting the needs
of behavioral scientists. And we will reiterate the injunction that no conclusions from a given
set of data can be considered definitive: Replication is essential to scientific progress.

1.4.4 Inference Orientation and Specification Error

As noted earlier, perhaps the single most important reason for the broad adoption of MRC
as a data-analytic tool is the possibility that it provides for taking into account—"controlling
statistically or partialing"—variables that may get in the way of inferences about the influence
of other variables on our dependent variable Y. These operations allow us to do statistically what
we often cannot do in real life—separate the influences of variables that often, or even usually,
occur together. This is often critically important in circumstances in which it is impossible or
unethical to actually control one or more of these related variables. However, the centrality of
this operation makes it critically important that users of these techniques have a basic, sound
understanding of what partialing influences does and does not entail.

In emphasizing the extraction of meaning from data we will typically focus primarily on
potential problems of "specification error" in the estimates produced in our analyses. Speci-
fication errors are errors of inference that we make because of the way we analyze our data.
They include the assumption that the relationship between the dependent variable Y and each
of the independent variables (IVs) is linear (constant over the range of the independent vari-
ables) when it is not, and that the relationships of some TVs to Y do not vary as a function
of other IVs, when they do. When we attempt to make causal inferences on the basis of the
relationships expressed in our MRC analyses, we may also make other kinds of specification
errors, including assuming that Y is dependent on the IVs when some of the IVs are dependent
on F, or that the relationship between Y and certain IVs is causal when these relationships
reflect the influence of common causes or confounders. Or assuming that the estimated rela-
tionship reflects the relationship between Y and the theoretically implicated ("true") IV when
it only reflects the relationship between Y and an imperfectly measured representative of the
theoretically implicated IV. More technically, specification errors may include the conclusion
that some relationship we seem to have uncovered in our sample data generalizes to the popu-
lation, when our statistical analyses are biased by distributional or nonindependence problems
in the data.
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1.5 COMPUTATION, THE COMPUTER,
AND NUMERICAL RESULTS

1.5.1 Computation

Like all mathematical procedures, MRC makes computational demands. The amount of com-
putation increases with the size of the problem. Indeed, Darlington and Boyce (1982) estimate
that computation time increases roughly with k5, where k is the number of IVs. Early in the
book, in our exposition of bivariate correlation and regression and MRC with two independent
variables, we give the necessary details with small worked examples for calculation by hand
calculator. This is done because the intimate association with the arithmetic details makes plain
to the reader the nature of the process: exactly what is being done, with what purpose, and with
what result. With one to three independent variables, where the computation is easy, not only
can one see the fundamentals, but a basis is laid down for generalization to many variables.

With most real problems, MRC requires the use of a computer. An important reason for
the rapid increase in the use of MRC during the past three decades is the computer revolution.
Widely available computers conduct analyses in milliseconds that would have taken months
or even years in Fisher's time. Statistical software has become increasingly user friendly, with
versions that allow either simple programming or "point and click" analysis. Graphical routines
that permit insightful displays of the data and the results of statistical analyses have become
increasingly available. These advances have had the beneficial effect of making the use of
MRC analysis far faster and easier than in the past.

We have deliberately placed the extensive calculational details of the early chapters outside
the body of the text to keep them from distracting attention from our central emphasis: under-
standing how the MRC system works. We strongly encourage readers to work through the
details of the many worked illustrations using both a hand calculator and a statistical package.
These can help provide a basic understanding of the MRC system and the statistical package.

But readers should then apply the methods of each chapter to data of their own or data with
which they are otherwise familiar. The highest order of understanding is achieved from the
powerful synergism of the application of unfamiliar methods to familiar data.

Finally, we caution readers about an unintended by-product of the ease of use of current
statistical packages: Users can now easily produce misleading results. Some simple com-
monsense checks can often help avoid errors. Careful initial examination of simple statistics
(means; correlations; number of cases) and graphical displays can often provide a good sense
of the data, providing a baseline against which the results of more complicated analyses can
be compared. We encourage readers using new software to try out the analysis first on a pre-
viously analyzed data set, and we include such data sets for the worked examples in the book,
for which analyses have been carried out on the large SAS, SPSS, and SYSTAT statistical
programs. Achieving a basic understanding of the MRC system and the statistical packages as
well as careful checking of one's results is an important prerequisite to publication. There is
no guarantee that the peer review process in journals will detect incorrect analyses.

1.5.2 Numerical Results: Reporting and Rounding

Statistical packages print out numerical results to several decimal places. For comparison
purposes, we follow the general practice in this book of reporting computed correlation and
regression coefficients rounded to two places (or significant digits) and squared coefficients
rounded to three. When working with a hand calculator, the reader should be aware that small
rounding errors will occur. Checks that agree within a few points in the third decimal may thus
be taken as correct.
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Following Ehrenberg (1977), we encourage readers to be conservative in the number of
significant digits that are reported in their research articles. Despite the many digits of accuracy
that characterize modern statistical programs, this level of accuracy only applies to the sample
data. Estimates of population parameters are far less accurate because of sampling error. For the
sample correlation (r) to provide an estimate of the population correlation (p) that is accurate
to two decimal places would require as many as 34,000 cases (J. Cohen, 1990).

1.5.3 Significance Tests, Confidence Intervals,
and Appendix Tables

Most behavioral scientists employ a hybrid of classical Fisherian and Neyman-Pearson null
hypothesis testing (see Gigerenzer, 1993; Harlow, Mulaik, & Steiger, 1997), in which the
probability of the sample result given that the null hypothesis is true, p, is compared to a
prespecified significance criterion, a. If p < (is less than) a, the null hypothesis is rejected
and the sample result is deemed statistically significant at the a level of significance. The null
hypothesis as typically specified is that the value of the parameter corresponding to the sample
result is 0; other values can be specified based on prior research.

A more informative way of testing hypotheses in many applications is through the use
of confidence intervals. Here an interval is developed around the sample result that would
theoretically include the population value (1 — a)% of the time in repeated samples. Used in
conjunction with MRC procedures, the center of the confidence interval provides an estimate
of the strength of the relationship and the width of the confidence interval provides information
about the accuracy of that estimate. The lower and upper limits of the confidence interval show
explicitly just how small and how large the effect size in the population (be it a regression
coefficient, multiple /?2,or partial r) might be. Incidentally, if the population value specified by
the null hypothesis is not contained in the confidence interval, the null hypothesis is rejected.

The probability of the sample result given that the null hypothesis is true, p, is based on
either the t or F distribution in basic MRC. Nearly all statistical packages now routinely
compute exact values of p for each significance test. We also provide tables of F and t for
a = .05 and a = .01. These values are useful for the construction of confidence intervals
and for simple problems which can be solved with a hand calculator. The a = .05 criterion
is widely used as a standard in the behavioral sciences. The a = .01 criterion is sometimes
used by researchers as a matter of taste or tradition in their research area. We support this
tradition when there are large costs of falsely rejecting the null hypothesis; however, all too
frequently researchers adopt the a = .01 level because they erroneously believe that this deci-
sion will necessarily make their findings stronger and more meaningful. The a = .01 level
is often used as a partial control on the incidence of spuriously significant results when a
large number of hypothesis tests are being conducted. The choice of a also depends impor-
tantly on considerations of statistical power (the probability of rejecting the null hypothesis),
which is discussed in several places, particularly in Section 4.5. We present tables for sta-
tistical power analysis in the Appendix; several programs are commercially available for
conducting statistical power analyses on personal computers (e.g., Borenstein, Cohen, &
Rothstein, 2001).

The statistical tables in the Appendix were largely abridged from Owen (1962) and from
J. Cohen (1988). The entry values were selected so as to be optimally useful over a wide range
of MRC applications. In rare cases in which the needed values are not provided, linear interpo-
lation is sufficiently accurate for almost all purposes. Should more extensive tables be required,
Owen (1962) and Pearson and Hartley (1970) are recommended. Some statistical packages
will also compute exact p values for any specified df for common statistical distributions such
as t, F, and x2-
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1.6 THE SPECTRUM OF BEHAVIORAL SCIENCE

When we address behavioral scientists, we are faced with an exceedingly heterogeneous audi-
ence. They range in level from student to experienced investigator and possess from modest to
fairly advanced knowledge of statistical methods. With this in mind, we assume a minimum
background for the basic exposition of the MRC system. When we must make assumptions
about background that may not hold for some of our readers, we try hard to keep everyone on
board. In some cases we use boxes in the text to present more technical information, which
provides a greater understanding of the material. The boxes can be skipped on first reading
without loss of continuity.

But it is with regard to substantive interests and investigative methods and materials that
our audience is of truly mind boggling diversity. Behavioral science itself covers areas of
"social", "human", and even "life" sciences—everything from the physiology of behavior to
cultural anthropology, in both their "basic science" and "applied science" aspects. Add in
health sciences, education, and business, and the substantive range becomes immense. Were it
not for the fact that the methodology of science is inherently more general than its substance,
a book of this kind would not be possible. This permits us to address substantive researchers
whose primary interests lie in a bewildering variety of fields.

We have sought to accommodate to this diversity, even to capitalize upon it. Our illustrative
examples are drawn from different areas, assuring the comfort of familiarity for most of
our readers at least some of the time. Their content is presented at a level that makes them
intellectually accessible to nonspecialists. We try to use the nontechnical discussion of the
examples in a way that may promote some methodological cross-fertilization between fields
of inquiry. Our hope is that this discussion may introduce better approaches to fields where
data have been analyzed using traditional rather than more optimal procedures.

1.7 PLAN FOR THE BOOK

1.7.1 Content

Following this introductory chapter, we continue by introducing the origins and meanings of
the coefficients that represent the relationship between two variables (Chapter 2). Chapter 3
extends these concepts and measures first to two independent variables and then to any larger
number of independent variables. Chapter 4 expands on the graphical depiction of data, and
particularly on the identification of data problems, and methods designed to improve the fit
of the data to the assumptions of the statistical model. Chapter 5 describes the strategies that
a researcher may use in applying MRC analyses to complex substantive questions, including
selecting the appropriate statistical coefficients and significance tests. It continues by describing
two widely useful techniques, hierarchical (sequential) analyses of data and the analysis of
independent variables grouped into structural or functional sets.

Chapters 6 and 7 describe and illustrate the methods of identifying nonlinear and conditional
relationships between independent variables and Y, beginning with methods for representing
curvilinearity in linear equations. This chapter is followed by detailed presentations of the
treatment and graphic display of interactions between scaled variables in their relationship
with Y. Chapter 8 continues with the consideration of sets of independent variables represent-
ing mutually exclusive categories or groups. Relationships between scaled measures and Y may
vary between sample subgroups; techniques for assessing and describing these interactions are
reviewed in Chapter 9.
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Chapter 10 presents the problem of multicollinearity among predictors and methods of
controlling its extent. Chapter 11 details the full range of methods for coping with missing
data in MRC, and the considerations appropriate for choosing among them.

Chapter 12 expands on the discussion of MRC applications to causal hypotheses that is
found in earlier chapters and introduces the reader to some of the more complex methods of
estimating such models and issues relevant to their employment.

Chapter 13 describes uses of the generalized linear model to analyze dependent variables
that are dichotomous, ordered categories, or counts of rare phenomena. Chapter 14 introduces
the reader to the multilevel analysis of data clusters arising from nonindependent sampling or
treatment of participants.

Chapter 15 provides an introduction to a whole range of methods of analyzing data charac-
terized by multiple observations of units over time. Beginning with simple repeated measure
ANOVA and two time-point MRC, the chapter presents an overview of how the substan-
tive questions and the structure of the data combine to suggest a choice among available
sophisticated data analytic procedures.

The final chapter presents a multivariate method called set correlation that generalizes
MRC to include sets (or partialed sets) of dependent variables and in so doing, generalizes
multivariate methods and yields novel data-analytic forms.

For a more detailed synopsis of the book's contents, the reader is referred to the sum-
maries at the ends of the chapters. The data for almost all examples in the book are also
provided on the accompanying CD-ROM, along with the command codes for each of the
major statistical packages that will yield the tabular and other findings presented in the
chapters.

A note on notation. We have tried to keep the notation simultaneously consistent with the
previous editions of this book and with accepted practice, insofar as possible. In general, we
employ Greek letters for population estimates, but this convention falls down in two places.
First, P is used conventionally both for the standardized regression coefficient and for the
power: We have followed these conventions. Second, the maximum likelihood estimations
methods discussed in Chapters 13 and 14 use a range of symbols, including Greek letters,
designed to be distinct from those in use in OLS. We also use P and Q (= P — 1.0) to indicate
proportions of samples, to distinguish this symbol fromp = probability.

We have attempted to help the reader keep the major concepts in mind in two ways. We have
included a glossary of technical terms at the end of the book, so that readers of later chapters
may refresh their recall of terms introduced earlier in the book. We have also included a listing
of the abbreviations of statistical terms, tests, and functions. In addition there are two technical
appendices, as well as the appendix Tables.

One more difference between this edition and previous editions may be noted. In the intro-
ductory Chapter 2 we originally introduced equations using the sample standard deviation, with
n in the denominator. This forced us into repeated explanations when later statistics required
a shift to the sample-based population estimate with n — 1 in the denominator. The advantage
was simplicity in the early equations. The serious disadvantage is that every statistical program
determines sd with n — 1 in the denominator, and so students trying to check sds, z scores and
other statistics against their computer output will be confused. In this edition we employ the
population estimate sd consistently and adjust early equations as necessary.

1.7.2 Structure: Numbering of Sections, Tables, and Equations

Each chapter is divided into major sections, identified by the chapter and section numbers, for
example, Section 5.4.3 ("Variance Proportions for Sets and the Ballantine Again") is the third
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subsection of Section 5.4. Further subdivisions are not numbered, but titled with an italicized
heading.

Tables, figures, and equations within the body of the text are numbered consecutively within
major sections. Thus, for example, Figure 5.4.1 is the first figure in Section 5.4, and Eq. (2.6.5)
is the fifth equation in Section 2.6. We follow the usual convention of giving equation numbers
in parentheses. A similar plan is followed in the two appendices. The reference statistical tables
make up a separate appendix and are designated as Appendix Tables A through G.

On the accompanying data disk each chapter has a folder; within that folder each example
for which we provide data and syntax/command files in SAS, SPSS, and SYSTAT has a folder.

1.8 SUMMARY

This introductory chapter begins with an overview of MRC as a data-analytic system, empha-
sizing its generality and superordinate relationship to the analysis of variance/covariance
(Section 1.1). MRC is shown to be peculiarly appropriate for the behavioral sciences in its
capacity to accommodate the various types of complexity that characterize them: the multi-
plicity and correlation among causal influences, the varieties of form of information and shape
of relationship, and the frequent incidence of conditional (interactive) relationships. The special
relevance of MRC to the formal analysis of causal models in described (Section 1.2).

The book's exposition of MRC is nonmathematical, and stresses informed application
to scientific and technological problems in the behavioral sciences. Its orientation is "data
analytic" rather than statistical analytic, an important distinction that is discussed. Concrete
illustrative examples are heavily relied upon (Section 1.3).

The popularity of MRC in the analysis of nonexperimental data for which manipulation of
variables is impossible or unethical hinges on the possibility of statistical control or partialing.
The centrality of this procedure, and the various kinds of errors of inferences that can be made
when the equations include specification error are discussed (Section 1.4).

The means of coping with the computational demands of MRC are briefly described and
largely left to the computer, with details relegated to appendices so as not to distract the
reader's attention from the conceptual issues (Section 1.5). We acknowledge the heterogeneity
of background and substantive interests of our intended audience, and discuss how we try to
accommodate to it and even exploit it to pedagogical advantage (Section 1.6).

The chapter ends with a brief outline of the book and the scheme by which sections, tables,
figures, and equations are numbered.



2
Bivariate Correlation
and Regression

One of the most general meanings of the concept of a relationship between a pair of variables
is that knowledge with regard to one of the variables carries information about the other.
Information about the height of a child in elementary school has implications for the probable
age of the child, and information about the occupation of an adult can lead to more accurate
guesses about her income level than could be made in the absence of that information.

2.1 TABULAR AND GRAPHIC REPRESENTATIONS
OF RELATIONSHIPS

Whenever data have been gathered on two quantitative variables for a set of subjects or
other units, the relationship between the variables may be displayed graphically by means
of a scatterplot.

For example, suppose we have scores on a vocabulary test and a digit-symbol substitution
task for 15 children (see Table 2.1.1). If these data are plotted by representing each child as a
point on a graph with vocabulary scores on the horizontal axis and the number of digit symbols
on the vertical axis, we would obtain the scatterplot seen in Fig. 2.1.1. The circled dot, for
example, represents Child 1, who obtained a score of 5 on the vocabulary test and completed
12 digit-symbol substitutions.

When we inspect this plot, it becomes apparent that the children with higher vocabulary
scores tended to complete more digit symbols (d-s) and those low on vocabulary (v) scores
were usually low on d-s as well. This can be seen by looking at the average of the d-s scores,
Mdv, corresponding to each v score given at the top of the figure. The child receiving the lowest
v score, 5, received a d-s score of 12; the children with the next lowest v score, 6, obtained an
average d-s score of 14.67, and so onto the highest v scorers, who obtained an average of 19.5
on the d-s test. A parallel tendency for vocabulary scores to increase is observed for increases
in d-s scores. The form of this relationship is said to be positive, because high values on one
variable tend to go with high values on the other variable and low with low values. It may also
be called linear because the tendency for a unit increase in one variable to be accompanied by
a constant increase in the other variable is (fairly) constant throughout the scales. That is, if we

19
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TABLE 2.1.1
Illustrative Set of Data on Vocabulary

and Digit-Symbol Tests

Child (no.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Vocabulary

5
8
7
9

10
8
6
6

10
9
7
7
9
6
8

Digit-symbol

12
15
14
18
19
18
14
17
20
17
15
16
16
13
16

were to draw the straight line that best fits the average of the d-s values at each v score (from
the lower left-hand corner to the upper right-hand corner) we would be describing the trend or
shape of the relationship quite well.

Figure 2.1.2 displays a similar scatterplot for age and the number of seconds needed to
complete the digit-symbol task. In this case, low scores on age tended to go with high test time
in seconds and low test times were more common in older children. This relationship may be

FIGURE 2.1.1 A strong, positive linear relationship.
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FIGURE 2.1.2 A negative linear relationship.

said to be negative and linear. It should also be clear at this point that whether a relationship
between two variables is positive or negative is a direct consequence of the direction in which
the two variables have been scored. If, for example, the vocabulary scores from the first example
were taken from a 12-item test, and instead of scoring the number correct a count was made of
the number wrong, the relationship with d-s scores would be negative. Because such scoring
decisions in many cases may be essentially arbitrary, it should be kept in mind that any positive
relationship becomes negative when either (but not both) of the variables is reversed, and vice
versa. Thus, for example, a negative relationship between age of oldest child and income for
a group of 30-year-old mothers implies a positive relationship between age of first becoming
a mother and income.1

Figure 2.1.3 gives the plot of a measure of motivational level and score on a difficult d-s
task. It is apparent that the way motivation was associated with performance score depends on
whether the motivational level was at the lower end of its scale or near the upper end. Thus,
the relationship between these variables is curvilinear. Finally, Fig. 2.1.4 presents a scatterplot
for age and number of substitution errors. This plot demonstrates a general tendency for
higher scores on age to go with fewer errors, indicating that there is, in part, a negative linear
relationship. However, it also shows that the decrease in errors that goes with a unit increase
in age was greater at the lower end of the age scale than it was at the upper end, a finding that
indicates that although a straight line provides some kind of fit, clearly it is not optimal.

Thus, scatterplots allow visual inspection of the form of the relationship between two
variables. These relationships may be well described by a straight line, indicating a rectilinear
(negative or positive) relationship, or they may be better described by a line with one or more
curves. Because approximately linear relationships are very common in all sorts of data, we
will concentrate on these in the current discussion, and will present methods of analyzing
nonlinear relationships in Chapter 6.

1 Here we follow the convention of naming a variable for the upper end of the scale. Thus, a variable called income
means that high numbers indicate high income, whereas a variable called poverty would mean that high numbers
indicate much poverty and therefore low income.
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FIGURE 2.1.3 A positive curvilinear relationship.

FIGURE 2.1.4 A negative curvilinear relationship.

Now suppose that Fig. 2.1.1 is compared with Fig. 2.1.5. In both cases the relationship
between the variables is linear and positive; however, it would appear that vocabulary provided
better information with regard to d-s completion than did chronological age. That is, the degree
of the relationship with performance seems to be greater for vocabulary than for age because
one could make more accurate estimates of d-s scores using information about vocabulary than
using age. To compare these two relationships to determine which is greater, we need an index
of the degree or strength of the relationship between two variables that will be comparable
from one pair of variables to another. Looking at the relationship between v and d-s scores,
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FIGURE 2.1.5 A weak, positive linear relationship.

other questions come to mind: Should this be considered a strong or weak association? On the
whole, how great an increase in digit-symbol score is found for a given increase in vocabulary
score in this group? If d-s is estimated from v in such a way as to minimize the differences
between our estimations and the actual d-s scores, how much error will, nevertheless, be made?
If this is a random sample of subjects from a larger population, how much confidence can we
have that v and d-s are linearly related in the entire population? These and other questions are
answered by correlation and regression methods. In the use and interpretation of these methods
the two variables are generally treated as interval scales; that is, constant differences between
scale points on each variable are assumed to represent equal "amounts" of the construct being
measured. Although for many or even most scales in the behavioral sciences this assumption
is not literally true, empirical work (Baker, Hardyck, & Petrinovich, 1966) indicates that
small to moderate inequalities in interval size produce little if any distortion in the validity of
conclusions based on the analysis. This issue is discussed further in Chapter 6.

2.2 THE INDEX OF LINEAR CORRELATION
BETWEEN TWO VARIABLES: THE PEARSON PRODUCT

MOMENT CORRELATION COEFFICIENT

2.2.1 Standard Scores: Making Units Comparable

One of the first problems to be solved by an index of the degree of association between two
variables is that of measurement unit. Because the two variables are typically expressed in
different units, we need some means of converting the scores to comparable measurement
units. It can be readily perceived that any index that would change with an arbitrary change in
measurement unit—from inches to centimeters or age in months to age in weeks, for example—
could hardly be useful as a general description of the strength of the relationship between height
and age, one that could be compared with other such indices.
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TABLE 2.2.1
Income and Major Household Appliances in Original Units,

Deviation Units, and z Units

House-
hold

1
2
3
4

Sum (E)

Mean
sdj = S/2

Income

24,000
29,000
27,000
30,000

110,000

27,500
/(» - 1) =

sdI = ys/2/(" - 1)

i/sd, = zi

1
2
3
4

E

-1.323
+0.567
-0.189
+0.945

0

Appliances

3
7
4
5

19

4.75
7,000,000;

= 2,645.75;

a/sdA = ZA

-1.025
+1.317
-0.439
+0.146

0

I -Mi
= i

-3,500
+1,500

-500
+2,500

0

2.92 = sd2
A

\.l\=sdA

3

1.750
0.321
0.036
0.893

3.00

A-MA

= a

-1.75
+2.25
-.75
+.25

0

d

1.050
1.736
0.193
0.021

3.00

i2 a2 Rank/ Rank A

12,250,000 3.0625 1 1
2,250,000 5.0625 3 4

250,000 .5625 2 2
6,250,000 .0625 4 3

21,000,000 8.75

To illustrate this problem, suppose information has been gathered on the annual income
and the number of major household appliances of four households (Table 2.2.1).2 In the effort
to measure the degree of relationship between income (/) and the number of appliances (A),
we will need to cope with the differences in the nature and size of the units in which the
two variables are measured. Although Households 1 and 3 are both below the mean on both
variables and Households 2 and 4 are above the mean on both (see / and a, scores expressed as
deviations from their means, with the means symbolized as Af/ and MA, respectively), we are
still at a loss to assess the correspondence between a difference of $3500 from the mean income
and a difference of 1.5 appliances from the mean number of appliances. We may attempt to
resolve the difference in units by ranking the households on the two variables—1, 3,2,4 and
1,4,2, 3, respectively—and noting that there seems to be some correspondence between the
two ranks. In so doing we have, however, made the differences between Households 1 and 3
($3000) equal to the difference between Households 2 and 4 ($1000); two ranks in each case.

To make the scores comparable, we clearly need some way of taking the different variability
of the two original sets of scores into account. Because the standard deviation (sd) is an index of
variability of scores, we may measure the discrepancy of each score from its mean (jt) relative
to the variability of all the scores by dividing by the sd:

2In this example, as in all examples that follow, the number of cases (n) is kept very small in order to facilitate
the reader's following of the computations. In almost any serious research, the n must, of course, be very much larger
(Section 2.9).
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In Table 2.2.1 the z score for income for Household 1 is —1.323, which indicates that its
value ($24,000) falls about 11/3 income standard deviations ($2646) below the income mean
($27,500). Although income statistics are expressed in dollar units, the z score is a pure number;
that is, it is unit-free. Similarly, Household 1 has a z score for number of appliances of — 1.025,
which indicates that its number of appliances (3) is about 1 standard deviation (1.71) below
the mean number of appliances (4.75). Note again that —1.025 is not expressed in number of
appliances, but is also a pure number. Instead of having to compare $24,000 and 3 appliances
for Household 1, we can now make a meaningful comparison of — 1.323 (z/) and -1.025 (ZA),
and note incidentally the similarity of the two values for Household 1. This gives us a way of
systematically approaching the question of whether a household is as relatively wealthy as it
is relatively "applianced."

It should be noted that the rank of the z scores is the same as that of the original scores and
that scores that were above or below the mean on the original variable retain this characteristic
in their z scores. In addition, we note that the difference between the incomes of Households 2
and 3 (72 — 73 = $2000) is twice as large, and of opposite direction to the difference between
Households 2 and 4 (I2 — I4 = —$1000). When we look at the z scores for these same
households, we find that z/2 — z/3 = .567 — (—.189) = .756 is twice as large and of opposite
direction to the difference z/2 - z[4 = .567 - .945 = -.378 (i.e., .756/-.37S = -2). Such
proportionality of differences or distances between scores,

is the essential element in what is meant by retaining the original relationship between the
scores. This can be seen more concretely in Fig. 2.2.1, in which we have plotted the pairs of
scores. Whether we plot z scores or raw scores, the points in the scatterplot have the same
relationship to each other.

The z transformation of scores is one example of a linear transformation. A linear trans-
formation is one in which every score is changed by multiplying or dividing by a constant or
adding or subtracting a constant or both. Changes from inches to centimeters, dollars to francs,
and Fahrenheit to Celsius degrees are examples of linear transformations. Such transformations
will, of course, change the means and sds of the variables upon which they are performed.
However, because the sd will change by exactly the same factor as the original scores (that
is, by the constant by which scores have been multiplied or divided) and because z scores are
created by subtracting scores from their mean, all linear transformations of scores will yield
the same set of z scores. (If the multiplier is negative, the signs of the z scores will simply be
reversed.)

Because the properties of z scores form the foundation necessary for understanding
correlation coefficients, they will be briefly reviewed:

3 As noted earlier, this edition employs the population estimate of sd with n — 1 in the denominator throughout to
conform with computer program output, in contrast to earlier editions, which employed the sample sd with n in the
denominator in earlier equations in the book and moved to the population estimate when inferences to the population
involving standard errors were considered, and thereafter.

Also note that the summation sign, £, is used to indicate summation over all n cases here and elsewhere, unless
otherwise specified.
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where Ex2 means "the sum of the squared deviations from the mean."3 The scores thus created
are in standard deviation units and are called standard or z scores:
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FIGURE 2.2.1 Household income and number of appliances.

1. The sum of a set of z scores (£z) (and therefore also the mean) equals 0.
2. The variance (sd2) of the set of z scores equals 1, as does the standard deviation (sd).
3. Neither the shape of the distribution of X nor its absolute correlation with any other

variable is affected by transforming it to z (or any other linear transformation).

2.2.2 The Product Moment Correlation as a Function
of Differences Between z Scores

We may now define a perfect (positive) relationship between two variables (X and Y) as existing
when all zx and ZY pairs of scores consist of two exactly equal values. Furthermore, the degree
of relationship will be a function of the departure from this "perfect" state, that is, a function
of the differences between pairs of zx and ZY scores. Because the average difference between
paired zx and ZY and ls necessarily zero (because MZr = MZx = 0), the relationship may be
indexed by finding the average4 of the squared discrepancies between z scores, E(zx — zY)2/n.

For example, suppose that an investigator of academic life obtained the (fictitious) data
shown in Table 2.2.2. The subjects were 15 randomly selected members of a large university
department, and the data include the time in years that had elapsed since the faculty member's
Ph.D. was awarded and the number of publications in professional journals.

Several things should be noted in this table. Deviation scores (jc = X—Mx and y = Y—MY)
sum to zero. So do zx and ZY. The standard deviations, sdZx and sdZy, are both 1, MZx and MZy

are both 0 (all of which are mathematical necessities), and these equalities reflect the equal
footing on which we have placed the two variables.

We find that the squared differences (Esquared) between z scores sums to 9.614, which
when divided by the number of paired observations equals .641. How large is this relationship?
We have stated that if the two variables were perfectly (positively) related, all z score differences

4Because we have employed the sample-based estimate of the population sd, with a divisor of n — 1, when z scores
have been based on this sd diis equation should also use n — 1.
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TABLE 2.2.2
zScores, zScore Differences, and zScore Products on Data Example

Case

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

S
E squared

M
sd2

sd

X
Time since

Ph.D.

3
6
3
8
9
6

16
10
2
5
5
6
7

11
18

115
1235

7.67
19.55
4.42

y
No. of

publications

18
3
2

17
11
6

38
48
9

22
30
21
10
27
37

299
8635

19.93
178.33
13.35

Xt-Mx_
j ~ ZX,sdx

-1.020
-.364

-1.020
.073
.291

-.364
1.821
.510

-1.238
-.583
-.583
-.364
-.146

.728
2.257

0
14

1
1

Y,-MY
j ~ ZY,

Sdy

-.140
-1.225
-1.297
-.212
-.646

-1.008
1.307
2.030
-.791

.150

.728

.077
-.719

.511
1.235

0
14

1
1

ZX-ZY

-.880
.861
.278
.285
.938
.644
.514

-1.520
-.447
-.732

-1.311
-.441

.573

.217
1.023

0
9.614

.641

zxzr

.142

.446
1.322
-.015
-.188

.367
2.380
1.035
1.035

-.087
-.424
-.028

.105

.372
2.787

.613

would equal zero and necessarily their sum and mean would also be zero. A perfect negative
relationship, on the other hand, may be defined as one in which the z scores in each pair are
equal in absolute value but opposite in sign. Under the latter circumstances, it is demonstrable
that the average of the squared discrepancies times n/(n — 1) always equals 4. It can also be
proved that under circumstances in which the pairs of z scores are on the average equally likely
to be consistent with a negative relationship as with a positive relationship, the average squared
difference times n/(n — 1) will always equal 2, which is midway between 0 and 4. Under these
circumstances, we may say that there is no linear relationship between X and Y.5

Although it is clear that this index, ranging from 0 (for a perfect positive linear relation-
ship) through 2 (for no linear relationship) to 4 (for a perfect negative one), does reflect the
relationship between the variables in an intuitively meaningful way, it is useful to transform
the scale linearly to make its interpretation even more clear. Let us reorient the index so that
it runs from—1 for a perfect negative relationship to +1 for a perfect positive relationship. If
we divide the sum of the squared discrepancies by 2(n — 1) and subtract the result from 1, we
have

5Note that this equation is slightly different from that in earlier editions. The n/(n — 1) term is necessary because
the sd used here is the sample estimate of the population sd rather than the sample sd which uses n in the denominator.
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which for the data of Table 2.2.2 gives

2.3 ALTERNATIVE FORMULAS FOR THE PRODUCT MOMENT
CORRELATION COEFFICIENT

The formula given in Eq. (2.2.4) for the product moment correlation coefficient as a function
of squared differences between paired z scores is only one of a number of mathematically
equivalent formulas. Some of the other versions provide additional insight into the nature of r;
others facilitate computation. Still other formulas apply to particular kinds of variables, such
as variables for which only two values are possible, or variables that consist of rankings.

2.3.1 ras the Average Product of z Scores

It follows from algebraic manipulation of Eq. (2.2.4) that

The product moment correlation is therefore seen to be the mean of the products of the
paired z scores.7 In the case of a perfect positive correlation, because zx = ZY,

6The term product moment refers to the fact that the correlation is a function of the product of theirs* moments,
of X and Y, respectively. See the next sections.

7If we used zs based on the sample sd which divides by «, this average would also divide by n.

r is the product moment correlation coefficient, invented by Karl Pearson in 1895. This
coefficient is the standard measure of the linear relationship between two variables and has the
following properties:

1. It is a pure number and independent of the units of measurement.
2. Its value varies between zero, when the variables have no linear relationship, and +1.00

or —1.00, when each variable is perfectly estimated by the other. The absolute value thus gives
the degree of relationship.

3. Its sign indicates the direction of the relationship. A positive sign indicates a tendency for
high values of one variable to occur with high values of the other, and low values to occur with
low. A negative sign indicates a tendency for high values of one variable to be associated
with low values of the other. Reversing the direction of measurement of one of the variables
will produce a coefficient of the same absolute value but of opposite sign. Coefficients of equal
value but opposite sign (e.g., +.50 and —.50) thus indicate equally strong linear relationships,
but in opposite directions.

For the data presented in Table 2.2.1, these products have been computed and rXY =
9.193/14 = .657, necessarily as before.
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2.3.2 Raw Score Formulas for r

Because z scores can be readily reconverted to the original units, a formula for the correlation
coefficient can be written in raw score terms. There are many mathematically equivalent
versions of this formula, of which the following is a convenient one for computation by
computer or calculator:

When the numerator and denominator are divided by n2, Eq. (2.3.2) becomes an expression
of r in terms of the means of each variable, of each squared variable, and of the .XY product:

2.3.3 Point Biserial r

When one of the variables to be correlated is a dichotomy (it can take on only two values), the
computation of r simplifies. There are many dichotomous variables in the behavioral sciences,
such as yes or no responses, left- or right-handedness, and the presence or absence of a trait or
attribute. For example, although the variable "gender of subject" does not seem to be a quanti-
tative variable, it may be looked upon as the presence or absence of the characteristics of being
female (or of being male). As such, we may decide, arbitrarily, to score all females as 1 and all
males as 0. Under these circumstances, the sd of the gender variable is determined by the propor-
tion of the total n in each of the two groups; sd = /PQ, where P is the proportion in one group
and Q = 1 — P, the proportion in the other group.8 Because r indicates a relationship between
two standardized variables, it does not matter whether we choose 0 and 1 as the two values or
any other pair of different values, because any pair will yield the same absolute z scores.

8Note that here the sd is the sample sd (divided by n) rather than the sample-based estimate of the population CT.
As noted earlier, because the ns in the equation for r cancel, this difference is immaterial here.

It is useful for hand computation to recognize that the denominator is the product of the
variables' standard deviations, thus an alternative equivalent is

This numerator, based on the product of the deviation scores is called the covariance and
is an index of the tendency for the two variables to covary or go together that is expressed
in deviations measured in the original units in which X and Y are measured (e.g., income in
dollars and number of appliances). Thus, we can see that r is an expression of the covariance
between standardized variables, because if we replace the deviation scores with standardized
scores, Eq. (2.3.4) reduces to Eq. (2.3.1).

It should be noted that r inherently is not a function of the number of observations and that
the n — 1 in the various formulas serves only to cancel it out of other terms where it is hidden
(for example, in the sd). By multiplying Eq. (2.3.4) by (n — l)/(n — 1) it can be completely
canceled out to produce a formula for r that does not contain any vestige of n:
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TABLE 2.3.1
Correlation Between a Dichotomous and a Scaled Variable

For example, Table 2.3.1 presents data on the effects of an interfering stimulus on task
performance for a group of seven experimental subjects. As can be seen, the absolute value
of the correlation remains the same whether we choose (XA) 0 and 1 as the values to represent
the absence or presence of an interfering stimulus or choose (XB) 50 and 20 as the values to
represent the same dichotomy. The sign of r, however, depends on whether the group with the
higher mean on the other (Y) variable, in this case the no-stimulus group, has been assigned
the higher or lower of the two values. The reader is invited to try other values and observe the
constancy of r.

Because the z scores of a dichotomy are a function of the proportion of the total in each of
the two groups, the product moment correlation formula simplifies to

where MYl and MYo are the Y means of the two groups of the dichotomy and the sdY is the
sample value, which is divided by n rather than n — 1. The simplified formula is called the
point biserial r to take note of the fact that it involves one variable (X) whose values are all at
one of two points and one continuous variable (Y). In the present example,

The point biserial formula for the product moment r displays an interesting and useful
property. When the two groups of the dichotomy are of equal size, p = q = .5, so JPQ = .5.
The rpb then equals half the difference between the means of the z scores for Y, and so 2rpb

equals the difference between the means of the standardized variable.

2.3.4 Phi (4) Coefficient

When bothX and Y are dichotomous, the computation of the product moment correlation is even
further simplified. The data may be represented by a fourfold table and the correlation computed
directly from the frequencies and marginals. For example, suppose a study investigated the

Subject
no.

1
2
3
4
5
6
7

Sum

Mean

Stimulus
condition

(X)

NONE
NONE
NONE
NONE
STIM
STIM
STIM

sd in sample

Task
score
(Y)

67
72
70
69
66
64
68

476

68
2.45

XA

0
0
0
0
1
1
1

3

.429

.495

XB

50
50
50
50
20
20
20

260

37.14
14.9

ZY

-0.41
1.63
0.81
0.41

-0.81
-1.63

0

0

0

ZA

-.802
-.802
-.802
-.802
1.069
1.069
1.069

0

0

ZB

.802

.802

.802

.802
-1.069
-1.069
-1.069

0

0
MY NONE = 69.5

ZYZA

0.329
-1.307
-0.650
-0.329
-0.866
-1.742

0

-4.565

My STIM

ZYZB

-0.329
1.307
0.650
0.329
0.866
1.742
0

4.565

= 66.0

CH02EX03
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TABLE 2.3.2
Fourfold Frequencies for Candidate Preference

and Homeowning Status

difference in preference of homeowners and nonhomeowners for the two candidates in a local
election, and the data are as presented in Table 2.3.2. The formula for r here simplifies to the
difference between the product of the diagonals of a fourfold table of frequencies divided by
the square root of the product of the four marginal sums:

Once again it may be noted that this is a computing alternative to the z score formula, and
therefore it does not matter what two values are assigned to the dichotomy because the standard
scores, and hence the absolute value of r^ will remain the same. It also follows that unless
the division of the group is the same for the two dichotomies (PY = PX or Qx)' their z scores
cannot have the same values and r cannot equal 1 or — 1. A further discussion of this limit is
found in Section 2.10.1.

2.3.5 Rank Correlation

Yet another simplification in the product moment correlation formula occurs when the data
being correlated consist of two sets of ranks. Such data indicate only the ordinal position of
the subjects on each variable; that is, they are at the ordinal level of measurement. This version
of r is called the Spearman rank correlation (rs). Because the sd of a complete set of ranks
is a function only of the number of objects being ranked (assuming no ties), some algebraic
manipulation yields

where d is the difference hi the ranks of the pair for an object or individual. In Table 2.3.3 a set
of 5 ranks is presented with their deviations and differences. Using one of the general formulas
(2.3.4) for r,

Candidate U Candidate V Total

Homeowners

Nonhomeowners

A
19

C
60

B
54

D
52

73 = A + B

112 = C + D

Total 79=A + C 106 = B + D 185 = n

CH02EX04
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TABLE 2.3.3
Correlation Between Two Sets of Ranks

TABLE 2.3.4
Product Moment Correlation Coefficients

for Special Kinds of Data

The rank order formula (2.3.9) with far less computation yields

which agrees with the result from Eq. (2.3.4).
We wish to stress the fact that the formulas for rpb, r^, and rs are simply computational

equivalents of the previously given general formulas for r that result from the mathematical
simplicity of dichotomous or rank data (Table 2.3.4). They are of use when computation is
done by hand or calculator. They are of no significance when computers are used, because
whatever formula for r the computer uses will work when variables are scored 0-1 (or any
other two values) or are ranks without ties. It is obviously not worth the trouble to use special
programs to produce these special-case versions of r when a formula such as Eq. (2.3.2) will
produce them.

2.4 REGRESSION COEFFICIENTS: ESTIMATING Y FROM X

Thus far we have treated the two variables as if they were of equal status. It is, however,
often the case that variables are treated asymmetrically, one being thought of as a dependent
variable or criterion and the other as the independent variable or predictor. These labels reflect
the reasons why the relationship between two variables may be under investigation. There
are two reasons for such investigation; one scientific and one technological. The primary or
scientific question looks upon one variable as potentially causally dependent on the other, that
is, as in part an effect of or influenced by the other. The second or technological question has
for its goal forecasting, as for example, when high school grades are used to predict college

I.D.

1
2
3
4
5

Sum

X

4
2
3
5
1

15

Y

2
1
4
3
5

15

X

1
_ j

0
2

-2

0

X2

1
1
0
4
4

10

y
-i
-2

1
0
2

0

y2

i
4
1
0
4

10

xy

_ j

2
0
0

-4

-3

d

2
1

.-1
2

-4

0

d2

4
1
1
4

16

26

Data type

A scaled variable and a dichotomous variable
Two dichotomous variables
Two ranked variables

Coefficient

Point biserial r (rpb)
(^orr,,,
Spearman rank order r (rs)
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grades with no implication that the latter are actually caused by the former. In either case the
measure of this effect will, in general, be expressed as the number of units of change in the Y
variable per unit change in the X variable.

To return to our academic example of 15 faculty members presented in Table 2.2.2, we wish
to obtain an estimate of Y, for which we use the notation Y, which summarizes the average
amount of change in the number of publications for each year since Ph.D. To find this number,
we will need some preliminaries. Obviously, if the relationship between publications and
years were perfect and positive, we could provide the number of publications corresponding
to any given number of years since Ph.D. simply by adjusting for differences in scale of the
two variables. Because, when rXY — 1, for any individual;, the estimated ZY. simply equals
zx., then

It is useful to simplify and separate the elements of this formula in the following way. Let

and solving for/s estimated value of Y,

and because Mx, MY, and sdY are known, it remains only to specify Xj and then Yj may be
computed.

When, however, the relationship is not perfect, we may nevertheless wish to show the
estimated Y that we would obtain by using the best possible "average" conversion or prediction
rule from X in the sense that the computed values will be as close to the actual Y values as is
possible with a linear conversion formula. Larger absolute differences between the actual and
estimated scores (Yj — YJ) are indicative of larger errors. The average error E(7 — Y)/N will
equal zero whenever the overestimation of some scores is balanced by an equal underestimation
of other scores. That there be no consistent over- or underestimation is a desirable property, but
it may be accomplished by an infinite number of conversion rules. We therefore define as close
as possible to correspond to the least squares criterion so common in statistical work—we
shall choose a conversion rule such that not only are the errors balanced (they sum to zero),
but also the sum of the squared discrepancies between the actual Y and estimated Y will be
minimized, that is, will be as small as the data permit.

It can be proven that the linear conversion rule which is optimal for converting zx to an
estimate of ZY is

^ A

To convert to raw scores, we substitute for ZY = (Y — MY)/sdY and for Zx = (X — Mx)/sdx.
Solving for Y gives

and



9As will be seen in Chapters 6, 7, and 9, centering on X can greatly simplify interpretations of equations when
relationships are curvilinear or interactive.
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from which we may write the regression equation for estimating Y from X as

Alternatively, we may write this equation in terms of the original Y variable by including
an "error" term e, representing the difference between the predicted and observed score for
each observation:

These equations describe the regression of Y on X. Byx is the regression coefficient for
estimating Y from X and represents the rate of change in Y units per unit change in X, the
constant by which you multiply each X observation to estimate Y. B0 is called the regression
constant or Y intercept and serves to make appropriate adjustments for differences in size
between X and Y units. When the line representing the best linear estimation equation (the
Y on X regression equation) is drawn on the scatterplot of the data in the original X and Y
units, BYX indicates the slope of the line and B0 represents the point at which the regression
line crosses the Y axis, which is the estimated Y when X = 0. (Note that BQ is sometimes
represented as A or Ayx in publications or computer output.)

For some purposes it is convenient to center variables by subtracting the mean value from
each score.9 Following such subtraction the mean value will equal 0. It can be seen by Eq. (2.4.4)
that when both the dependent and independent variables have been centered so that both
means = 0, the B0 = 0. This manipulation also demonstrates that the predicted score on Y
for observations at the mean of X must equal the mean of Y. When only the IV is centered,
the B0 will necessarily equal Afy. For problems in which X does not have a meaningful zero
point, centering X may simplify interpretation of the results (Wainer, 2000). The slope Byx is
unaffected by centering.

The slope of a regression line is the measure of its steepness, the ratio of how much Y rises
(or, when negative, falls) to any given amount of increase along the horizontal X axis. Because
the "rise over the run" is a constant for a straight line, our interpretation of it as the number of
units of change in Y per unit change in X meets this definition.

Now we can deal with our example of 15 faculty members with a mean of 7.67 and a sd of
4.58 years since Ph.D. (Time) and a mean of 19.93 and a sd of 13.82 publications (Table 2.2.2).
The correlation between time and publications was found to be .657, so

The regression coefficient, Byx, indicates that for each unit of increase in Time (X), we estimate
a change of +1.98 units (publications) in Y (i.e., about two publications per year), and that
using this rule we will minimize our errors (in the least squares sense). The BQ term gives us
a point for starting this estimation—the point for a zero value of X, which is, of course, out of
the range for the present set of scores. The equation Yx = ByxX+B$ may be used to determine
the predicted value of Y for each value of X, and graphed as the YX line in a scatterplot, as
illustrated for these data in Fig. 2.4.1.

We could, of course, estimate X from Y by interchanging X and Y in Eqs. (2.4.3) and (2.2.2).
However, the logic of regression analysis dictates that the variables are not of equal status,
and estimating an independent or predictor variable from the dependent or criterion variable
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X
Y

Zx
MzY

X
Y

Zx
MZy

2
8.70

-1.24
-0.84

11
26.54

0.73
0.50

3 4
10.68 —

-1.02 —
-0.69 —

12 13
— —

— —
— —

5
14.64

-0.58
-0.40

14
—

—
—

6
16.63

-0.36
-0.25

15
—

—
—

7
18.61

-0.15
-0.10

16
36.46

1.88
1.24

8
20.59

0.07
0.05

17
—

—
—

9
22.58

0.29
0.20

18
40.42

2.34
1.53

10
24.56

0.51
0.35

FIGURE 2.4.1 Regression of publications on time since Ph.D.

makes no sense. Suffice it to say that were we to do so, the line estimating X from Y (the X on
Y regression) would not be the same as the line estimating Y from X (the Y on X regression).
Neither its slope nor its intercept would be the same.

The meaning of the regression coefficient may be seen quite well in the case in which the
independent variable is a dichotomy.10 If we return to the example from Table 2.3.1 where the
point biserial r = —.707 and calculate

we note that this is exactly the difference between the two group means on Y, 66 — 69.5.
Calculating the intercept, we get

which is equal to the mean of the group coded 0 (the no-stimulus condition). This must be the
case because the best (least squares) estimate of Y for each group is its own mean, and the

^Chapter 8 is devoted to the topic of categorical IVs, for which we provide only a brief introduction here.
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regression equation for the members of the group represented by the 0 point of the dichotomy
is solved as

2.5 REGRESSION TOWARD THE MEAN

A certain amount of confusion exists in the literature regarding the phenomenon of regression
toward the mean. It is sometimes implied that this is an artifact attributable to regression as an
analytic procedure. On the contrary, it is a mathematical necessity that whenever two variables
correlate less than perfectly, cases that are at one extreme on one of the variables will, on
the average, be less extreme on the other. There are many examples in the literature where
investigators mistakenly claim that some procedure results in a beneficial result when only
the regression effect is operating (Campbell & Kenny, 1999). Consider a research project in
which a neuroticism questionnaire is administered to an entering class and the students with the
poorest scores are given psychotherapy, retested, and found to improve greatly. The "artifact"
is the investigator's claim of efficacy for the treatment when, unless the scores remained exactly
the same so that the correlation between pretest and posttest was 1.0, they were certain to have
scores closer to the mean than previously.

Although the number of cases in a small data set may be too small to show this phenomenon
reliably at each data point, examination of the Zx and ZY values in Fig. 2.4.1 will illustrate the
point. The median of time since Ph.D. for the 15 professors is 6 years. If we take the 7 cases
above the median, we find that their mean z score is +.82, whereas the mean z score for the 5
professors below the median is —.92. Now, the mean z score for number of publications for the
older professors is only .52 and the mean z score for publications for the younger professors
is —.28. The cases high and low in years since Ph.D. (X) are distinctly less so on publications
(F); that is, they have "regressed" toward the mean. The degree of regression toward the mean
in any given case will vary with the way we define high and low. That is, if we defined high
time since Ph.D. as more than 12 years, we would expect an even greater difference between
their mean z on time and the mean z on publications. The same principle will hold in the other
direction: Those who are extreme on number of publications will be less extreme on years
since Ph.D. As can be seen from these or any other bivariate data that are not perfectly linearly
related, this is in no sense an artifact, but a necessary corollary of less than perfect correlation.

A further implication of this regression phenomenon is evident when one examines the
consequences of selecting extreme cases for study. In the preceding paragraph, we found that
those whose Ph.D.s were no more than 5 years old had a mean z score for years since Ph.D.
of —.92, but a mean z score for number of publication of —.28. An investigator might well be
tempted to attribute the fact that these new Ph.D.s are so much closer to the mean on number
of publications than they are on years since Ph.D. to their motivation to catch up in the well-
documented academic rat race. However, recognition that a less than perfect correlation is a
necessary and sufficient condition to produce the observed regression toward the mean makes
it clear that any specific substantive interpretation is not justified. (There is a delicious irony
here: the lower the correlation, the greater the degree of regression toward the mean, and the
more to "interpret," spuriously, of course.)

Because regression toward the mean always occurs in the presence of an imperfect linear
relationship, it is also observed when the variables consist of the same measure taken at two
points in time. In this circumstance, unless the correlation is perfect, the extreme cases at Time 1
will be less extreme at Time 2. If the means and sds are stable, this inevitably means that low
scores improve and high scores deteriorate. Thus, on the average over time, overweight people
lose weight, low IQ children become brighter, and rich people become poorer. To ask why these
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examples of regression to the mean occur is equivalent to asking why correlations between
time points for weight, IQ, and income are not equal to +1.00. Of course, measurement error
is one reason why a variable will show a lower correlation with itself over time, or with any
other variables. However, regression to the mean is not solely dependent on measurement error,
but on any mechanism whatsoever that makes the correlation less than perfect. Campbell and
Kenny (1999) devote an entire volume to the many ways in which regression to the mean can
lead to complexities in understanding change.

The necessity for regression toward the mean is not readily accessible to intuition but does
respond to a simple demonstration. Expressed in standard scores, the regression equation is
simply ZY = rXYzx (Eq. 2.4.1). Because an r of +1 or —1 never occurs in practice, ZY will
necessarily be absolutely smaller than zx, because r is less than 1. Concretely, when r = .40,
whatever the value ofzx, ZY must be .4 as large (see a comparable set of values below Fig. 2.4.1).
Although for a single individual the actual value of ZY may be larger or smaller than zx, the
expected or average value of the ZYS that occur with zx, that is, the value of zy, will be .4
of the zx value (i.e., it is "regressed toward the mean"). The equation holds not only for the
expected value of ZY for a single individual's zx, but also for the expected value of the mean ZY

for the mean zx of a group of individuals. Of course, this holds true even when Y is the same
variable measured at a later time than X. Unless the correlation over time is perfect, indicating
no change, or the population mean and sd increase, on the average, the fat grow thinner, the
dull brighter, the rich poorer, and vice versa.

2.6 THE STANDARD ERROR OF ESTIMATE AND MEASURES
OF THE STRENGTH OF ASSOCIATION

In applying the regression equation Y ~ B^X + BQ, we have of course only approximately
matched the original Y values. How close is the correspondence between the information
provided about Y by X (i.e., Y), and the actual Y values? Or, to put it differently, to what extent
is Y associated with X as opposed to being independent of XI How much do the values of Y,
as they vary, coincide with their paired X values, as they vary: equivalently, how big is e in
Eq. (2.4.6)?

As we have noted, variability is indexed in statistical work by the sd or its square, the
variance. Because variances are additive, whereas standard deviations are not, it will be more
convenient to work with sd\. What we wish to do is to partition the variance of Y into a portion
associated with X, which will be equal to the variance of the estimated scores, sd^, and a
remainder not associated with X, sdY_Y, the variance of the discrepancies between the actual
and the estimated Y scores (e). (Those readers familiar with ANOVA procedures may find
themselves in a familiar framework here.) sdi and sd^_Y will sum to sdY, provided that Y
and Y — Y are uncorrelated. Intuitively it seems appropriate that they should be uncorrelated
because Y is computed from X by the optimal (OLS11) rule. Because Y = B^X + (a constant),
it is just a linear transformation of X and thus necessarily correlates perfectly with X. Nonzero
correlation between Y and Y — Y would indicate correlation between X (which completely
determines Y) and Y — Y, and would indicate that our original rule was not optimal. A simple
algebraic proof confirms this intuition; therefore:

11 We introduce the term ordinary least squares (OLS) here, to represent the model that we have described, in
which simple weights of predictor variable(s) are used to estimate Y values that collectively minimize the squared
discrepancies of the predicted from the observed Ys, so that any other weights would result in larger average
discrepancy.
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then r|y is the proportion of the variance of Y linearly associated with X, and 1 — r|y is the
proportion of the variance of Y not linearly associated with X.

It is often helpful to visualize a relationship by representing each variable as a circle.12 The
area enclosed by the circle represents its variance, and because we have standardized each
variable to a variance of 1, we will make the two circles of equal size (see Fig. 2.6.1). The
degree of linear relationship between the two variables may be represented by the degree of
overlap between the circles (the shaded area). Its proportion of either circle's area equals r2,
and 1 — r2 equals the area of the nonoverlapping part of either circle. Again, it is useful to
note the equality of the variance of the variables once they are standardized: the size of the
overlapping and nonoverlapping areas, r2, and 1 — r2, respectively, must be the same for each.
If one wishes to think in terms of the variance of the original X and Y, one may define the
circles as representing 100% of the variance and the overlap as representing the proportion of
each variable's variance associated with the other variable. We can also see that it does not
matter in this form of expression whether the correlation is positive or negative because r2

must be positive.
We will obtain the variance of the residual (nonpredicted) portion when we return to the

original units by multiplying by sd\ to obtain

FIGURE 2.6.1 Overlap in variance of correlated variables.

12Such figures are called Venn diagrams in mathematical statistics. Here we call them "ballantines," a name taken
from a logo for a now-defunct beer company, because we use them illustratively only, and do not wish to imply the
mathematical precision that should accompany a Venn diagram.

and we have partitioned the variance of Y into a portion determined by X and a residual portion
not linearly related to X. If no linear correlation exists between X and Y, the optimal rule has
us ignore X because Byx = 0, and minimize our errors of estimation by using MY as the best
guess for every case. Thus we would be choosing that point about which the squared errors
are a minimum and sdy_y = sd\. More generally we may see that because (by Eq. 2.4.1)
ZY — rXYZx>

and because sd2
y = 1, and
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The standard deviation of the residuals e, that is, of that portion of Y not associated with X is
therefore given by

For example, when r = .50, the proportion of shared variance = r2 = .25, and .75 of sd\ is not
linearly related to X. If the portion of Y linearly associated with X is removed by subtracting
ByxX + BQ ( = Y) from Y, the sd of the residual is reduced compared to the original sdY to
sdy-Y = sdy\H^ = .866 sdy

We see that, in this case, although r = .50, only 25% of the variance in Y is associated
with X, and when the part of Y which is linearly associated with X is removed, the standard
deviation of what remains is .866 as large as the original SDy.

To make the foregoing more concrete, let us return to our academic example. The regression
coefficient Byx was found to be 1.98, the intercept B0 was 4.73, and rXY was .657. Table 2.6.1
gives the Y, X, and ZY values and estimated Y and z from the regression equations (2.4.5)
and (2.4.1), which for these values are:

The Y — Y values are the residuals for Y estimated from X or the errors of estimate in
the sample. Because Y is a linear transformation of X, rYY must equal rXY ( = .657). The
correlations between Y — Y and Y must, as we have seen, equal zero. Parallel entries are given
for the standardized ZY values where the same relationships hold.

Turning our attention to the variances of the variables, we see that

The ratio sdY_Y/sdY = \/l — r2 = .754, which is called the coefficient of alienation, is the
part of sdY that remains when that part of Y associated with X has been removed. It can also be
thought of as the coefficient of noncorrelation, because r is the coefficient of correlation. The
standard deviation of the residual scores is given by Eq. (2.6.4) as sdY_Y = sdY^/l — r2 =
13.35(.754) = 10.07, as shown in Table 2.6.1. For the bivariate case, the population variance
error of estimate or residual variance has df = n — 2 and is given by

For the two summations, Table 2.6.1 gives in its E\/;? row, 1521.51 for the Y — Y column
and 2674.93 for the Y column. Substituting, we get

and both equations give 117.04. When we take square roots, we obtain the standard error of
estimate:

which equals 10.82. Here, too, df = n - 2.

CH02EX05
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TABLE 2.6.1
Estimated and Residual Scores for Academic Example

x Y
Time since No. of

Ph.D. publications Y

M
sd
sd2

ski
V fr1

^Vxi

3
6
3
8
9
6

16
10
2
5
5
6
7

11
18

7.67
4.577

19.56

18
3
2

17
11
6

38
48
9

22
30
21
10
27
37

19.93
13.82

178.3

2674.93

10.68
16.63
10.68
20.59
22.58
16.63
36.46
24.56
8.70

14.65
14.65
16.63
18.61
26.54
40.42

19.93
8.77

76.98

Y-Y

7.32
-13.63
-8.68
-3.59

-11.58
-10.63

1.54
23.44
0.30
7.36

15.36
4.37

-8.61
0.46

-3.42

0
10.07

101.42

120.29
1521.51

ZY

-.67
-.24
-.67

.05

.19
-.24
1.20
.33

-.81
-.38
-.38
-.24
-.10

.48
1.48

0
.657
.431

ZY-ZY

.53
-.99
-.63
-.26
-.84
-.77

.11
1.70
.02
.53

1.11
.32

-.62
.03

-.25

0
.754
.569

Yw

10.60
16.60
10.60
20.60
22.60
16.60
36.60
24.60
8.60

14.60
14.60
16.60
18.60
26.60
40.60

19.93

Y-YW

7.40
-13.60
-8.60
-3.60

-11.60
-10.60

1.40
23.40

.40
7.40

15.40
4.40
8.60
.40

3.60

0
10.072
101.44

116.40

Y v Y-Yv=e

11.07
16.77
11.07
20.57
22.47
16.77
35.77
24.37
9.17

14.87
14.87
16.77
18.67
26.27
39.57

19.93
8.40

70.60

6.93
-13.77
-9.07
-3.57

-11.47
-10.77

2.23
23.63
-.17
7.13

15.13
4.23
8.67

73
2.57

0
10.07

101.57

120.07

A A.

Finally, Yw and Yv in Table 2.6.1 have been computed to demonstrate what happens when
any other regression coefficient or weight is used. The values Bwx = 2.0 and Byx = 1.9 were
chosen to contrast with BYX — 1-98 (the regression constants have been adjusted to keep the
estimated values centered on 7). The resulting sd2 for the sample residuals was larger in each
case, 101.44 and 101.57, respectively as compared to 101.42 for the least squares estimate.
The reader is invited to try any other value to determine that the squared residuals will in fact
always be larger than with 1.98, the computed value of Byx-

Examination of the residuals will reveal another interesting phenomenon. If one determines
the absolute values of the residuals from the true regression estimates and from the Yw, it can be
seen that their sum is smaller for both Y - Yw (116.40) and Y - Yv (120.07) than it is for the true
regression residuals (120.29). Whenever residuals are not exactly symmetrically distributed
about the regression line there exists an absolute residual minimizing weight different from
BYX- To reiterate, Byx is the weight that minimizes the squared residuals, not their absolute
value. This is a useful reminder that ordinary least squares (OLS), although very useful, is only
one way of defining discrepancies from estimation, or error.13

13Chapter 4 will introduce alternative methods, which are further presented in later chapters.



2.8 STATISTICAL INFERENCE 41

2.7 SUMMARY OF DEFINITIONS AND INTERPRETATIONS

The product moment r^y is the rate of linear increase in ZY per unit increase or decrease in
zx (and vice versa) that best fits the data in the sense of minimizing the sum of the squared
differences between the estimated and observed scores.

r2 is the proportion of variance in Y associated with X (and vice versa).
BYX is the regression coefficient of Y on X. Using the original raw units, it is the rate of

linear change in Y per unit change in X, again best fitting in the least squares sense.
BQ is the regression intercept that serves to adjust for differences in means, giving the

predicted value of the dependent variable when the independent variable's value is zero.
The coefficient of alienation, \/l — r2, is the proportion of sdY remaining when that part of

Y associated with X has been subtracted; that is, sdY_Y/sdY.
The standard error of estimate, SEY_Y, is the estimated population standard deviation (a)

of the residuals or errors of estimating Y from X.

2.8 STATISTICAL INFERENCE WITH REGRESSION
AND CORRELATION COEFFICIENTS

In most circumstances in which regression and correlation coefficients are determined, the
intention of the investigator is to provide valid inferences from the sample data at hand to some
larger universe of potential data—from the statistics obtained for a sample to the parameters
of the population from which it is drawn. Because random samples from a population can-
not be expected to yield sample values that exactly equal the population values, statistical
methods have been developed to determine the confidence with which such inferences can
be drawn. There are two major methods of statistical inference, estimation using confidence
intervals and null hypothesis significance testing. In Section 2.8.1, we consider the formal
model assumptions involved. In Section 2.8.2, we describe confidence intervals for By*, BQ,
rXY, for differences between independent sample values of these statistics. In Section 2.8.3, we
present the null hypothesis tests for simple regression and correlation statistics. Section 2.8.4
critiques null hypothesis testing and contrasts it with the approach of confidence limits.

2.8.1 Assumptions Underlying Statistical Inference
with Byx, BQ, Yir and FXY

It is clear that no assumptions are necessary for the computation of correlation, regression, and
other associated coefficients or their interpretation when they are used to describe the available
sample data. However, the most useful applications occur when they are statistics calculated on
a sample from some population in which we are interested. As in most circumstances in which
statistics are used inferentially, the addition of certain assumptions about the characteristics
of the population substantially increases the useful inferences that can be drawn. Fortunately,
these statistics are robust; that is, moderate departure from these assumptions will usually
result in little error of inference.

Probably the most generally useful set of assumptions are those that form what has been
called the fixed linear regression model. This model assumes that the two variables have been
distinguished as an independent variable X and a dependent variable 7. Values of X are treated
as "fixed" in the analysis of variance sense, that is, as selected by the investigator rather than
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sampled from some population of X values.14 Values of Y are assumed to be randomly sampled
for each of the selected values of X. The residuals ("errors") from the mean value of Y for
each value of X are assumed to be normally distributed in the population, with equal variances
across the full range of X values. It should be noted that no assumptions about the shape of the
distribution of X and the total distribution of Y per se are necessary, and that, of course, the
assumptions are made about the population and not about the sample. This model, extended
to multiple regression, is used throughout the book.

2.8.2 Estimation With Confidence Intervals

A sampling distribution is a distribution of the values of a sample statistic that would occur
in repeated random sampling of a given size, n, drawn from what is conceived as an infinite
population. Statistical theory makes possible the estimation of the shape and variability of such
sampling distributions. We estimate the population value (parameter) of the sample statistic
we obtained by placing it within a confidence interval (CI) to provide an estimate of the margin
of error (me), based on these distributions.

Confidence Interval for BYX

We have seen that Byx is a regression coefficient that gives the slope of the straight line that
estimates Y from X. We will see that, depending on the context, it can take on many meanings
in data analysis in MRC, including the size of a difference between two means (Section 2.4),
the degree of curvature of a regression line (Chapter 6), or the effect of a datum being missing
(Chapter 11).

Continuing our academic example, we found in Section 2.4 that for this sample the least
squares estimate of Byx = 1 -98, indicating that for each additional year since Ph.D. we estimate
an increase of 1.98 publications, that is, an increase of about two publications. If we were to
draw many random samples of that size from the population, we would get many values of Byx
in the vicinity of +1.98. These values constitute the sampling distribution of Byx and would
be approximately normally distributed. The size of the vicinity is indicated by the standard
deviation of this distribution, which is the standard error (SE) of Byx-

Because this is a very small sample, we will need to use the t distribution to determine the
multiplier of this SE that will yield estimates of the width of this interval. Like the normal
distribution, the t distribution is a symmetrical distribution but with a relatively higher peak in
the middle and higher tails. The t model is a family of distributions, each for a different number
of degrees of freedom (df). As the df increase from 1 toward infinity, the t distribution becomes
progressively less peaked and approaches the shape of the normal distribution. Looking in

14In the "multilevel" models discussed in Chapters 14 and 15 this assumption is not made for all independent
variables.

Substituting,
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Appendix Table A, we find that the necessary t at the two-tailed 5% level for 13 d/is 2.16.
Multiplying .632 by 2.16 gives 1.36, the 95% margin of error (me). Then, the 95% confidence
limits (CLs) are given as 1.98 ± 1.36 = +.62 as its lower limit and +3.34 as its upper limit. If
1.98 is so much smaller than the population value of Byx that only 2.5% of the possible sample
BYX values are smaller still, then the population value is 1.36 publications above 1.98, that is,
3.34 (see Fig. 2.8.1), and if 1.98 is so much larger that only 2.5% of the possible sample Byx
values are larger still, then the population value is 1.36 publications below 1.98, that is, .62
(see Fig. 2.8.2). Thus, the 95% CI is +.62 to +3.34. This CI indicates our 95% certainty that
the population value falls between +.62 and +3.34. Note for future reference the fact that the
CI for BXY in this sample does not include 0 (see Section 2.8.3).

Although the single most likely value for the change in number of publications per year
since Ph.D. is the sample value 1.98, or about 2 publications per year, we are 95% confident
that the true change falls between .62 and 3.34 publications per year since Ph.D. This may be
too large an interval to be of much use, as we should have expected when we examined so

FIGURE 2.8.1 Expected distribution of Bs from samples of 15 subjects when the
population B = 3.34.

FIGURE 2.8.2 Expected distribution of Bs from samples of 15 subjects when the
population B = 0.62.
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small a sample. Were we to have found the same sample value of 1.98 on a sample as large
as 62, the standard error of Byx would go down to .294 (Eq. 2.8.1). When n = 62, the df
for SEByx is n - 2 = 60, so t for the 95% CI = 2.00 (Appendix Table A). The me (margin
of error) is now 2.00 (.294) = .588, less than half as large as before, so the 95% CI is now
1.98 ± (.588) = 1.40 to 2.56, from about 1.5 to 2.5 publications per year since Ph.D., distinctly
narrower and thus more useful.

Although 95% C/s are the most frequently used, other degrees of confidence, greater or
smaller, may be preferred. A multiplier of 2.6 will give an approximate 99% CI, and 1.3 an
approximate 80% interval for all but the smallest samples. Since standard errors are always
reported in computer output, and should always be reported in research reports, one can easily
approximate a C/that includes 68% (about %) of the cases in the sampling distribution by taking
the me for the sample Byx value to equal its SE, so the approximate 68% C/is Byx ± SEByx. The
odds are then approximately 2 to 1 that the population Byx value falls between those limits.

Confidence Interval for BQ
A A

B0 is the regression coefficient that gives the Y intercept, the value of Y when the YX
regression line that estimates Y from X is at X = 0. Although in many behavioral science
applications this coefficient is ignored, because the means of the variables are essentially on an
arbitrary scale, there are applications in which it is of interest. When zero on the X scale has a
useful meaning, and is within the range of the observations, it tells us what the expected value
of Y is for X = 0. In Section 2.4, we found using Eq. (2.4.4) that for our running example the
intercept B0 = MY - ByxMx = 19.93 - 1.98 (7.67) = 4.73, indicating a predicted value of
4.73 publications when years since Ph.D. equals 0, that is, the individual has just obtained a
Ph.D. Of course, such a predicted value is not to be trusted under the circumstances in which
it falls outside the observed data, as it does here.

The standard error of B0 is given by

We generate C/s for BQ as before, using the t distribution for n — 2 = 13 df. For the 95%
CI, Appendix Table A gives t = 2.16, so the me = 2.16(5.59) = 12.07 and the 95% CI =
4.73 ± 12.07 = -7.34 to 16.80. The table gives for 13 df,t = 1.35 for the 80% CI, so
me = 1.35(5.59) = 7.55, and the 80% CI = 4.73 ± 7.55, -2.82 to 12.28. These large C/s,
with their negative lower limits, mean that with such a small sample we cannot even confidently
say whether, on the average, faculty members had published before they got their degrees!

Confidence Interval for an Estimated Y, Value
When we employ the regression equation

We found from Eq. (2.6.7) that for this example, SEy_y = 10.82. Substituting from
Table 2.6.1 for n = 15, Mx = 7.67, and sd2 = 4.582 = 20.95.

to estimate a particular 7, from a particular value of Xit what we find is the Y coordinate of the
point on the YX regression line for that value of X. In the sample data, the Y values are scattered
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above and below the regression line and their distances from the line are the residuals or errors.
The standard error of estimate (Eq. 2.6.7) estimates their variability in the population. In our
running example estimating number of publications from number of years since Ph.D., we
found SEY-Y to equal 10.82. Let's write the regression equation to estimate Yt, the number of
publications estimated for a specific faculty member with 9 years since Ph.D. The equation for
these values was found as Y{ = 1.98X + 4.73. Substituting X, = 9, we find F, = 22.58.

It is useful to realize that, whatever sampling error was made by using the sample Byx
(= 1.98) instead of the (unavailable) population regression coefficient, it will have more serious
consequences for X values that are more distant from the X mean than for those near it. For the
sake of simplicity, let us assume that both X and Y are z scores with means of 0 and standard
deviations of 1. Suppose that Byx = -20 for our sample, whereas the actual population value
is .25. For new cases that come to our attention with X, = .1, we will estimate Yt at .02 when
the actual mean value of Y for all X, = .1 is .025, a relatively small error of .005. On the other
hand, new values of X, = 1.0 will yield estimated F, values of .20 when the actual mean value
of Y for all X, = 1 is .25, the error (.05) being 10 times as large.

When a newly observed X, is to be used to estimate Y{ we may determine the standard error
and thus confidence limits for this 7f. The standard error of 7, is given by

where SEY-Yi (Eq. 2.6.7) is the standard error of estimate and is based on n — 2df. We found

from the regression equation that for X, = 9 years since Ph.D., we estimate Yf = 22.58
publications. We find its standard error by substituting in Eq. (2.8.3),

For the 95% C7, Appendix Table A gives t = 2.16 for 13d/, so the me is 2.16 (2.92) = 6.30 and
the 95% CI = 22.58 ± 6.30 = 16.3 to 28.9 publications (rounding). For the 80% CI, the table
gives t = 1.35 for 13 df, so the me = 1.35 (2.92) = 3.94 and the CI is 22.58 ± 3.94 = 18.6
to 26.5 publications (rounding). These C/s are uselessly large because of the large SEYo, due
mostly in turn to the smallness of the sample.

Confidence Interval for r^
The approach we used in generating C/s for Byx and BQ will not work for rXY because the

sampling distribution for rXY is not symmetrical except when p^ (the population rXY) equals
0. That is, the lower and upper limits for a CI for r^ do not fall at equal distances from
the obtained sample value. The reason for this is that, unlike SEBn, the SEr varies with p^,
which is, of course, unknown. To solve this problem, R. A. Fisher developed the z prime (z')
transformation of r:

where In is the natural (base e) logarithm.
The sampling distribution of T! depends only on the sample size and is nearly normal even

for relatively small values of n. The standard error of a sample z' is given by

Appendix Table B gives the r to z' transformation directly, with no need for computation.
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To find the CI for a sample r, transform the r to z' and, using the SEZ, and the appropriate
multiplier for the size of the CI desired, find the me and then the lower and upper limits of the
CI for z'. Then transform them back to r. For our academic example, we found the r between
years since Ph.D. and number of publications to be .657. In Appendix Table B we find the z'
transformation to be approximately z' = .79. With n = 15, we find from (2.8.4) that

15 Indeed, it would be foolish to place any serious faith in the adequacy of the estimate based on such a small
sample, which is employed here only for illustrative purposes.

Then, using the multiplier 1.96 from the normal distribution for the 95% limits (Appendix
Table C), we find 1.96(.289) = .57 as the me for z', so .79 ± .57 gives the 95% limits for z'
as .22 and 1.36. But what we want are the 95% limits for r, so using Appendix Table B we
transform these z' values back to r and obtain r = .22 (from .22) and .88 (from 1.36). Thus,
we can expect with 95% confidence that the population r is included in the approximate CI
.22 to .88. Note that these limits are not symmetrical about the sample r of .657.

The 95% CI for r in this example, .22 to .88, is very wide, as are all the C/s for this small
sample of n = 15.15 The odds of inclusion here are 95 : 5 (that is, 19 to 1). For narrower and
thus less definitive limits, the 80% CI gives 80 : 20 (4 to 1) odds of inclusion. To find it, we
proceed as before, using the normal curve multiplier for an 80% CI of 1.28 (Appendix Table C).
We first find the confidence limits for z' by subtracting and adding the me = 1.28 (.29) = .38
to the sample z' of .79, obtaining .41 and 1.17. From Appendix Table B we convert z' to r to
find the approximate 80% C/for r to be .39 (from .41) to .82 (from 1.17). This is yet another
object lesson in precision (or, rather, its lack) with small samples. For most purposes, limits
as wide as this would not be of much use.

Confidence Interval for the Difference
Between Regression Coefficients: BXYv - BXYw

Given the many uses to which regression coefficients are put, the size of the difference
between a pair of Byx sample values coming from different groups is often a matter of research
interest. The SE of the difference between two independent Byx values is a function of their
standard errors, whose formula we repeat here for convenience:

Assume that the sample in Section 2.4 in which we found the regression coefficient describing
the relationship between time since Ph.D. and number of publications, 1.98, was drawn from
University V and numbered 62 cases. Substituting the sample values found in Section 2.4 in
Eq. (2.8.1), we find its standard error to be .294. Now assume that in a random sample of 143
cases from University W, we find sdYw = 13.64, sdXw = 3.45, and rw = .430. Substituting
these values in Eq. (2.4.3), we find Bw = 1.70, and in Eq. (2.8.1) we find SEBw = .301. Now,
the difference between Bv and Bw is 1.98 — 1.70 = .28. The standard error of the difference
between the two coefficients is

Substituting, we find
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Using the multiplier 2 (a reasonable approximation of 1.96) for the 95% CI, we find the me
for the difference between the B values, 2 (.42) = .84, and obtain the approximate 95% CI
for By — Bw as .28 ± .84 = —.56 to +1.12. This means that the confidence limits go from
University V's slope being .56 (about V2 of a publication) smaller per year since Ph.D. to being
1.12 (about 1) publication larger. Take particular note of the fact that the 95% CI includes 0.
Thus, we cannot conclude that there is any difference between the universities in the number
of publications change per year since Ph.D. at this level of confidence.

Equation (2.8.6) gives the standard error of the difference between regression coefficients
coming from different populations as the square root of the sum of their squared standard
errors. This property is not unique to regression coefficients but holds for any statistic—means,
standard deviations, and, as we see in the next section, correlation coefficients as well.

Confidence Interval for rxyv — I~XYW

We cannot approach setting confidence limits for differences between rs using the z' trans-
formation because of the nonlinear relationship between them—equal distances along the r
scale do not yield equal distances along the z' scale (which can be seen in Appendix Table B).

Recent work by Olkin and Finn (1995) has provided relatively simple means for setting
confidence intervals for various functions of correlation coefficients. For large samples, the
difference between ryx in two independent samples, V and W, is normally distributed and is
given approximately by

The difference between the rs is .657 — .430 = .277. Assuming normality, the 95% CI uses
1.96 as the multiplier, so the 95% me is 1.96 (.122) = .239. Then the approximate 95% C/is
.277 ± .239 = +.04 to +.52. We interpret this to mean that we can be 95% confident that the
PYX of time since Ph.D with number of publications for University V is .04 to .52 larger than
that for University W. Note here that the confidence interval of the difference between the rs
of the two universities does not include 0, but the CI of the difference between then" regression
coefficients does. This demonstrates that correlation and regression coefficients are different
measures of the degree of linear relationship between two variables. Later, we will argue that
regression coefficients are often more stable across populations, in contrast to rs that reflect
population differences in variability of X. In the preceding example, we saw sdx = 4.58 in
the original University V and sdx = 3.45 in the comparison University W. The smaller r in
University W is apparently attributable to their faculty's constricted range of years since Ph.D.

2.8.3 Null Hypothesis Significance Tests (NHSTs)

In its most general meaning, a null hypothesis (H0) is a hypothesis that a population effect size
(ES) or other parameter has some value specified by the investigator. The term "null" arises
from R. A. Fisher's statistical strategy of formulating a proposition that the research data may

Returning to the example in which we compared the regression coefficients for our running
problem, we can estimate confidence intervals for the difference between the correlations of
.657 for University V (nv = 62) and .430 for University W (nw = 143). Substituting in
Eq. (2.8.7),
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be able to nullify or reject. By far, the most popular null hypothesis that is tested is the one that
posits that a population effect size, such as a correlation coefficient or a difference between
means, is zero, and the adjective "null" takes on the additional meaning of no relationship
or no effect. We prefer to use the term "nil" hypothesis to characterize such propositions for
reasons that will become clear later (J. Cohen, 1994).

The Nil Hypothesis Test for BYX

In our running example of the 15 faculty members, we found that the regression coefficient
for the number of publications on number of years since Ph.D. was 1.98 (= Byx), which means
that, on the average in this sample, each additional year since Ph.D. was associated with about
two publications. The standard error of the coefficient (SEByx) from Eq. (2.8.1) was .632.
Let's perform a t test of the nil hypothesis that in the population, each additional year since
Ph.D. is associated on the average with no additional publications, that is, that there is no
linear relationship between years since Ph.D. and publications. We will perform this test at the
p < .05 (= a) significance level. The general form of the t test is

which, for regression coefficients, is

Substituting,

which, fordf = n — 2= 13 readily meets the a = .05 significance criterion of t = 2.16
(Appendix Table A). We accordingly reject HQ and conclude that there is a greater than zero
relationship between years since Ph.D. and number of publications in the population. Note,
however, that neither the size nor the statistical significance of the t value provides information
about the magnitude of the relationship. Recall, however, that when we first encountered the
SEBn at the beginning of Section 2.8.2, we found the 95% CI for Byx to be +.62 to +3.34,
which does provide a magnitude estimate. Moreover, note that the 95% CIdoes not include 0.
After we have determined a CI for Byx, a t test of the nil hypothesis for Byx is unnecessary—
once we have a CI that does not include 0, we know that the nil hypothesis can be rejected
at that significance level (here, a = .05). However, if the only relevant information about a
population difference is whether it has some specified value, or whether it exists at all, and
there are circumstances when that is the case, then Ch are unnecessary and a null hypothesis
test is in order.

For example, assume that we wish to test the proposition as a non-nil null hypothesis that
the population regression coefficient is 2.5 publications per year since Ph.D.: H0: population
BYX = 2.5. We can proceed as before with Eq. (2.8.9) to find t = (1.98 - 2.5)/.632 = .82,
which is not significant at a = .05, and we can conclude that our results are consistent with the
possibility that the population value is 2.5. But since the 95% CI (+.62 to +3.34) contains
the null-hypothetical value of 2.5, we can draw the same conclusion. However, by obtaining
the 95% CI we have the range of BYX values for which the H0 cannot be rejected at a = .05. Not
only 2.5 or 0, but any value in that range cannot be rejected as a H0. Therefore, one may think
of a CI as a range of values within which the H0 cannot be rejected and outside of which H0

can be rejected on the basis of this estimate. The CI yields more information than the NHST.



2.8 STATISTICAL INFERENCE 49

The Null Hypothesis Test for BQ
In the previous section, we found the Y intercept for our running example B0 = 4.73 and,

using its standard error (Eq. 2.8.2), found SEBo = 5.59. We can perform a t test for 13 dfof
the H0 that the population intercept equals 0 in the usual fashion. Using Eq. (2.8.7) for B0 and
substituting in Eq. (2.8.7), we find

which fails to meet conventional significance criteria. (In Section 2.8.2 we found 95% and
80% C/s, both of which included 0.)

The Null Hypothesis Test for /^y

When pXY (the population rxy) = 0, the use of the Fisher z' transformation is unnecessary.
The t test of the nil hypothesis for rXY, //0

: Pxy = 0» is

Returning to our running example, the rXY between years since Ph.D. and publications for the
sample of 15 faculty members was .657. Substituting,

The a = .05 significance criterion for t with 13 dfis 2.16, readily exceeded by 3.14. We
conclude that pXY ^ 0. (The 95% CI was found via the Fisher z' transformation in the previous
section to be .22 to .88.)

The Null Hypothesis Test for the Difference
Between Two Correlations with Y: rxyv - rxyw

In Section 2.8.2 we presented a method for setting approximate confidence intervals for
differences between independent rs suitable for large samples. For an approximate nil hypoth-
esis test, suitable for samples of any size, we again resort to the Fisher z1 transformation. The
relevant data for the two universities are

University

V
W

N

62
143

rX¥

.657

.430

ZXY

.79

.46

To test the HQ that the difference between the population correlations: pv — pw = 0, we
test the equivalent H0 : z'v - z'w = 0 by computing the normal curve deviate

Substituting,
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which exceeds 1.96, the two-tailed a = .05 significance criterion for the normal distribution
(see Appendix Table C), and we can conclude that University V's pXY is probably larger than
University W's. The reason that we can test for z's and conclude about ps is that there is
a one-to-one correspondence between z' and p so that when the z's are not equal, the ps are
necessarily also not equal. (The 95% C/for the difference between the rs was previously found
to be +.04 to +.52.)

2.8.4 Confidence Limits and Null Hypothesis Significance Testing

For more than half a century, NHST has dominated statistical inference in its application in
the social, biological, and medical sciences, and for just as long, it has been subject to severe
criticism by methodologists including Berkson (1946), Yates (1951), Rozeboom (1960), Meehl
(1967), Lykken (1968), and Tukey (1969), among others. More recently, many methodologists,
including J. Cohen (1990,1994) and a committee of the American Psychological Association
(Wilkinson of the APA Task Force on Statistical Inference, 1999), among others, have inveighed
against the excessive use and abuse of NHST.

We have seen repeatedly that when confidence intervals on statistics or effect sizes are
available, they include the information provided by null hypothesis tests. However, there may
be a useful role for NHST in cases where the direction of systematic differences is of much more
interest than their magnitude and the information provided by confidence intervals may simply
be distracting (Harlow, Mulaik, & Steiger, 1997). In addition, as we will see in subsequent
chapters, significance tests are useful guides to the decision as to whether certain variables
are or are not needed for the explanation of Y. Abelson (1995) notes the usefulness of NHST
in making categorical claims that add to the background substantive scientific lore in a field
under study.

2.9 PRECISION AND POWER

For research results to be useful, they must be accurate or, at least, their degree of accuracy must
be determinable. In the preceding material, we have seen how to estimate regression parameters
and test null hypothesis after the sample data have been collected. However, we can plan to
determine the degree of precision of the estimation of parameters or of the probability of null
hypothesis rejection that we shall be able to achieve.

2.9.1 Precision of Estimation

The point estimate of a population parameter such as a population B or p is the value of the
statistic (B, r) in the sample. The margin of error in estimation is the product of the standard
error and its multiplier for the degree of inclusion (95%, 80%) of the confidence interval. The
standard error is a function of the sample size, n. We show how to estimate «*, the sample size
necessary to achieve the desired degree of precision of the statistics covered in Section 2.8.2.

We begin by drawing a trial sample of the data for whose statistics we wish to determine
C/s. The sample of n = 15 cases we have been working with is much too small to use as a trial
sample, so let's assume that it had 50 rather than 15 cases so that we can use the same statistics
as before: Mx = 7.67, sdx = 4.58, sdY = 13.82, rXY = .657, B^ = 1.98, B0 = 4.73, and

SEY.y = !0-82-
We use the approximate multipliers (f, z) of the standard errors to determine the inclusion

of the confidence limits: 99%, 2.6; 95%, 2; 80%, 1.3; and 68%, 1. The standard errors for the
regression/correlation statistics of our n = 50 sample are as follows:
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Estimated Byx

Estimated intercept

Estimated value of Y for a case where X = 9

Estimated ryx

Estimated difference between B in two populations

Estimated difference between r's in two large samples from different populations

The SE is inversely proportional to */n to a sufficient approximation when n is not small.
Quadrupling n cuts SE approximately in half. To make a standard error x times as large as
that for n = 50, compute «* = n/x2, where n* is the necessary sample size to attain ;c times
the SE. For example, we found SEByx = .329 for our sample of n = 50 cases. To make it half
(.5) as large, we would need n* = 50/.52 = 200.

To change a standard error from SE to SE*, find n* = n(SE/SE*)2. For example, to change
the SEByx from .329 (for n = 50) to SE* = .20, we would need n* = 50 (.329/.20)2 = 135
cases.

For differences between 5s and rs, use their statistics from the trials to determine the desired
changes in the SEs for the two samples and compute the anticipated SE of the difference
(Eqs. 2.8.6 and 2.8.7). Adjust the ns as necessary.

2.9.2 Power of Null Hypothesis Significance Tests

In Section 2.8.3, we presented methods of appraising sample data in regard to a, the risk of
mistakenly rejecting the null hypothesis when it is true, that is, drawing a spuriously positive
conclusion (Type I error). We now turn our attention to methods of determining p\16 the
probability of failing to reject the null hypothesis when it is false (Type n error), and ways in
which it can be controlled in research planning.

16We have been using P to represent the standardized regression coefficient. It is used here with a different meaning
for consistency with the literature.
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Any given test of a null hypothesis is a complex relationship among the following four
parameters:

1. The power of the test, the probability of rejecting H0, defined as 1 — p.
2. The region of rejection of H0 as determined by the a level and whether the test is

one-tailed or two-tailed. As a increases, for example from .01 to .05, power increases.
3. The sample size n. As n increases, power increases.
4. The magnitude of the effect in the population, or the degree of departure from H0. The

larger this is, the greater the power.

These four parameters are so related that when any three of them are fixed, the fourth
is completely determined. Thus, when an investigator decides for a given research plan the
significance criterion a and n, the power of the test is determined. However, the investigator
does not know what this power is without also knowing the magnitude of the effect size (ES)
in the population, the estimation of which is the whole purpose of the study. The methods
presented here focus on the standardized effect size, r in the present case.

There are three general strategies for estimating the size of the standardized population
effect a researcher is trying to detect as "statistically significant":

1. To the extent that studies have been carried out by the current investigator or others
which are closely similar to the present investigation, the ESs found in these studies reflect the
magnitude that can be expected. Thus, if a review of the relevant literature reveals rs ranging
from .32 to .43, the population ES in the current study may be expected to be somewhere in the
vicinity of these values. Investigators who wish to be conservative may determine the power
to detect a population p of .25 or .30.

2. In some research areas an investigator may posit some minimum population effect size
that would have either practical or theoretical significance. An investigator may determine
that unless p = .05, the importance of the relationship is insufficient to warrant a change
in the policy or operations of the relevant institution. Another investigator may decide that
a population correlation of .10 would have a material import for the adequacy of the theory
within which the experiment has been designed, and thus would wish to plan the experiment
so as to detect such an ES. Or a magnitude of Byx that would be substantively important may
be determined and other parameters estimated from other sources to translate Byx into p.

3. A third strategy in deciding what ES values to use in determining the power of a study
is to use certain suggested conventional definitions of small, medium, and large effects as
population p = .10, .30, and .50, respectively (J. Cohen, 1988). These conventional ESs,
derived from the average values in published studies in the social sciences, may be used either
by choosing one of these values (for example, the conventional medium ES of .30) or by
determining power for all three populations. If the latter strategy is chosen, the investigator
would then revise the research plan according to an estimation of the relevance of the various
ESs to the substantive problem. This option should be looked upon as the default option only
if the earlier noted strategies are not feasible.

The point of doing a power analysis of a given research plan is that when the power turns
out to be insufficient the investigator may decide to revise these plans, or even drop the
investigation entirely if such revision is impossible. Obviously, because little or nothing can be
done after the investigation is completed, determination of statistical power is of primary value
as a preinvestigation procedure. If power is found to be insufficient, the research plan may be
revised in ways that will increase it, primarily by increasing n, or increasing the number of levels
or variability of the independent variable, or possibly by increasing a. A more complete general
discussion of the concepts and strategy of power analysis may be found in J. Cohen (1965,
1988). It is particularly useful to use a computerized program for calculating the statistical
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power of a proposed research plan, because such a program will provide a graphic depiction
of the effect of each of the parameters (ES, n, a) on the resulting power to reject a false null
hypothesis.

2.10 FACTORS AFFECTING THE SIZE OF r

2.10.1 The Distributions of X and Y

Because r = 1.00 only when each Zx = Zy, it can only occur when the shapes of the frequency
distributions for X and Y are exactly the same (or exactly opposite for r = —1.00). The
greater the departure from distribution similarity, the more severe will the restriction be on the
maximum possible r. In addition, as such distribution discrepancy increases, departure from
homoscedasticity—equal error for different predicted values—must also necessarily increase.
The decrease in the maximum possible value of (positive) r is especially noticeable under
circumstances in which the two variables are skewed in opposite directions. One such common
circumstance occurs when the two variables being correlated are each dichotomies: With very
discrepant proportions, it is not possible to obtain a large positive correlation.

For example, suppose that a group of subjects has been classified into "risk takers" and
"safe players" on the basis of behavior in an experiment, resulting in 90 risk takers and 10 safe
players. A correlation is computed between this dichotomous variable and self classification
as "conservative" versus "liberal" in a political sense, with 60 of the 100 subjects identifying
themselves as conservative (Table 2.10.1). Even if all political liberals were also risk takers in
the experimental situation, the correlation will be only (by Eq. 2.3.6):

It is useful to divide the issue of the distribution of variables into two components, thos
due to differences in the distribution of the underlying constructs and those due to the scales o:
which we have happened to measure our variables. Constraints on correlations associated will
differences in distribution inherent in the constructs are not artifacts, but have real interpretiv
meaning. For example, gender and height for American adults are not perfectly correlated, bu
we need have no concern about an artificial upper limit on r attributable to this distributioi
difference. If gender completely determined height, there would only be two heights, one fo
men and one for women, and r would be 1.00.

TABLE 2.10.1
Bivariate Distribution of Experimental and Self-Reported

Conservative Tendency

Self-report Liberal

Conservative

Total:

Experimental

Risk takers Safe players

40

50

0

10

90 10

Total:

40

60

100
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Similarly the observed correlation between smoking and lung cancer is about. 10 (estimated
from figures provided by Doll & Peto, 1981). There is no artifact of distribution here; even
though the risk of cancer is about 11 times as high for smokers, the vast majority of both smokers
and nonsmokers alike will not contract lung cancer, and the relationship is low because of the
nonassociation in these many cases.

Whenever the concept underlying the measure is logically continuous or quantitative17—as
in the preceding example of risk taking and liberal versus conservative—it is highly desirable to
measure the variables on a many-valued scale. One effect of this will be to increase the oppor-
tunity for reliable and valid discrimination of individual differences (see Section 2.10.2). To the
extent that the measures are similarly distributed, the risk of underestimating the relationship
between the conceptual variables will be reduced (see Chapter 4). However, the constraints
on r due to unreliability are likely to be much more serious than those due to distribution
differences on multivalued scales.

The Biserial r
When the only available measure of some construct X is a dichotomy, dx, an investigator

may wish to know what the correlation would be between the underlying construct and some
other quantitative variable, Y. For example, X may be ability to learn algebra, which we
measure by dx, pass-fail. If one can assume that the "underlying" continuous variable X is
normally distributed, and that the relationship with Y is linear, an estimate of the correlation
between X and Y can be made, even though only dx and Y are available. This correlation is
estimated as

17 Continuous implies a variable on which infinitely small distinctions can be made; quantitative or scaled is
more closely aligned to real measurement practice in the behavioral sciences, implying an ordered variable of many,
or at least several, possible values. Theoretical constructs may be taken as continuous, but their measures will be
quantitative in this sense.

where .392 is the height of the ordinate at the .428, .572 break, found by linear interpolation
in Appendix Table C and rpb = —.707.

The biserial r of —.893 may be taken to be an estimate of the product moment correlation
that would have been obtained had X been a normally distributed continuous measure. It will
always be larger than the corresponding point biserial r and, in fact, may even nonsensically
exceed 1.0 when the Y variable is not normally distributed. When there is no overlap between
the Y scores of the two groups, the rb will be at least 1.0. It will be approximately 25% larger
than the corresponding rpb when the break on X is .50 - .50. The ratio of rb/rpb will increase

where MYp and MYQ are the Y means for the two points of the dichotomy, P and Q (= 1 — P) are
the proportions of the sample at these two points, and h is the ordinate (height) of the standard
unit normal curve at the point at which its area is divided into P and Q portions (see Appendix
Table C).

For example, we will return to the data presented in Table 2.3.1, where rpb was found
to be —.707. We now take the dichotomy to represent not the presence or absence of an
experimentally determined stimulus but rather gross (1) versus minor (0) naturally occurring
interfering stimuli as described by the subjects. This dichotomy is assumed to represent a
continuous, normally distributed variable. The biserial r between stimulus and task score
will be
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as the break on X is more extreme; for example with a break of .90 — .10, rb will be about
two-thirds larger than rpb.

Confidence limits are best established on rpb or, equivalently, on the difference between the
Y means corresponding to the two points of dx.

Tetrachoric r
As we have seen, when the relationship between two dichotomies is investigated, the restric-

tion on the maximum value of r$ when their breaks are very different can be very severe. Once
again, we can make an estimate of what the linear correlation would be if the two variables
were continuous and normally distributed. Such an estimate is called the tetrachoric correla-
tion. Because the formula for the tetrachoric correlation involves an infinite series and even a
good approximation is a laborious operation, tetrachoric rs are obtained by means of computer
programs. Tetrachoric r will be larger than the corresponding phi coefficient and the issues
governing their interpretation and use are the same as for rb and rpb.

Caution should be exercised in the use of biserial and tetrachoric correlations, particularly in
multivariate analyses. Remember that they are not observed correlations in the data, but rather
hypothetical ones depending on the normality of the distributions underlying the dichotomies.
Nor will standard errors for the estimated coefficients be the same as those for the product
moment coefficients presented here.

2.10.2 The Reliability of the Variables

In most research in the behavioral sciences, the concepts that are of ultimate interest and that
form the theoretical foundation for the study are only indirectly and imperfectly measured
in practice. Thus, typically, interpretations of the correlations between variables as measured
should be carefully distinguished from the relationship between the constructs or conceptual
variables found in the theory.

The reliability of a variable (TXX) may be defined as the correlation between the variable
as measured and another equivalent measure of the same variable. In standard psychometric
theory, the square root of the reliability coefficient ^/r^ may be interpreted as the correlation
between the variable as measured by the instrument or test at hand and the "true" (error-
free) score. Because true scores are not themselves observable, a series of techniques has been
developed to estimate the correlation between the obtained scores and these (hypothetical) true
scores. These techniques may be based on correlations among items, between items and the total
score, between other subdivisions of the measuring instrument, or between alternative forms.
They yield a reliability coefficient that is an estimate (based on a sample) of the population
reliability coefficient.18 This coefficient may be interpreted as an index of how well the test
or measurement procedure measures whatever it is that it measures. This issue should be
distinguished from the question of the test's validity, that is, the question of whether what it
measures is what the investigator intends that it measure.

The discrepancy between an obtained reliability coefficient and a perfect reliability of 1.00
is an index of the relative amount of measurement error. Each observed score may be thought
of as composed of some true value plus a certain amount of error:

18Because this is a whole field of study in its own right, no effort will be made here to describe any of its techniques,
or even the theory behind the techniques, in any detail. Excellent sources of such information include McDonald (1999)
and Nunnally & Bernstein (1993).
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These error components are assumed to have a mean of zero and to correlate zero with the
true scores and with true or error scores on other measures. Measurement errors may come
from a variety of sources, such as errors in sampling the domain of content, errors in recording
or coding, errors introduced by grouping or an insufficiently fine system of measurement,
errors associated with uncontrolled aspects of the conditions under which the test was given,
errors due to short- or long-term fluctuation in individuals' true scores, errors due to the
(idiosyncratic) influence of other variables on the individuals' responses, etc.

For the entire set of scores, the reliability coefficient equals the proportion of the observed
score variable that is true score variance

Because, as we have stated, error scores are assumed not to correlate with anything, r^ may
also be interpreted as that proportion of the measure's variance that is available to correlate
with other measures. Therefore, the correlation between the observed scores (X and Y) for
any two variables will be numerically smaller than the correlation between their respective
unobservable true scores (Xt and Yt). Specifically,

Researchers sometimes wish to estimate the correlations between two theoretical constructs
from the correlations obtained between the imperfect observed measures of these constructs.
To do so, one corrects for attenuation (unreliability) by dividing rXY by the square root of the
product of the reliabilities (the maximum possible correlation between the imperfect measures).
From Eq. (2.10.4),

Thus, if two variables, each with a reliability of .80, were found to correlate .44,

Although correlations are subject to attenuation due to unreliability in either or both vari-
ables, bivariate regression coefficients are not affected by unreliability in Y. This can be seen
from the following, where we consider unreliability only in Y. The regression coefficient
expressed as the relationship between the perfectly reliable variables [by Eq. (2.4.3)] is

By Eq. (2.10.5), when rXX = 1.0, rXY = r rYY. By Eq. (2.10.3),

so
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Therefore, using Eq. (2.4.3) where Byx = rXY(sdY/sdx\ substituting:

As is generally true for coefficients based on a series of estimates, caution must be used
in interpreting attenuation-corrected coefficients, because each of the coefficients used in the
equation is subject to sampling error (as well as model assumption failure). Indeed, it is
even possible to obtain attenuation-corrected correlations larger than 1.0 when the reliabilities
come from different populations than rXY, are underestimated, or when the assumption of
uncorrelated error is false. Obviously, because the disattenuated r is hypothetical rather than
based on real data, its confidence limits are likely to be very large.19

To reiterate, unreliability in variables as classically defined is a sufficient reason for low
correlations; it cannot cause correlations to be spuriously high. Spuriously high correlations
may, of course, be found when sources of bias are shared by variables, as can happen when
observations are not "blind," when subtle selection factors are operating to determine which
cases can and cannot appear in the sample studied, and for yet other reasons.

2.10.3 Restriction of Range

A problem related to the question of reliability occurs under conditions when the range of one
or both variables is restricted by the sampling procedure. For example, suppose that in the data
presented in Table 2.2.2 and analyzed in Table 2.6.1 we had restricted ourselves to the study
of faculty members who were less extreme with regard to years since Ph.D., occupying the
restricted range of 5 to 11 years rather than the full range of 3 to 18 years. If the relationship
is well described by a straight line and homoscedastic, we shall find that the variance of the Y
scores about the regression line, sd%_Y, remains about the same. Because when r ^ 0, sdY will
be decreased as an incidental result of the reduction of sd\, and because sd\ — sdl + sdY_Y,

the proportion of sdY associated withX, namely, sd2
Y will necessarily be smaller, and therefore,

r2 (= sdl/sdy) and r will be smaller. In the current example, r decreases from .657 to .388, and

r2, the proportion of variance, from .432 to .151. (See Table 2.10.2.) When the relationship is
completely linear, the regression coefficient, Byx, will remain constant because the decrease in
r will be perfectly offset by the increase in the ratio sdY/sdx. It is 2.456 here, compared to 1.983
before. (It increased slightly in this example, but could just as readily have decreased slightly.)
The fact that regression coefficients tend to remain constant over changes in the variability of
X (providing the relationship is fully linear and the sample size sufficiently large to produce
reasonable estimates) is an important property of regression coefficients. It is shown later how
this makes them more useful as measures of relationship than correlation coefficients in some
analytic contexts (Chapter 5).

19Current practice is most likely to test "disattenuated" coefficients via latent variable models (described in
Section 12.5.4), although the definition and estimation is somewhat different from the reasoning presented here.

CH02EX06
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TABLE 2.10.2
Correlation and Regression of Number of Publications

on a Restricted Range of Time Since Ph.D.

F

Af
sd
sd2

*ublications 1

y
3

17
11
6

48
22
30
21
10
27

19.50
12.04

144.94

Ime since Ph.D.

X
6
8
9
6

10
5
5
6
7

11

7.30
1.31
1.71

rXY = .388 (.657)°

r2
XY = .1500431)

Sdy_y = l 1.10 (10.42)

BM = 2.456 (1.983)

"Parenthetic values are those for the original (i.e., unrestricted) sample.

Suppose that an estimate of the correlation that would be obtained from the full range is
desired, when the available data have a curtailed or restricted range for X, If we know the sdY

of the unrestricted X distribution as well as the sdXc for the curtailed sample and the correlation
between Y and X in the curtailed sample (rX(,Y), we may estimate rXY by

For example, r = .25 is obtained on a sample for which sdXc = 5 whereas the sdx of the
population in which the investigator is interested is estimated to be 12. Situations like this
occur, for example, when some selection procedure such as an aptitude test has been used to
select personnel and those selected are later assessed on a criterion measure. If the finding on
the restricted (employed) sample is projected to the whole group originally tested, rXY would
be estimated to be

It should be emphasized that .53 is an estimate and assumes that the relationship is linear
and homoscedastic, which might not be the case. There are no appropriate confidence limits
on this estimate.

It is quite possible that restriction of range in either X or Y, or both, may occur as an
incidental by-product of the sampling procedure. Therefore, it is important in any study to
report the sds of the variables used. Because under conditions of homoscedasticity and linearity
regression coefficients are not affected by range restriction, comparisons of different samples
using the same variables should usually be done on the regression coefficients rather than
on the correlation coefficients when sds differ. Investigators should be aware, however, that
the questions answered by these comparisons are not the same. Comparisons of correlations
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answer the question, Does X account for as much of the variance in Y in group E and in
Group F? Comparisons of regression coefficients answer the question, Does a change in X
make the same amount of score difference in Y in group E as it does in group F?

Although the previous discussion has been cast in terms of restriction in range, an inves-
tigator may be interested in the reverse—the sample in hand has a range of X values that is
large relative to the population of interest. This could happen, for example, if the sampling
procedure was such as to include disproportionately more high- and low-X cases and fewer
middle values. Equation (2.10.7) can be employed to estimate the correlation in the population
of interest (whose range in X is less) by reinterpreting the subscript C in the equation to mean
changed (including increased) rather than curtailed. Thus, ryxc and sdXc are the "too large"
values in the sample, sdY is the (smaller) sd of the population of interest, and the estimated
r in that population will be smaller. Note that the ratio sdY/sdXc, which before was greater
than one, is now smaller than one. Because the correlation (the ES~) will be higher in a sample
with a larger sd, sampling in order to produce a larger sd, as in studies in which the number
of "cases" is larger than in a random sample of the general population, is a major strategy for
increasing the statistical power of a study.

2.10.4 Part-Whole Correlations

Occasionally we will find that a correlation has been computed between some variable J and
another variable W, which is the sum of scores on a set of variables including /. Under these
circumstances a positive correlation can be expected between / and W due to the fact that W
includes /, even when there is no correlation between J and W — J. For example, if k test
items of equal sd and zero r with each other are added together, each of the items will correlate
exactly l/*Jk with the total score. For the two-item case, therefore, each item would correlate
.707 with their sum, W, when neither correlates with the other. On the same assumptions
of zero correlation between the variables but with unequal sds, the variables are effectively
weighted by their differing sd{ and the correlation of J with W will be equal to sdj/V'Esdf,
where sds are summed over the items. Obviously, under these circumstances O(w-y> = 0. In
the more common case where the variables or items are correlated, the correlation of / with
W — J may be obtained by

This is not an estimate and may be tested via the usual t test for the significance of r.
Given these often substantial spurious correlations between elements and totals including

the elements, it behooves the investigator to determine O(w-y>»or at me verv least determine the
expected value when the elements are uncorrelated before interpreting r^. Such a circumstance
often occurs when the interest is in the correlation of a single item with a composite that includes
that item, as is carried out in psychometric analysis.

Change Scores
It is not necessary that the parts be literally added in order to produce such spurious correla-

tion. If a subscore is subtracted, a spurious negative component in the correlation will also be
produced. One common use of such difference scores in the social sciences in the use of post-
minus pretreatment (change) scores. If such change scores are correlated with the pre- and
posttreatment scores from which they have been obtained, we will typically find that subjects
initially low on X will have larger gains than those initially high on X, and that those with the
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highest final scores will have made greater gains than those with lower final scores. Again, if
sdpre = sdpost and rpre pott = 0, the rpre change = -.707 and r^ change = +.707. Although in
general, we would expect the correlation between pre- and posttreatment scores to be some
positive value, it will be limited by their respective reliabilities (Section 2.10.2) as well as by
individual differences in true change.

If the post- minus pretreatment variable has been created in order to control for differences in
pretreatment scores, the resulting negative correlations between pretreatment and change scores
may be taken as a failure to remove all influence of pretreatment scores from posttreatment
scores. This reflects the regression to the mean phenomenon discussed in Section 2.5 and the
consequent interpretive risks. The optimal methods of handling this and related problems are
the subject of a whole literature (Collins & Horn, 1993) and cannot be readily summarized.
However, the appropriate analysis, as always, depends on the underlying causal model. (See
Chapters 5, 12, and 15 for further discussion of this problem.)

2.10.5 Ratio or Index Variables

Ratio (index or rate) scores are those constructed by dividing one variable by another. When
a ratio score is correlated with another variable or with another ratio score, the resulting corre-
lation depends as much on the denominator of the score as it does on the numerator. Because it
is usually the investigator's intent to "take the denominator into account" it may not be imme-
diately obvious that the correlations obtained between ratio scores may be spurious—that is,
may be a consequence of mathematical necessities that have no valid interpretive use. Ratio
correlations depend, in part, upon the correlations between all numerator and denominator
terms, so that r^Y/z)x *s a function of ryz and r%z as well as of ryx, and r^Y/z)(x/w) depends
on ryw and r^ as well as on the other four correlations. These correlations also involve the
coefficients of variation

When the two ratios being correlated have a common denominator, the possibility of spu-
rious correlations becomes apparent. Under these circumstances, the approximate formula for
the correlation simplifies, because Z = W. If all coefficients of variation are equal when all
three variables are uncorrelated we will find r^/zxx/z) ^ -50-

Because the coefficient of variation depends on the value of the mean, it is clear that
whenever this value is arbitrary, as it is for many psychological scores, the calculated r is also
arbitrary. Thus, ratios should not be correlated unless each variable is measured on a ratio scale,
a scale for which a zero value means literally none of the variable (see Chapters 5 and 12).
Measures with ratio scale properties are most commonly found in the social sciences in the
form of counts or frequencies.

At this point it may be useful to distinguish between rates and other ratio variables. Rates
may be defined as variables constructed by dividing the number of instances of some phenom-
enon by the total number of opportunities for the phenomenon to occur; thus, they are literally

of each of the variables. Although the following formula is only a fair approximation of
the correlation between ratio scores (requiring normal distributions and homoscedasticity
and dropping all terms involving powers of v greater than v2), it serves to demonstrate the
dependence of correlations between ratios on all vs and on rs between all variable pairs:
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proportions. Rates or proportions are frequently used in ecological or epidemiological studies
where the units of analysis are aggregates of people or areas such as counties or census tracts.
In such studies, the numerator represents the incidence or prevalence of some phenomenon
and the denominator represents the population at risk. For example, a delinquency rate may be
calculated by dividing the number of delinquent boys ages 14-16 in a county by the total num-
ber of boys ages 14-16 in the county. This variable may be correlated across the counties in a
region with the proportion of families whose incomes are below the poverty level, another rate.
Because, in general, the denominators of these two rates will reflect the populations of the coun-
ties, which may vary greatly, they can be expected to be substantially correlated. In other cases
the denominators may actually be the same—as, for example, in an investigation of the rela-
tionship between delinquency rates and school dropout rates for a given age-gender group. The
investigator will typically find that these rates have characteristics that minimize the problem
of spurious correlation. In most real data, the coefficients of variation of the numerators will be
substantially larger than the coefficients of variation of the denominators, and thus the correla-
tion between rates will be determined substantially by the correlation between the numerators.
Even in such data, however, the resulting proportions may not be optimal for the purpose of
linear correlation. Chapter 6 discusses some nonlinear transformations of proportions, which
may be more appropriate for analysis than the raw proportions or rates themselves.

Experimentally produced rates may be more subject to problems of spurious correlation,
especially when there are logically alternative denominators. The investigator should deter-
mine that the correlation between the numerator and denominator is very high (and positive),
because in general the absence of such a correlation suggests a faulty logic in the study. In
the absence of a large correlation, the coefficients of variation of the numerator should be
substantially larger than that of the denominator if the problem of spurious correlation is to be
minimized.

Other Ratio Scores
When the numerator does not represent some subclass of the denominator class, the risks

involved in using ratios are even more serious, because the likelihood of small or zero corre-
lations between numerators and denominators and relatively similar values of v is greater. If
the variables do not have true zeros and equal intervals, correlations involving ratios should
probably be avoided altogether, and an alternative method for removing the influence of Z
from X or Y should be chosen, as presented in Chapters 3 and 12.

The difficulties that may be encountered in correlations involving rates and ratios may
be illustrated by the following example. An investigator wishes to determine the relationship
between visual scanning and errors on a digit-symbol (d-s) task. All subjects are given 4 minutes
to work on the task. Because subjects who complete more d-s substitutions have a greater
opportunity to make errors, the experimenter decides, reasonably enough, to determine the
error rate by dividing the number of errors by the number of d-s substitutions completed.
Table 2.10.3 displays the data for 10 subjects. Contrary to expectation, subjects who completed
more d-s tasks did not tend to produce more errors (r^ = —.105), nor did they scan notably
more than did low scorers (rZY = .023). Nevertheless, when the two ratio scores are computed,
they show a substantial positive correlation (.427) in spite of the fact that the numerators showed
slight negative correlation (—.149), nor is there any tendency for scanning and errors to be
correlated for any given level of d-s task completion. Thus, because r^ = 1, the r^/z^Y/z)
may here be seen to be an example of spurious correlation.20

20 An alternative method of taking into account the number completed in considering the relationship between
errors and number of scans might be to partial Z (see subsequent chapters).
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TABLE 2.10.3
An Example of Spurious Correlation Between Ratios

No. completed

Subject

1
2
3
4
5
6
7
8
9

10

d-s tasks
(Z)

25
29
30
32
37
41
41
42
43
43

No. errors
(X)

5
3
3
4
3
2
3
5
3
5

No. scans
(?)

24
30
27
30
18
33
27
21
24
33

Error rate
(X/Z)

.20

.10

.10

.12

.08

.05

.07

.12

.07

.12

Scan rate
(I7Z)

.96
1.03
.90
.94
.49
.80
.66
.50
.56
.77

2.10.6 Curvilinear Relationships

When the relationship between the two variables is only moderately well fitted by a straight
line, the correlation coefficient that indicates the degree of linear relationship will understate the
predictability from one variable to the other. Frequently the relationship, although curvilinear,
is monotonic; that is, increases in Z are accompanied by increases (or decreases) in Y, although
not at a constant rate. Under these circumstances, some (nonlinear) monotonic transformation
of X or Y or both may straighten out the regression line and provide a better indication of
the size of the relationship between the two variables (an absolutely larger r). Because there
are several alternative ways of detecting and handling curvilinear relationships, the reader is
referred to Chapters 4 and 6 for a detailed treatment of the issues.

2.11 SUMMARY

A linear relationship exists between two quantitative variables when there is an overall tendency
for increases in the value of one variable to be accompanied by increases in the other variable
(a positive relationship), or for increases in the first to be accompanied by decreases in the
second (a negative relationship); (Section 2.1). Efforts to index the degree of linear relationship
between two variables must cope with the problem of the different units in which variables are
measured. Standard (z) scores are a conversion of scores into distances from their own means,
in standard deviation units, and they render different scores comparable. The Pearson product
moment correlation coefficient, r, is a measure of the degree of relationship between two
variables, X and Y, based on the discrepancies of the subjects' paired z scores, zx — Zy r varies
between — 1 and +1, which represent perfect negative and perfect positive linear relationships,
respectively. When r = 0, there is no linear correlation between the variables (Section 2.2).

r can be written as a function ofz score products, a function of variances and covariance, or
in terms of the original units. Special simplified formulas are available for r when one variable
is a dichotomy (point biserial r), when both variables are dichotomies (r^), or when the data
are two sets of complete ranks (Spearman rank order correlation); (Section 2.3).



2.11 SUMMARY 63

The regression coefficient, Byx, gives the optimal rule for a linear estimate of Y from X,
and is the change in Y units per unit change in X, that is, the slope of the regression line. The
intercept, B0, gives the predicted value of Y for a zero value of X. BYX and B0 are optimal
in the sense that they provide the smallest squared discrepancies between Y and estimated Y.
r is the regression coefficient for the standardized variables. When X is centered, B0 = MY

(Section 2.4). Unless r = 1, it is a mathematical necessity that the average score for a variable
being estimated (e.g., Y) will be relatively closer to MY than the value from which it is being
estimated (e.g., X) will be to its mean (Mx) when both are measured in sd units (Section 2.5).

When Y is estimated from X the sd of the difference between observed scores and the
estimated scores (the sample standard error of estimate) can be computed from r and sdY. The
coefficient of alienation represents the error as a proportion of the original sdY. r2 equals the
proportion of the variance (sd2) of each of the variables that is shared with or can be estimated
from the other (Sections 2.6 and 2.7).

The two major methods of statistical inference are estimation and null hypothesis testing.
The formal model assumptions are presented (Section 2.8.1), confidence intervals are given
for Byx, BYO, rXY, for differences between independent sample values of these statistics, and
for the estimated Y, (Section 2.8.2). Given a, confidence intervals provide the range of values
within which the corresponding population values can be expected to fall. In Section 2.8.3, we
present the null hypothesis tests for simple regression and correlation statistics. Section 2.8.4
critiques null hypothesis testing and contrasts it with the use of confidence intervals.

The degree of accuracy (precision) in the estimation of parameters is reflected in the statis-
tic's confidence interval. The probability of null hypothesis rejection (statistical power) can be
assessed before the research sample is collected (Section 2.9). Methods of finding the sample
size to produce a margin of error for a given degree of inclusion in the confidence interval
(95%, 80%) are presented (Section 2.9.1) and methods are given for determining the sam-
ple size needed for the desired statistical power, that is, the probability of rejecting the null
hypothesis (Section 2.9.2).

A number of characteristics of the X and Y variables will affect the size of the correla-
tion between them. Among these are differences in the distribution of the X and Y variables
(Section 2.10.1), unreliability in one or both variables (Section 2.10.2), and restriction of the
range of one or both variables (Section 2.10.3). When one variable is included as a part of the
other variable, the correlation between them will reflect this overlap (Section 2.10.4). Scores
obtained by dividing one variable by another will produce spurious correlation with other
variables under some conditions (Section 2.10.5). The r between two variables will be an
underestimate of the magnitude of their relationship when a curved rather than a straight line
best fits the bivariate distribution (Section 2.10.6). Under such circumstances, transformation
of one or both variables or multiple representation of one variable will provide a better picture
of the relationship between the variables.



3
Multiple Regression/
Correlation With Two or More
Independent Variables

3.1 INTRODUCTION: REGRESSION AND CAUSAL MODELS

In Chapter 2 we examined the index of linear correlation between two variables, the Pearson
product moment correlation r and the regression equation for estimating Y from X. Because
of the simplicity of the two-variable problems, we did not need to go into detail regarding
the interpretive use of these coefficients to draw substantive inferences. The inferences were
limited to the unbiased estimation of their magnitudes in the population; the assertion, in the
case of the regression coefficient, that one variable was, in part, related to or dependent on
the other; and the demonstration of the significance of the departure of the coefficients from
zero. When we move to the situation with more than one independent variable, however, the
inferential possibilities increase more or less exponentially. Therefore, it always behooves the
investigator to make the underlying theoretical rationale and goals of the analysis as explicit as
possible. Fortunately, an apparatus for doing so has been developed in the form of the analysis
of causal models. Because the authors advocate the employment of these models in virtually all
investigations conducted for the purpose of understanding phenomena (as opposed to simple
prediction), this chapter begins with an introduction to the use of causal models. A more
complete presentation is found in Chapter 12.

3.1.1 What Is a Cause?

Conceptions of causality and definitions of cause and effect have differed among proponents
of causal analysis, some offering no explicit definitions at all. Causal analysis as a working
method apparently requires no more elaborate a conception of causality than that of common
usage. In our framework, to say that X is a cause of Y carries with it four requirements:

1. X precedes Y in time (temporal precedence).
2. Some mechanism whereby this causal effect operates can be posited (causal mechanism).
3. A change in the value of X is accompanied by a change in the value of Y on the average

(association or correlation).
4. The effects of X on Y can be isolated from the effects of other potential variables on Y

(non-spuriousness or lack of confounders).

64
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When X or Y is a quantitative variable (e.g., dollars, score points, minutes, millimeters,
percentile ranks), the meaning of value is obvious. When X is a categorical scale (i.e., a collec-
tion of two or more qualitative states or groups), a change in value means a change from one state
to another (e.g., from Protestant to Catholic or Protestant to non-Protestant, from depressed
to not depressed, or from one diagnosis to another). When Y is a dichotomy (schizophrenia-
nonschizophrenia), a change in value on the average means a change in proportion (e.g.,
from 10% schizophrenia for some low value of X to 25% schizophrenia for some higher
value).

The third proposition should not be simplified to mean, If you change X, Y will change.
This may, of course, be true, but it need not be. First, it may not be possible to manipulate X.
For example, boys have a higher incidence of reading disability than girls; here sex (X) causes
reading disability (7), but it is meaningless to think in terms of changing girls into boys.
Second, even when X can be manipulated, the way it is manipulated may determine whether
and how Y changes, because the nature of the manipulation may defeat or alter the normal
causal mechanism whereby X operates.

The models that we are employing have their roots in the path-analytic diagrams developed
by the geneticist Sewell Wright (1921) for untangling genetic and nongenetic influences. These
are often currently referred to as structural models or structural equation models. The purpose
of the models is to make explicit exactly what the investigator has in mind about the variables
and the meaning of their interrelationships. As such, they contribute to the clarity and internal
consistency of the investigation. It should be recognized at the outset, however, that a causal
model may never be established as proven by a given analysis; all that may be said is that the
data are to some extent consistent with a given model or that they are not. Thus, the value of
a given model is determined as much by the logic underlying its structure as by the empirical
demonstrations of the fit of a given set of data to the model.1

3.1.2 Diagrammatic Representation of Causal Models

The basic rules for representing a causal model are quite simple.2 Causal effects are represented
by arrows going from the cause to the effect (the "dependent" variable). Usually, by convention,
the causal flow is portrayed as going from left to right. In a simple model the independent
variables are considered exogenous or predetermined variables. These variables are taken
as given, and the model requires no explanation of the causal relationships among them.
The relationships among these variables are represented by curved double-headed arrows
connecting each pair.

To illustrate the use of a causal diagram, let us expand the academic example employed
in Chapter 2. The investigator has collected the data on number of publications and time
(expressed in number of years) since Ph.D. to determine the influence of productivity (as
indexed by publications) and seniority (time since Ph.D.) on academic salaries. The resulting
causal diagram is shown in Fig. 3.1.1. In this simple model we assert that academic salary is
in part determined by time since Ph.D. and in part by publications. These latter two variables
may be correlated with each other, but no causal explanation is offered for any relationship
between them. However, salary is assumed not to cause changes in numbers of publications
nor in time since Ph.D.

'The logical frame and historical development of causal models are discussed further in Section 12.1.
2This initial discussion is limited to elementary models and omits consideration of the effects of unmeasured

causes and the assumptions underlying the models, for which see Chapter 12.
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FIGURE 3.1.1 Causal model of academic salary example.

3.2 REGRESSION WITH TWO INDEPENDENT VARIABLES

To provide the estimates of effects required by our causal model we need a weight for each
of our exogenous variables whose application will account for as much of the variance of our
dependent variable as possible. Recalling that the regression equation, Y = Bx + BQ, was
designed to be such an estimate for a single independent variable, we may anticipate that a
similar procedure may produce the appropriate weights for two independent variables.

For example, suppose we have gathered the data in Table 3.2.1 to estimate the model
for academic salaries presented in Fig. 3.1.1.3 The correlation between salary (Y) and time
since Ph.D. (XJ is .710 and BYl is therefore .710($7889.77/4.577) = $1224 per year. The
correlation between salary and number of publications (Y2) is .588, and its regression coefficient
is therefore .588($7889.77/13.823) = $336 per publication (Table 3.2.1). If Xl and X2 were
uncorrelated, we could simply use BY\ and BY2 together to estimate Y. However, as might be
expected, we find a tendency for those faculty members who have had their degrees longer to
have more publications than those who more recently completed their education (r12 = .657).
Thus, X\ and X2 are to some extent redundant, and necessarily their respective estimates, Y}

and Y2 will also be redundant. What we need to estimate Y optimally from both Xl and X2 is an
equation in which their redundancy (or more generally the relationship between Xl and X2) is
taken into account. The regression coefficients in such an equation are called partial regression
coefficients to indicate that they are optimal linear estimates of the dependent variable (7) when
used in combination with specified other independent variables.4 Thus, BY\.2 is the partial
regression coefficient for Y on Xj when X2 is also in the equation, and BY2l is me partial
regression coefficient for Y on X2 when Xl is also in the equation. The full equation is

3 Again, the number of cases has been kept small to enable the reader to follow computations with ease. No
advocacy of such small samples is intended (see sections on precision and power). We also present population
estimates of variance and sd, rather than sample values, in conformity with computer statistical packages.

In this and the remaining chapters the dependent variable is identified as Y and the individual independent variables
as X with a numerical subscript, that is X\,X2, etc. This makes it possible to represent independent variables by their
subscripts only, for example Byx becomes By3.

4Hereafter we may refer to bivariate statistics such as correlations or regression coefficients as "zero-order"
coefficients, in contrast to partial coefficients when other IVs are in the equation.

The partial regression coefficients or B weights in this equation, as well as the regression
constant B0, are determined in such a way that the sum of the squared differences between
(actual) Y and (estimated) Y is a minimum. Thus, the multiple regression equation is defined by
the same ordinary least squares criterion as was the regression equation for a single independent
variable. Because the equation as a whole satisfies this mathematical criterion, the term partial
regression coefficient is used to make clear that it is the weight to be applied to an independent

CH03EX01
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TABLE 3.2.1
Seniority, Publication, and Salary Data on 15 Faculty Members

Time
since Ph.D. (Xj)

3
6
3
8
9
6

16
10
2
5
5
6
7

11
18

M 7.67
sd 4.58

No. of
Publications (X2)

18
3
2

17
11
6

38
48
9

22
30
21
10
27
37

19.93
13.82

Salary (Y)

$51,876
54,511
53,425
61,863
52,926
47,034
66,432
61,100
41,934
47,454
49,832
47,047
39,115
59,677
61,458

$53,046
$8,166

ryi = .710 (r£, = .505)
rY2 = .588 (r£2 = .346)
r12 = .657

7, =$1,224*!+ $43,659

F2 = $336X2 + $46,357

variable (IV) when one or more specified other IVs are also in the equation. Thus BY\.2 indicates
the weight to be given X\ when X2 is also in the equation, fi^.is is me %2 weight when Xl

and X3 are in the equation, 5y4123 is the X4 weight when X^ X2, and X3 are also used in
the equation for Y, and so on. The weights for the IVs taken together with B0 constitute the
necessary constants for the linear regression equation.

When the regression equation is applied to the IV values for any given observation, the
result will be an estimated value of the dependent variable (Y). For any given set of data on
which such an equation is determined, the resulting set of Y values will be as close to the
observed Y values as possible, given a single weight for each IV. "As close as possible" is
defined by the least squares principle.

For our example of estimating salary (F) from time since Ph.D. (Xj) and number of
publications (X2), the full regression equation is

where $983 is the partial regression coefficient BY\.2 for Xl and $122 is the partial regression
coefficient 5F2.i forX2. The redundancy of information about Y carried by these two variables
is reflected in the fact that the partial regression coefficients ($983 and $ 122) are each smaller in
magnitude than their separate zero-order Bs ($1,224 and $336). We may interpret 5y21

 = $122
directly by stating that, for any given time since Ph.D. (X^, on the average each additional
publication is associated with an increase in salary of only $122 rather than the $336 that was
found when time since Ph.D. were ignored. The Bn 2 = $983 may be similarly interpreted as
indicating that, for faculty members with a given number of publications (X2), on the average
each additional year since Ph.D. is associated with an increase in salary of $983 rather than
the $1224 that was found when number of publications was ignored. From a purely statistical
point of view, these changes are a consequence of the redundancy of the two causal variables
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(i.e., the tendency for faculty who have had their Ph.D.s longer to have more publications
(r12 = .657); the partialing process controls for this tendency.5 Viewed through the lens of
causal analysis we see (particularly in the case of number of publications) how seriously we
can be misled about the causal impact of a variable when we fail to include in our model
other important causes. This, then, is an instance in which we have failed to consider the need
to isolate the effects of a presumably causal variable from other correlated potential causes
(Bollen, 1989).

Thus far, we have simply asserted that the regression equation for two or more IVs takes the
same form as did the single IV case without demonstrating how the coefficients are obtained.
As in the case of presenting correlation and regression with one IV, we initially standardize
the variables to eliminate the effects of noncomparable raw (original) units. The regression
equation for standardized variables6 is

5The terms holding constant or controlling for, partialing the effects of, or residualizing some other variables(s)
indicate a mathematical procedure, of course, rather than an experimental one. Such terms are statisticians' shorthand
for describing the average effect of a particular variable for any given values of the other variables.

6We employ the greek symbol p for the standardized coefficient in order to be consistent with the literature and
with the earlier edition. It should not be confused with the other use of this symbol to indicate Type n errors of
inference.

Just as ryx is the standardized regression coefficient for estimating ZY from zx, p*yi 2 and
Prc.i are me standardized partial regression coefficients for estimating ZY from z\ and z2 with
minimum squared error.

The equations for pyl 2 and |3y2.i can be proved via differential calculus to be

A separation of the elements of this formula may aid understanding: ryi and rn are "valid-
ity" coefficients, that is, the zero-order (simple) correlations of the IVs with the dependent
variable. r\2 represents the variance in each IV shared with the other IV and reflects their
redundancy. Thus, pVL2 and (3y2A are partial coefficients because each has been adjusted to
allow for the correlation between Xl and X2.

To return to our academic example, the correlations between the variables are ryi = .710,
rY2 = -588, and rn = .657. We determine by Eq. (3.2.4) that

and that the full regression equation for the standardized variables is therefore
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Once PF12 and Pn.i
 nave been determined, conversion to the original units is readily

accomplished by

Substituting the values for our running example (Table 3.2.1), we find

Because we are again using the original units, we need a constant B0 that serves to adjust
for differences in means. This is calculated in the same way as with a single IV:

The full (raw score) regression equation for estimating academic salary is therefore

and the resulting values are provided in the third column of Table 3.3.1 later in this chapter.
The partial regression coefficients, 5n 2 = $983 and fly2.i = $122, are the empirical esti-

mates, respectively, of h and g, the causal effects of our independent variables accompanying
the arrows in the causal diagram (Fig. 3.1.1).

3.3 MEASURES OF ASSOCIATION
WITH TWO INDEPENDENT VARIABLES

Just as there are partial regression coefficients for multiple regression equations (equations for
predicting Y from more than one IV), so are there partial and multiple correlation coefficients
that answer the same questions answered by the simple product moment correlation coefficient
in the single IV case. These questions include the following:

1. How well does this group of IVs together estimate 7?
2. How much does any single variable add to the estimation of Y already accomplished by

other variables?
3. When all other variables are held constant statistically, how much of Y does a given

variable account for?

3.3.1 Multiple R and R2

Just as r is the measure of association between two variables, so the multiple R is the measure
of association between a dependent variable and an optimally weighted combination of two or
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more IVs. Similarly, r2 is the proportion of each variable's variance shared with the other, and R2

is the proportion of the dependent variable's variance (sdy) shared with the optimally weighted
IVs. Unlike r, however, R takes on only values between 0 and 1, with the former indicating no
relationship with the IVs and the latter indicating a perfect relationship. (The reason that Rs
are always positive becomes clear shortly.) The formula for the multiple correlation coefficient
for two IVs as a function of the original rs is

A similarity between the structure of this formula and the formula for p coefficients may
lead the reader to suspect that R may be written as a function of these coefficients. This is
indeed the case; an alternative formula is

For the example illustrated in Table 3.1.1 the multiple correlation is thus, by Eq. (3.3.1),

(We again remind the reader who checks the previous arithmetic and finds it "wrong" of our
warning in Section 1.2.2 about rounding errors.)

We saw in Chapter 2 that the absolute value of the correlation between two variables \ryxl
is equal to the correlation between Y and Yx. The multiple correlation is actually definable by
this property. Thus, with two IVs,

or by Eq. (3.3.2),

and taking the example values in Table 3.3.1 we see that indeed r^ = .728 = RY.n- That
rY£ and hence RY.12 cannot be negative can be seen from the fact that by the least squares

criterion Y is as close as possible to Y.
The reader will again recall that r|y is the proportion of variance of Y shared with X. In

exact parallel, Ry 12 is the proportion of sdy shared with the optimally weighted composite of
X^ and X2. These optimal weights are, of course, those provided by the regression equation
used to estimate Y. Thus,
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TABLE 3.3.1
Actual, Estimated, and Residual Salaries

1
Y

$51,876
54,511
53,425
61,863
52,926
47,034
66,432
61,100
41,934
47,454
49,832
47,047
39,115
59,677
61,458

M $53,046
sd $7,622

2

YI

$47,332
51,005
47,332
53,454
54,678
51,005
63,249
55,903
46,107
49,781
49,781
51,005
52,229
57,127
65,698

$53,046
$5,415

3

Yu

$48,223
49,345
46,275
53,016
53,268
49,710
63,437
58,757
46,144
50,676
51,651
51,537
51,180
57,183
65,281

$53,046
$5,552

4
Y-Y12

$3,653
5,166
7,150
8,847
-342

-2,676
2,995
2,343

-4,210
-3,222
-1,819
-4,490

-12,065
2,494

-3,823

$0
$5,227

5

*2.1

10.68
16.63
10.68
20.59
22.58
16.63
36.46
24.56
8.70

14.64
14.64
16.63
18.61
26.54
40.42

19.93
8.77

6

^2 ~ ^2.1

7.32
-13.63
-8.68
-3.59

-11.58
-10.63

1.54
23.44

.30
7.36

15.36
4.37

-8.61
.46

-3.42

0
10.07

7
Y-Y,

$4,544
3,506
6,093
8,409

-1,752
-3,971

3,183
5,197

-4,173
-2,327

51
-3,958

-13,114
2,550

-4,240

$0
$5,365

that is, some 53% of the variance in salary (Y) is linearly accounted for by number of years
since doctorate (X^ and number of publications (X2) in this sample.

Again in parallel with simple correlation and regression the variance of the residual, Y—Y12,
is that portion of sdy not linearly associated with Xl and X2. Therefore (and necessarily),

It should also be apparent at this point that a multiple R can never be smaller than the
absolute value of the largest correlation of Y with the IVs and must be almost invariably larger.
The optimal estimation of Y12 under circumstances in which X2 adds nothing to Xj 's estimation
of Y would involve a 0 weight for X2 and thus RY.12 would equal |rn |, the absolute value of
ryl. Any slight departure of X2 values from this rare circumstance necessarily leads to some
(perhaps trivial) increase in RY\i over |ryi |.

As with bivariate correlation the square root of the proportion of Y variance not associ-

ated with the IVs is called the coefficient of (multiple) alienation. This value is >/l - R2 =
VI - .5300 = .686 for these data.

Correlations

Y
Y-Y,

YI
.710 = i-!

0 = r(y.i)i

Yn
.728 = Ryn

.051

X2 — X2,i
.161 = sr2

.22S=pr2

and since such variances are additive,
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3.3.2 Semipartial Correlation Coefficients and Increments to R2

One of the important problems that arises in MRC is that of defining the contribution of
each IV in the multiple correlation. We shall see that the solution to this problem is not
so straightforward as in the case of a single IV, the choice of coefficient depending on the
substantive reasoning underlying the exact formulation of the research questions. One answer
is provided by the semipartial correlation coefficient sr and its square, sr2. To understand
the meaning of these coefficients, it is useful to consider the "ballantine." Recall that in the
diagrammatic representation of Fig. 2.6.1 the variance of each variable was represented by a
circle of unit area. The overlapping area of two circles represents their relationship as r2. With
Y and two IVs represented in this way, the total area of Y covered by the Xl and X2 circles
represents the proportion of 7's variance accounted for by the two IVs, R\ 12.

Figure 3.3.1 shows that this area is equal to the sum of areas designated a, b, and c. The
areas a and b represent those portions of Y overlapped uniquely by IVs Xl andX2, respectively,
whereas area c represents their simultaneous overlap with Y. The "unique" areas, expressed
as proportions of Y variance, are squared semipartial correlation coefficients, and each equals
the increase in the squared multiple correlation that occurs when the variable is added to the
other IV.7 Thus

FIGURE 3.3.1 The ballantine for Xl and X2 with Y.

7 Throughout the remainder of the book, whenever possible without ambiguity, partial coefficients are subscripted
by the relevant independent variable only, it being understood that Y is the dependent variable and that all other IVs
have been partialed. In this expression (i) indicates that X, is not included in the variables X} to Xk that are being
partialed. Thus, sr, = ^(1.12...(/)...*)> ^e correlation between Y and Xt from which all other IVs in the set under
consideration have been partialed. Similarly, R without subscript refers to Ry.u...k.
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A formula for sr for the two IV case may be given as a function of zero-order rs as

Another notational form of sri used is ry(12>, the 1.2 being a shorthand way of expressing
"Xj from which X2 has been partialed," or Xl — Xi 2. It is a convenience to use this dot notation
to identify which is being partialed from what, particularly in subscripts, and it is employed
whenever necessary to avoid ambiguity. Thus / • j means i from which j is partialed. Note
also that in the literature the term part correlation is sometimes used to denote semipartial
correlation.

In Table 3.3.1 we present the X2 — X2\ (residual) values for each case in the example in
which salary was estimated from publications and time since Ph.D. The correlation between
these residual values and Y is seen to equal .4301, which is sr^ and .43012 = .1850 = sr2,
as before.

To return to the ballantine (Fig. 3.3.1) we see that for our example, area a = .1850,
b = .0258, and a + b + c = R2

YU — .5305. It is tempting to calculate c (by c = R2
YU -

sr2 — sr2) and interpret it as the proportion of Y variance estimated jointly or redundantly
by Xl and X2. However, any such interpretation runs into a serious catch—there is nothing
in the mathematics that prevents c from being a negative value, and a negative proportion of

The semipartial correlation sr\ is the correlation between all of Y and Xl from which X2

has been partialed. It is a semipartial correlation because the effects of X2 have been removed
from Xi but not from Y. Recalling that in this system "removing the effect" is equivalent to
subtracting from Xi the Xl values estimated from X2, that is, to be working with X\ —X12, we
see that another way to write this relationship is

For our running example (Table 3.2.1), these values are

ForX2,

or, by Eq. (3.3.7)

or, by Eq. (3.3.7),
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variance hardly makes sense. Because c is not necessarily positive, we forgo interpreting it as
a proportion of variance. A discussion of the circumstances in which c is negative is found in
Section 3.4. On the other hand, a and b can never be negative and are appropriately considered
proportions of variance; each represents the increase in the proportion of Y variance accounted
for by the addition of the corresponding variable to the equation estimating Y.

3.3.3 Partial Correlation Coefficients

Another kind of solution to the problem of describing each IV's participation in determining
R is given by the partial correlation coefficient prit and its square, pr\. The squared partial
correlation may be understood best as that proportion of sdy not associated with X2 that is
associated with Xt. Returning to the ballantine (Fig. 3.3.1), we see that

The a area or numerator for pr\ is the squared semipartial correlation coefficient sr\;
however, the base includes not all the variance of Y as in sr\ but only that portion of Y
variance that is not associated with X2, that is, \ — r\2. Thus, this squared partial r answers the
question, How much of the Y variance that is not estimated by the other IVs in the equation is
estimated by this variable? Interchanging Xl and X2 (and areas a and b), we similarly interpret
pr\. In our faculty salary example, we see that by Eqs. (3.3.10)

Obviously, because the denominator cannot be greater than 1, partial correlations will be larger
than semipartial correlations, except in the limiting case when other IVs are correlated 0 with
Y, in which case sr = pr.

pr may be found more directly as a function of zero-order correlations by

For our example

andpr2 = .53162 = .2826, as before;

andprf = .21332 = .0455, again as before.
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In Table 3.3.1 we demonstrate thatpr2 is literally the correlation between X2 from which
Xl has been partialed (i.e., X2 — X2\) and Y from which X\ has also been partialed (i.e.,
Y — YI). Column 6 presents the partialed X2 values, the residuals fromX2-1. Column 7 presents
the residuals from Yl (given in column 2). The simple correlation between the residuals in
columns 6 and 7 is .2133 = pr2 (the computation is left to the reader, as an exercise). We
thus see that the partial correlation for X2 is literally the correlation between Y and X2, each
similarly residualized from X^. A frequently employed form of notation to express the partial r
is ry2 j, which conveys that Xi is being partialed from both Y and X2 (i.e., f(y.i)(2.i))> in contrast
to the semipartial r, which is represented as ry(2.i).

Before leaving Table 3.3.1, the other correlations at the bottom are worth noting. The r of
Y with YI of .710 is identically rY\ and necessarily so, since Yv is a linear transformation of
Xi and therefore must correlate exactly as Xl does. Similarly, the r of Y with 712 of .728 is
identically RY.i2 and necessarily so, by definition in Eq. (3.3.3). Also, Y — Yl (that is, Y • X^
correlates zero with YI, because when a variable (here Xj) is partialed from another (here Y),
the residual will correlate zero with any linear transformation of the partialed variables. Here,
YI is a linear transformation of Xl (i.e., YI = B^ + fi0).

Summarizing the results for the running example, we found sr\ = .1850, pr\ = .2826 and
sr2 = .0258, pr2 = .0522. Whichever base we use, it is clear mat number of publications
(X2) has virtually no unique relationship to salary, that is, no relationship beyond what can
be accounted for by time since doctorate (Xj). On the other hand, time since doctorate (X^
is uniquely related to salary (sr^ and to salary holding publications constant (pr{) to a quite
substantial degree. The reader is reminded that this example is fictitious, and any resemblance
to real academic departments, living or dead, is mostly coincidental.

3.4 PATTERNS OF ASSOCIATION BETWEEN Y
AND TWO INDEPENDENT VARIABLES

A solid grasp of the implications of all possible relationships among one dependent variable
and two independent variables is fundamental to understanding and interpreting the various
multiple and partial coefficients encountered in MRC. This section is devoted to an exposition
of each of these patterns and its distinctive substantive interpretation in actual research.

3.4.1 Direct and Indirect Effects

As we have stated, the regression coefficients BY\.2 and BY2.\ estimate the causal effects of Xi
and X2 on Y in the causal model given in Fig. 3.4.1, Model A. These coefficients, labeled/ and
g in the diagram, are actually estimates of the direct effects ofXi and X2, respectively. Direct
effects are exactly what the name implies—causal effects that are not mediated by any other
variables in the model. All causes, of course, are mediated by some intervening mechanisms. If
such an intervening variable is included, we have Model B shown in Fig. 3.4.1. In this diagram
Xl is shown as having a causal effect on X2. Both variables have direct effects on Y. However,
Xi also has an indirect effect on Y viaX2. Note that the difference between Models A and B is
not in the mathematics of the regression coefficients but in the understanding of the substantive
causal process.

The advantage of Model B, if it is valid, is that in addition to determining the direct effects
of Xi and X2 on Y, one may estimate the indirect effects of Xi on Y as well as the effect of
Xi on X2. This latter (h) in Model B is, of course, estimated by the regression coefficient of
X2 on Xi, namely 521. The direct effects,/ and g, are the same in both Models A and B and



76 3. MRC WITH TWO OR MORE INDEPENDENT VARIABLES

Partial redundancy:

FIGURE 3.4.1 Representation of relationships between Y and two IVs.

are estimated by the sample regression coefficients for Xl and X2 from the equation for Y. The
relationship between two exogenous variables, h in Model A, is conventionally represented
by the correlation between the variables. The magnitude of the indirect effect of KI on Y in
Model B may also be estimated by a method described in Chapter 11.

3.4.2 Partial Redundancy

We have included Models A and B under the rubric partial redundancy because this is by
far the most common pattern of relationship in nonexperimental research in the behavioral
sciences. It occurs whenever ryi > ry2r12 and rn > rnr12 [see Eqs. (3.2.4), (3.3.8), and
(3.3.11)], once the variables have been oriented so as to produce positive correlations with Y.
The sr, and (3, for each IV will be smaller than its rK (and will have the same sign) and thus
reflect the fact of redundancy. Each IV is at least partly carrying information about Y that is
also being supplied by the other. This is the same model shown by the ballantine in Fig. 3.3.1.
We consider another situation in which rn is negative in the next section.

Examples of Model A two-variable redundancy come easily to mind. It occurs when one
relates school achievement (Y) to parental income (Xj) and education (X2), or delinquency
(7) to IQ (X^ and school achievement (X2), or psychiatric prognosis (Y) to rated symptom
severity (Xj) and functional impairment (X2), or—but the reader can supply many examples
of his or her own. Indeed, redundancy among explanatory variables is the plague of our efforts
to understand the causal structure that underlies observations in the behavioral and social
sciences.

Model B two-variable redundancy is also a very common phenomenon. Some substantive
examples are given in Fig. 3.4.2. Here we see that age is expected to produce differences in

Full redundancy:
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physical maturity in a sample of school children and that each is expected to cause differences
in heterosexual interest. The presence of an arrow from age to heterosexual interest implies
that physical maturity is not the only reason why heterosexual interest increases with age.
Birth order of offspring is expected to produce differences in parental aspirations and both
are causally related to achievement. We might expect sex differences in interpersonal role
preferences and that both of these variables will produce differences in career aspirations.
Also, for our running example, we expect the passage of time since Ph.D. to produce increases
in the number of publications and increases in both of these variables to produce increases in
salary.

3.4.3 Suppression in Regression Models

In each of the causal circumstances we have discussed, we expect the direct effects of the
variables to be smaller than the zero-order (unpartialed) effects. In addition, we anticipate
an indirect effect of our Xi variables to take place via the X2 variables. Although partial
redundancy is the most commonly observed pattern for causal Models A and B, it is not the
only possible model. Suppression is present when either ryi or rY2 is less than the product
of the other with r12, or when r12 is negative (assuming, as throughout, positive ryi and rn)-
In this case the partialed coefficients of Xl and X2 will be larger in value than the zero-order
coefficients and one of the partialed (direct effect) coefficients may become negative.

FIGURE 3.4.2 Examples of causal Model B.
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The term suppression can be understood to indicate that the relationship between the
independent or causal variables is hiding or suppressing their real relationships with Y, which
would be larger or possibly of opposite sign were they not correlated. In the classic psychomet-
ric literature on personnel selection, the term suppression was used to describe a variable (such
as verbal ability) X2 that, although not correlated with the criterion Y (e.g., job performance),
is correlated with the available measure of the predictor Xl (e.g., a paper and pencil test of job
skills) and thus adds irrelevant variance to it and reduces its relationship with Y. The inclusion
of the suppressor in the regression equation removes (suppresses) the unwanted variance in
Xi, in effect, and enhances the relationship between Xi and Y by means of fiyi 2. This topic is
discussed again in Chapter 12.

For a substantive example, suppose a researcher is interested in the roles of social assertive-
ness and record-keeping skills in producing success as a salesperson. Measures of these two
characteristics are devised and administered to a sample of employees. The correlation between
the measure of social assertiveness (X^ and sales success (Y) is found to be +.403, the cor-
relation between record keeping (X2) and Y = +.127 and r12 = —.305, indicating an overall
tendency for those high on social assertiveness to be relatively low on record keeping, although
each is a desirable trait for sales success. Because —.305 < (.403)(.127) we know that the
situation is one of suppression and we may expect the direct effects (the regression and associ-
ated standardized coefficients) to be larger than the zero-order effects. Indeed, the reader may
confirm that the P coefficients are .487 for social assertiveness and .275 for record keeping,
both larger than their respective correlations with Y, .403 and .127. The coefficients may be
considered to reflect appropriately the causal effects, the zero-order effects being misleadingly
small because of the negative relationship between the variables.

A Model B example of suppression may be found in the (overly simple) economic model
shown in Fig. 3.4.2, in which tax cuts are expected to produce increases in economic growth
but also inflation. Because inflation is expected to have negative effects on economic growth,
one can only hope that the direct positive effects of the tax cuts on economic growth will exceed
the indirect negative effect attributable to the effect on inflation.

Suppression is a plausible model for many homeostatic mechanisms, both biological and
social, in which force and counterforce tend to occur together and have counteractive effects.
The fact that suppression is rarely identified in simple models may be due to the difficulty in
finding appropriate time points for measuring Xl5 X2, and Y. Suppression effects of modest
magnitude are more common in complex models. Material suppression effects are likely to
be found in analyses of aggregate data, when the variables are sums or averages of many
observations and R2s are likely to approach 1 because of the small error variance that results
in these conditions. Tzelgov and Henik (1991) provide an extensive discussion of conditions
under which suppression occurs.

3.4.4 Spurious Effects and Entirely Indirect Effects

Model C in Fig. 3.4.1 describes the special case in which rY2 = ^1^12- This model is of
considerable interest because it means that the information with regard to Y carried by X2 is
completely redundant with that carried by Xl. This occurs whenever the B, sr, andpr coefficients
for X2 are approximately zero. This occurs when their numerators are approximately zero (i.e.,
when rY2 & ^12ryi). For the causal model the appropriate conclusion is that X2 is not a cause
of Y at all but merely associated (correlated) with Y because of its association with Xl. In
some fields such as epidemiology, Xi is referred to as a confounder of the relationship between
X2 and Y. (But note the appropriate considerations before drawing such a conclusion from
sample results, as discussed in Section 3.7.) A great many analyses are carried out precisely to
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determine this issue—whether some variable has a demonstrable effect on Y when correlated
variables are held constant or, alternatively, whether the variable's relationship to Y is (or may
be) spurious. Thus, for example, a number of investigations have been carried out to determine
whether there is a family size (X2) influence on intelligence (Y) independent of parental social
class (Xt), whether maternal nutrition (X2) has an effect on infant behavior (7) independent
of maternal substance use (Xt), whether the status of women (X2) in various countries has an
effect on fertility rate (F) independent of economic development (Xt), or indeed whether any
of the X2 effects on Y shown in Fig. 3.4.2 are nil. Generally, the question to be answered is the
"nothing but" challenge. Is the relationship between Y and X2 nothing but a manifestation of
the causal effects of Xi ?

Complete redundancy, however, does not always imply a spurious relationship. In Fig. 3.4.1,
Model D we see a situation in which the partial coefficients for X! approach zero, indicating
correctly that there is no direct effect of Xl on Y. There is, however, an indirect effect that,
according to the model, takes place entirely viaX2; that is, the effect of X] is mediated by X2.

Many investigations are designed to answer questions about intervening mechanisms—for
example, is the higher female (Xj) prevalence of depression (Y) entirely attributable to lower
female income/opportunity structure (X2)? Are ethnic (Xj) differences in achievement (Y)
entirely due to economic deprivation (X2)? Is the demonstrable effect of poor parent marital
relationship (X^ on delinquency (Y) entirely attributable to poor parent-child relationships
(X2)? In these cases the relationships between Xl and Y cannot be said to be spurious but are
nevertheless likely to have different theoretical implications and policy import when they are
entirely redundant than when they are not.

As in the case of the comparison of Models A and B, the difference between Models C and
D lie not in the coefficients but in one's understanding of the causal processes that gave rise
to the coefficients. Again, one can only demonstrate consistency of sample data with a model
rather than prove the model's correctness.

3.5 MULTIPLE REGRESSION/CORRELATION
WITH k INDEPENDENT VARIABLES

3.5.1 Introduction: Components of the Prediction Equation

When more than two IVs are related to Y, the computation and interpretations of multiple and
partial coefficients proceed by direct extension of the two-FV case. The goal is again to produce
a regression equation for the k TVs of the (raw score) form

or, expressed in simpler subscript notation,

or, as in the simple two variable equation, expressed in terms of the original Y plus the errors
of prediction e:

When this equation is applied to the data, it yields a set of Y values (one for each of
the n cases) for which the sum of the (Y — Y)2 values over all n cases will (again) be a
minimum. Obtaining these raw-score partial regression weights, the Bh involves solving a set
of k simultaneous equations hi k unknowns, a task best left to a computer program, although
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Appendix 2 provides the method of hand calculation for MRC.) The purpose of the present
section is to lay down a foundation for understanding the various types of coefficients produced
by MRC for the general case of k independent variables, and their relationship to various MRC
strategies appropriate to the investigator's research goals.

8Within rounding error.

3.5.2 Partial Regression Coefficients

By direct extension of the one- and two-IV cases, the raw score partial regression coefficient
B{ (= BYl.i23...(i)...k) is me constant weight by which each value of the variable X, is to be
multiplied in the multiple regression equation that includes all k TVs. Thus, Bt is the average or
expected change in Y for each unit increase in X,- when the value of each of the k — 1 other IVs is
held constant. P, is the partial regression coefficient when all variables have been standardized.
Such standardized coefficients are of interpretive interest when the analysis concerns test scores
or indices whose scaling is arbitrary, or when the magnitudes of effects of variables in different
units are to be compared.

For example, let us return to the study in which we seek to account for differences in salary
in a university department by means of characteristics of the faculty members. The two IVs
used thus far were the number of years since each faculty member had received a doctoral
degree (Xj) and the number of publications (X2). We now wish to consider two additional
independent variables, the gender of the professor and the number of citations of his or her
work in the scientific literature. These data are presented in Table 3.5.1, where sex (X3) is coded
(scored) 1 for female and 0 for male, and the sample size has been increased to 62 as a more
reasonable size for analysis. The correlation matrix shows that sex is negatively correlated with
salary (ry3 = -.210), women having lower salaries on the average than men. The number of
citations (X4) is positively associated with salary (ry4 = .550), as well as with the other IVs.
Sex correlates very little with the other IVs, except for a tendency in these data for women to
be more recent Ph.D.s than men (r13 = —.201).

The (raw-score) multiple regression equation for estimating academic salary from these four
IVs may be obtained from computer output or by the matrix inversion method of Appendix 2
(where this problem is used illustratively). It is Y = SSSTX^ (time) + $92.8 (publications) —
$918X3 (female) + $202X4 (citations) + $39,587. These partial B{ coefficients indicate that for
any given values of the other IVs, an increase of one in the number of citations is associated
with a salary increase of $202 (=54); an increase of one unit in X3, and hence the average
difference in salary (holding constant the other IVs) is —$918 (favoring men); and the effects
of an additional year since degree (X^ and an increase of one publication (X2) are $857 and
$93, respectively. Note also that B0 = $39,587 is the estimated salary of a hypothetical male
professor fresh from his doctorate with no publications or citations, that is, all X, = 0.

In this problem, the salary estimated by the four IVs for the first faculty member
(Table 3.5.1) is

The remaining estimated values are given in the last column of Table 3.5.1.

CH03EX02



TABLE 3.5.1
Illustrative Data With Four Independent Variables

Time since Ph.D.
I.D. (X,)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3
6
3
8
9
6
16
10
2
5
5
6
7
11
18
6
9
7
7
3
7
5
7
13
5
8
8
7
2
13
5
3
1
3
9
3
9
3
4
10
1

11
5
1

21
7
5
16

No. of publications Sex No. of citations Salary
(X2) (X3) (X4) (K) Estimated Salary

18
3
2
17
11
6
38
48
9
22
30
21
10
27
37
8
13
6
12
29
29
7
6
69
11
9
20
41
3
27
14
23
1
7
19
11
31
9
12
32
26
12
9
6
39
16
12
50

1
1
1
0
1
0
0
0
0
0
1
0
1
0
0
0
1
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0

50
26
50
34
41
37
48
56
19
29
28
31
25
40
61
32
36
69
47
29
35
35
18
90
60
30
27
35
14
56
50
25
35
1
69
69
27
50
32
33
45
54
47
29
69
47
43
55

$51,876
54,511
53,425
61,863
52,926
47,034
66,432
61,100
41,934
47,454
49,832
47,047
39,115
59,677
61,458
54,528
60,327
56,600
52,542
50,455
51,647
62,895
53,740
75,822
56,596
55,682
62,091
42,162
52,646
74,199
50,729
70,011
37,939
39,652
68,987
55,579
54,671
57,704
44,045
51,122
47,082
60,009
58,632
38,340
71,219
53,712
54,782
83,503

$53,007
49,340
51,523
54,886
55,682
52,757
66,517
63,917
45,973
51,769
51,391
52,937
50,644
59,596
70,763
51,933
54,858
60,076
55,272
49,786
54,426
51,589
49,778
75,302
57,008
52,418
52,833
55,539
43,489
64,541
55,267
49,340
47,605
43,010
62,996
57,112
55,628
53,090
49,672
57,789
51,943
61,032
54,198
46,857
75,135
55,643
52,751
69,043

81
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TABLE 3.5.1 (continued)

Time since Ph.D. No. of publications Sex No.
I.D.

49
50
51
52
53
54
55
56
57
58
59
60
61
62

M
sd

(*i)

5
4
5

11
16
3
4
4
5
6
4
8
3
4

6.79
4.28

Time since Ph.D.
No.
Sex

of publications

No. of citations
Salary

(X2)

18
16
5

20
50
6

19
11
13
3
8

11
25
4

18.18
14.00

Time since Ph.D.

(*i)

1.000
.651

-.210
.373
.608

(*3)

0
1
0
0
1
1
1
1
0
1
1
1
1
1

.56

.50

Correlation Matrix

of citations

(X4)

33
28
42
24
31
27
83
49
14
36
34
70
27
28

40.23
17.17

No. of publications Sex
(X2)

.651
1.000

-.159
.333
.506

(X,)

-.210
-.159
1.000

-.149
-.201

Salary
(Y)

47,212
52,840
53,650
50,931
66,784
49,751
74,343
57,710
52,676
41,195
45,662
47,606
44,301
58,582

$54,816
$9,706

Estimated Salary

52,206
49,236
52,817
55,716
63,279
47,249
60,620
53,012
47,905
51,359
49,705
60,681
49,011
48,123

$54,816
$6,840

No. of citations Salary

(X4)

.373

.333
-.149
1.000
.550

(Y)

.608

.506
-.201

.550
1.000

Standardized Part/a/ Regression Coefficients
The regression equation may be written in terms of standardized variables and (3

coefficients as

for example, 04 = .202(17.17/9706) = .357. As always, with standardized Y and IVs the
intercept |30 is necessarily zero, and thus may be omitted.

3.5.3 R, R2 and Shrunken R2

Multiple R and R2

Application of the regression equation to the IVs yields a set of estimated Y values. The
simple product moment correlation of Y with Y equals the multiple correlation; in this example,

The P values may always be found from B values by inverting Eq. (3.2.5):
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rYy = R = .709. As with the one- or two-IV case, R2 is the proportion of Y variance accounted
for and/?2 = sdt/sd2 - (6885)2/(9706)2 = .5032.

R2 may also be written as a function of the original correlations with Y and the |3 coefficients
by extension of Eq. (3.3.2):

where the summation is over the k IVs. Thus in the current example,

as before.
Lest the reader think that this represents a way of apportioning the Y variance accounted

for among the IVs (that is, that X,'s proportion is its P,rK), it is important to recall that p\- and
rK may be of opposite sign (under conditions of suppression). Thus, the suppressor variable
on this interpretation would appear to account for a negative proportion of the Y variance,
clearly a conceptual impossibility. The fact that (3,rK is not necessarily positive is sufficient to
preclude the use of Eq. (3.5.3) as a variance partitioning procedure.

R2 may also be obtained as a function of the P coefficients and the associations between the
IVs as

where the first summation is over the k IVs, and the second over the k(k — l)/2 distinct pairs
of IVs. In the current problem,

This formula appears to partition R2 into portions accounted for by each variable uniquely
and portions accounted for jointly by pairs of variables, and some authors so treat it. However,
we again note that any of the k(k — l)/2 terms frfyr, may be negative. Therefore, neither
Eq. (3.5.4) nor Eq. (3.5.3) can serve as variance partitioning schemes. This equation does,
however, make clear what happens when all correlations between pairs of IVs equal 0. The
triple-product terms will all contain rtj = 0 and hence drop out, and R2 = £|i2 = 5>^, as was
seen for the two-IV case (Section 3.4.2).

Shrunken or Adjusted R2: Estimating the Population p2

The R2 that we obtain from a given sample is not an unbiased estimate of the population
squared multiple correlation, p2. To gain an intuitive understanding of part of the reason for this,
imagine the case in which one or more of the IVs account for no Y variance in the population,
that is, r\ — 0 in the population for one or more Xf. Because of random sampling fluctuations
we would expect that only very rarely would its r2 with Y in a sample be exactly zero; it will
virtually always have some positive value. (Note that although r can be negative, neither r2

nor R2 can be.). Thus, in most samples it would make some (possibly trivial) contribution to
R2. The smaller the sample size, the larger these positive variations from zero will be, on the
average, and thus the greater the inflation of the sample R2. Similarly, the more IVs we have,
the more opportunity for the sample R2 to be larger than the true population p2. It is often
desirable to have an estimate of the population p2 and we naturally prefer one that is more
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accurate than the positively biased sample R2. Such a realistic estimate of the population p2

(for the fixed model) is given by

This estimate is necessarily (and appropriately) smaller than the sample R2 and is thus often
referred to as the "shrunken" R2. The magnitude of the "shrinkage" will be larger for small
values of R2 than for larger values, other things being equal. Shrinkage will also be larger as
the ratio of the number of IVs to the number of subjects increases. As an example, consider
the shrinkage in R2 when n = 200 and cases where k = 5, 10, and 20 IVs, thus yielding k/n
ratios of 1/40, 1/20, and 1/10, respectively. When R2 = .20, the shrunken values will equal,
respectively, .1794, .1577, and .1106, the last being a shrinkage of almost one-half. When
R2 = .40, the comparable values are, respectively, .3845, .3683, and .3330, smaller shrinkage
either as differences from or proportions of R2. For large ratios of k/n and small R2, these
shrunken values may be negative; for example, for/?2 = .10, k = 11, n = 100, Eq. (3.6.3)
gives —.0125. In such cases, by convention, the shrunken R2 is reported as zero.

It should be clear from this discussion that whenever a subset of IVs has been selected post
hoc from a larger set of potential variables on the basis of their relationships with Y, not only
R2, but even the shrunken R2 computed by taking as k the number of IVs selected, will be
too large. This is true whether the computer capitalizes on chance by performing a stepwise
regression, or the experimenter does so by selecting IVs with relatively larger rKs. A more
realistic estimate of shrinkage is obtained by substituting for k in Eq. (3.6.3) the total number
of FVs from which the selection was made.

3.5.4 sr and sr2

The semipartial correlation coefficient sr and its square sr2 in the general case of k IVs may
be interpreted by direct extension of the two IV case. Thus sr2 equals that proportion of the Y
variance accounted for by Xt beyond that accounted for by the other k — 1 IVs, and

(the parenthetical i signifying its omission from the second R2), or the increase in the squared
multiple correlations when Xt is included over the R2 that includes the other k — 1 IVs, but
excludes XL. This may be thought of as the unique contribution ofXj to R2 in the context of the
remaining k — 1 IVs. As in the two-IV case, the semipartial r equals the correlation between
that portion of X, that is uncorrelated with the remaining IVs and Y:

As might be expected, sr{ may also be written as a function of the multiple correlation of the
other IVs with Xit

Neither sr{ nor sr2 is provided as default output by most MRC computer programs; however,
the term 1 — R2

12 (/) k is often provided. This term, called the variable's tolerance, alerts the
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data analyst to the level of redundancy of this variable with other predictors.9 Occasionally srf
values are provided, possibly labeled as the "unique" contribution to R2. When/?r, is available,
srf is readily determined by

3.5.5 pr and pr2

The partial correlation coefficient/?/-,, we recall from the two-IV case, is the correlation between
that portion of Y that is independent of the remaining variables, Y — Fi2...(i)...fc' an<^ ̂ at portion

A

of X, that is independent of the (same) remaining variables, X{ — X,.i2...(0 •*' ̂ at *s'

pr2 is thus interpretable as the proportion of that part of the Y variance that is independent of
the remaining IVs (i.e., of 1 — R\ 12 (/) k) accounted for uniquely by Xf:

It can be seen thatprf will virtually always be larger than and can never be smaller than sr
because sr2 is the unique contribution of X, expressed as a proportion of the total Y variam
whereas pr2 expresses the same unique contribution of Xf as a proportion of thai part of the
variance not accounted for by the other IVs.

3.5.6 Example of Interpretation of Partial Coefficients

Table 3.5.2 presents the semipartial and partial correlations and their squares for the salary
example. We see that publications (X2) accounts for 26% (ry2) of the salary variance, it accounts
uniquely for only 1% of the salary variance (sr2 = .01), and only 2% of the salary variance noi
accounted for by the other three variables (pr\ = .02). Notice that in this example the partial
coefficients of the four IVs are ordered differently from the zero-order correlations. Although
time since Ph.D. taken by itself accounts for .37 (r£j) of the variance in salary, it uniquel)

TABLE 3.5.2
Correlations of Predictors With Y

x,
X2,

Predictor

, Time since Ph.D.
No. of publications

X3, Sex
X4, No. of citations

ry,

.608

.506
-.201

.550

4
.370
.256
.040
.302

sr,

.278

.101
-.046

.328

"?

.077

.010

.002

.107

Pr>

.367

.142
-.065

.422

Pr?

.135

.020

.004

.178

9Chapter 10 deals with this and other indices of IV intercorrelation in more detail.
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accounts for only 8% of this variance, whereas citations, which alone accounts for 30% of the
salary variance, accounts uniquely for 11%. The reason for this is the much greater redundancy
of time since Ph.D. with other predictors (46%) as compared with citations (16%); (see next
section).

3.6 STATISTICAL INFERENCE WITH k
INDEPENDENT VARIABLES

3.6.1 Standard Errors and Confidence Intervals for B and p

In Section 2.8.2 of Chapter 2 we showed how to determine standard errors and confidence
intervals for r and B in the two-variable case, provided that certain distributional assumptions
are made. Similarly, one may determine standard errors for partial regression coefficients; that
is, one may estimate the sampling variability of partial coefficients from one random sample
to another, using the data from the single sample at hand.

The equation for estimating the standard error of B is particularly enlightening because it
shows very clearly what conditions lead to large expected sampling variation in the size of B
and hence in the accuracy one can attribute to any given sample B value. A convenient form
of the equation for the standard error of B for any Xt is

where Ry is literally Ry n *» an^ ^f i§ literally R2
in (l) k. The ratio of the sds, as always,

simply adjusts for the scaling of the units in which X( and Y are measured. Aside from this, we
see from the third term that the size of the SEB will decrease as the error variance proportion
(1 — R\) decreases and its df(= n—k—l) increase. (On reflection, this should be obvious.) Note
that this term will be constant for all variables in a given regression equation. The second term
reveals an especially important characteristic of SEB, namely, that it increases as a function
of the squared multiple correlation of the remaining IVs with Xt, R]. Here we encounter a
manifestation of the general problem of multicollmearity, that is, of substantial correlation
among IVs. Under conditions of multicollinearity there will be relatively large values for at
least some of the SEBs, so that any given sample may yield relatively poor estimates of some
of the population regression coefficients, that is, of those whose /??s are large. (See Chapter 10
for further discussion of this issue.)

In order to show the relationship given in Eq. (3.6.1) more clearly it is useful to work
with variables in standard score form. B{ expressed as a function of standard scores is p\-. The
standard error of p\ drops the first term from (3.6.1) because it equals unity, so that

To illustrate the effects of differences in the relationships of a given Xh with the remaining
IVs, we return to our running example presented in Tables 3.5.1 and 3.5.2. In this exam-
ple, number of publications and number of citations had very similar zero-order correlations
with salary, .506 and .550, respectively. Their correlations with other IVs, especially time
since Ph.D. differed substantially, however, with publications correlating .651 and number of
citations correlating .373 with time. The squared multiple correlation with other IVs is .4330



3.6 STATISTICAL INFERENCE WITH k INDEPENDENT VARIABLES 87

for number of publications and .1581 for number of citations. Substituting these values into
Eq. (3.6.2) we find

In Section 2.8.2 of Chapter 2, we showed how to compute and interpret confidence inter-
vals in simple bivariate correlation and regression. For MRC, we proceed in the same way,
using our faculty salary example. For the regression coefficients, the #,, we found the stan-
dard errors for publications and citations to be, respectively, 85.9 and 57.5. The margin of
error (me) for fi, is tc(SEBi), where tc is the multiplier for a given confidence interval for
the error df. Most frequently 95% confidence intervals are reported in the literature. How-
ever, 80% CI may provide a more realistic feeling for the likely population value in some
cases.

See the regression equation in Section 3.5.2 for the B values (93 and 202) in what follows.
Using the approximate critical value of t for a = .20, tc = 1.3 as the multiplier, the 80%
me for publications = 1.3(85.9) = 112, so the 80% CI = 93 ± 112, from -19 to 205. For
citations, the 80% me = 1.3(57.5) = 74.6, so the 80% CI = 202 ± 74.6, from 127 to 277.
Using tc = 2 as the multiplier, the 95% me for B for publications is 2(85.9) = 172, so the 95%
CI is 93 ± 172 = -79 to 265. For citations, the 95% me is 2(57.5) = 115 and the 95% CI for
B for citations is 202 ±115, = 87 to 317.

One may use the SE to determine the bounds within which we can assert with a chosen level
of confidence that the population P falls much as we did in Chapter 2 for its zero-order analog, r.
There, hi Section 2.8.2, we initially used the exact / values for the available degrees of freedom.
Using that method, for the 95% confidence interval, the margin of error, me$ = t(SE$), where,
fardf = n - k - l = 6 2 - 4 - 1 = 57, t = 2.002 (Appendix Table A). The me for
a (3, is 2.002 (S£p(). The standard errors for publications and citations are, respectively, .124
and .102, and the margins of error are .248 and .204, so the 95% confidence interval for p
for publications is .134 ± .248, from —.11 to .38, and the 95% confidence interval for |3 for
citations is .357 ± .204, from .15 to .56.

Thus we can see that the redundancy with other variables has not only reduced the P for
publications (to .134 from rY.publications — -506) as compared to citations (to .357 from
rY.atations = -550), it also has made it a less reliable estimate of the population value. In
contrast, the P for sex, although smaller in size than that for citations, .047 versus .357, has a
slightly smaller SE, .096 versus .102. Sex shared 5% of its variance with the other IVs, whereas
citations shared 16% of its variance with the other IVs.

Converting from these back to the SEB we find
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3.6.2 Confidence Intervals for R2

The C/s that follow for R2 and differences between independent /?2s are from Olkin and Finn
(1995). They are based on large-sample theory and will yield adequate approximations for
df > 60.

We have found that for our sample of 62 faculty members, our four IV s yield an R2 of .5032.
The variance error of R2 is given by

Substituting,

Therefore the standard error, SER2 = V-00646 = .080.
95% confidence intervals using exact t values are routinely reported in the literature. Alter-

natively, one may opt to use some other probability, such as 80%, as providing reasonable
bounds for the purposes of the study. In recognition of the fairly rough approximation pro-
vided by any of these limits, one may use the approximate constant multipliers (tc) of the SEs
for the desired degree of inclusion of Section 2.8.2:

ci
tc

99%
2.6

95%
2

80%
1.3

2/3
1

The 80% me for/?2 = 1.3(.0804) = .1045, so the approximate 80% CI is .503 ± .104,
from .40 to .61. (The 95% me = 2 (.0804) = .161, so the approximate 95% CI for R2 is
.503 ±.161, from .34 to .66.)

3.6.3 Confidence Intervals for Differences
Between Independent /72s

For our running example of 62 cases (University V), we found the R\ = .5032 for the k = 4 TVs.
For the same IVs in University W, where n = 143, assume that R2^ = .2108. The difference
is .5032 — .2108 = .2924. Since these are different groups that were independently sampled,
we can find C/s and perform null hypothesis significance tests on this difference, using the SE
of the difference. As we have seen for other statistics, this is simply the square root of the sum
of the SE2s of the two R2s. We found the SE2 for V to be .006461 in the previous section, and
assume we find the SE2 for W to be .003350. Substituting,

The approximate 95% me = 2(.0825) = .1650, so the approximate 95% CI for anil hypothesis
significance test = .2924 ± .1650, from .13 to .46. Since the 95% CI does not include 0, the
difference between the universities' /?2s is significant at the OL — .05 level.

3.6.4 Statistical Tests on Multiple and Partial Coefficients

In Chapter 2 we presented statistical inference methods for the statistics of simple regression
and correlation analysis, that is, when only two variables are involved. As we have seen, the test
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of the null hypothesis that R2 is zero in the population can be accomplished by examination of
the lower confidence limit for the desired alpha level (e.g., the 95% two-tailed CI). Equivalently,
the statistic F may be determined as

with df = k and n — k— 1.
F may also be computed (or provided as computer output) as a function of raw scores in the

classic analysis of variance format. As we saw in the one-TV case, the total sample variance
of Y may be divided into a portion accounted for by the IV, which is equal to the variance of
the estimated Y values, sdl, and a portion not associated with the IV, the "residual" or "error"
variance, sd2-. Similarly, the sum of the squared deviations about the mean of Y may be
divided into a sum of squares (SS) due to the regression on the set of FVs, and a residual sum
of squares. When these two portions of the total are divided by their respective df, we have the
mean square (MS) values necessary for determining the F values, thus

When F is expressed as the ratio of these two mean squares, we obtain

Canceling the £] y2 term from the numerator and denominator and simplifying, we obtain
Eq. (3.6.5).

Let us return to our running example of academic salaries. The four independent variables
produced R2 = .5032. Because there were 62 faculty members, by Eq. (3.6.5),

ford/= 4,57.
Turning to the tabled F values for a = .01 (Appendix Table D.2), we find an F value (by

interpolation) of 3.67 is necessary for significance. Because the obtained F value exceeds this
value, we conclude that the linear relationship between these four IVs and salary is not likely
to be zero in the population.

As previously noted, srit prif and |3, differ only with regard to their denominators. Thus
none can equal zero unless the others are also zero, so it is not surprising that they must yield
the same tt value for the statistical significance of their departure from zero. It should also be
clear that because 5, is the product of P and the ratio of standard deviations, it also can equal
zero only when the standardized coefficients do. Thus, a single equation provides a test for the
significance of departures of all the partial coefficients of X, from zero. They either are, or are
not, all significantly different from zero, and to exactly the same degree.

ti will carry the same sign as sr, and all the other partial coefficients for that variable.
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For example, let us return to the running example where the obtained R2 of .5032 was found
to be significant for k = 4 and n = 62. The srfi for the four IVs were, respectively, .278, .101,
-.046, and .328.

Determining their t values we find

Looking these values up in the t table (Appendix Table A) for 57 df, we find that time
since Ph.D. and number of citations are significant at the .01 level but publications and sex
are not significant at the .05 level. We conclude that time and citations both make unique
(direct) contributions to estimating salary. We may not reject the nil hypothesis that sex and
publications have no unique (direct) relationship to salary in the population once the effects of
time and citations are taken into account.

It is quite possible to find examples where R2 is statistically significant but none of the tests
of significance on the individual IVs reaches the significance criterion for rejecting the nil
hypothesis. This finding occurs when the variables that correlate with Y are so substantially
redundant (intercorrelated) that none of the unique effects (0s) is large enough to meet the
statistical criterion (see Chapter 10 for a more extensive discussion of this problem). On the
other hand, it may also happen that one or more of the t tests on individual variables does
reach the criterion for significance although the overall R2 is not significant. The variance
estimate for the regression based on k IVs is divided by k to form the numerator of the F
test for R2, making of it an average contribution per IV. Therefore, if most variables do not
account for more than a trivial amount of Y variance they may lower this average (the mean
square for the regression) to the point of making the overall F not significant in spite of the
apparent significance of the separate contributions of one or more individual IVs. In such
circumstances, we recommend that such IVs not be accepted as significant. The reason for this
is to avoid spuriously significant results, the probability of whose occurrence is controlled by
the requirement that the F for a set of IVs be significant before its constituent IVs are t tested.
This, the "protected t test," is part of the strategy for statistical inference that is considered in
detail in Chapter 5.

3.7 STATISTICAL PRECISION AND POWER ANALYSIS

3.7.1 Introduction: Research Goals and the Null Hypothesis

Almost every research effort is an attempt to estimate some parameter in some population.
In the analyses described in this book, the parameters in question are represented by multiple
and partial regression and correlation coefficients. Traditionally the behavioral sciences have
focused almost entirely on the issue of the simple presence and direction of a partial regression
coefficient, or the confidence that there is some correlation between a dependent variable and
a set of independent variables in the population. Thus the statistical tests have generally been
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focused on the null (nil) hypothesis that the population coefficient is zero. Although this is
sometimes a useful question and thus an appropriate research goal, its limitations in advancing
the progress of science have been recognized in articles as well as in an organized effort to
change the focus of research reports (Wilkinson & the APA Task Force on Statistical Inference,
1999).

The precision of any statistic is identified by its standard error and the associated confidence
interval. Its statistical power is the probability of rejecting the null hypothesis when it is false.
Both are determined as a function of three elements, the size of the effect in the population, the
df which are determined primarily by the sample size, and the chosen margin of error or alpha
level. Thus, it is appropriate to view statistical power as a special case of the more general
issue of the precision of our estimates.

In this section we extend consideration of these issues, which were introduced in Chapter 2,
to the multiple independent variable case. Although we review the steps necessary for the
hand computation of power and precision, and provide the necessary Appendix tables, we
recommend the use of a contemporary user-friendly computer program such as Sample Power
(SPSS) or Power and Precision (Borenstein, Cohen, and Rothstein, 2001), which will facil-
itate the user's appreciation of the interaction among the determinants of statistical power.
The emphasis of this presentation is an understanding of the influences that contribute to the
precision and power of any study, so that each investigator can make appropriate choices of
such parameters in planning or evaluating research.

3.7.2 The Precision and Power of R2

As noted earlier, both precision and power are determined as a function of the effect size,
the sample size, and the selected probability parameter. For simplicity let us begin with the
assumption that we will be using 95% CI or, equivalently for the special case of the nil
hypothesis, the .05 significance criterion. As we plan our study, the question is what precision
and power will we have for a given proposed n, or for each of a set of alternative ns. The effect
size that is relevant is the population R2.

Precision
Suppose that we anticipate that the population R2 as estimated by a set of six IVs is about .2.

The sample size that we have budgeted for is 120 cases. Application of Eq. (3.6.3) gives us
the SER2 and tells us that an empirical estimate of this population value (which would average
.24 in a sample of this size; see the section on shrinkage) would have an 80% CI of. 16 - .32.
Our substantive theory will be needed to guide us in the judgment as to whether this CI is so
large that it fails to contribute an increment to our knowledge about these phenomena. If it is
judged that it is too large, there are two possible remedies. The simple, but often expensive
and sometimes infeasible one is to increase the sample size. If this is possible the precision
can be recomputed with a new n.

An alternative method of increasing the df for precision (and power) is to reduce the number
of IVs from the proposed six to a smaller number, if that will result in no material loss of effect
size or critical information. The effective n in these equations is not the actual sample size but
rather the df, which is n — k — 1. If some of the variables are substantially correlated it may
be that they can be usefully consolidated. If the loss to R2 is small enough, a recomputation of
the CI may demonstrate adequate precision.

The selected me can also be altered. As we argued earlier, it is often the case that an 80%
C7, or even a CI that yields 2 to 1 odds of including the parameter, may be adequate for the
scientific purposes of the investigation.
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For an illustration, let us return to our academic salary example. Suppose that we were
interested in examining another university department for the same issues. This department
has 34 current faculty members. We anticipate that this department is a member of the same
population, and that the population R2 will be about the same as it was in the department rep-
resented by our current data, where we found R2 = .503 (80% CI = .40 - .61, Section 3.6.2).
We find that in the proposed department the 80% CI, given a .5 R2 in the population, would
be on average .38 - .74. If this is too large to be informative, and we do not feel that using the
2/1 odds rule to generate narrower CI would serve our purpose, there is little point in carrying
out the study. Once again, this SE was developed for large samples, so caution must be used
in applying it to small samples.

Power Analysis
As we noted earlier, statistical power analysis is concerned with the special case of determin-

ing the probability that the sample value will be significantly different from some hypothesized
value, typically one of no effect such as a zero R2. This is a special case because when the CI
does not include this null value the statistical criterion has been met (at the a criterion used
to determine the CI). Again, one employs the appendix tables (or more conveniently a com-
puter program) by selecting the expected population R2, the proposed sample n, the number
of predictor variables, and the significance criterion, and determining (or reading out) the
probability that the sample CI will not include the null value. Although more complete tables
for this purpose are provided in J. Cohen (1988), this can also be accomplished by following
these steps:

1. Set the significance criterion to be used, a. Provision is made in the appendix for a = .01
and a = .05 in the L tables (Appendix Tables E.I and E.2).

2. Determine the population effect size ES for R2 =

3. Determine L by

4. Determine the power by finding the row corresponding to the df in the selected appendix
table, locating an L as close as possible to the computed value, and looking up the column
to determine the estimated power.

For example, in the case noted earlier of the new department with 34 faculty members, if
the population value is similar to our computed one (.50), the ES = .503/1 — .503 = 1.012,
and L = 1.012(34 - 3 - 1) = 30.36. Looking in Appendix Table E.I at kB = df = 3, we
find that the computed L is larger than the value in the last column and thus the probability of
finding the sample R2 to be greater than zero with a = .01 is at least |3 = .99. On the other
hand, the reader may confirm that if the relationship were more in the range that is typical of
many behavioral studies—for example, a population R2 of .2—even using the less conservative
a = .05, our chances of finding the sample value to be statistically significant are only slightly
better than 50-50.

When the expected power is unacceptably low it may be increased by increasing the df
(mainly by increasing ri) or by lowering the selected value of a. The first two steps used to
determine the n* required for a desired power and R2 are as shown earlier. L is located for
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the row corresponding to the df and column corresponding to the desired power. Then n* is
determined by

In the proposed example of population/?2 = .20, so ES =f2 = R2/(l-R2) = .2/(l-.2) =
.25, if we desire power = .80 we will need L = 10.90 (Appendix Table E.2, with 3 df) so that
n* = (10.90/.25) + 3 + 1 = 48.

Sometimes the effect size can be increased by changes in the sampling strategy (for example,
by selecting more extreme subjects), by improvement of measures (increases in their reliability
and validity), or by altering the experimental protocol to produce a stronger experimental
manipulation. These methods of enhancing power are likely to be especially positive for the
scientific payoff of a study, and thus may often be recommended as the first alterations to be
considered.

Although it is much to be preferred that the substantive theory and prior research determine
the expected population value of/?2, some rules of thumb have been suggested for the use of
researchers who are unable to provide more appropriate values. Values of .02, .13, and .26
have been proposed as potentially useful estimates of small, medium, and large effect sizes for
the population R2. These values should probably be adjusted upward by the researcher who
intends to use more than a few IVs.

3.7.3 Precision and Power Analysis for Partial Coefficients

Precision
As noted earlier, partial coefficients for a given IV share the same numerator, the exception

being the raw unit regression coefficient for which the ratio of standard deviations of Y and
that IV also appears. When the units employed for B are meaningful, the CI for B will provide
the most useful information about the precision of the expected sample values. (See Chapter 5
for a discussion of methods of improving the utility of measure units.) When the units are not
meaningful, precision is usually referenced to P as a function of its SE.10

For example, again using our academic salary illustration, we are interested in the value
of the gender difference in salary in departments from some other academic field than that
represented by our current data. We would like to be able to assess the sex difference with a me
of $ 1000. The researcher may know that about 30% of the faculty members in these departments
are women; thus the sd of sex will be about V-30(.70) = .458 in the proposed study. The sd of
faculty salaries may be determined from administration records or estimated from the current
study as about $8000. Using Eq. (3.6.1), rearranging, and solving for SEB = me/2 = $500,
we find

so that we will need nearly a thousand cases. If, on the other hand, we were content with a me
representing about 2/1 odds of including the population value (so that we could tolerate a SEB

of $1000), a sample of about 230 would suffice.

10We do not provide C/s for sr or sr2, which are asymmetrical and complex.
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Suppose, however, that for the research that we are planning we have no reasonable
precedent for estimating fi, previous research having used different measures of this con-
struct than the one we are planning to employ. In this case we may use the P obtained in
these studies to estimate the value expected in the planned study, and appropriately adjust for
correlations with other IVs.

Statistical Power of Partial Coefficients
As we have noted, partial coefficients have a common test of statistical significance. There-

fore they also have in common the statistical power to reject a false null (nil) hypothesis that the
population value is zero. In the case of statistical power, however, it is convenient to define the
effect size as the increment in R2 attributable to a given IV, that is, its sr2. As we noted earlier
in the chapter, sr differs from |3 by the square root of its tolerance, the proportion of its vari-
ance that is independent of other predictors. As noted previously and discussed in Chapter 10,
other things being equal, the SEs of the partial effects of an IV, and thus imprecision in their
estimates, are generally increased by increases in correlation with other IVs.

In order to calculate the power of the proposed study to reject the null hypothesis that the
partial coefficients are nonzero, one enters the first row of the power tables (or, preferably,
a computer program) for the selected significance criterion with the L determined from the
proposed n and the estimated proportion of Y variance that is uniquely accounted for by the
IV in question. If it should happen that the investigator can more readily estimate B or |3, these
coefficients can be converted to sr2 providing that the multiple correlation of the IV in question
with the other IVs and, in the case of B, SY, and 5, or their ratio, can be estimated.

To illustrate, suppose that we want to have 90% power to detect a sex difference in salary
under the same assumptions as in the previous example. Using Eq. (3.5.8) to convert from B
to sr, we estimate

and sr2 = .02. These parameters may be looked up in the computer program. Alternatively,
we may compute the ES =

IfR2 = .20 the ES = .02/.80 = .025. Looking up L in Appendix Table E.2 for row kB = 1
and column P = .90 we find that L = 10.51, and applying this to Eq. (3.7.1), we find that we
will need 422 cases to have a 90% chance of rejecting the null hypothesis at a = .05. Further
calculation will show that we will need n* = 510 if we wish to reject the null hypothesis at
the .01 level. If this number is too large, we may reconsider whether we can be content with
80% power.11

In general it is likely to be more practically and theoretically useful to examine the con-
sistency of the new data against some non-nil value. For example, it might be decided that
any discrepancy as large as $1000 in annual salary (net of the effects attributable to other
causes) would be unmistakably material to the people involved. In such a case the difference
between our estimated population value ($3000) and this value is only $2000, so we re-enter
the equation with this value.

11 One reason we like computer programs for determining power and needed sample sizes is that they quickly train
the researcher to appreciate how statistical power is closely linked to a, ES, df, and n, which may lead to improvements
in judgments and strategy on these issues.
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Once again, for those investigators who absolutely cannot come up with a more substantively
or theoretically based estimate of the population effect size, some rules of thumb are sometimes
useful. These values are usually expressed in terms of the proportion of the Y variance that is
not explained by other variables that is explained by X{. Small effects may be defined as 2%
of the unexplained variance, medium effects as 15% of the unexplained variance, and large
effects as 35%. As we will see in Chapter 5, these values are relatively large when we are
talking about a single IV, and it may be at least as appropriate to use the values of r given in
Chapter 2 as small, medium, and large, when one is examining a single sr{.

Several other topics in power analysis are presented in Chapter 5, following the exposition
of power analysis when multiple sets of IVs are used. Among the issues discussed there are
determination of power for a given n, reconciling different n*s for different hypotheses in
a single analysis, and some tactical and other considerations involved in setting effect size and
power values.

3.8 USING MULTIPLE REGRESSION EQUATIONS
IN PREDICTION

One use of MRC is for prediction, literally forecasting, with only incidental attention to expla-
nation. Although we have emphasized the analytic use of MRC to achieve the scientific goal of
explanation, MRC plays an important role in several behavioral technologies, including person-
nel and educational selection, vocational counseling, and psychodiagnosis. In this section we
address ourselves to the accuracy of prediction in multiple regression and some of its problems.

3.8.1 Prediction of K for a New Observation

The standard error of estimate, SEY_Y, as we have seen, provides us with an estimate of the
magnitude of error that we can expect in estimating Y values over sets of future Xi, X2,..., Xk

values that correspond to those of the present sample. Suppose, however, we wish to deter-
mine the standard error and confidence intervals of a single estimated Yo from a new set of
observed values X1O,X2O,... ,XkO. In Section 2.8.2 we saw that the expected magnitude of
error increases as the X, values depart from their respective means. The reason for this should be
clear from the fact that any discrepancy between the sample estimated regression coefficients
and the population regression coefficients will result in larger errors hi Yo when X, values are
far from their means than when they are close.

Estimates of the standard error and confidence intervals for Y0 predicted from known values
Xu,X2i,... ,Xki is given by

where the first summation is over the k IVs, the second over the k(k — l)/2 pairs of IVs (i.e.,
/ < j) expressed as standard scores, Py is the f} for estimating X, from Xj, holding constant
the remaining k — 2 IVs, and /?? is literally R2

il2 (/) k. Although at first glance this formula
appears formidable, a closer examination will make clear what elements affect the size of this
error. The SEY_Y is the standard error of estimate, and as in the case of a single TV, we see that
increases in it and/or in the absolute value of the TV (zio) will be associated with larger error.
The terms that appear in the multiple IV case that did not appear in the Eq. (2.8.3) for the single
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variable case (p^- and R?) are functions of the relationships among the independent variables.
When all independent variables are uncorrelated (hence all Py and all Rf equal zero), we see
that the formula simplifies and sdY _Y is minimized (for constant SEY_Y, n, and z[O values).

It is worth emphasizing the distinction between the validity of the significance tests per-
formed on partial coefficients and the accuracy of such coefficients when used in prediction.
In analytic uses of MRC, including formal causal analysis, given the current level of theoret-
ical development in the behavioral and social sciences, the information most typically called
upon is the significance of the departure of partial coefficients from zero and the sign of such
coefficients. The significance tests are relatively robust to assumption failure, particularly so
when n is not small. Using the regression equation for prediction, on the other hand, requires
applying these coefficients to particular individual variable values for which the consequence
of assumption failure is likely to be much more serious.

As an illustration, let us examine the scatterplot matrix (SPLOM)12 for our running example
of academic salaries. Figure 3.8.1 provides the scatterplot for each pair of variables, includ-
ing the predicted salary and the residual. As can be seen, the original distributions of years
and publications are not as symmetrical as is the distribution of salary. Probably as a conse-
quence, the residuals above the mean Y appear to have a somewhat higher variance than those
below the mean (the reader may check to determine that this is indeed the case). The variance
of the residuals otherwise looks passably normal (as indeed they should, because this example
was generated to meet these assumptions in the population). Failure of the homoscedasticity
assumption may not be serious enough to invalidate tests of statistical significance, but it still
could invalidate actual prediction if based on the assumption of equal error throughout the
distribution.

3.8.2 Correlation of Individual Variables With Predicted Values

Further insight may be gained by noting that regardless of the sign, magnitude, or significance
of its partial regression coefficient, the correlation between Xt and the Y determined from the
entire regression equation is

Thus it is invariably of the same sign and of larger magnitude than its zero-order r with Y. (See
values at the bottom of Fig. 3.8.1 for reflection of this in our running example.) Reflection on
this fact may help the researcher to avoid errors in interpreting data analyses in which variables
that correlate materially with Y have partial coefficients that approach zero or are of opposite
sign. When partial coefficients of the Xt approximate zero, whatever linear relationship exists
between Xt and Y is accounted for by the remaining independent variables. Because neither
its zero-order correlation with Y nor its (larger) correlations with Y is thereby denied, the
interpretation of this finding is highly dependent on the substantive theory being examined.
Even without a full causal model, a weak theoretical model may be employed to sort out
the probable meaning of such a finding. One theoretical context may lead to the conclusion
that the true causal effect of X{ on Y operates fully through the other IVs in the equation.
Similarly, when the BYt and rn are of opposite sign, Xt and one or more of the remaining IVs
are in a suppressor relationship. Although it is legitimate and useful to interpret the partialed
relationship, it is also important to keep in mind the zero-order correlations of X, with Y (and
hence with Y).

12The fact that we have not previously introduced this graphical aid should not be taken to deny an assertion that
such a matrix is probably the first step in analyzing a data set that should be taken by a competent data analyst (see
Chapter 4). The figures along the diagonal reflect the distribution of each variable.



FIGURE 3.8.1 Scatterplot matrix for the academic salary example.

3.8.3 Cross-Validation and Unit Weighting

Several alternatives to regression coefficients for forming weighted composites in prediction
have been proposed (Darlington, 1978; Dawes, 1979; Green, 1977; Wainer, 1976). Although
P weights are guaranteed to produce composites that are most highly correlated with ZY (°r Y)
in the sample on which they are determined, other weights produce composites (call them UY)
that are almost as highly correlated in that sample. "Unit weighting", the assignment of the
weights of +1 to positively related, —1 to negatively related, and 0 to poorly related IVs are
popular candidates—they are simple, require no computation, and are not subject to sampling
error (Green, 1977; Mosteller & Tlikey, 1977; Wainer, 1976). For our running example on



3.8.4 Multicollinearity

The existence of substantial correlation among a set of IVs creates difficulties usually referred to
as the problem of multicollinearity. Actually, there are two distinct problems—the substantive
interpretation of partial coefficients and their sampling stability.

Interpretation
We have already seen in Section 3.4 that the partial coefficients of highly correlated IVs

analyzed simultaneously are reduced. Because the IVs involved lay claim to largely the same
portion of the Y variance by definition, they cannot make much by way of unique contributions.
Interpretation of the partial coefficients of IVs from the results of a simultaneous regression
of such a set of variables that ignores their multicollinearity will necessarily be misleading.

Attention to the Rf of the variables may help, but a superior solution requires that the
investigator formulate some causal hypotheses about the origin of the multicollinearity. If it
is thought that the shared variance is attributable to a single central property, trait, or latent
variable, it may be most appropriate to combine the variables into a single index or drop
the more peripheral ones (Sections 4.5 and 5.7), or even to turn to a latent variable causal
model (see Chapter 12). If, on the other hand, the investigator is truly interested in each of the
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academic salary, we simply add (that is, we use weights of +1.0) the z scores of each subject
for time since Ph.D., publications, and citations, and subtract (that is, use weights of —1.0)
each score for female to produce the composite UY for each subject. We find that UY correlates
.944 with the (3-weighted ZY (or Y), and therefore (not surprisingly) .670 with ZY (or 7), only
modestly lower than the .709 (= RY) of ZY with ZY (or Y).

However, the real question in prediction is not how well the regression equation determined
for a sample works on that sample, but rather how well it works in the population or on other
samples from the population. Note that this is not the estimate of the population p^, (i.e., the
"shrunken" value given in Eq. 3.5.5), but rather an estimate of the "cross-validated" rYY for
each sample's P applied to the other sample, which is even more shrunken and which may be
estimated by

A. —

(Rozeboom, 1979). R2 answers the relevant question, "If I were to apply the sample regression
weights to the population, or to another sample from the population, for what proportion of
the Y variance would my thus-predicted Y values account?"

For our running example with n = 62, our sample regression equation yields R2 = \ —
(1 - .5032)(62 + 4)/(62 - 4) = .4347, so R = .659. We found earlier, however, that the
unit-weighted composite for the cases we have yielded an r = .670, greater than R. Now this
value is subject to sampling error (so is /?), but not to shrinkage, because it does not depend on
unstable regression coefficients. As far as we can tell, unit weights would do as well or better
in prediction for these data than the sample's standardized regression weights based on only
62 cases.

Unit weights have their critics (Pruzek & Fredericks, 1978; Rozeboom, 1979). For certain
patterns of correlation (suppression is one) or a quite large n: k ratio (say more than 20 or 30),
unit weights may not work as well in a new sample as the original regression coefficients will.
An investigator who may be in such a circumstance is advised to compute R and compare it
with the results of unit weighting in the sample at hand.
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variables in its own right, analysis by a hierarchical procedure may be employed (Section 5.3).
To be sure, the validity of the interpretation depends on the appropriateness of the hierarchical
sequence, but this is preferable to the complete anarchy of the simultaneous analysis in which
everything is partialed from everything else indiscriminately.

Sampling Stability
The structure of the formulas for SEB. (Eq. 3.6.1) and SE^ (Eq. 3.6.2) makes plain that they

are directly proportional to Vl/(l — R2). A serious consequence of multicollinearity, therefore,
is highly unstable partial coefficients for those IVs that are highly correlated with the others.13

Concomitantly, the trustworthiness of individually predicted Yo is lessened as the R2s for a set
of IVs increase, as is evident from the structure of Eq. (3.6.1). Large standard errors mean
both wide confidence intervals and a lessened probability of rejecting a null hypothesis (see
Section 3.7). Chapter 10 discusses issues of multicollinearity in more detail.

3.9 SUMMARY

This chapter begins with the representation of the theoretical rationale for analysis of multiple
independent variables by means of causal models. The employment of an explicit theoretical
model as a working hypothesis is advocated for all investigations except those intended for
simple prediction. After the meaning of the term cause is briefly discussed (Section 3.1.1) rules
for diagrammatic representation of a causal model are presented (Section 3.1.2).

Bivariate linear regression analysis is extended to the case in which two or more independent
variables (IVs), designated X{(i = 1, 2,..., k) are linearly related to a dependent variable Y.
As with a single IV, the multiple regression equation that produces the estimated Y is that
linear function of the k IVs for which the sum over the n cases of the squared discrepancies of
Y from F, E(7 — F)2, is a minimum.

The regression equation in both raw and standardized form for two IVs is presented and
interpreted. The standardized partial regression coefficients, {$,-, are shown to be a function of
the correlations among the variables; fi, may be converted to the raw score B{ by multiplying
each by sdy/s^ (Section 3.2).

The measures of correlation in MRC analysis include:

1. R, which expresses the correlation between Y and the best (least squared errors) linear
function of the k IVs (7), and R2, which is interpretable as the proportion of Y variance
accounted for by this function (Section 3.3.1).

2. Semipartial correlations, srh which express the correlation of Xi from which the other
IVs have been partialed with Y. sr2 is thus the proportion of variance in Y uniquely associated
with Xh that is, the increase in R2 when X, is added to the other IVs. The ballantine is
introduced to provide graphical representation of the overlapping of variance with Y ofXl and
X2 (Section 3.3.2).

3. Partial correlations, prt, which give the correlation between that portion of Y not linearly
associated with the other IVs and that portion of Xt that is not linearly associated with the other
IVs. In contrast with sr{, pr{ partials the other IVs from both X{ and Y. prf is the proportion of
Y variance not associated with the other IVs that is associated with X, (Section 3.3.3).

Each of these coefficients is exemplified, and shown to be a function of the zero-order
correlation coefficients. The reader is cautioned that none of these coefficients provides a basis
for a satisfactory Y variance partitioning scheme when the IVs are mutually correlated.

13This is the focus of the discussion in Section 4.5.
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The alternative causal models possible for Y and two IVs are discussed, exemplified, and
illustrated. The distinction between direct and indirect effects is explained, and models con-
sistent with partial redundancy between the IVs are illustrated. Mutual suppression of causal
effects will occur when any of the three zero-order correlations is less than the product of the
other two (Section 3.4.1). Spurious effects and entirely indirect effects can be distinguished
when the causal sequence of the IVs is known (Section 3.4.2).

The case of two IVs is generalized to the case of k IVs in Section 3.5. The use of the various
coefficients in the interpretation of research findings is discussed and illustrated with concrete
examples. The relationships among the coefficients are given.

Statistical inference with k IVs, including SEs and C/s for standardized and raw unit regres-
sion coefficients and R2 are presented in Section 3.6. C/s for the difference between independent
^?2s are shown as well as a series of statistical tests on multiple and partial coefficients.

Determination of the precision of expected findings from proposed investigations is
described and illustrated. Statistical power analysis is shown to be a special case when the
question is limited to a non-nil value of a multiple or partial coefficient (Section 3.7).

A range of prediction situations are described in Section 3.8, including the prediction of
a value of Y for a newly observed case. Correlations among the predictors will affect the
adequacy of the estimation of the individual coefficients and the stability of the model. It is
shown that least squares estimation may not yield optimal prediction for future studies or cases.



4
Data Visualization,
Exploration, and Assumption
Checking: Diagnosing and
Solving Regression Problems I

4.1 INTRODUCTION

In Chapters 2 and 3 we focused on understanding the basic linear regression model. We
considered fundamental issues such as how to specify a regression equation with one, two, or
more independent variables, how to interpret the coefficients, and how to construct confidence
intervals and conduct significance tests for both the regression coefficients and the overall pre-
diction. In this chapter, we begin our exploration of a number of issues that can potentially arise
in the analysis of actual data sets. In practice, not all data sets are "textbook" cases. The purpose
of the present chapter is to provide researchers with a set of tools with which to understand
their data and to identify many of the potential problems that may arise. We will also introduce
a number of remedies for these problems, many of which will be developed in more detail in sub-
sequent chapters. We believe that careful inspection of the data and the results of the regression
model using the tools presented in this chapter helps provide substantially increased confidence
in the results of regression analyses. Such checking is a fundamental part of good data analysis.

We begin this chapter with a review of some simple graphical displays that researchers can
use to visualize various aspects of their data. These displays can point to interesting features
of the data or to problems in the data or in the regression model under consideration when it is
applied to the current data. Indeed, Tukey (1977) noted that a graphical display has its greatest
value "when it forces us to notice what we never expected to see" (p. v, italics and bold in
original.) Historically, labor-intensive analyses performed by hand or with calculators served
the function of providing researchers with considerable familiarity with their data. However,
the simplicity of "point and click" analyses in the current generation of statistical packages has
made it easy to produce results without any understanding of the underlying data or regression
analyses. Modern graphical methods have replaced this function, producing displays that help
researchers quickly gain an in-depth familiarity with their data. These displays are also very
useful in comparing one's current data with other similar data collected in previous studies.

Second, we examine the assumptions of multiple regression. All statistical procedures
including multiple regression make certain assumptions that should be met for their proper
use. In the case of multiple regression, violations of these assumptions may raise concerns as
to whether the estimates of regression coefficients and their standard errors are correct. These

101
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concerns, in turn, may raise questions about the conclusions that are reached about indepen-
dent variables based on confidence intervals or significance tests. But, even more important,
violations of assumptions can point to problems in the specification of the regression model
and provide valuable clues that can lead to a revision of the model, yielding an even greater
understanding of the data. In other cases, violations of assumptions may point to complexities
in the data that require alternative approaches to estimating the original regression model.
We present a number of graphical and statistical approaches that help diagnose violations of
assumptions and introduce potential remedies for these problems.

The themes of data exploration/visualization coupled with careful checking of assumptions
are familiar ones in statistics. Yet, diffusion of these themes to the behavioral sciences has
been uneven, with some areas embracing and some areas neglecting them. Some areas have
primarily emphasized hypothesis testing, confirmatory data analysis. Yet, as Tukey (1977)
emphasized, "Today, exploratory and confirmatory can—and should—proceed side by
side" (p. vii, bold in original). Some areas such as econometrics and some areas of sociology
have emphasized careful checking of assumptions, whereas some areas of psychology have
been more willing to believe that their results were largely immune to violations of assumptions.
The increasing availability of both simple methods for detecting violations and statistical
methods for addressing violations of assumptions decreases the force of this latter belief. Proper
attention to the assumptions of regression analysis leads to benefits. Occasionally, gross errors
in the conclusions of the analysis can be avoided. More frequently, more precise estimates of
the effects of interest can be provided. And often, proper analyses are associated with greater
statistical power, helping researchers detect their hypothesized effects (e.g., Wilcox, 1998). We
hope to encourage researchers in those areas of the behavioral sciences that have overlooked
these powerful themes of data exploration/visualization and assumption checking to begin
implementing them in their everyday data analysis.

We defer until later in the book consideration of two other issues that arise in multiple
regression with real data sets. First is the existence of outliers, unusual cases that are far from the
rest of the data. In some cases, the existence of a few outliers, even one, can seriously jeopardize
the results and conclusions of the regression analysis. Second is multicollinearity, the problem
of high redundancy between the IVs first introduced in Section 3.8.4. Multicollinearity leads
to imprecise estimates of regression coefficients and increased difficulty in interpreting the
results of the analysis. Both of these issues receive detailed consideration in Chapter 10.

Boxed Material in the Text
Finally, the structure of Chapter 4 adds a new feature. We adopt a strategy of putting

some material into boxes to ease the presentation. The material in the boxes typically contains
technical details that will be of primary interest to the more advanced reader. The boxes provide
supplementation to the text; readers who are new to regression analysis can skip over the boxed
material without any loss of continuity. Boxed material is set apart by bold lines; boxes appear
in the section in which the boxed material is referenced. Readers not interested in the technical
details may simply skip the boxed material.

4.2 SOME USEFUL GRAPHICAL DISPLAYS
OF THE ORIGINAL DATA

In regression analysis, the analyst should normally wish to take a careful look at both the
original data and the residuals. In this section, we present graphical tools that are particularly
useful in examining the original data. Reflecting the ease of producing graphical displays on
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modern personal computers, our focus here is on using graphical tools as a fundamental part
of the data-analysis process. These tools help display features of the distributions of each
of the variables as well as their joint distributions, providing initial clues about the likely
outcomes and potential problems of the regression analysis. Graphical displays can provide
a more complete and more easily understandable portrayal of the data than typically reported
summary statistics. Graphical displays also do not depend on assumptions about the form of the
distribution or the nature of the relationship between the independent and dependent variables.
These themes will be further considered in Section 4.4, where we introduce graphical tools for
the examination of the residuals.

We begin Section 4.2 with univariate displays that describe single variables, then consider
the scatterplot, which shows the relationship between two variables, and finally the scatterplot
matrix, which simultaneously displays each possible pair of relationships between three or
more variables. The basics of several of these graphical displays will be familiar to many
readers from introductory statistics courses and Chapters 2 and 3 of this book. What will be
new are several enhancements that can increase the information available from the plot. We
will also use many of these displays as building blocks for graphical examination of data in
later sections of this chapter.

4.2.1 Univariate Displays

Univariate displays present a visual representation of aspects of the distribution of a single vari-
able. Data are typically portrayed in textbooks as having a normal or bell-shaped distribution.
However, real data can be skewed, have multiple modes, have gaps in which no cases appear,
or have outliers—atypical observations that do not fit with the rest of the data. Because each
of the univariate displays portrays different aspects of the data (Fox, 1990; Lee & Tu, 1997), it
is often helpful to examine more than one display to achieve a more complete understanding
of one's data.

Frequency Histograms
Perhaps the most commonly used univariate display is the frequency histogram. In the

frequency histogram, the scores on the variable are plotted on the x axis. The range of the
scores is broken down into a number of intervals of equal width called bins. The number of
scores in each interval, the frequency, is represented above the interval. Frequency histograms
provide a rough notion of the central tendency, variability, range, and shape of the distribution
of each separate variable. They also have some ability to identify outliers.

Figure 4.2.1 presents two different histograms of the variable years since Ph.D. for the
faculty salaries data set (n = 62) originally presented in Table 3.5.1. Panel (A) uses 5 bins.
This histogram depicts a single mode around 2.5 years since the Ph.D. (the midpoint of the
interval) with a right skewed distribution. Panel (B) uses 20 bins. Here, the distribution still
appears to be right skewed, but this histogram suggests that there may be two modes at about
2.5 years and 6 years post Ph.D., and that there may be an outlier at about 21 years post Ph.D.
The shape of the distribution is a bit less apparent and gaps in the distribution (scores with a
frequency of 0) are now more apparent.

The comparison of the two panels illustrates that histograms derived from the same data
can give different impressions with respect to the distribution of the underlying data and the
presence of outliers in the data set. The exact shape of the distribution will depend on two
decisions made by the analyst or the statistical package generating the histogram: (1) The
number of bins, which are intervals of equal width (e.g., 0-4, 5-9, 10-14, etc.), and (2) the
range of the data represented by the histogram. With respect to (2), some histograms represent
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(A) Five bins.

(B) Twenty bins.

Note: The two histograms portray the same data. The two graphical dis-
plays give somewhat different impressions of the underlying distribution.
The gaps and outlying values in the data are distinct with 20 bins.

FIGURE 4.2.1 Histograms of years since Ph.D.

the range of possible scores, some represent the actual range of data, and some represent
a convenient range (e.g., 0-25 years in the present case rather than the actual range of the data,
1-21 years). Statistical packages use one of several algorithms1 to calculate the number of bins
to be displayed, none of which assure that the frequency histogram will optimally represent all
of the features of the distribution. With complicated distributions, it can often be useful to vary
the number of bins and to examine more than one histogram based on the data. A large number
of bins should be used to identify outliers. Some statistical packages now permit the analyst
to easily vary the number of bins using a simple visual scale (a "slider") with the histogram
being continuously redisplayed as the number of bins is changed.

Stem and Leaf Displays
Closely related to the histogram is the stem and leaf display. This display is of particular

value in data sets ranging from about 20 to 200 cases. The stem and leaf display is the only
graphical display that retains the values of the original scores so that the original data can be
precisely reconstructed. Otherwise, the strengths and limitations of the stem and leaf display
closely parallel those of the histogram presented above (see also Fox, 1990, pp. 92-93 for
a more detailed discussion).

^ne popular algorithm is Sturgis' rule—the number of bins is 1 + log2(AO- For example, for N =
62, 1 + Iog2(62) = 1 + 5.95 « 7 bins would be used. The interval width is chosen as the (maximum-
minimum score + l)/(number of bins). If for the 62 cases the highest score were 21 and the lowest score were
1, Sturgis' rule produces an interval width of (21 — 2 + l)/7 = 2.86. When graphs are constructed by hand, easily
interpretable interval widths are often chosen (e.g., interval width = 1, 2, 5, 10). For example, if interval width = 5
were chosen, the intervals would be 0-4, 5-9, 10-14, 15-19, and 20-24.
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Note: Each stem represents the interval. Leaves repre-
sent the last digit of values of the observations within
the interval. The number of times the digit is repeated
corresponds to the frequency of the observation.

FIGURE 4.2.2 Stem and leaf display of years since Ph.D.

To illustrate, Fig. 4.2.2 presents a stem and leaf display for the years since Ph.D. data
(n = 62) presented in Table 3.5.1. To construct this display, an interval width is initially
chosen. We have chosen an interval width of 5 so that the display will be similar to the
histogram with 5 bins presented in Fig. 4.2.1, Panel (A). The stem indicates the range of scores
that fall in the interval.2 The lowest interval (0—4) includes scores from 0 to 4 and the second
from the highest interval (15-19) includes scores from 15 to 19. Leaves provide information
about the exact values that fall in each interval. The frequency of occurrence of each score
is indicated by repeating the value. For example, the lowest interval indicates no scores with
a value of 0, three scores with a value of 1, two scores with a value of 2, nine scores with
a value of 3, and six scores with a value of 4. The second to highest interval (15-19) has no
scores with a value of 15, three scores with a value of 16, no scores with a value of 17, one
score with a value of 18, and no scores with a value of 19.

Stem and leaf displays must be presented using a fixed-width typefont (e.g., Courier). The
leading digit of the leaves (for example, 1 for 10-14 and 2 for 20-24) is dropped so that each
number is represented as the same size in the display. If the stem and leaf display is rotated 90°
counterclockwise so that the numbers form vertical columns, then the display depicts the same
distribution as a histogram with the same number of bins. However, stem and leaf displays
have the advantage of also representing the exact numerical values of each of the data points.

Smoothing: Kernel Density Estimates
A technique known as smoothing provides the foundation for an excellent visual depiction

of a variable's underlying general frequency distribution. Often in the behavioral sciences
the size of our samples is not large enough to provide a good depiction of distribution in the
full population. If we were to take several samples from the same population and construct
histograms or stem and leaf displays, there would be considerable variation in the shape of the
distribution from sample to sample. This variation can be reduced by averaging adjacent data
points prior to constructing the distribution. This general approach is called smoothing.

The simplest method of smoothing is the running overage in which the frequencies are
averaged over several adjacent scores. To illustrate, Table 4.2.1 presents the subset of data
from Table 3.5.1 for the six faculty members who have values between 12 and 20 years

2The apparent limits of the interval are shown (e.g., 0-4 for first interval). Recall from introductory statistics that
when the data can be measured precisely, values as low as —0.5 or up to 4.50 could fall in the first interval. These
values are known as the real limits of the interval.
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TABLE 4.2.1
Weights Based on the Bisquare Distribution for X = 16

x,

20
19
18
17
16*
15
14
13
12

/

0
0
1
0
3
0
0
2
0

(A) d = 4

{Xi-Xc\

( d )

1.0
0.75
0.50
0.25
0.00

-0.25
-0.50
-0.75
-1.00

W,

0.00
0.19
0.56
0.88
1.00
0.88
0.56
0.19
0.00

/

0
0
1
0
3
0
0
2
0

(B)</ = 3

fXi~Xc\

( d )

1.33
1.00
0.67
0.33
0.00

-0.33
-0.67
-1.00
-1.33

Wi

0.00
0.00
0.31
0.79
1.00
0.79
0.31
0.00
0.00

Note: Xt is the score,/ is the frequency of the score, Xc is the location of the center of
the smoothing window, d is the bandwidth distance, and Wt is the weight given to a score
of Xj. Wj is calculated from the bisquare distribution. (A) provides the weights when the
bandwidth distance = 4; (B) provides the weights when the bandwidth distance = 3. Xc

is a score of 16 in this example, which is marked by an asterisk.

since the Ph.D. We identify a smoothing window over which the averaging should occur. The
smoothing window is a symmetric range of values around a specified value of the variable. We
identify a score of interest which establishes the center of the smoothing window, Xc. We then
identify a bandwidth distance, d, which represents the distance from the center to each edge of
the smoothing window. The width of the smoothing window is then 2d. For our illustration of
the calculation of a running average, we arbitrarily choose Xc = 16 and d = 2. The running
average is calculated using all scores that fall in the smoothing window between Xc—d and Xc+
d. In our example the smoothing window only includes the scores from 14 to 18, so the width
of the smoothing window is 4. For Xc = 16, the score marked by an asterisk in Table 4.2.1,
we would average the frequencies for scores of 14, 15, 16, 17, and 18, so forXc = 16,/avg =
(0 + 0 + 3 + 0 + l)/5 = 0.8. For Xc = 17, we would average the frequencies for frequencies
15, 16, 17, 18, and 19, so forXc = 17,/avg = (0 + 3 + 0 + 1 + 0) = 0.8. Running averages
are calculated in a similar fashion for each possible score in the distribution—we simply let
Xc in turn equal the value of each possible score.

In practice, a more complex smoothing method known as the kernel density estimate is
typically used because this method provides an even more accurate estimate of the distribution
in the population. The kernel density estimate is based on a weighted average of the data. Within
the smoothing window, the scores that lie close to Xc, the center of the smoothing window,
are given a relatively high weight. Scores that are further from Xc characterize the smoothing
window less well and are given a lower weight. Scores that lie outside the smoothing window
are given a weight of 0. This method of smoothing results in a density curve, a continuous
function whose height at any point estimates the relative frequency of that value of Xc in
the population. The height of the density curve at any point is scaled so that the total area
under the curve will be 1.0. Unlike the previous topics we have considered in this book, kernel
density estimation requires very intensive calculation and is consequently only performed on
a computer. Box 4.2.1 shows the details of the calculation for interested readers.
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BOX 4.2.1
Inside the Black Box: How Kernel Density Estimates

Are Calculated
To illustrate how a kernel density estimate is created at a single point, consider Xc = 16
in our distribution of years since Ph.D. in Table 4.2.1. We arbitrarily choose the
bandwidth distance d = 4 so that the width of the smoothing window = 8. Recall
that we wish to give scores at the center of the smoothing window a high weight and
scores further from the center of the interval lower weights. Several different weight
functions will achieve this goal; the bisquare weight function presented in Eq. (4.2.1)
is commonly used.

Table 4.2.1 presents the values used in the calculation of the weights and shows the
desired pattern of high weights at the center of the smoothing window and lower weights
for scores further from the center of the smoothing window. For example, for X, = 17,

Returning to our kernel density estimate, we can calculate its height at any value of
Xr using the following equation:

In Eq. (4.2.2), the height of the density curve is calculated at our chosen value of Xc, here
16, n is the number of cases in the full sample (here, 62 cases), d is bandwidth distance,
and/ is the frequency of cases atX,. W, is the weight given to each observation atX(. The
weight for Xl is determined by the value of the bisquare function applied to (X, —Xc)/d.

Let us apply Eq. (4.2.2) to the data in Table 4.2.1 A for d = 4. The score is given in
column 1, the frequency in column 2, (X{ —Xc)/d in column 3, and the weight from the
bisquare weight function (Eq. 4.2.1) in column 4. Beginning at X = 12 and continuing
to X = 20, we get

In practice, the statistical package calculates the value of the height for every possible
value of Xc over the full range of X, here X = l t o X = 21, and produces the kernel
density estimate, which is a smooth curve that estimates the distribution of X in the
population.

In Table 4.2. IB, we also provide the values of W, if we choose a smaller bandwidth,
here d = 3. As can be seen, the weight given to each observed score declines more
quickly as we move away from the Xc of interest. For example, when d = 3, the weight
for a score of 18 is 0.31, whereas when d = 4 the weight for a score of 18 is 0.56.
The analyst controls the amount of smoothing by selecting the bandwidth d, with larger
values of d producing more smoothing.
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The central problem for the analyst is to decide how big the width of the smoothing
window should be. Some modern statistical packages allow the analyst to change the size
of the smoothing window using a visual scale (slider), with the resulting kernel density esti-
mate being continuously redisplayed on the computer screen. Simple visual judgments by
the analyst are normally sufficient to choose a reasonable window size that provides a good
estimate of the shape of the distribution in the population. Figure 4.2.3 provides an illus-
tration of the effect of choosing different bandwidth distances for the full years since Ph.D.
data (n = 62) originally presented in Table 3.5.1. Figure 4.2.3(A) depicts bandwidth = 10,
in which oversmoothing has occurred and features of the data are lost (e.g., the mode
near the score of 5 is not distinct). Figure 4.2.3(B) depicts bandwidth = 1.5, in which
too little smoothing has occurred and the distribution is "lumpy." Figure 4.2.3(C), with
bandwidth = 4, provides a smooth curve that appears to depict the major features of the
data. Good kernel density plots include enough detail to capture the major features of the
data, but not to the extent of becoming "lumpy." Figure 4.2.3(D) shows a kernel density
estimate as an overlay over a histogram so that both depictions of the same data set are
available.

The great strength of kernel density plots is their ability to depict the underlying distribution
of the data in the population. However, kernel density estimates do not reproduce the informa-
tion about the data in the original sample and do not clearly portray unusual observations or
gaps in the distribution over which the scores have a frequency of 0.

Boxplots
Another commonly used univariate display is the boxplot, also known as the "box and

whiskers plot." Figure 4.2.4 displays a boxplot of the years since Ph.D. data. Note that the
values of the scores, here years since Ph.D., are represented on the y axis. The center line
of the box at a value of 6 is the median of the distribution. The upper edge of the box at a
value of about 8.5 is the third quartile, Q3 (75% of the cases fall at or below this value); the
lower edge of the box at a value of about 4 is the first quartile, Qi (25% of the cases fall at or
below this value). The semi-interquartile range, SIQR, is (Q3 - Qi)/2 = (8.5 - 4)/2 = 2.25,
or half the distance between the upper and lower edges of the box. The SIQR is a measure
of the variability of the distribution that is useful when the distribution is skewed. When
there are no outlying observations, the two vertical lines (termed whiskers) extending from
the box represent the distance from Ql to the lowest score (here, 1) and <23 to the highest
score in the distribution. Values of any outlying scores are displayed separately when they fall
below Qi — 3SIQR or above Q3 + 3SIQR. If the distribution were normal, these scores would
correspond to the most extreme 0.35% of the cases. In Fig. 4.2.4 the value of the horizontal
line corresponding to the end of the top whisker is Q3 + 3SIQR (here, about 14). The open
circles above this line corresponding to 16, 18, and 21 years are outlying cases. If one whisker
is long relative to the other or there are outlying values on only one side of the distribution,
the distribution will be skewed in that direction. Figure 4.2.4 depicts a positively skewed
distribution.

The boxplot provides a good depiction of the skewness of the distribution and clearly
identifies the existence, but not the frequency, of outlying observations in the data set. When
multiple cases occur at a single outlying score (here at X = 16, / = 3), a problem known as
overplotting occurs. Standard computer programs plot one case on top of the other, and the
multiple cases cannot be discerned. The boxplot also provides clear information about the range
and the median of the data in the sample. However, the boxplot does not portray the existence
of more than one mode or gaps in the distribution over which the scores have a frequency of 0.



(A) Width =10: too much smoothing.

(B) Width = 1.5: too little smoothing.

(C) Width = 4: appropriate smoothing.

(D) Histogram with kernel density superimposed (combines
Fig. 4.2.IB with Fig. 4.2.3C).

FIGURE 4.2.3 Kernel density estimates: years since Ph.D.

109



110 4. DATA VISUALIZATION, EXPLORATION, AND ASSUMPTION CHECKING

Note: From bottom to top, the first four horizontal lines in the
figure represent the lowest score (year = 1), the first quartile
(years = 4), the median (years = 6), and the third quartile
(j23, years = 8.5). Because there are high outliers in the data set,
the top line represents Q3 + 3SIQR (years = 14). The outlying
cases are plotted as separate points (here, at years = 16, 18,
and 21).

FIGURE 4.2.4 Boxplot of years since Ph.D.

Comparisons With the Normal Distribution
Researchers may wish to compare the univariate distribution of their sample data with

a normal distribution. The regression model that we emphasize in this volume makes no
assumption about the distribution of the independent or dependent variables. However, as
we will present in Section 4.3, this model does make the assumption that the residuals are
normally distributed. Normal curve overlays and normal q-q plots permitting comparison of
the residuals with the normal distribution are presented in Section 4.4.6. These plots can be
applied to the original data as well. For example, these plots can be particularly useful in the
context of structural equation modeling with latent variables (see Chapter 12), a technique
which assumes that each measured variable has a normal distribution.

4.2.2 Bivariate Displays

We will often wish to examine the relationship between two variables. These can be two
independent variables, Xl and X2, or one of the independent variables and the dependent
variables, for example, X± and Y. As we have already seen in Chapters 2 and 3, scatterplots
present an excellent way of doing this. In a scatterplot, variable 1 is plotted on the x axis and
variable 2 is plotted on the y axis. Note that scatterplots are not symmetric: Unless sdY = sdx,
the scatterplot of variable 2 (on the y axis) versus variable 2 (on the x axis) will have a different
appearance than the scatterplot of variable 1 (on the y axis) versus variable 2 (on the x axis).
Recall from Chapter 2 that the regression of Y on X and the regression of X on Y are different
unless the standard deviations of X and Y are equal.
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Figure 4.2.5(A) presents a scatterplot of years since Ph.D. versus salary. In this figure
the salaries are large numbers, so they are printed in scientific notation, a useful method
of compactly representing large numbers.3 The minimum value on the y axis is 2e + 04 =
2 x 104 = $20,000. The maximum value is le + 05 = 1 x 105 = 1 x 100,000 = $100,000.
Scatterplots help us detect whether the relationship between each X and Y is linear or takes
some other form.

One special problem in interpreting scatterplots occurs when one of the variables is cat-
egorical. For example, we may wish to compare the years since Ph.D. of male and female
faculty members in our sample. This relationship is depicted in Fig. 4.2.5(B), where males
and females are represented by values of 0 and 1, respectively. A problem arises with the
graph because cases having the same value on Y, here years since Ph.D., are plotted on top of
each other and cannot be discerned—another instance of overplotting.4 This problem can be
reduced by adding a small random value to each case's score on X, which helps spread out the
points, a technique known as jittering. Figure 4.2.5(C) presents the same data after the points
have been jittered. Note that points at the same value of Y have been spread out, making it
much easier to get a sense of the distribution of cases within each group.

Our understanding of the X-Y relationship can be improved by superimposing lines on
the scatterplot. Figure 4.2.5(D) returns to the data depicted in Fig. 4.2.5(A) and superimposes
the best fitting regression line, Y = 1379X + 45,450. This plot suggests that a straight line
provides a good characterization of the data. Figure 4.2.5(E) superimposes a lowess fit line5

representing the best nonparametric fit of the X-Y relationship. Lowess is a method of pro-
ducing a smooth line that represents the relationship between X and Y in a scatterplot. The
lowess method makes no assumptions about the form of the relationship between X and Y.
It follows the trend in the data instead of superimposing a line representing a linear or some
other specified mathematical relationship. If this relationship is linear in the population, the
lowess line should look like a very rough approximation of a straight line. Perhaps an apt
metaphor is that it will look like a young child's freehand drawing of a straight line. To provide
a contrast, Fig. 4.2.5(F) illustrates a case in which a straight line does not characterize the data
(we will consider nonlinear relationships in Chapter 6). Lowess is very computer intensive
and is calculated only using a computer. For interested readers we have presented the details
of how lowess is calculated in Box 4.2.2.

As with kernel density estimates, the central problem for the analyst is to choose an
appropriate value of the smoothing parameter a. This parameter represents the proportion
of the data that is included in the smoothing window. Higher values of a produce more
smoothing. Good lowess lines include enough detail to capture the major features of the
data, but not to the extent of becoming "lumpy." Simple visual judgments by the analyst
are normally sufficient to choose a reasonable value of a that provides a good estimate
of the relationship between X and 7. Figure 4.2.5(F), (G), and (H) provide an illustra-
tion of the effect of choosing different values of a depicting three different lowess fits to
the nonlinear data that will be presented in Chapter 6. Figure 4.2.5(G), with a = .05,
does not provide enough smoothing, and the X-Y relationship appears "lumpy." Fig-
ure 4.2.5(H), with a = .95, provides too much smoothing such that the lowess line
exceeds the observed values of Y for the lowest values of X. In contrast, Fig. 4.2.5(F)

3Another useful method for the present example would be to divide each person's salary by 1,000. The values
then represent salary in thousands of dollars.

4Some programs (e.g., SPSS) print different symbols (e.g., 1, 2, 3) representing the number of cases that are
overplotted.

5 Lowess has become an acronym for locally weighted scatterplot smoother. In his original writings describing the
technique, Cleveland (1979) used the term loess.



with a = .60 produces a smooth line that appears to adequately represent the X-Y
relationship.

Analysts normally choose values of a that range between about 0.25 and 0.90. Some mod-
ern computer programs are beginning to allow the analyst to vary the value of a using a slider,
with the original data and the lowess line being continuously redisplayed on the computer
screen. Other programs (e.g., SPSS 10) require the analyst to specify a series of different
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(A) Basic scatterplot: salary vs. years since Ph.D.

Note: Each point represents one case (n = 62). Salary is
presented in scientific notation (e.g., 2e + 04 = $20,000).

(C) Jittered scatterplot: years since Ph.D. vs.
female.

Note: Each case is now distinct following jittering. In
jittering a small random value is added to or subtracted
from each case's score on the categorical variable (here,
0 or 1).

(B) Basic scatterplot: years since Ph.D. vs. female.

Note: 0 = male; 1 = female. Some points are
overplotted.

(D) Salary vs. years since Ph.D. superimposed
regression line.

Note: Regression line is Y = 1379X + 45,450.

FIGURE 4.2.5 Scatterplots and enhanced scatterplots.
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(E) Superimposed lowess fit: salary vs. years since (F) Superimposed lowess fit a = 0.6: nonlinear
Ph.D. relationship.

(G) Lowess fit a = .05: too little smoothing. (H) Lowess fit a = .95: too much smoothing.

FIGURE 4.2.5 (Continued)

values of a and compare the results. Smaller values of a can be chosen as sample size
increases because more cases will be included in each window that is used in the calcula-
tion of the lowess line. In addition, a smaller value of a should be chosen if the relationship
between X and Y has many peaks and valleys. The lowess line provides a good overall sum-
mary of the relationship between X and Y. However, the lowess estimates at the ends of
the distribution of X (where the data are often sparse) may be far less precise than in the
center.
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BOX 4.2.2
Inside the Black Box: How Lowess Lines Are Computed

As an illustration of the computation of lowess, consider again the data for the 62 cases
originally presented in Table 3.5.1. We wish to plot a lowess curve for the relationship
between years since Ph.D. on the A: axis and salary on the y axis. We illustrate the calcu-
lation of the predicted lowess value using only one value of X. In practice, the computer
calculates the values for hundreds of different possible values of X within the actual
range of the data.

Suppose we wished to compute the predicted lowess value of Y corresponding to
an arbitrarily chosen value of time since Ph.D. of 16. We must first define a symmetric
smoothing window centered around our central score Xc = 16. Rather than using a fixed
bandwidth, lowess defines its smoothing window so that there is a constant number of
cases in the smoothing window, nwindow. The smoothing parameter a specifies the propor-
tion of cases that are to be used, nwindow = aM- The smoothing window becomes narrower
in regions where there are many cases and wider in regions where data are sparse.

We will arbitrarily6 choose a value of a = .1, which leads to (62)(.l) = 6 cases
being included in the smoothing window. We identify those 6 cases that are closest to
Xc = 16 regardless of whether they are higher or lower in value. In Table 4.2.1, we
see that a symmetrical smoothing window from X = 13 to X = 19 contains 6 cases.
For this smoothing window, d = 3. We then calculate the bisquare function weights for
these cases using Eq. (4.2.1). The resulting bisquare weights are shown in column 7 of
Table 4.2.1 for d = 3. Once again, scores at the center of the window (Xc = 16) are given
a weight of 1, whereas scores further from the center of the window have a lower weight.

Lowess now estimates a regression equation Y = B^X -+• B0 for the six cases in the
smoothing window. The bisquare function weights are used in determining the fit of the
regression line. A method known as weighted least squares regression (to be presented in
Section 4.5) is used, which gives cases further from the center of the smoothing window
less importance in determining the fit of the regression line. Once the regression equation
for the six cases in the smoothing window is determined, the value of Y for the lowess
line is calculated by substituting the value of the center point, here Xc = 16, into the
equation. The computer program then calculates the value of Y for a large number of
different values over the full range of X, here X = ItoX = 21. That is, the window is
moved along X and a large number (e.g., 100-200) of values of X serve in turn as Xc. For
each value of Xc, those six cases that fall closest toXc are used to define the width of the
smoothing window and to compute each separate local regression equation. The value
of Xc is then substituted into the local regression equation, giving the lowess value of Y
corresponding to the value of Xc. The Y values are connected to produce the lowess line.

Other, more complicated variants of lowess fitting may be used when the relationship
between X and Y is very complicated (e.g., there are sharp peaks and valleys in the
X-Y relationship) or when there are extreme outlying observations on Y. Accessible
introductions to these more advanced lowess techniques7 can be found in Cleveland
(1993) and Fox (2000a).

6This value is chosen only to simplify our presentation of the computations. In practice, a much larger value of a
(e.g., .6 to .8) would be chosen for these data.

7 Alternatives to lowess such as cubic splines and kernel smoothers (Fox, 2000a; Silverman, 1986) exist that can
also be used to produce lines representing good nonparametric fits of the X-Y relationship.
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4.2.3 Correlation and Scatterplot Matrices

Correlation matrices present a convenient method of summarizing the correlations between
each pair of predictors as well as the correlation between each predictor and the dependent
variable, thus providing considerable information on the direction and magnitude of the linear
relationships among the variables. Table 4.2.2 presents the correlation matrix for the five
variables in our faculty salary example presented in Section 3.5. To illustrate, row 2, column 1,
presents the correlation between publications and years since Ph.D. (r = .65) and row 4,
column 5 presents the correlation between citations and salary (r = .55). We see from the
correlation matrix that, although years, publications, and citations are all strongly related to
salary, some of the independent variables are themselves highly intercorrelated so that they may
not provide substantial unique prediction of salary over and above that of the other independent
variables.

An improvement on the correlation matrix is the scatterplot matrix, which provides a graph-
ical display of the scatterplot for each pair of variables. The scatterplot matrix corresponding
to the faculty salary data is presented in Fig. 4.2.6. Each row and column of the scatterplot
matrix forms a cell. Within each cell is a scatterplot depicting the relationship between two
of the variables. The variable identified in the row is depicted on Y and the variable identified
in the column is depicted on X. For example, row 1, column 1 depicts the regression of salary
on the v axis on years since Ph.D. on the x axis. This cell is identical to the scatterplot presented
in Fig. 4.2.5(A). Row 1, column 4 depicts the regression of salary on the v axis on number of
citations on the x axis. Row 2, column 3 depicts the regression of number of citations on the
y axis on female (male = 0; female = 1) on the x axis. The present illustration identifies each
of the variables and its range on the minor diagonal of the matrix going from the lower left to
upper right corner. Some versions of scatterplot matrices present a histogram of each variable
on the diagonal (e.g., SYSTAT, which terms this graphical display a SPLOM, Tukey's term
for scatterplot matrix).

The scatterplot matrix provides a compact visual summary of the information about the
relationship between each pair of variables. First, the analyst can make visual judgments about
the nature of the relationship between each pair of variables. Unlike the correlation matrix,
which only represents the direction and magnitude of the linear relationship, the scatterplot
matrix helps the analyst visualize possible nonlinear relationships between two variables.
Strong nonlinear relationships between either two independent variables or an independent and
a dependent variable suggest that the linear regression model discussed in previous chapters
may not be appropriate. In addition, cases in which the variance of Y is not constant but changes
as a function of the value of X can also be observed. Any of these problems would lead the
analyst to consider some of the remedies considered later in Section 4.5. Second, the panels
of the scatterplot matrix can be linked in some personal computer-based statistical packages.

Years
Publications
Sex
Citations
Salary

Years

1.00
0.65
0.21
0.37
0.61

Publications

0.65
1.00
0.16
0.33
0.51

Sex

0.21
0.16
1.00
0.15
0.20

Citations

0.37
0.33
0.15
1.00
0.55

Salary

0.61
0.51
0.20
0.55
1.00

TABLE 4.2.2
Correlation Matrix for Faculty Salary Example
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Note: Each cell of the scatterplot matrix represents a separate scatterplot. For example, row
4, column 1 has years since Ph.D. on the x axis and number of publications on the y axis. The
dark point that appears in each cell of the scatterplot matrix is the case with the highest value
on time since Ph.D. (years = 21).

FIGURE 4.2.6 Faculty salary example: scatterplot matrix.

Individual cases can then be selected and highlighted in all panels of the matrix. This feature
is particularly important in the examination of outlying cases. For example, in Fig. 4.2.6, we
have highlighted the faculty member (the dark filled circle) who has completed the largest
number of years of service—21 years since the Ph.D. From the other panels of the scatterplot,
we see that this person is a male who has a relatively high number of publications and a high
number of citations. This feature of being able to link single or multiple cases across different
panels of a scatterplot matrix can be very useful in understanding data sets involving several
variables8 (Cleveland, 1993).

8Computer code is only provided for the base system for each computer package. Not all of the features described
in this chapter are presently available in each of the packages. The graphical capabilities of each of the packages
is changing rapidly, with new features coming on line every few months. SAS users may wish to investigate the
additional capabilities of SAS/INSIGHT. ARC, an outstanding freeware regression and interactive graphics package,
is described in Cook and Weisberg (1999) and is downloadable from the School of Statistics, University of Minnesota,
Twin Cities: http://stat.umn.edu/arc/

CH04EX01

http://stat.umn.edu/arc/
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4.3 ASSUMPTIONS AND ORDINARY
LEAST SQUARES REGRESSION

All statistical procedures including multiple regression require that assumptions be made for
their mathematical development. In this section we introduce the assumptions underlying the
linear regression models presented in the previous chapters. Of importance, violation of an
assumption may potentially lead to one of two problems. First and more serious, the estimate
of the regression coefficients may be biased. Bias means that the estimate based on the sample
will not on average equal the true value of the regression coefficient in the population. In
such cases, the estimates of the regression coefficients, /?2, significance tests, and confidence
intervals may all be incorrect. Second, only the estimate of the standard error of the regression
coefficients may be biased. In such cases, the estimated value of the regression coefficients is
correct, but hypothesis tests and confidence intervals may not be correct.

Violations of assumptions may result from problems in the data set, the use of an incorrect
regression model, or both. Many of the assumptions focus on the residuals; consequently,
careful examination of the residuals can often help identify problems with regression models.
In Section 4.4, we present both graphical displays and statistical tests for detecting whether
each of the assumptions is met. We particularly focus on graphical displays because they can
detect a wider variety of problems than statistical tests. We then provide an introduction in
Section 4.5 to some remedial methods that can produce improved estimates of the regression
coefficients and their standard errors when the assumptions underlying multiple regression are
violated.

4.3.1 Assumptions Underlying Multiple Linear Regression

We focus on the basic multiple linear regression equation with k predictors originally presented
in Chapter 3,

The assumptions presented here and their effects on estimates of regression coefficients and
their standard errors also apply to most of the more complex regression models discussed in
later chapters.

Correct Specification of the Form of the Relationship
Between IVs and DVs
An important assumption of multiple regression is that we have properly specified the/orm

or mathematical shape of the relationship between Y and each of the IVs in the population. In
Chapters 2 and 3 we have consistently assumed that all relationships are linear (straight line).
To illustrate the meaning of this assumption in the one IV case, imagine we could identify the
set of all cases in the population with a specific value of Xl5 for example Xj = 5, and compute
the mean of their Y scores. This mean is called the conditional mean of Y given Xls (ly^. If
the assumption of linearity is correct, then each of u,y|Xi values that resulted as X\ took on

A.

different values would fall precisely on a straight line, Y = B^ + B0. The slope BI of the
straight line will be constant across the full range o f X l .

These same ideas apply to regression equations with more than one IV. Figure 4.3.1 pro-
vides an illustration of the regression plane when there are two independent variables. We
imagine selecting all cases in the population with a specified value of Xt and a specified value
of X2. We calculate the conditional mean value of Y given the specified values of Xj and
X2, \LY\XIx2' The conditional mean in the population must fall exactly on the regression plane
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Note: The equation for the linear regression plane is Y = B0 + 2Xl + IX2. Bl has the same
value (here, B] = 2) regardless of the value of X2. B2 has the same value (here B2 = 1)
regardless of the value of Xl.

FIGURE 4.3.1 Linear regression plane with two IVs.

Y = B^i + B2X2 + B0 for all possible values of Xl and X2 if the regression model is properly
specified.

To understand the meaning of the regression plane, look at Fig. 4.3.1. The intercept, BQ = 10,
is located at the front corner of the plane and represents the predicted value of Y when Xt = 0
and X2 = 0. The line representing BY\2 is me edge of the plane above the axis labeled Xl. This
line goes from Y = 10 when X{ = 0 to Y = 30 when X2 = 10. Recall that BY12 represents
the predicted change in Y for a 1 unit change in Xi when X2 is held constant (here, X2 = 0), so
BY\2 = 2. The other lines in the plane that are parallel to this edge line represent the regression
lines that result when X2 takes on different values between 0 and 10 (0,0.5,1.0,..., 9.5,10).
Each of these lines has the identical slope, Z?yi 2 = 2. Now look at the edge of the regression
plane above the axis labeled X2. The line representing fi^2.i

 1S me edge of the plane where
Xl = 0. This line goes from Y = 10 when X2 = 0 to Y = 20 when X2 = 10. The slope
of this regression line is BY2.\ = 1- The other lines in the plane that are parallel to this edge
line represent the regression lines that result as Xl takes on different values between 0 and
10. Each of these lines has the same identical slope, BY2l = 1. The condition illustrated here
of having linear relationships between each of the IVs and the DV is known as linearity in
the variables.

Not all IVs have linear relationships to the DV. Beginning with Chapter 6, we will con-
sider regression models that specify a variety of nonlinear relationships between the IVs and
DV. For example, if we have a curvilinear (quadratic) relationship in which Y is low at low
values of X, high at moderate values of X, and low at high values of X, the relationship
between Y and X cannot be properly represented with a linear regression equation. The slope
of the curve will change as the value of X changes. Chapter 6 will consider how to build
terms into the regression so that they properly specify the relationship between Y and each
of the IVs.

When the form of the relationship between the IVs and the DV in the population is not prop-
erly specified, severe problems may result. The estimates of both the regression coefficients
and standard errors may be biased, resulting in incorrect significance tests and incorrect con-
fidence intervals. This conclusion applies to regression models that are linear in the variables
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that we have discussed in Chapters 2 and 3. It also applies to regression models specifying
nonlinear relationships between the IVs and DV that we will consider in later chapters.

Correct Specification of the Independent Variables
in the Regression Model
The second assumption is related to the first but focuses on the IVs in the regression model.

If we presume that the theory we are testing is correct, then correct specification implies that
all variables identified by the theory are included in the model, that they are properly measured
(see next section on measurement error), and that the form of the relationship between each
IV and DV has been properly specified. If these conditions are met, then each of the IVs and
the residuals will be independent in the population and the estimates of regression coefficients
will be unbiased. Of course, if any of these assumptions is not correct, then the IVs and the
residuals will not be independent and the estimates of the regression coefficients and standard
errors may be biased. This result also implies that significance tests and confidence intervals
will not be correct. We consider these issues in more detail hi our discussion of specification
error in Section 4.4.

No Measurement Error in the Independent Variable
(Perfect Reliability)
A third closely related assumption is that each independent variable in the regression equa-

tion is assumed to be measured without error. Recall from Section 2.10.2 that reliability is
defined as the correlation between a variable as measured and another equivalent measure of
the same variable. When there is no error of measurement in X, the reliability r%x = 1-0.
In practice, measures in the behavioral sciences differ in the magnitude of their reliabilities.
Measures of some demographic variables such as age and gender typically have very close
to perfect reliabilities, measures of adult abilities such as IQ typically have reliabilities in
the range of about .80 to .95, and measures of attitudes and personality traits typically have
reliabilities in the range of about .70 to .90.

When the assumption of no measurement error in the independent variable (perfect relia-
bility) is violated, we saw in Section 2.10.2 that the estimate of ryx will be biased. When there
is only one IV in the regression equation, all of the indices of partial relationship between
X and Y including B, standardized p\ sr, and pr will be attenuated (too close to 0 regardless
of the sign). Otherwise stated, the strength of prediction, R2, will always be underestimated.
When there are two or more IVs that are not perfectly reliable, the value of each measure of
partial relationship including B, standardized (3, sr, andpr will most commonly be attenuated.
However, there is no guarantee of attenuation given measurement error—the value of a specific
measure of partial relationship may be too low, too high, or even on rare occasions just right.
Thus, measurement error commonly leads to bias in the estimate of the regression coefficients
and their standard errors as well as incorrect significance tests and confidence intervals. We
include a more detailed presentation of the effects of unreliability in multiple regression in
Box 4.3.1.

Constant Variance of ResiduaIs (Homoscedasticity)
For any value of the independent variable X, the conditional variance of the residuals

around the regression line in the population is assumed to be constant. Conditional variances
represent the variability of the residuals around the predicted value for a specified value of
X. Imagine we could select the set of cases that have a specified value of X in the population
(e.g., X = 5). Each of these cases has a residual from the predicted value corresponding to
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the specified value of X, et = Yt - Yt. The variance of the set of residuals is the conditional
variance given that X{ equals the specified value. These conditional variances are assumed to be
constant across all values of X in the population. Otherwise stated, the variance of the residuals
around the regression line is assumed to be constant regardless of the value of X. When the
assumption of constant variance of the residuals regardless of the value of X is met,9 this
condition is termed homoscedasticity. When the variance changes as the value of X changes,
this condition is termed heteroscedasticity. When there is heteroscedasticity, the estimates of
the regression coefficients remain unbiased, but the standard errors and hence significance tests
and confidence intervals will be incorrect. In practice, the significance tests and confidence
intervals will be very close to the correct values unless the degree of nonconstant variance is
large. A rule of thumb for identifying a large degree of nonconstant variance is that the ratio
of the conditional variances at different values of X exceeds 10.

Independence of Residuals
The residuals of the observations must be independent of one another. Otherwise stated,

there must be no relationship among the residuals for any subset of cases in the analysis. This
assumption will be met in any random sample from a population. However, if data are clustered
or temporally linked, then the residuals may not be independent. Clustering occurs when data
are collected from groups. For example, suppose a set of groups such as university residence
halls, high schools, families, communities, hospitals, or organizations are first selected, then
a random sample is taken from each group. In such cases, the responses of any two people
selected from within the same group (e.g., fraternity A) are likely to be more similar than
when the two people are selected from two different groups (e.g., fraternity A; honors dorm
B). Similarly, in designs that repeatedly measure the same person or group of persons over
time, responses that are collected from the same person at adjacent points in time tend to be
more similar than responses that are collected from the same person at more distant points in
time. This issue commonly occurs in studies of single individuals (single-subject designs) or in
panel studies in which a group of participants is measured on the independent and dependent
variables at several time points. For example, if we measure stressful events and mood in
a sample of college students each day for two months, the similarity of mood from one day
to the next will be greater than the similarity of mood from one day to a day two weeks later.
Nonindependence of the residuals does not affect the estimates of the regression coefficients,
but it does affect the standard errors. This problem leads to significance tests and standard
errors which are incorrect.

Normality of Residuals
Finally, for any value of the independent variable X, the residuals around the regression

line are assumed to have a normal distribution. Violations of the normality assumption do not
lead to bias in estimates of the regression coefficients. The effect of violation of the normality
assumption on significance tests and confidence intervals depends on the sample size, with
problems occurring in small samples. In large samples, nonnormality of the residuals does
not lead to serious problems with the interpretation of either significance tests or confidence
intervals. However, nonnormal residuals are often an important signal of other problems in
the regression model (e.g., misspecification-using an incorrect regression model) and can help
guide appropriate remedial actions.

9In the multiple IV case, the variance of the residuals should not be related to any of the IVs or to Y.
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BOX 4.3.1
The Effects of Measurement Error in Two-Predictor Regression

Measurement error is a common and important problem in regression analysis. To
understand more fully the potential effects of measurement error on the results of mul-
tiple regression analysis, it is very informative to study what happens when one of the
variables is unreliable in the two-IV case. We focus initially on the partial correlation
because its relation to the standardized effect size makes it useful in many applications.

Recall from Chapter 3 that we can calculate the partial correlation between Y and X2

holding Xl constant from the simple correlations using Eq. (3.3.11):

Note in Eq. (3.3.11) that Xl is the IV that is being partialed. As it will turn out, the
reliability of the IV being partialed is of particular importance.

To illustrate the use of Eq. (3.3.11), we can calculate ry2.i if rl2 = -3, rY2 = .4, and
rn = .5,

We define rYtx2, xi, as me partial correlation of the true score Yt with the true score X2t

with the true score10 X1( partialed out. If all of the variables have perfect reliability, rY2. i
will be identical to rYix2,-xit-

Now suppose that one of the variables is measured with error. What would the
partial correlation have been if the one fallible variable had been measured with perfect
reliability? In Chapter 2 we showed that we can express a correlation between the true
scores Xt and Yt in terms of the reliabilities of X and Y and the correlation between the
measured variables X and Y,

If measurement error occurs only in X, Eq. (2.10.5) simplifies to

if measurement error occurs only in Y, Eq. (2.10.5) simplifies to

Consider first the effect of only having unreliability in X2 on rY2.i- Based on
Eq. (4.3.2a) we know that rytx2t

 = rn/\/^2 ^d rxl(X2, =
 ri2/\/^22- When we substi-

tute these values into Eq. (3.3.11) and algebraically simplify the resulting expression,
we find

(Continued)

10Recall from Section 2.10.2 that a true score is a hypothetical error-free score. True scores represent the mean
score each individual would receive if he or she could be measured an infinite number of times.
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Comparing Eq. (3.3.11) to Eq. (4.3.3), we see that the numerator does not change.
However, the second term in the denominator changes from (1 — r\2) to (r22 — r\2}.
Because r22 is less than 1.0, if there is unreliability in X2, the value of the denominator
will always decrease. Thus, rYX2i-xi (after correction for measurement error) will always
be larger in magnitude than ry2.i if there is unreliability in X2. To illustrate, using the
values rl2 = .3, rY2 = .4, and rY\ = .5 from our previous numerical example, but now
setting r22 = .7, we find

as compared to rY2l = .30.
Following the same procedures, we can draw on Eq. (4.3.2b) to study the effect of

unreliability only in Y on the partial correlation for the case in which X\ and X2 are
both perfectly reliable. Paralleling the results observed for X2, rY2.\ will be attenuated
relative to rYtx2,-i- Correcting for measurement error in X2, Y, or both invariably leads
to increases in the absolute value of the partial correlation.

Now we turn to unreliability only in Xl, the IV being partialed in the present example,
and find a far more complex set of results. Following the same procedures, the partial
correlation corrected for unreliability only in Xl is

Unlike in our previous equations, both the numerator and the denominator are changed
from Eq. (3.3.11). The same general finding of change in both the numerator and
denominator also occurs when there is unreliability in XlfX2 and Y,

The change in both the numerator and denominator in Eqs. (4.3.4) and (4.3.5) means
that the effect of correcting for unreliability only in Xl will depend on the specific values
of rn, rn, rY2, and r12 in the research problem.

We illustrate in Table 4.3.1 the range of effects that unreliability in Xl5 the variable
being partialed, can have on measures of partial relationship presented in Section 3.2.
In addition to partial correlations, we also report standardized regression coefficients.
Recall that the standardized regression coefficient $Y2l for the relation between Y and
X2 controlling for Xl is

Again using the strategy of substituting Eq. (4.3.2a) into Eq. (3.2.4) and algebraically
simplifying the results, we find that the standardized regression coefficient corrected for
measurement error in Xl is
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TABLE 4.3.1
Effects of Unreliability of a Partialed Variable (X-\)

Example

1
2
3
4
5

rY2

.3

.5

.5

.5

.5

rri

.5

.7

.7

.3

.3

rn

.6

.5

.6

.6

.8

rY2-l
(Eq. 3.3.11)

.00

.24

.14

.42

.45

rY2.l,
(Eq. 4.3.4)

-.23
.00

-.26
.37
.58

Py2.1
(Eq. 3.2.4)

.00

.20

.13

.50

.72

Py2-xi,
(Eq. 4.3.6)

-.26
.00

-.21
.50

1.83

Note: In each example, the reliabilities are rn = 0.70, r22 = 1-00, rn = 1.00.

Once again, ru appears in both the numerator and denominator of Eq. (4.3.6), meaning
that measurement error in Xl will have complex effects on the standardized regression
coefficient. The effect of measurement error on standardized regression coefficients is an
important issue in structural equation (path) models, which are considered in Chapter 12
and in O. D. Duncan (1975, chapter 9) and Kenny (1979, chapter 5).

Table 4.3.1 explores the effect of varying rn, ryi, rY2 on the partial correlation and
standardized regression coefficients. In each case, there is only unreliability in X\, with
the value of rn being set at .70, a value that is commonly cited as a minimum value for
"acceptable" reliability of a measure. The value of rY2.\ is computed using Eq. (3.3.11)
and the value of ry2.lf (corrected for measurement error) is computed using Eq. (4.3.4).
The value of $Y2.i is calculated using Eq. (3.2.4) and the value of (3y2-i, is calculated
using Eq. (4.3.8).

We focus on the results for the partial correlation in Table 4.3.1 (columns 5 and 6).
In Example 1, measurement error in Xi results in an observed partial r of 0, whereas
the true partialed relationship (ry2.lf) is —.23. Thus, a real partial relationship is
wiped out by measurement error in X1? the variable being partialed. In Example 2, the
converse occurs: An observed partial correlation, rn.i = -24, is actually 0 when the
unreliability of the partialed IV is taken into account. Example 3 has the most dangerous
implications. Here, an apparently positive partial correlation, ry2.i = -14, turns out
to be negative (and of larger magnitude) when corrected for measurement error. This
result is not merely a mathematical curiosity of only academic interest. For example,
Campbell and Erlebacher (1970) have strongly argued that incorrect conclusions were
drawn about the effectiveness of the Head Start program because circumstances like
those in Example 3 obtained. Example 4 illustrates for the partial correlation the most
frequent outcome: Correction for measurement error in Xi will lead to a decrease in the
magnitude of the partial correlation. Finally, Example 5 illustrates a case in which the
value of the partial correlation is increased after correction for measurement error. Note
also in Example 5 the value of the standardized regression coefficient after correction for
measurement error, $yx2-x\, = 1-83 (see Table 4.3.1, column 8). The magnitude of the
standardized regression coefficient substantially exceeds 1.0, indicating a potential prob-
lem. Note that in Example 5, r12 = .8, rn = .7, and r22 = 1.0 so that from Eq. (4.3.2a)
the value of X1 tX2t (corrected for measurement error) is .96. Such a result may mean that
Xl and X2 are so highly related that their influence cannot be adequately distinguished
(see Section 10.5 on multicollinearity for a discussion of this issue). Alternatively, the
estimated value ofrn = .70 based on the sample data may be lower than the true value

(Continued)
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of the reliability in the population. The results of Example 5 emphasize that the results
of correction for unreliability must be undertaken cautiously, a point to which we
will return in our presentation of remedies for measurement error in Section 4.5.3.

We have shown that measurement error in the dependent variable leads to bias in all
standardized measures of partial relationship including sr, pr, and standardized $Y2-i- Of
importance, unlike measurement error in the independent variables, it does not lead to
bias in the values of the unstandardized regression coefficients. Measurement error in the
dependent variable does not affect the slope of the regression line, but rather only leads to
increased variability of the residuals around the regression line (see, e.g., O. D. Duncan,
1975). This increase in the variability of the residuals means that confidence intervals
will increase in size and the power to reject a false null hypothesis will be decreased.

4.3.2 Ordinary Least Squares Estimation

In the simplest case of one-predictor linear regression, we fit a straight line to the data. Our
goal is to choose the best values of the intercept BQ and the slope BI so that the discrepancy
between the straight line and the data will be as small as possible. Carefully drawing a straight
line through the data by hand can do a pretty good job of achieving this in the one-predictor
case. However, we would like to have a more objective mathematical method of identifying
the regression coefficients that would yield the best fitting straight line. The "obvious" method
of doing this, examining the sum of the differences between the observed and predicted values
of Y, 2(7; — Yj) = Ee(, does not work because the sum of the residuals will always be 0
regardless of the values of BQ and Bl that are chosen. Several different mathematical methods
could be used, but by far the most commonly used method is ordinary least squares (OLS).
OLS seeks to minimize the sum of the squared differences between the observed and predicted
squares of Y. That is, in the one-predictor case BI and BQ are chosen so that

is the smallest possible value. In the multiple predictor case, B0,Bl,...,Bk are chosen so that
E(7( — 7j)2 is the smallest possible value. All equations we have considered so far in this book
are based on the OLS method. A formal mathematical derivation of OLS estimation is given
in Appendix 1.

In the previous section, the assumptions we presented were those associated with OLS
estimation. When these assumptions are met, the OLS estimates of the population regression
coefficients have a number of important and desirable properties.

1. They are unbiased estimates of each true regression coefficient in the population. If many
samples were selected, the mean of the sample regression coefficients for B0 and Bl would
equal the values of the corresponding regression coefficients in the population. The expected
value ofBj,E(Bj), will equal the corresponding regression coefficient fy in the population.

2. They are consistent. The standard errors of each regression coefficient will get smaller
and smaller as sample size increases.

3. They are efficient. No other method of estimating the regression coefficients will produce
a smaller standard error. Small standard errors yield more powerful tests of hypotheses.

Taking these properties together, OLS is described as the Ztest Linear f/nbiased Estimator
(BLUE). However, when the assumptions of OLS regression are not met, these properties may
not always not hold. When there are violations of assumptions, the values of the regression
coefficients, their standard errors, or both may be biased. For example, as we will show in our



4.4 DETECTING VIOLATIONS OF ASSUMPTIONS 125

consideration of outliers (unusual observations) in Chapter 10, one very extreme data point for
which the squared difference between the observed and predicted scores, (7, — F,)2, is very
large may be too influential in the computation of the values of the regression coefficients.

In cases in which the assumptions of OLS regression are violated, we may need to use
alternative approaches to the analysis. Three different general approaches may be taken. First,
the analyst may build terms into the OLS regression model so that the form of the relationship
between each IV and DV more adequately represents the data. Second, the analyst may be able
to improve the data by deleting outlying observations or by transforming the data so that the
assumptions of OLS regression are not so severely violated. Third, the analyst may consider
using an alternative to OLS estimation that is more robust to the specific problem that has been
identified. After considering methods for detecting violations of assumptions in Section 4.4,
we will see examples of each of these approaches in subsequent sections of this chapter and
Chapter 10.

4.4 DETECTING VIOLATIONS OF ASSUMPTIONS

A goal in regression analysis is that the model under consideration will account for all of the
meaningful systematic variation in the dependent variable Y. Residuals ("errors") represent
the portion of each case's score on Y that cannot be accounted for by the regression model,
e{ = Yt — F, for case i. If substantial systematic variation remains in the residuals, this suggests
that the regression model under consideration has been misspecified in some way. Residuals
magnify the amount of remaining systematic variation so that careful use of graphical displays
of residuals can be very informative in detecting problems with regression models. We will
also briefly present some formal statistical tests, but we will emphasize graphical displays
because they make minimal assumptions about the nature of the problem.

4.4.1 Form of the Relationship

In current practice, most regression models specify a linear relationship between the IVs and the
DV. Unless there is strong theory that hypothesizes a particular form of nonlinear relationship,
most researchers begin by specifying linear regression models like those we considered in
Chapters 2 and 3. However, there is no guarantee that the form of the relationship will in fact
be linear. Consequently, it is important to examine graphical displays to determine if a linear
relationship adequately characterizes the data.

As we saw in Section 4.2, we can construct a separate scatterplot for the dependent variable
(F) against each independent variable (X) and superimpose linear and lowess curves to see if the
relationship is linear. Even more revealing, we can plot the residuals on the y axis separately
against each IV (XltX2,... ,Xk) and against the predicted variable (F). The residuals will
magnify any deviation from linearity so that nonlinear relationships will become even more
apparent.

Returning to the salary data presented in Table 3.5.1, recall that the regression model using all
four independent variables years, number of publications, gender, and number of citations was

Y = 857 years + 93 publications - 918 female + 202 citations + 39,587.

We plot the residuals against each measured independent variable and against the predicted
values, and look for evidence of nonlinearity.

Figure 4.4.1 (A) is a scatterplot of the residuals from the regression equation against one
of the FVs, years since Ph.D. The horizontal line identifies the point where the residuals are
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(A) Residuals vs. years since Ph.D. (B) Residuals vs. predicted values (7)

Note: The horizontal line corresponds to a value of 0 for the residuals (0-line). The lowess line is also shown. No
systematic relationship between the residuals and either years or Y is indicated.

FIGURE 4.4.1 Scatterplots of salary data.

0 (i.e., 0-line), where the predicted and observed values of Y are identical. If the form of the
relationship is properly specified, then the mean of the residuals should be 0 regardless of
the value of the IV. The curved line is the lowess fit. Recall that the lowess fit line follows
the general trend of the data. If the form of the relationship is properly specified, then the
lowess fit line should not exhibit any large or systematic deviations from the 0-line. In the
present example, the lowess line generally follows the 0-line, suggesting that the relationship
between Xl (years since Ph.D.) and Y (salary) approximates linearity. Plots of the residuals
against number of publications and of the residuals against number of citations (not depicted)
also do not show any evidence of deviations from linear relationships. Plots of the residuals
against female (gender) will not be informative about linearity because female is a nominal
(qualitative) variable. Finally, Fig. 4.4.1(B) shows the scatterplot of the residuals against the
predicted values (7) with superimposed zero and lowess fit lines. These scatterplots support
the specified linear relationship between each of the independent variables and the outcome
variable.

In contrast, consider the data originally presented in Fig. 4.2.5(F). These data were generated
to have a nonlinear relationship between X and Y. The lowess curve for the original (raw)
data indicated that the relationship is nonlinear. Suppose a researcher mistakenly specified
a linear regression model to account for these data. The resulting regression equation, Y =
1.14X + 8.72, appears to nicely account for these data: R2 = .56; test of 51?f(98) = 11.2,
p < .001. Figure 4.4.2 plots the residuals from this regression equation against X. The lowess
fit does not follow the 0-line. It clearly indicates that there is a relatively large and systematic
nonlinear component in these data. By comparing Fig. 4.2.5(F) for the original data with
Fig. 4.4.2 for the residuals, we see how the plot of residuals magnifies and more clearly depicts
the nonlinear component of the X-Y relationship.

The graphical methods presented here are particularly powerful. The true relationship
between the IVs and DVs may take many different mathematical forms. Graphical meth-
ods can detect a very wide range of types of misspecification of the form of the relationship.
In contrast, statistical tests in polynomial regression presented in Section 6.2 are much more
focused, contrasting only the fit of two different model specifications chosen by the analyst.
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Note: The horizontal line corresponds to a value of 0 for
the residuals (0-line). The lowess line is also shown. The
clear curvilinear form of the lowess line indicates a nonlinear
relationship between the residuals and X.

FIGURE 4.4.2 Scatterplot of residuals vs. X: nonlinear relationship.

4.4.2 Omitted Independent Variables

In specifying the regression model, we include all IVs specified by our hypothesis. Theory and
prior empirical research will often provide strong guidelines for the variables that should be
included. However, in some cases, the analyst will be unsure whether or not certain variables
should be included in the regression equation. The analyst may believe that a theory has omitted
important variables or that theory and prior empirical research may be unclear or contradictory
about the importance of certain IVs. In such cases, the analyst can explore the effects of
including additional variables in the regression equation.

The simplest method of approaching this issue is to construct a series of scatterplots. The
analyst first runs a regression analysis in which the originally hypothesized model is specified
and saves the residuals. Then, a series of scatterplots are constructed in which the value of the
residuals is represented on the v axis and an additional candidate variable (omitted from the
regression equation) is represented on the x axis. If the original regression model is correct and
a lowess line is fitted to these data, the lowess line should ideally be very close to the 0-line
(horizontal line where residuals = 0). In contrast, if the lowess curve suggests either a linear
or nonlinear relationship, the omitted variable should receive further investigation.

An improvement over this basic scatterplot is the added variable plot (AVP, also known
as the partial regression leverage plot). The AVP allows the analyst to directly visualize the
effect of adding a candidate IV to the base regression model. To understand conceptually how
the added variable plot is constructed, assume we have specified a base regression equation
with three independent variables,

We wish to investigate whether another candidate variable, X4, should have also been included
in the regression equation as an independent variable.
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In constructing the added variable plot, the statistical package first estimates the regression
equation predicting the candidate variable, X4, from the other three IVs,

In Eq. (4.4.2) B'Q through B'3 are used to represent the unstandardized regression coefficients, as
,̂

they will typically take on different values than those in Eq. (4.4.1). The residual e\ = X4 — X4

is calculated for each case. This residual represents the unique part of X4 that remains after
Xl5X2, andX3 have been accounted for. Using the predicted value from Eq. (4.4.1), the residual,
e{; = Y — Y, is computed. This residual represents the part of Y that is not accounted for by
Xi,X2, andX3. Then the added variable plot is constructed; this is a scatterplot with the residuals
e\ from Eq. (4.4.2) on the x axis and the residuals e( from Eq. (4.4.1) on the y axis. A straight
line and lowess curve can be superimposed to the added variable plot to help elucidate the
relationship of X4 to Y, partialing outX^^, andX3.

To illustrate, suppose in our example of faculty salaries that we had hypothesized a model
with salary as the dependent variable and years since Ph.D. (Xj), number of publications (X2),
and female (X3) as the independent variables. Using the 62 cases presented in Table 3.5.1, this
regression equation is

The 62 residuals Y — Y are calculated using Eq. (4.4.1). Suppose some literature suggests that
number of citations (X4) is also an important IV, so we are concerned that we have incorrectly
omitted X4 from the regression model. A second regression equation with number of citations
as the dependent variable and years since Ph.D., number of publications, and female as the
independent variables is estimated,

The 62 residuals X4 — X4 are calculated. Plotting Y — Y on the y axis and X4 - X4 on the x
axis produces the added variable plot shown in Fig. 4.4.3. The positive slope of the straight
line suggests there is a positive linear relationship between the candidate variable X4 and
Y, controlling for X^,X2,X3. Indeed, the exact value of the slope of the straight line for the
regression of (Y — Y) on (X4 — X4) will equal the numerical value of B4 in the regression
equation including the candidate variable, Y = B^X\ + B2X2 + B3X3 + B4X4 + B0. In the
present case, the lowess fit does not deviate substantially or systematically from the straight
line, suggesting that the relationship between X4 and Y does not have a curvilinear component.
Taken together, these results suggest that X4 should be included in the specification of the
linear regression equation as we did in our original analysis presented in Section 3.5.

Interpreting the results of added variable plots is straightforward. If the slope of the best
fitting regression line produced by the added variable is 0, the independent variable has no
unique relation to Y. If the slope is positive, the added variable will have a positive relationship
to Y\ if the slope is negative it will have a negative relationship to Y. If the lowess line indicates
some form of systematic curvature, then the relationship of X and Y will be nonlinear. Added
variable plots can be used to study the effects of adding a candidate independent variable to
base regression equations involving one or more independent variables and with more complex
base regression models involving interactions (Chapter 7) and nonlinear effects represented
by power polynomials (Chapter 6). They can also be used to visualize and identify outlying
data points that strongly influence the estimate of the regression coefficient associated with the
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Note: The straight line depicts the linear relationship between number
of citations and salary controlling for the independent years (X\), pub-
lications (X2), and female (X3). The slope of this line = B4 in the full
regression model, Y = B^ + B2X2 + B3X3 + B4X4 + B0. The curved
line represent the lowess fit. Values on the y axis are residuals, Y — Y
and values on the x axis are residuals, X4 — X4. The value 0 occurs on
each axis when the observed value of X4 and Y equal their respective
predicted values.

FIGURE 4.4.3 Added variable plot.

added variable.11 However, the analyst must remember that the added variable plot provides
information relative to the base regression model that has been specified. If the base model has
not been properly specified (e.g., the relationship between X1 and Y is in fact nonlinear), the
added variable plot can give misleading results.

4.4.3 Measurement Error

Measurement error is easily detected with a measure of reliability. One common type of
measure is a scale in which the participants' scores are based on the sum (or mean) of their
responses to a set of items. In cross-sectional studies in which the measures are collected
on a single occasion, the most commonly used measure of reliability (internal consistency) is
coefficient alpha (Cronbach, 1951). Imagine that we have a 10-item scale. We can split the scale
into two halves and correlate the subjects' scores on the two halves to get a measure of reliability.
Coefficient alpha represents the mean of the correlations between all of the different possible
splits of the scale into two halves. Another common form of reliability known as test-retest
reliability is the correlation between subjects' scores on the scale measured at two different
times. When two judges rate the subjects' score on the variable, interrater reliability is the

1 'if there is a single outlying point, the AVP corresponds to a visualization ofDFBETASy presented in Chapter 10.
However, the AVP also allows analysts to identify clumps of outliers that influence the regression coefficient for the
candidate IV.
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correlation between scores given by the two judges. With these correlation-based measures of
reliability, scores close to 1.0 indicate high levels of reliability.

Measurement is a large and important area of study in its own right (see Crocker & Algina,
1986; Nunnally & Bernstein, 1993) so we cannot provide a full treatment here. Readers
should keep in mind three points when they encounter measures of reliability with which
they are unfamiliar. First, not all indices of reliability are based on correlations, so different
criteria for judging the reliability of the measure will be needed for some indices. Values near
1.0 are not expected for all measures of reliability. Second, the best measure of reliability
will depend on the design of the study and the nature of the construct being studied. For
example, some constructs, such as adult personality traits, are expected to be very stable
over time whereas other constructs, such as moods, are expected to change very quickly.
Measures of test-retest reliability are unlikely to be appropriate for mood measures. Finally,
some newer approaches to measurement such as item response theory do not yield traditional
measures of reliability. However, some of the newer methods can help researchers attain
interval level measurement scales that are nearly free of measurement error (Embretson &
Reise, 2000).

4.4.4 Homoscedasticity of Residuals

If the variance of the residuals sd?~ is not constant, but is related to any of the IVs
or to Y, the standard methods of developing confidence intervals and conducting signifi-
cance tests presented in Chapters 2 and 3 may potentially become compromised. A simple
graphical method of detecting this problem is to construct a set of scatterplots, plotting
the residuals in turn against each of the independent variables Xl,X2,...,Xk and the pre-
dicted value, Y. Figure 4.4.4(A) plots the residuals against years since Ph.D. for the faculty
salary data (n = 62) using the full regression equation, Y = 857 years + 93 publications —
918 female + 202 citations + 39,587, originally presented in Section 3.5. Figure 4.4.4(B) plots
the residuals against the predicted values, Y. These plots do not suggest that there is a rela-
tionship between the variability of the residuals and either years since Ph.D. or the predicted
value.

Some statistical packages allow the analyst to plot lowess fit lines at the mean of the residuals
(0-line), 1 standard deviation above the mean, and 1 standard deviation below the mean of the
residuals. Figure 4.4.4(C) replots the residuals against years since Ph.D. adding these lowess
lines. The middle line corresponds to the lowess line described in Section 4.2.2. The other
two lines are created using the lowess procedure to estimate values 1 standard deviation above
and 1 standard deviation below the lowess line. In the present case, the two lines remain
roughly parallel to the lowess line, consistent with the interpretation that the variance of the
residuals does not change as a function of X. Examination of plots of the residuals against
number of publications and against number of citations (not depicted) also do not suggest any
relationship.

What do these scatterplots look like when there is a relationship between the variance
of the residuals and X or Yl Figure 4.4.5 displays three relatively common patterns using
data sets with 400 cases. Figure 4.4.5(A) again shows the relationship when the data are
homoscedastic. In Fig. 4.4.5(B), the variance in the residuals increases in magnitude as the
value of X increases, often termed a right-opening megaphone. For example, such a pattern
can occur in experimental psychology in such tasks as people's judgments of distances or the
number of identical objects in a standard container—low values are judged more accurately.
In contrast, Fig. 4.4.5(C) shows a pattern in which the residuals are highest for middle values
of X and become smaller as X becomes smaller or larger. Such patterns are found for some



4.4 DETECTING VIOLATIONS OF ASSUMPTIONS

(A) Residuals vs. years since Ph.D. (B) Residuals vs. predicted values (Y).
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(C) Residuals vs. years since Ph.D. (lowess fit added).

Note: Lowess fit values have been added. The middle line is the
lowess fit. The upper line is the lowess fit + 1 sd. The lower
line is the lowess fit — 1 sd. The set of lowess lines do not
suggest any evidence of a substantial departure from linearity
or heteroscedasticity.

FIGURE 4.4.4 Plots of residuals.

personality tests where people who are extremely high or low on the personality trait are more
accurately measured. In each panel lowess fit lines have been added at the mean, 1 standard
deviation above the mean, and 1 standard deviation below the mean of the residuals so that
these patterns can be more easily discerned.

Formal statistical tests of nonconstant variance have also been developed. Most of these
tests focus on detecting a specific pattern of heteroscedasticity. Interested readers can find an
introduction to some of these tests in Box 4.4.1.



(A) Homoscedasticity: constant variance across values
ofX.

(B) Heteroscedasticity: variance increases with X (right-
opening megaphone).

(C) Heteroscedasticity: curvilinear relationship between X
and variance of residuals.

Note: n = 400 cases. The 0-line, the lowess line for the mean,
the lowess lines for the mean + 1 sd, and the lowess line for the
mean — 1 sd are superimposed.

FIGURE 4.4.5 Plots of residuals versus X. Illustrations of homoscedasticity and
heteroscedasticity.

132



4.4 DETECTING VIOLATIONS OF ASSUMPTIONS 133

BOX 4.4.1
Statistical Tests of Nonconstant Variance

The modified Levene test provides a formal statistical test of the pattern depicted in
Fig. 4.4.5(B) in which the variance of the residuals appears to increase (or decrease) as
a function of the IV. The residuals are initially divided into two groups, one containing
the cases that are high and one containing the cases that are low relative to a threshold
value on the independent variable that is chosen by the analyst. For example, in our
salary example (n = 62), an analyst might choose to examine whether the residuals
are related to years since Ph.D. Using the 62 cases presented in Table 3.5.1, she would
pick a threshold value—for example a score of 6 years, which is near the median of
the distribution—and classify the nL = 30 scores < 6 as low and nH = 32 scores > 6
as high. She would then calculate the median value for the residuals in each group: In
the low group, the 30 residuals have a median value of —408.49; in the high group,
the 32 residuals have a median value of — 1634. She would then calculate the absolute
deviation (ignoring sign) of the residuals in each group from the corresponding group
median.

The variance of the absolute deviations is

where Mdfow is the mean of the absolute residuals corresponding to the low values on
and Mrfhigh is the mean of the absolute residuals corresponding to the high values on X.
Finally, she would calculate Levene's t*

The result of the Levene's t* test is compared to the critical values of the t distribution
from Appendix Table A with df = n]ow + n^gj, — 2. Failure to reject the null hypothesis
is nearly always the desired outcome—it is consistent with the use of standard OLS
regression models, which consider the residuals to be homoscedastic.

Several other tests have also been proposed to test for various forms of
homoscedasticity. R. D. Cook and Weisberg (1983) and Breusch and Pagan (1979)
independently developed an alternative test that detects increases or decreases in the
variance of the residuals. This test performs very well in large samples when the resid-
uals have a normal distribution. This test can also be modified to test for other specified
relationships (e.g., quadratic) between X or Y and the variance of the residuals (see
Weisberg, 1985). White (1980) has developed a general test that can potentially detect
all forms of hetereoscedasticity. This test requires large sample size, has relatively low
statistical power, and can yield misleading results if there are other problems in the
regression model (e.g., the regression model is misspecified). A discussion of advan-
tages and disadvantages of several of the tests of heterogeneity of variance of residuals
can be found in Greene (1997).
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4.4.5 Nonindependence of Residuals

Multiple regression assumes that the residuals are independent. Index plots (also termed case-
wise plots) provide a simple method for exploring whether the residuals are related to some
systematic feature of the manner in which the data were collected. In the present context, index
plots are simply scatterplots in which the value of the residual is presented on the y axis and
an ordered numerical value is presented on the x axis. Statistics and graphical displays that are
more sensitive to specific forms of nonindependence can also be used.

One form of dependency in the residuals occurs when there is a systematic change over
time in the nature of the participants or in the research procedures. To illustrate, patients
with more severe diagnoses may be recruited in the later phase of a clinical study, or less
conscientious students in introductory psychology classes may delay their participation in
experiments until late in the semester, or the delivery of an experimental treatment may improve
over time, yielding greater improvement on the dependent variable. In such cases, plots of the
residuals against the order of participation (i.e., first = 1, second = 2,...) can potentially
show systematic relationships. Adding a lowess line to the plot can be useful in revealing the
form of the relationship. Joiner (1981) presents several illustrative examples in which the use
of plots of residuals against variables related to order of participation have helped uncover
what he terms "lurking variables" in the data.

A second form of dependence of residuals, known as clustering, occurs when the data are
collected in groups or other clusters. In this case the residuals may be more similar within
clusters than between clusters. Figure 4.4.6(A) illustrates 100 residuals from a random sample
in which the residuals are independent. Figure 4.4.6(B) and Fig. 4.4.6(C) present two different
ways of depicting residuals from a data set in which observations are collected from each
of 10 clusters—observations 1-10 are from cluster 1, 11-20 are from cluster 2, and so on.
Figure 4.4.6(B) presents an index plot of the residuals using different plotting symbols to
represent each cluster. Note that the residuals within clusters tend to bunch together more
than the residuals in Fig. 4.4.6(A). For example, in Fig. 4.4.6(B) residuals in cluster 3 (case
numbers 21-30, represented by the symbol x) tend to bunch together below the 0-line, whereas
residuals in cluster 7 (case numbers 61-70, represented by the symbol o) tend to bunch together
above the 0-line. Figure 4.4.6(C) presents a series of 10 side-by-side boxplots of the same data
with each boxplot in turn representing a different cluster. The median value, depicted by the
horizontal line in each box, suggests that there is substantial variability in the typical (median)
value of each cluster.

A more precise statistical estimate of the amount of clustering will be presented in
Section 14.1.2 when we consider the intraclass correlation coefficient. Briefly the intraclass
correlation can theoretically range12 from 0 to 1. To the extent the intraclass correlation exceeds
0, the standard errors of the regression coefficients will be too small. This problem is further
exacerbated as the number of cases in each cluster increases (Barcikowski, 1981). Signifi-
cance tests of regression coefficients will be too liberal, meaning that the null hypothesis will
be rejected when it is true at rates far exceeding the stated value (e.g., a = .05). The width of
confidence intervals will typically be smaller than the true value.

Finally, if the data are repeatedly collected from a single individual or the same sample of
individuals over time, then the residuals will often show serial dependency. Figure 4.4.6(D)
presents an illustration of residuals that exhibit serial dependency. Note that temporally adjacent
observations tend to have more similar values than in Fig. 4.4.6(A). For example, the last 15
residuals of the series all have positive values. A more precise statistical measure of serial

12In practice, the intraclass correlation coefficient can take on small negative values due to sampling error. In such
cases, it is assigned a value of 0.



(A) Independent residuals from a random sample. (B) Residuals from clustered data (10 cases per cluster).

Note: Each cluster of 10 cases (1-10; 11-20;...; 91-100) is represented by
a different symbol.

(C) Side by side boxplots of the 10 clusters. (D) Autocorrelated residuals (pl = .7).

Note: Each boxplot represents a different cluster of 10 cases. The
horizontal line in each box represents the median of the cluster. Note: Observations are equally spaced over time. Temporally adjacent obser-
The medians of the 10 clusters show more variation than would be vations are connected by straight lines.
expected by chance.

FIGURE 4.4.6 Index plots of residuals.
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dependency is provided by a measure known as autocorrelation. Autocorrelation assesses
the correlation of the temporal series with itself after the series has been shifted forward
a specified number of time periods. The number of time periods the series is shifted forward
is termed the lag. In most applications of multiple regression using temporal data, only the lag
1 autocorrelation is investigated. Like Pearson rs, autocorrelations may theoretically range in
value from —1 to +1. An autocorrelation of 0 indicates that there is no relationship between
the original and shifted series. A positive lag 1 autocorrelation indicates that the residual at
time t — 1 is positively related to the residual at time t. For example, yesterday's mood level
will tend to be positively related to today's mood. A negative lag 1 autocorrelation indicates
that the residual at time t — 1 is negatively related to the residual at time t. Negative lag 1
autocorrelations can arise when there is a homeostatic process. For example, regular cigarette
smokers are likely to smoke at lower than normal rates the hour after they have consumed
a larger than normal number of cigarettes. Both positive and negative autocorrelations can
lead to incorrect standard errors and consequently incorrect hypothesis tests and confidence
intervals. Interested readers will find an illustration of the calculation and test of significance
of lag 1 autocorrelation in Box 4.4.2.

BOX 4.4.2
Calculating Autocorrelation and the Durbin-Watson Test

We illustrate here the calculation of the lag 1 autocorrelation. Imagine we have recorded
the number of cigarettes smoked for eight consecutive 2-hour periods. After we fit a
regression equation, we have the eight residuals listed here and wish to calculate the lag
1 autocorrelation. In this example, the residuals are presented in order by time period
in row 2, but are shifted 1 period forward in time in row 3.

Time period (t)
Residual
Residual (shifted)

1
4

2
-3

4

3
-2
-3

4
3

_2

5
-1

3

6
3
-1

7
2
3

8
i

2 -1

The lag 1 autocorrelation can then be calculated between the residual series and the
shifted residual series using Eq. (4.4.3),

where et is the value of the residual at time ?, and et_i is the value of the residual at time
t — 1, T is the number of equally spaced observations in the original temporal series
(here, T = 8), and rt is the value of the autocorrelation at lag 1. To form the product
in the numerator of Eq. (4.4.3), we start with second residual in the original series and
multiply it by the shifted residual immediately below, continuing to do this until we get
to the final original residual, here t = 8. Note that there are now T — 1 pairs, here 7, in
the residual and shifted residual series. In this example,

Standard statistical packages will calculate the lag 1 autocorrelation. In long time series
with say 100 observations, autocorrelations can also be calculated at lags 2, 3, 4,
etc. using the time series routines within the statistical packages; however, in most
applications serial dependency is investigated by only examining the autocorrelation at
lagl.
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The Durbin- Watson test is used to test the null hypothesis that the lag 1 autocorrelation
is 0 in the population. As a focused test, the Durbin-Watson D test does not address
autocorrelation of lag 2 or higher. The expression for the Durbin-Watson D is shown in
Eq. (4.4.4),

Given that D « 2(1 — ri), values close to D = 2 will lead to retention of the
null hypothesis of no lag 1 autocorrelation in the population. The exact critical value
of the Durbin-Watson statistic is difficult to calculate. Consequently, the value of D
is compared with both upper bound (Dv) and lower bound (DL) critical values. The
null hypothesis that the lag 1 autocorrelation in the population pl = 0 is rejected if
D < DL for positive autocorrelations or D > 4 — DL for negative autocorrelations.
The null hypothesis that PI — 0 in the population is retained if D > Dv for positive
autocorrelations or D < 4 — Dy for negative autocorrelations. When D falls between
DL and Dy or between 4 — DL and 4 - Dv, most analysts consider the results of the
Durbin-Watson test to be inconclusive since the exact critical value of the Durbin-Watson
statistic is unknown. The regression modules of SAS, SPSS, and SYSTAT all calculate
the Durbin-Watson statistic.

4.4.6 Normality of Residuals

Two different graphical methods can provide an indication of whether the residuals follow
a normal distribution. In the first, more straightforward, but less accurate method, the analyst
plots a histogram of the residuals and then overlays a normal curve with the same mean
and standard deviation as the data. If the distribution is normal, then the histogram and the
normal curve should be similar. Figure 4.4.7(A) depicts a histogram of the residuals and
a normal curve for the 62 residuals from the salary example with four independent variables:
Y = 857 years + 93 publications - 918 female + 202 citations + 39,587. The histogram of the
residuals does not appear to be obviously discrepant from the normal curve overlay, although
these judgments are often very difficult in small samples. Most standard statistical packages
will now generate normal curve distribution overlays for histograms.

The second method known as a normal q-q plot takes advantage of the great accuracy of
humans in the perception of straight lines. Many standard statistical packages13 including SAS
and SYSTAT construct the normal q-q plot, and the analyst has only to judge whether the
plot approximates a straight line. This judgment task is far easier than with the normal curve
overlay.

Figure 4.4.7(B) displays a normal q-q plot for the 62 residuals from the salary data set. As
can be seen, the residuals do appear to be close to the straight line which is superimposed.
Figure 4.4.7(C) presents the same plot but overlays an approximate 95% confidence interval14

around the values expected from the normal curve. Nearly all of the residuals from the actual
sample fall inside the approximate confidence interval, supporting the interpretation that the
residuals have close to a normal distribution. As illustrated in Fig. 4.4.7(C), the 95% confidence

13Both SAS and SYSTAT can produce normal q-q plots.
14A computer intensive method (Atkinson, 1985) is used to construct this confidence interval. The computer

program draws a large number (e.g., 1000) of samples from a normally distributed population. All samples are the
same size as the sample being studied, here n = 62. These simulated data are then used to construct the empirical
distributions for upper 2.5% and the lower 2.5% of the residuals.
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(A) Histogram of residuals with normal curve overlay.

Note: The mean (M = 0) and standard deviation of the normal curve are set equal to the
mean and standard deviation of the residuals (n = 62).

(B) Normal q-q plot of residuals with superim- (C) Normal q-q plot of residuals with an approx-
posed straight line. imate 95% confidence interval.

Note: The points do not exhibit substantial discrepancy Note: The lines represent an approximate 95% confi-
from the superimposed straight line. Thus, the residuals dence interval for a normal distribution. The points rep-
appear to be approximately normally distributed. The resent the actual values of the residuals. The residuals
darkened point is the most negative residual (discussed appear to follow a normal distribution,
in the text).

FIGURE 4.4.7 Plots to assess normality of the residuals.

interval for the residuals is narrower (more precise) near the center than near the ends of the
distribution of residuals.

Although the normal q-q plot provides an excellent method of determining whether the
data follow a normal distribution, interpreting the meaning of a substantial deviation from
normality in a q-q plot can be difficult at first. Many analysts supplement normal q-q plots
with histograms or kernel density plots of the residuals to provide a more familiar display of



(A) Normal.

(B) Uniform or rectangular distribution

(C) Heavy or long tailed distribution

(D) Right skewed distribution.

Note: The histogram are on the left and corresponding q-q plots are on the right in each
panel. Kernel density estimates are superimposed on the histograms in (A) and (C). Data
sets represent random samples of n = 1000 from the following population distributions:
(A) normal, (B) uniform, (C) f-distribution, df = 2, and (D) chi-square distribution,
df = 2.

FIGURE 4.4.8 Histograms and q-q plots illustrating some common distributions. -i og
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BOX 4.4.3
Inside the Black Box: How Normal q-q Plots Are Constructed

The construction of the normal q-q plot starts by putting the cases in rank order
(1,2,3,..., n) according to the values of their residuals. The smallest (most negative)
residual receives rank 1 and the case with the largest (most positive) residual receives
rank n. For a case with rank /, we first calculate f(i), the approximate fraction of the
data that falls at or below this rank:

For our salary example with n = 62, f(i = 1) for the lowest case would correspond
to (1 — 0.5)/62 = .0089 and/(2) for the second lowest case would correspond to
(2 — 0.5)/62 = .0242. These values represent the proportion of the area under the
normal curve that falls at or below rank i. Looking in the normal curve table (Appendix
Table C gives an abbreviated normal curve table), we find the z score that most closely
corresponds to/(0 for each of the cases in the data set. For/(I) = .0089, we look
in the column labeled P and find the closest value, .009, which corresponds to a z
score of —2.35. For/(2) = .0242, z = —2.00. z scores corresponding to the normal
distribution are calculated in this manner for each of the cases in the data set from 1 to n.
These z scores are termed normal quantiles. The original values of the residuals are then
plotted on the y axis and the quantiles (z scores) corresponding to the normal curve are
plotted on the x axis. For example, in Fig. 4.4.7(B), the darkened point at the lower left
represents case 28, the most negative residual. The value of this residual = —13,376.8
is represented on the y axis; the quantile = —2.35 corresponding to its rank / = 1 of 62
cases is plotted on the x axis. The data are scaled so that the physical length of the y axis
is equal to the physical length of the x axis (e.g., 3 inches by 3 inches). The result of this
scaling is that the q-q plot of the residuals against the quantiles will result in a straight
line at a 45° angle if the residuals precisely follow a normal distribution. The task of the
analyst then is simply to judge the extent to which the actual q-q plot matches a straight
line.

the distribution of residuals. Some analysts also compare the obtained q-q plot to examples
depicting common alternative distributions. For example, Fig. 4.4.8(A) to (D) presents side
by side plots of several common distributions. In each panel a histogram of the distribution is
plotted on the left (in some cases with a kernel density plot overlay ed) and a q-q plot of the same
distribution against the normal distribution is presented on the right. Figure 4.4.8(A) portrays
a normal distribution, (B) a uniform or rectangular distribution, (C) a heavy or long-tailed
distribution, and (D) a right skewed distribution. Only in the case of the normal distribution
does the q-q plot follow a straight line. Box 4.4.3 presents the details of the calculation of q-q
plots for interested readers.

Several formal statistical tests of normality have also been proposed. For example, using
a method similar to the idea underlying the normal q-q plot, Looney and Gulledge (1985; see
also Shapiro & Wilk, 1965) compute the correlation between the value of each residual in order
from lowest to highest and the value of the residual that would expected based on a normal
distribution. The obtained correlation is then tested against a population value of 1. Another
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approach (D'Agostino, 1986) performs a joint test of whether skewness and excess kurtosis15

of the residuals both equal 0 in the population. Recall, however, that the primary value of
examining the normality of the residuals in multiple regression is to help identify problems
in the specification of the regression model. Consequently, we have stressed the graphical
examination of the distribution of the residuals. Such graphical examination helps reveal the
magnitude and nature of any non-normality in the residuals, information that is nearly always
far more useful than the significance or nonsignificance of a formal statistical test.

4.5 REMEDIES: ALTERNATIVE APPROACHES WHEN PROBLEMS
ARE DETECTED

The diagnostic procedures discussed in Section 4.4 are useful in identifying a variety of poten-
tial problems that result from violations of the assumptions of regression analysis. As is the case
with routine medical tests, these diagnostic procedures will often indicate that no important
problems have occurred. When no problems are detected, standard OLS regression with lin-
ear relations specified between the independent and dependent variables will provide the best
approach to the analysis. However, researchers cannot know that this will be the case without
examining their own data. Problems stemming from violations of the assumptions of linear
regression do occur with some regularity in analyses in all areas of the behavioral sciences.
These problems raise questions about the conclusions that are reached based on standard linear
regression analyses. When problems are diagnosed, then potential remedial actions should be
explored. In this section, we identify several common problems that may occur in regression
analysis and outline potential remedies. Several of these remedies will be developed in greater
detail in later chapters in this book.

4.5.1 Form of the Relationship

When the form of the relationship between X and Y is not properly specified, the estimate of the
regression coefficient and its standard error will both be biased. Chapters 2 and 3 have focused
on linear relationships between independent and dependent variables. However, a variety of
forms of nonlinear relationships may exist between X and Y. In some cases these relationships
may be specified by theory or prior research. In other cases, a linear relationship may be initially
specified, but the fit of the lowess curve will strongly indicate that the relationship between
X and Y is nonlinear. When nonlinear relationships are specified or detected, an alternative
approach that accounts for the nonlinear relationship will need to be taken. Chapter 6 considers
these approaches in detail.

Four questions should be posed as a basis for choosing among methods for restructuring
the regression equation to properly capture the form of the relationship.

1. Is there a theory that predicts a specific form of nonlinear relationship? To cite two
examples, the Yerkes-Dodson law predicts there will be an inverted-U (quadratic) relationship
between motivation (X) and performance (Y) in which moderate levels of motivation lead to
the highest levels of performance. Many learning theories predict that performance on a new
task will follow an exponential form hi which it initially increases rapidly and then increases
more slowly up to a maximum level of performance (asymptote).

2. What is the observed relationship between each pair of IVs? OLS regression only controls
for linear relationships among the IVs. If a scatterplot shows a strong nonlinear relationship
between two IVs, then these IVs should be re-expressed to make then- relationship more linear.

15Excess kurtosis = kurtosis — 3. This index rescales the value so that it will be 0 when the distribution is normal.
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3. What is the shape of the lowess curve of the original data? The lowess curve portrays the
best estimate of theX-F relationship in the sample. What is the shape of the curve? Does it need
to bend in one direction or have multiple bends? Does the curve appear to have an asymptote
in which it approaches a maximum or minimum level? Identifying the general shape of the
lowess curve is very helpful in trying to identify a mathematical function that can represent
the data.

4. Does the variance of the residuals remain constant or does it increase or decrease sys-
tematically? This question can be addressed through plots of the residuals against each IV and
Y, particularly when enhanced with lines 1 sd above and below the lowess line (see Fig. 4.4.5).

The diagnostic tools we have considered in this chapter help provide answers to questions 2,
3, and 4. The answers help guide the analyst toward the approach to representing nonlinearity
that is most likely to prove fruitful. We provide brief guidelines here, and Chapter 6 discusses
approaches to nonlinearity in detail.

Theoretically Predicted Relationship
The analyst should specify a regression equation that conforms to theoretically specified

mathematical relationship. The test of the Yerkes-Dobson law involves specifying a quadratic
relationship between X and Y; The test of the learning theory prediction involves specifying
an exponential relationship between Xand Y.

Nonlinear Relationship Between Independent Variables
and Nonlinear Relationship of Independent Variables
to the Dependent Variable
The analyst should consider transforming the IVs involved in the nonlinear relationships.

In transformation, the original variable is replaced by a mathematical function of the original
variable. As one example, Xl and X2 might be replaced by their logs so that the new regression
equation would be Y = Bl log X± +B2 log X2 +B0. Ideally, the proper choice of transformation
will yield a linear relationship between the pair of IVs and between each of the IVs and
the DV. Residuals that are homoscedastic in lowess plots remain homoscedastic following
transformation of the IVs. Section 6.4 presents rules for choosing transformations.

Nonlinear Relationship Between Independent Variables
and the Dependent Variable and Homoscedasticity
The most common approach to this situation is to include power polynomial terms in the

regression equation. Power polynomials are power functions of the original IV such as X* and
X\. For example, the regression equation Y = B^ + B2X^ + B0 can represent any form of
quadratic relationship including U-shaped, inverted U-shaped, and relationships in which the
strength of the relationship between X and Y increases or decreases as X gets larger. Residuals
that are homoscedastic in lowess plots will also remain homoscedastic if the proper polynomial
regression model is specified. In some cases simple polynomial functions may not be adequate,
so more complicated nonparametric functions may be needed to represent the relationship
between the IVs and DVs. Sections 6.2 and 6.3 give a full presentation of multiple regression
including power polynomials; Section 6.6 gives an introduction to nonparametric regression.
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Nonlinear Relationship Between Independent Variables
and the Dependent Variable and Heteroscedasticity
Proper choice of a transformations of Y can potentially simultaneously address problems

of nonlinearity, heteroscedasticity, and non-normal residuals in the original linear regression
model.16 Here, the dependent variable is replaced by a nonlinear mathematical function of Y
such as log Y or vT and the Xs are not changed. As one example, we could replace Y with
log Y so that the new regression equation would be log Y = B^ + B2X2 + B0 + e. In this
transformed regression equation, the residuals are now equal to the observed value of log Y
minus the predicted value of log Y. This means that the relationship between the variance of
the residuals and the IVs will be different than was observed with the original data. Ideally,
heteroscedasticity can be minimized with the proper choice of transformation of Y. Section 6.4
provides a thorough discussion of methods of transformation of Y.

4.5.2 Inclusion of All Relevant Independent Variables

When a theory or prior research states that a set of Xs (e.g., Xl, X2, X3, X4) should be included in
the regression model, omission of any of the independent variables (e.g., X4) leads to potential
bias in the estimates of the remaining regression coefficients and their standard errors. Similarly,
when there is theoretical reason to believe that a candidate independent variable should be added
to the model and the added variable plot supports its inclusion, then it is nearly always a good
idea to estimate a new regression model with this variable included. These are the clear-cut
cases.

In contrast, other cases may be less clear-cut. We can gain insight into these more difficult
situations by considering the various possible relationships between the candidate IV, the other
IVs, in the equation, and the DV

Consider a situation in which Xl and X2 are important independent variables, but the can-
didate IV X3 has no relevance to the actual process generating the dependent variable in the
population. If the irrelevant variable X3 is not related to either the other independent variables
or the dependent variable, then the regression coefficients for the other variables, B1 and B2,
will be unbiased estimates of the true values in the population. The primary cost of including X3

in the regression model is a small increase in the standard errors of the BI and B2 coefficients.
This increase in the standard errors implies that confidence intervals will be slightly too large
and the statistical power of the tests of Bl and B2 will be slightly reduced.

Now consider a situation in which X3 is related to the DV but is unrelated to the IVs. This
situation commonly occurs in randomized experiments in which the two IVs are experimental
treatments andX3 is an individual difference characteristic (e.g., IQ, an attitude, or a personality
trait). Once again, the regression coefficients forXj andX2 will be unbiased estimates of the true
values in the population. There are two potential costs of failing to include X3 in the regression
equation. First, to the extent that the researchers are interested in individual differences, they
have omitted an important predictor of behavior, particularly if there is a good theoretical
rationale for inclusion of the candidate variable. Second, the standard errors of fit and B2

will be larger if X3 is not included in the regression model so that the confidence intervals
for BI and B2 will be larger and the corresponding significance tests will be lower in power.
We will further consider this second issue in Section 8.7 in our discussion of analysis of
covariance.

16Researchers who predict specific forms of nonlinear relationships between X and Y or interactions between
IVs should be very cautious in the use of transformations of either X or Y. Transformations change the form of the
relationship between the new variables potentially eliminating the predicted X-Y relationship when it exists in the
original data.
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Finally, the most difficult situation occurs when X3 is related to Xl and X2 as well as 7.
Here, the correct answer depends on knowing the actual process that determines Y in the
population. If the analyst omits X3 from the regression equation when it should be included,
the estimates of B{ and B2 will be biased. If the analyst includes X3 when it should be omitted,
the estimates of B^ and B2 will be biased. In practice, the analyst can never know for sure which
regression model is correct. Careful thought about candidate variables often provides the best
solution to the omitted variable problem. Analysts should never simply "throw independent
variables into a regression equation." Careful consideration of whether the addition of the
candidate variable makes conceptual sense in the substantive area of research is required.17 In
Chapter 5 we will consider two statistical approaches to this dilemma. Hierarchical regression
adds a set of candidate variables to the regression equation to determine how much the set of
candidate variables adds to the prediction of Y over and above the contribution of the previously
included independent variables (Sections 5.3-5.5). Sensitivity analysis involves estimating
regression models that include and do not include the candidate variables and comparing
the results. If the effect of an independent variable (e.g., X^ that is included in all of the
analyses does not change appreciably, then the analyst can claim that the effect of this variable
appears to be robust regardless of which model is estimated. Other more advanced statistical
methods of probing the effects of omitted variables can be found in Maddala (1988) and Mauro
(1990).

Beginning analysts are advised to be very clear about which variables are included in their
originally hypothesized regression model. The originally hypothesized model has a special
status in statistical inference because it has been developed independently of the current data.
When model modifications are made based on the current data set, then all findings become
exploratory. Analysts cannot know for certain whether they have discovered an important new
relationship that holds in general or whether they have detected a relationship that is peculiar
to this one particular sample. Exploratory findings are potentially important and should not be
ignored. However, they should be clearly labeled as exploratory in any report or publication,
and their interpretation should be very tentative. Exploratory findings should be replicated in
a fresh data set before any strong conclusions are reached (see Diaconis, 1985, for a fuller
discussion of inferential issues in exploratory data analysis).

4.5.3 Measurement Error in the Independent Variables

When one or more independent variables has been measured with less than perfect reliability,
the estimates of the regression coefficients and their standard errors for each independent
variable will be biased. Methods of correcting for measurement error in the one-IV and two-IV
cases were introduced in Section 4.5. A general strategy with more than two IVs is to correct
each separate correlation in the full correlation matrix including all independent variables
and the dependent variable for measurement error. A simple method is to apply Eq. (2.10.5)
(reproduced here) to each pair of variables in the correlation matrix:

The corrected correlation matrix can then be used as input to standard statistical packages
such as SAS, SPSS, and SYSTAT, and the desired measures of partial relationship can be

17Recall that the addition of IVs also changes the meaning of the regression coefficients. In the equation Y =
5jXj + S0'^i represents the linear relationship between Xj and Y. In the equation, Y — B^ + B2X2 + BQ,B\
represents the conditional linear relationship between X} and Y given that X2 is held constant.



4.5 REMEDIES: ALTERNATIVE APPROACHES WHEN PROBLEMS ARE DETECTED 145

computed. A particular value of this method is that it produces estimates of the unstandardized
and standardized regression coefficients that are corrected for measurement error. The analyst
can compare these results to the corresponding results based on the uncorrected data to get an
idea of the extent to which the direction and magnitude of the relationships may be affected
by measurement error.

The central drawback of this simple approach to correction for unreliability is that the stan-
dard errors of the corrected regression coefficients, and hence significance tests and confidence
intervals, will not be accurate. Proper estimation of the standard errors of corrected regression
coefficients can be obtained from structural equation modeling programs (see, e.g., Bryne,
1998, for details of reliability correction using the LISREL program). Chapter 12 introduces
the basic concepts of path analysis and structural equation modeling.

Correction for measurement error may involve difficult issues. The correction procedures
assume that we have a very good estimate of the reliability for each variable. And all indepen-
dent variables in the regression equation must be corrected for unreliability or the estimates of
the regression coefficients will be biased (Won, 1982). Precise estimates of reliability are typ-
ically only available for tests that report reliabilities for large standardization samples or when
the researchers' own work with the measures has involved very large samples. Estimates of
reh'ability based on small samples will often be too high or too low, and may produce estimates
of correlations between true scores that are grossly inaccurate.

Another problem that may occur when inaccurate estimates of reliability are used is that
the corrected correlation matrix may no longer have the standard mathematical properties that
define correlation matrices.18 For example, correlations between true scores are sometimes
found that are greater than 1.0 in magnitude, or the correlation between two variables may be
higher or lower than is mathematically possible given their pattern of correlations with other
variables. In such cases, more advanced techniques of correcting for measurement error may
be needed (Fuller, 1987).

Although these correction methods can lead to improved estimates of the regression coeffi-
cients, the best strategy is to confront measurement error before the study is designed. Choosing
the most reliable available measure of each construct will minimize the bias due to measure-
ment error. Using multiple measures of each construct and analyzing the data using multiple
indicator, structural equation models (see Chapter 12; Bollen, 1989) also leads to regression
coefficients and standard errors that are corrected for measurement error. Implementing one
of these procedures at the design stage helps avoid the potential problems with the reliability
correction methods that occur when one or more of the reliabilities is inaccurate or if other
conditions for the application of the correction procedure are not met.

4.5.4 Nonconstant Variance

We now consider situations in which our graphical examination of the residuals suggests that
the form of the regression model was properly specified, but that the variance of the residuals
is not constant (heteroscedasticy). Recall from Section 4.4 that estimates of the regression
coefficients are unbiased in this situation, but that the standard errors may be inaccurate.
Section 4.4 also presented graphical displays and statistical tests of the residuals against each
IV and Y. These approaches are useful in detecting whether nonconstant variance exists.
However, in deciding whether or not corrective action is needed, it is more important to get an

18For each pair of variables, no observed correlation r12 can exceed the product of the square root of the reli-
abilities, ^/rnr22, of Xl and X2. For each triplet of variables, r12 has mathematical upper and lower limits of

r13r23 ± v (1 — /f3)(l — r|3). Correlation matrices that do not have these properties are described as ill conditioned.
Mathematically, correlation and covariance matrices are ill conditioned if they have at least one negative eigenvalue.
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estimate of the magnitude of the nonconstant variance problem. Recall that heteroscedasticity
does not have a material effect on the results of the regression analysis until the magnitude of
the problem becomes "large."

One simple method of determining the magnitude of the nonconstant variance problem is
to order the cases from lowest to highest according to their values on X and then to divide
them into a number of sets with approximately an equal number of cases in each set. Each of
these sets is termed a slice. The number of slices chosen reflects a compromise between having
a relatively stable estimate of the variance in each slice versus having the ability to examine
different portions of the data.

For example, with 200 cases, the analyst might divide the data into five sets by putting the
40 cases with the smallest values of X in set 1, the next lowest 40 cases in set 2, and so on,
yielding 5 sets. The analyst calculates the variance of the residuals around the regression line
within each slice separately,

In this equation, ns]ice is the number of cases in the slice and sd^~ represents the conditional

variance of the residuals within the slice. If the ratio of the largest to the smallest conditional
variance for the slices exceeds 10 or the conditional variance changes in a regular and systematic
way as the IV increases in value, the analyst may wish to consider the remedial procedure of
weighted least squares regression.

Weighted least squares (WLS) regression is the most commonly used remedial procedure
for heteroscedasticity. Recall from Section 4.3 that in OLS estimation each case is given the
same weight (w, = 1) in calculating the regression coefficients. The values of B0 and Bl are
chosen so as to minimize the value of sum of the squared residuals. With one independent
variable, this expression is

In contrast, in WLS each case is given a weight, vv(, depending on the precision of the obser-
vation of Y for that case. For observations for which the variance of the residuals around the
regression line is high, the case is given a low weight. For observations for which the vari-
ance of the residuals around the regression line is low, the case is given a high weight. In
the regression equation the values of BQ and B{ are chosen so as to minimize the sum of the
weighted squared residuals,

When there is heteroscedasticity, WLS produces regression coefficients with the smallest
possible standard errors when w, is the inverse of the conditional variance of the residuals in
the population corresponding to the specified value of X,

The notation v2
Y$.x represents the variance of the residuals in the population conditional on the

specified value of X. In practice, a2 _. will not usually be known and must be estimated from

the data. Interested readers will find an illustration of how weights are estimated in Box 4.5.1.
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Two observations about WLS regression are in order. First, the primary difficulty in using
WLS regression is choosing the proper value of the weight for each case. To the degree that the
weights are not accurately estimated, WLS will not give optimal performance. Consequently
WLS will show the best performance when there is a large sample size or when there are
multiple cases (replicates) for each fixed value of X, as occurs in a designed experiment.
If the WLS weights have been properly estimated in a sample, the regression coefficients
from OLS, in which each case receives an equal weight, and WLS, in which each case is
weighted according to the precision of the observation, should be very similar. Because of
the imprecision in estimating the weights, OLS regression will often perform nearly as well
as (or sometimes even better than) WLS regression when the sample size is small, the degree
to which the variance of the residuals varies as a function of X is not large, or both. Second,
WLS regression involves one important cost relative to OLS regression. In WLS the measures
of standardized effect size, such as R2 and pr2, do not have a straightforward meaning as they
do in OLS. Although standard computer programs include these measures in their output, they
should not normally be presented when WLS regression is used. Taken together, these two
observations suggest that OLS regression will be preferable to WLS regression except in cases
where the sample size is large or there is a very serious problem of nonconstant variance.

4.5.5 Nonindependence of Residuals

Nonindependence of the residuals arises from two different sources, clustering and serial
dependency. We consider the remedies for each of these problems in turn.

19 When there are a few unusually large positive or negative values of the raw residuals, et, that are highly discrepant
from the rest of the residuals (i.e., outlying values, see Section 10.2), the weights will be very poorly estimated. When
there are outlying values, regressing \et\ on X and then using w{ = 1/(!«,• |)2 will yield improved estimates of the
weights (Davidian & Carroll, 1987). (|2,|)2 is the square of the predicted value of the absolute value (ignoring sign)
of the residual.

BOX 4.5.1
An Example of Estimating Weights for Weighted Least Squares

WLS regression is often used when the variance of the residuals has an increasing or
decreasing linear relationship with X. In this case, the two-step process may be used to
estimate the weights. We illustrate this process in the one predictor case.

1. We estimate the usual OLS regression equation, Y = B^X+BQ + e. The residuals
are saved for each case in the sample.

2. The residual for each case is squared. The squared residuals are regressed on X
in a second regression equation,

In this equation, e2 is the predicted value of the squared residual for case /, B'Q is the
intercept, and B\ is the slope. Note that B0 and Bl in the regression equation from step 1
will not typically equal B'Q and B[ in the regression equation from step 2. To estimate
Wj for case i, the value of X for case / is substituted in Eq. (4.5.1), and the weight is
the inverse of the predicted value of the squared residual, w, = 1/e2. Once the weights
are calculated, they are typically added to the data set as a new variable with a value
for each case.19 Standard statistical packages will then perform weighted least squares
regression.
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Clustering
When data are collected from groups or other clusters, the estimates of the regression

coefficients are unbiased, but the standard errors will typically be too small. Although histor-
ically a number of approaches were proposed to remedy this problem, two different general
approaches appear to be the most promising.

In the first approach, a set of dichotomous variables known as dummy variables is used
to indicate group membership. Coding schemes for representing group membership are ini-
tially presented in Chapter 8 and then are applied to the specific problem of clustering in
Section 14.2.1 (disaggregated analysis with dummy coded groups). This approach removes
the effects of mean differences among the groups on the results of the regression analysis.
The results are easy to interpret, and the analysis does not require assumptions beyond those
of OLS regression. However, the dummy-variable approach does not permit generalization of
the results beyond the specific set of g groups that have been studied.20 This approach also
excludes the study of many interesting research questions that involve group-level variables
such as the influence of group-level variables (e.g., total amount of interaction among family
members) on individual-level variables (e.g., individual happiness).

The second approach is known variously by the terms multilevel models or hierarchical
linear models. A form of regression analysis know as random coefficient regression is utilized.
Conceptually, this approach may be thought of as specifying two levels of regression equations.
At level 1, a separate regression equation is used to specify the intercept and slope of rela-
tionships within each of the groups. At level 2, regression equations specify the relationships
between group-level variables and the slope and intercept obtained within each group from
the level 1 analyses. For example, an educational researcher might study whether the income
of the neighborhood in which schools are located is related to the overall level (intercept) of
math achievement in each school and also to the relationship (slope) between student IQ and
math achievement within each school.

Random coefficient regression models represent an important extension of multiple regres-
sion analysis that have opened up important new lines of inquiry in several substantive areas.
At the same time, these models use more complex estimation procedures than OLS. These
estimation procedures have several statistical advantages over OLS, but they come at a cost of
requiring more stringent assumptions than OLS regression. Chapter 14 provides an extensive
introduction to both approaches to the analysis of clustered data. Raudenbush and Bryk (2002),
Kreft and de Leeuw (1998), and Snijders and Bosker (1999) provide more advanced treatments.

Serial Dependency
Analyses of temporal data that include substantial serial dependency lead to regression coef-

ficients that are unbiased, but that have standard errors that are incorrect. A data transformation
procedure is used to remedy the problem, here with the goal of removing the serial dependency.
Successful transformation yields transformed values of each observation that are independent.
Regression analyses may then be performed on the transformed values. For interested readers
Box 4.5.2 provides an illustration of the transformation procedure when the residuals show a
lag 1 autocorrelation.

20In some applications generalization is not an issue because the entire population of clusters is included in the
sample. For example, a political scientist studying samples of voters selected from each of the 50 states in the United
States would not wish to generalize beyond this set of states. However, in most research contexts, researchers wish to
make inferences about a population of groups rather than a specific set of groups.



4.5 REMEDIES: ALTERNATIVE APPROACHES WHEN PROBLEMS ARE DETECTED 149

BOX 4.5.2
Transformation of Data with Lag 1 Autocorrelation

The transformation strategy illustrated here involves separately removing the part of Y
that relates to the previous observation in the series:

In Eq. 4.5.2, Y* is the transformed value of Y at time t, Yt is the observed value of Y at
time t, and Yt_\ is the observed value of Y at time t — 1. r\ is the lag 1 autocorrelation.
The regression analysis is then conducted on the transformed data,

where Yf is the predicted value of transformed Y, B* is the slope for the transformed
data, and BQ is the intercept for the transformed data.

How do the results of the regression analysis performed on the transformed Y* data
using Eq. 4.5.3 compare with the results of the regression analysis, Y( = B^ + BQ,
performed on the original data? The transformation has no effect on the slope: B* = B^.
We can use the results of the analysis of the transformed data directly and report the
estimate of Bl, its standard error, and the significance test and confidence interval.
However, BQ = (1 — ri)BQ. To recover the original (untransformed) intercept B0 with
its corrected standard error SEBo, an adjustment of the results of the analysis of the
transformed data is necessary. The adjusted values ofBQ,SEBo, and the / test of B0 are
calculated as follows:

The transformation procedure described here assumes that r\ is a very good estimate
of the value of the lag 1 autocorrelation pj in the population. Econometric texts (e.g.,
Greene, 1997) present more advanced analysis procedures that simultaneously estimate
the values of the regression coefficients and the autocorrelation parameter. When more
complicated forms of serial dependency than lag 1 autocorrelation are detected or there
are several independent variables, statistical procedures known as time series analysis
are used. These procedures include specialized methods for detecting complex forms
of serial dependency and for transforming each series so that unbiased estimates of the
regression coefficients and their standard errors can be obtained. Section 15.8 presents an
introduction to time series analysis and other approaches to temporal data. McCleary and
Hay (1980) provide a comprehensive introduction to time series analysis for behavioral
science researchers. Box, Jenkins, and Reinsel (1994) and Chatfield (1996) provide
more advanced treatments.



150 4. DATA VISUALIZATION, EXPLORATION, AND ASSUMPTION CHECKING

4.6 SUMMARY

Chapter 4 considers the full variety of problems that may arise in multiple regression analysis
and offers remedies for those problems. A key feature of good statistical analysis is becoming
very familiar with one's data. We present a variety of graphical tools that can quickly provide
this familiarity and help detect a number of potential problems in multiple regression analysis.

Univariate displays include the frequency histogram, stem and leaf displays, kernel density
estimates, and boxplots. Scatterplots are useful in seeing both linear and nonlinear relationships
between two variables, particularly when enhanced with superimposed straight lines or lowess
lines. Scatterplot matrices make it possible to examine all possible pairwise relationships
between the IVs and the DV (Section 4.2).

The assumptions underlying multiple regression and ordinary least squares estimation are
then considered. Violations of some of the assumptions can lead to biased estimates of regres-
sion coefficients and incorrect standard errors (Section 4.3). Violations of other assumptions
lead to incorrect standard errors. Serious violations of the assumptions potentially lead to
incorrect significance tests and confidence intervals. Graphical and statistical methods of
detecting violations of several of the assumptions including incorrect specification of the form
of the regression model, omitted variables, heteroscedasticity of residuals, clustering and ser-
ial dependency, and non-normality of residuals are then presented (Section 4.5). A variety
of remedies that are useful when the assumptions of regression analysis are violated are then
introduced. Some of the remedies address various issues in the specification of the regression
model including the form of the IV-DV relationship, omitted IVs, and measurement error in
the IVs. Other remedies address nonconstant variance of the residuals, clustering, and serial
dependency. A fuller presentation of some of the remedies is deferred to later chapters, where
the problems receive a more in-depth treatment.



5
Data-Analytic Strategies
Using Multiple
Regression/Correlation

5.1 RESEARCH QUESTIONS ANSWERED BY CORRELATIONS
AND THEIR SQUARES

Until this point we have presented regression/correlation analysis as if the typical investigation
proceeded by selecting a single set of IVs and producing a single regression equation that is
then used to summarize the findings. Life, however, is seldom so simple for the researcher.
The coefficient or set of coefficients that provide the answers depend critically on the questions
being asked. There is a wealth of information about the interrelationships among the variables
not extractable from a single equation. It is, perhaps, the skill with which other pertinent
information can be ferreted out that distinguishes the expert data analyst from the novice. In
this chapter we address five major issues of strategy that should be considered in using MRC
analysis. The first examines the fit between the research questions and the coefficients that
answer them. The second examines some options and considerations for making regression
coefficients more substantively interpretable. The third strategic consideration is the use of
sequential or hierarchical analysis to wrest the best available answers from the data. The fourth
is the employment of sets of independent variables in hierarchical analyses. The final section
discusses strategies for controlling and balancing Type I and Type n errors of inference in MRC.

It is often the case that regression coefficients provide the most informative answers to
scientific questions. However, there are a number of questions that are best answered by cor-
relation coefficients and their comparisons. Indeed, it is sometimes hard to avoid the suspicion
that correlation coefficients and squared correlations of various kinds are not reported or not
focused on, even when most relevant, because they are typically so small. There is something
rather discouraging about a major effort to study a variable that turns out to account uniquely
for 1 or 2 percent of the dependent variable variance. We have tried to indicate that such a
small value may still represent a material effect (see Section 2.10.1), but there is no getting
around the more customary disparagement of effects of this magnitude.

Different questions are answered by different coefficients and comparisons among them.
Standard statistical programs in MRC produce both regression and correlation coefficients for
the use of scientists in interpreting their findings. All coefficients, but especially correlation
coefficients, need a definable population to which to generalize, of which one has a random, or at
least representative or unbiased sample. Without a population framework some coefficients may
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be meaningless, and this is especially true of coefficients based (standardized) on the variance
of the current sample. Researchers often make the untested assumption that the sample being
examined is representative of some larger population. Assumptions about the stability and
generalizability of model estimates from the sample at hand to the population of interest are
probably more serious sources of bias than many other more familiar or researched statistical
problems, such as variable distribution problems.

What kinds of hypotheses and research situations are best examined by comparisons of
correlations, partial correlations, and semipartial correlations? The fundamental difference
between questions involving correlations and those involving regression coefficients has often
been overlooked because they share certain significance tests. Thus, the unique contribu-
tion to the prediction of Y, the squared semipartial correlation, shares the t test of statistical
significance with the partial regression coefficients, both standardized and in raw units. Nev-
ertheless, a focus on the magnitude and confidence intervals of these different coefficients will
be informative to different research questions.

5.1.1 Net Contribution to Prediction

How much does Xt Increment R2(sr2}! How much improvement in prediction of Y is associated
with the addition of Xt to other predictors? Here our interest is in the value of the squared
semipartial correlation. Note that this is fundamentally a prediction question, rather than one
of causal inference. For example, how much more predictable is academic success when we
add health history to prior achievement and IQ? This is a question of utility rather than of
causality. The latter would focus on the regression coefficient.

In addition to applied research that is designed to select variables on the basis of utility,
correlation coefficients of various kinds may also answer scientific questions. We have indicated
that questions about causal impact are generally best answered with regression coefficients.
However, there are a number of scientific questions that are not causal in nature.

5.1.2 Indices of Differential Validity

Is measure A better than measure Bl Perhaps some of the most frequently asked questions that
are better answered by correlation functions than by regression coefficients involve evaluation
of whether some measure or index is a better measure of a common construct than is an
alternative, when the two measures are not measured in comparable units. For example, a study
attempting to answer the question of whether child or parent is a better informant with regard
to parental conflict by correlating scales appropriate to each informant with some criterion is
best answered with correlations. Similarly, the question of which of two scales is better with
regard to some criterion or outcome is better indexed by a comparison of correlations than by
comparison of regression coefficients. For such questions the difference between correlations
bounded by the confidence interval on this difference provides the best answer. Although the
exact test is a complicated function of the average squared validity and the correlation between
the predictors, in general, the standard error of this difference, expressed in Fisher's z', is less
than ^/2/(n — 3) when all correlations are positive and the correlation between the predictors
is comparable to their average validities (Meng, Rosenthal, & Rubin, 1992).

5.1.3 Comparisons of Predictive Utility

Is Xl a better predictor than X21A question similar to that posed in the previous section may
be answered by a comparison of semipartial correlations from a single sample: Which of two
predictors is more related to Y net of other influences? For example, is maternal education
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or paternal occupational status a better indicator of social class and thus more predictive of
academic success, net of IQ? If the predictors were in the same units as, for example, a
comparison of the influence of maternal education and paternal education, we might wish to
compare 5s to answer the question of whether an additional year of mother's education or of
father's education had a higher "payoff in terms of offspring academic success. However,
when the predictors to be compared are in different units, such J5s are not directly comparable.
An alternative index would be a comparison of PS; methods for comparing which are described
in Appendix 2.

5.1.4 Attribution of a Fraction of the XY Relationship
to a Third Variable

How much of the XY relationship is accounted for by W1 This question may be answered by
comparing the zero-order r\y with the semipartial r\%,w. Among other questions, this may
represent a test of the mediation of the effect of X by W. This question is not the same as the
one answered by a comparison of the zero-order Byx with the partial Byx-w The answer to the
first question tells us how much of the prediction of Y by X is accounted for or attributable to
W. The second asks whether, for constant values of W—that is, averaged over the values of
W—changes in X have the same consequences for Y that they appeared to have when W was
ignored. It is quite possible for W to account for a substantial fraction of the XY correlation
and still have Byx unchanged when W is partialed. For example, if rXY = .6, ryw = -5 and
rxw = .83, the unique contribution of X to the prediction of Y is [by Eq. (3.3.8) squared]

as compared to .36 for the zero-order r^. In contrast,

Since B is equivalent to p with adjustment for standard deviations [Eq. (3.2.5)], it too will
remain constant in this situation. Naturally confidence intervals and statistical power for all
coefficients will be much affected by the rxw.

5.1.5 Which of Two Variables Accounts for More
of the XY Relationship?

Olkin and Finn (1995) present an example in which the question of interest is whether change
in Y (adolescent drug use) over time (=Y2 • YI) is better explained by peer (V) or family (W)
variables. Other examples might be whether family member differences are better explained by
genetic closeness or period of time they lived together, or whether intergenerational differences
on some variable are better explained by socioeconomic status or other differential experiences.
Again, the question is posed in terms of variance proportions, and the answer is given by
comparing the partial correlation of X with Y2, partialing YI to the partial correlation of W
with Y2, partialing Y^.
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5.1.6 Are the Various Squared Correlations in One Population
Different From Those in Another Given the Same Variables?

This is a sort of popular "bottom line" question, that ignores (for the moment) the theoretically
relevant details. Such questions can be asked with regard to zero-order r2, partial or semipar-
tial r2, or R2. Are social values as reflective of mental health in New Zealand as in American
adolescents? Can we predict equally well in men and women, old persons and middle aged
persons? Note that our overall prediction as assessed by R2 can be equally good in two pop-
ulations, although entirely different predictors in the set may be operative, or predictors may
have quite different Bs.

5.2 RESEARCH QUESTIONS ANSWERED BY B OR p

5.2.1 Regression Coefficients as Reflections of Causal Effects

The (partial) regression coefficient B, as we have indicated, is often viewed as the premier
causal indicator because it informs us about the estimated effect on the dependent variable of
a change in the value of a putative cause.1 Nevertheless, B coefficients as frequently presented
have limitations, especially those associated with measurement units that are unfamiliar or that
lack intrinsic meaning. These limitations are separable from the problems of equality of scale
units, that is, whether the measures being employed can be considered to have the properties
of interval scales. (See Cliff, 1982, for a discussion of methods of determining scale qualities
and the inseparability of measurement from the scientific enterprise in general.)

As a consequence of a lack of consensus on measures, it is often easier to interpret p than B.
P, as we have seen, essentially rescales the effects in terms of the standard deviations of the
sample at hand. This is particularly useful when our research question has to do with comparing
different variables for their (partialed) effects on Y in a given population represented by this
sample. It is also often a necessary convenience when comparing effects of a given (conceptual)
Xt on Y across studies, which may differ on the chosen measures of Xt and Y, and may even
differ with regard to the population from which the sample was drawn. For example, we may
measure depression with different scales in two studies, but wish to determine how similar
their relationships are to some common Y. Consequently, it is generally recommended that P
be reported, along with its SE in any research report.

5.2.2 Alternative Approaches to Making BYX

Substantively Meaningful

Clear interpretation of a (raw unit) B is often absent because the units of our measures are
essentially arbitrary or are unfamiliar. Variable scores in the behavioral sciences often consist
of simple sums of items, and statistics based on these scores will often be hard to interpret
because of reader unfamiliarity with the number of items, the number of response options per
item, and the numbers assigned to those response options in a given study. In such cases, even
when major concerns about scale quality are absent, it is often difficult to determine anything
useful about the meaning of a particular B other than, perhaps, the confidence that it differs

1 Of course, use of B for these purposes does not, as such, imply that the researcher has provided the necessary
theoretical argument that justifies such an interpretation.
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from zero in a given direction. However, it is possible to provide data in ways that will enhance
the interpretation and utility of the analyses.2

Units With Conventionally Shared Meaning
Some units are intrinsically meaningful (e.g., bushels, dollars, inches, years, and degrees,

for which our familiarity with the units provides a framework that makes them generally
understood). There are a few such cases in the behavioral sciences, in which long familiarity
with a scale, and, usually, substantial standardization data has made relatively familiar units
out of measures of abstract constructs. In psychology we have become familiar enough with
the IQ unit to convey a sense of what are meaningful differences, even though the methods
used to assess and calculate IQ vary. A long clinical tradition with the Hamilton Depression
Scale has led to some consensus about the meaning and clinical significance of a difference
or change of, for example, 5 units. The running example that we have used in this text was
selected partly because its variables have such intrinsic meaning—dollars, years, publications,
citations, and sex.

The fact that the units are agreed upon does not necessarily mean that a definition of a
material difference is clear; rather the meaning is defined in context. Thus, for example, a
difference of 4° Fahrenheit may be immaterial when one is cooking, of modest importance
when one is deciding whether to go to the beach, and of considerable impact when one is
measuring human body temperature (if within a certain range of values in the vicinity of 99°).
The difficulty in accomplishing a conversion to centigrade (Celsius) measures of degrees in the
United States is testimony to the importance of familiarity in context for ordinary interpretation
of temperature units.

When the units (of both dependent and independent variable) are familiar in the context
in which they are being used, the B is intrinsically useful. Thus, for example, if we say that
the presence of some illness is associated with temperature increases of 5°, we understand its
significance (although we would want to know its variability and duration as well as its mean).

Scales With a True Zero: None is None
Perhaps the typical scores that can be said to have true zeros are counts of events or objects.

However, when such counts are meant to represent a more abstract construct or lack a familiar
context that supplies meaning (e.g., the number of lever pecks a pigeon will complete as a
function of the rate of reinforcement), the fact that they are counts is not enough to supply
a useful meaning. No doubt experimenters who work in a given specialty area often develop
a kind of consensus as to what are "material" effects, just as those working with biological
assays do; however, those outside the area are likely to have to take their word for it, having
no framework for understanding what is a lot and what is a little.

Under the circumstances in which both independent and dependent variables have true
zeros, a useful conversion of B is to a measure of elasticity (E), used by economists to describe
the percent change on a variable for which there is an available count (like dollars) but no
upper limit (e.g., Goldberger, 1998). Elasticity is the percent change at the mean of Y for
each 1% change in X? Thus Byx = 1.36 in our running example of faculty salary meant 1.36
publications per year since Ph.D., in relationship to an overall average of 19.93 publications,
so there would be a 1.36/19.93 = 7% increase at the mean in publications per year since Ph.D.
The average faculty member is 6.79 years post Ph.D., so an increase in one year is a 1/6.79 or

2 A more detailed presentation of these considerations and options can be found in P. Cohen, J. Cohen, Aiken, and
West, 1999.

3The coefficient E is defined at the mean of the distribution; the regression is carried out on the raw variables.
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14.7% increase. Dividing the 7% by 14.7% gives an elasticity of .476, or nearly a half percent
increase in publications per 1% increase in time since Ph.D. (evaluated at the mean). Note
that an advantage of this measure is that no upper limit is placed on the magnitude of either
measure; an established range is not necessary to produce a meaningful effect size.

Scores for Which Both Zero and a Maximum
Are Defined by the Measure
With many novel measures, a convenient unit is the percent of the maximum possible

(POMP) score. School grades are often presented in this format, and conventions have devel-
oped that tend to lend differences in these units an intrinsic meaning (although again context
matters, as one can easily see by comparing the meaning of a score of 80% in high school and
in graduate school). The school grades example is also instructive because it makes it clear
that the end points of the test do not necessarily define states of zero and complete knowledge
of the subject matter. Furthermore, different instructors may devise tests of the same material
that are seen as inappropriately easy, difficult, or appropriately discriminating among students.

There is nothing intrinsic about the percent reflecting "correctness," that is, it can equally
be the percent of items endorsed in the scored direction regardless of the construct being
scaled. Thus, if we have 20 true-false items measuring extroversion, each item endorsed in
the extroversion direction would be worth 5 percentage points. Just as in educational tests of
subject matter knowledge, a given test may be "hard" or "easy," and may allow for a range of
scores that covers the potential range of the construct well or may restrict the range (qualities
that may be inferred in part by the distribution of observed scores on the measure). These are
qualities that are, in theory, as important as the reliability of the test. The reliability, of course,
restricts both the correlation with other measures and the range of the observed scores (as can
be seen by the fact that an individual with a true maximum or minimum score would have an
observed score closer to the mean due to unreliability).

POMP scores need not be restricted to the number of dichotomous items endorsed in the
scored direction. One may extend this procedure to use the full possible range of scores to
define the zero and 100% points. For example, for a 10-item scale on which there are four
Likert-scaled response options each, scored 0, 1, 2, 3, the potential range is from 0 to 30. A
score of 12 would be 12/30 or 40%.

Using Item Response Alternatives as a Scale
An alternative when all item responses are on a Likert scale expressing degree of agreement

or frequency is to use the average item score (with items reversed as necessary to conform to
the scored direction). Then a unit is the difference between an average score of, for example,
"disagree a little" and "agree a little," or "disagree a little" and "disagree a lot." This method
is widely used in some research areas but rarely used in others.

When both the IV of interest and Y are treated in this manner, and they have been measured
with the same number of response options, the B resulting from this transform will be exactly
the same as that resulting from a percentaging of the same scores (POMP scores).

Using the Sample's Standard Deviation as a Scale*;z Scores
The most common current method of placing scores in a more familiar unit is to subtract the

score from the mean and divide by the standard deviation, thus creating z scores. As we have
seen in Chapter 2, this method of scoring X and Y yields a bivariate Byx that is equivalent to rXY.
This equivalence also holds between partial B and partial p when both Y and the IV in question
have been z scored. Either this method of scoring or the use of partial p have the considerable
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advantage of making the units on different variables comparable in one particular, useful sense.
They enable us to say, for example, that^ had more influence on Y thanX2. However, as noted
earlier, standardized measures and statistics are not without potential problems. In addition
to potential disadvantages of failure to attend to a measure's units for the advancement of the
scientific field, there is the problem that the sd unit will typically vary across populations as
well as in different samples from a given population. Nevertheless, as things currently stand, p
is often the most useful coefficient for answering questions about the influence of one variable
on another, with or without other variables in the equation.

5.2.3 Are the Effects of a Set of Independent Variables
on Two Different Outcomes in a Sample Different?

There are times when the issue at hand is whether the same IVs have essentially the same influ-
ence on two different dependent variables in the same sample. A "net regression" method of
testing this issue, both as a single overall question and with regard to individual coefficients is
presented in Appendix 2.4 This method takes advantage of the fact that the predicted value of Y
is the sum of the 5-weighted IVs. Therefore one can test the difference between these weights,
considered simultaneously, by using this Y value. Assuming that dependent variables W and Y
are in the same units, or creating unit "equivalence" by standardizing them, we begin by estimat-
ing either (or each) from the set of IVs. We continue by subtracting Y from W and determining
the relationship of the (same) IVs to this new W—Y variable as a dependent variable. If this equa-
tion is statistically significant, we have shown that the IVs are related significantly differently to
dependent variable W than they are related to dependent variable Y. In addition, each regression
coefficient in this new equation is tested by its SE, which indicates whether the influence (weight
or 5,) of X, on W is greater (positive) or less than (negative) its influence on Y. (The symmetrical
analysis can be carried out on Y — W, but the coefficients will simply be reversed in sign.)

5.2.4 What Are the Reciprocal Effects of Two Variables
on One Another?

As noted earlier, we are usually forced to assume that Y does not cause X when we test our
theories with cross-sectional (one-time-point) data. Unfortunately, in the social sciences this
is quite often patently unlikely to hold true. For example, we may wish to examine the effect
of stressful life events on adaptive function, but we are aware that poor adaptive function is
likely to put one at risk of more stressful life events. Or we know that achievement is likely
to be hampered by poor student attachment to the school but worry that such attachment may
also be lowered by poor achievement.

A classic strategy for estimating such reciprocal effects from data collected at two points in
time is called cross-lagged analysis.5 In these analyses we require each of the two variables,
W and Y, to be measured at two points in time. Then W measured at time 1 (Wi) is used to
predict Y2 in an equation that includes Yl as an IV, and YI is used to predict W2 in an equation
that includes W^ as an IV. Other control variables may be included as well, as appropriate to
the substantive research issues. The resulting estimates are of the effect of each variable on
(regressed) change in the other variable. As will be discussed in Chapter 12, the appropriateness
of such estimates are highly dependent on the correct selection of a time between the two
measurement occasions.

4 An alternative method employing SEM is described in Chapter 12.
5 An alternative approach that can sometimes be employed with cross-sectional data is described in Chapter 12.
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5.3 HIERARCHICAL ANALYSIS VARIABLES IN MULTIPLE
REGRESSION/CORRELATION

A sequential or hierarchical analysis of a set of independent variables may often produce the
coefficients necessary to answer the scientific questions at hand.6 In its simplest form, the
k IVs are entered cumulatively in a prespecified sequence and the R2 and partial regression
and correlation coefficients are determined as each IV joins the others. A full hierarchical
procedure for k IVs consists of a series of k regression analyses, each with one more variable
than its predecessor. (In a subsequent section we see that one may proceed hierarchically with
sets of variables rather than single variables.) The choice of a particular cumulative sequence
of IVs is made in advance (in contrast with the stepwise regression procedures discussed in
Section 5.3.3), dictated by the purpose and logic of the research. Some of the basic principles
underlying the hierarchical order for entry are causal priority and the removal of confounding
or spurious relationships, research relevance, and structural properties of the research factors
being studied. As we will see in subsequent chapters, there are also circumstances in which a
"tear down" procedure, in which one begins with the full set of variables and removes them
selectively if they do not contribute to R2, may be more in keeping with one's goals than the
hierarchical "build up" procedure that we feature here.

5.3.1 Causal Priority and the Removal of Confounding Variables

As seen earlier (Section 3.4), the relationship between any variable and Y may be partly or
entirely spurious, that is, due to one or more variables that are a cause of both. Thus, each
variable in the investigation should be entered only after other variables that may be a source of
spurious relationship have been entered. This leads to an ordering of the variables that reflects
their presumed causal priority—no IV entering later should be a presumptive cause of an TV
that has been entered earlier.7

One advantage of the hierarchical analysis of data is that once the order of the IVs has been
specified, a unique partitioning of the total Y variance accounted for by the k IVs, R2^ 123 k,
may be made. Indeed, this is the only basis on which variance partitioning can proceed with
correlated IVs. Because the sr2 at each stage is the increase in R2 associated with Xh when all
(and only) previously entered variables have been partialed, an ordered variance partitioning
procedure is made possible by

6We regret the confusion that sometimes occurs between this older reference to variables entered in a hierarchical
sequence with a more recent development of hierarchical linear models (HLM) or hierarchical regression, which
refers to a structure of the data in which subject scores are nested within occasions or within some other grouping
(e.g., classrooms or families) that tends to prevent independence of observations. The latter procedure is discussed in
Chapters 14 and 15.

7When a variable Xj that may be an effect of X, is entered prior to or simultaneously with X, we have the
circumstance referred to by epidemiologists as overcontrol, that is, removal from the estimated effect of X, on Y of
some fraction that is mediated or indirect by way of Xj.

Each of the k terms is found from a simultaneous analysis of IVs in the equation at that point
in the hierarchy; each gives the increase in Y variance accounted for by the IV entering at that
point beyond what has been accounted for by the previously entered IVs. r\l may be thought
of as the increment from zero due to the first variable in the hierarchy, an sr2 with nothing
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partialed. Summing the terms up to a given stage in the hierarchy gives the cumulative R2 at
that stage; for example, r\\ + sr2 + Sr2

3.12 — R2
Y 123-

The reader is reminded that the increment attributable to any IV may change considerably
if one changes its position in the hierarchy, because this will change what has and what has
not been partialed from it. This is indeed why one wishes the IVs to be ordered in terms of the
specific questions to be answered by the research, such as causal priority. Otherwise part of
the variance in Y due to some cause Xl is instead attributed to an IV that is another effect of
this cause. This stolen (spurious) variance will then mislead the investigator about the relative
importance to Y of the cause and its effect.

Of course, it will frequently not be possible to posit a single sequence that is uncontrover-
sially in exact order of causal priority.8 In such circumstances more than one order may be
entertained and the results then considered together. They may not differ with regard to the
issue under investigation, but if they do, the resulting ambiguity must be acknowledged.

When the variables can be fully sequenced—that is, when a full causal model can be
specified that does not include any effect of Y on IVs or unmeasured common causes, the
hierarchical procedure becomes a tool for estimating the effects associated with each cause.
Formal causal models use regression coefficients rather than variance proportions to indicate
the magnitude of causal effects, as discussed earlier. Because Chapter 12 is devoted to an
exposition of the techniques associated with this and other types of causal models, we do not
describe them here.

To illustrate a hierarchical analysis, organized in terms of causal priority, we turn again to
the academic salary data (from Table 3.5.1). The order of assumed priority is sex (X3), time
(years) since Ph.D. (X1), number of publications (X2), and number of citations (X4) (but note
the further discussion of this sequence in Section 12.1). Note that no variable can be affected
by one that appears after it; whatever causality occurs among IVs is assumed to be from earlier
to later in the sequence. We entered these variables in the specified order and determined the
R2 after each addition. We found ry3 = .201, and therefore R2

Y3(= r2
y3) = .040, that is, 4%

of the academic salary variance was accounted for by sex. When time since Ph.D. (X1) was
added to sex, we found that R2

Y.31= .375 and we may say that the increment in predicted
Y variance of time since Ph.D. over sex, or for time partialing or taking into account the
difference in time since Ph.D. between male and female faculty, was sr2.3 = R\ 13 — ry3 =
.375 — .040 = .335. Next we added publications (X2) and found /?y312 = .396, a very small
increment: srf.31 = R\ 123 — /?y31 = .396 — .375 = .021. Finally, when citations (X4) was
added, we have the R2 we found in Section 3.5. /?y 3124 = .503, so the increment for X4 or
Sr4-123 = -503 — .396 = .107. The final R2 for the four IVs is necessarily the sum of these
increments, by Eq. (3.8.1):

.503 = .040 + .335 + .021 + .107.

Of course, a different ordering would result in different increments (which would also sum
to .503), but to the extent that they violated the direction of causal flow, the findings might be
subject to misinterpretation. For example, if entered first, publications would have all of the
salary variance associated with its r2 credited to it, but only on the unlikely premise that time
since Ph.D. (or the forces associated with time) did not contribute causally to the number of
publications. The causal priority ordering makes it clear that (in these fictitious data) the strong
relationship between salary and publications merely reflects the operation of the passage of
time.

8Not infrequently one can identify one or more variables that are thought of as "controls," meaning that although
their causal role is not certain, removal of their potential influence will strengthen the inferences that can be made
about the role of one or more IVs that will be entered later in the sequence. See Functional Sets in Section 5.4.1.
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The increments here are sr2 values, but they are different from those determined previously
(Section 3.5.4) and given in Table 3.5.2. For the latter, all the other k -1 (= 3) IVs were partialed
from each, whereas here only those preceding each IV in the hierarchy were partialed. They
therefore agree only for the variable entering last. When the significance test of Eq. (3.6.8) is
employed for these cumulative sr2 values (for n = 62), it is found that all are significant except
the sr2 for number of publications.9

A special case of the hierarchical model is employed in the analysis of change. Under
circumstances in which pre- and postscore values are available on some variable and the
researcher wishes to determine whether and to what extent treatment or other variables are
associated with change, the postscore may be used as the dependent variable, with prescore
entered as the first IV in the hierarchy. Unlike the alternative method involving differences
(postscores minus prescores), when subsequent IVs are entered into the equation their partial
correlations will reflect their relationship with postscores from which prescore influence has
been removed. Note that this method effectively removes from consideration any influence
that earlier values of the DV may have had on other IVs.10

5.3.2 Research Relevance

Not infrequently an investigator gathers data on a number of variables in addition to those IVs
that reflect the major goals of the research. Thus, X\ and X2 may carry the primary focus of the
study butX3,X4, andX5 are also available. The additional IVs may be secondary because they
are viewed as having lesser relevance to the dependent variable than do Xi and X2, or because
hypotheses about their relationships are weak or exploratory. Under these circumstances, Xj
and X2 may be entered into the equation first (perhaps ordered on the basis of a causal model) and
then XT, , X4, and X5 may follow, ordered on the basis of their presumed relevance and/or priority.
Aside from the clarity in interpretations of the influence of Xl and X2 that is likely to result from
this approach (because the secondary X3,X4, and X5 variables are not partialed from Xi and
X2), the statistical power of the test of the major hypothesis is likely to be maximal because the
dfaie not deflated by these less important variables. Under these circumstances, the additional
steps answer the question of whether these variables add anything to the prediction of Y.

5.3.3 Examination of Alternative Hierarchical Sequences
of Independent Variable Sets

Sometimes the appropriate sequencing of some variable sets is theoretically ambiguous.
Although one usually begins with the more distal causes and gradually adds the more proximal
causes that may mediate those distal causes, there are times when theory is inadequate to deter-
mine such a sequence, when it is likely that there are effects of these IV sets on each other, or
when sets are alternative mediators of an unmeasured more distal cause. Such a circumstance
might occur, for example, if one set of IVs involved a set of physiological measures and another
set consisted of a set of motivational variables, and the study was examining the impact of each
on behavior. In such cases the addition of each set to the prediction of Y, over and above the
prediction of the other set, would be of interest, and both sequences would usually be reported.

9An alternative test of significance, in which "Model 2" error is employed, is discussed in Section 5.5.4 in the
context of significance tests for sets of IVs entered hierarchically.

10This procedure is discussed in greater detail in Chapter 15, where analyses of longitudinal data are more
thoroughly reviewed.
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5.3.4 Stepwise Regression

There are dangers in letting a computer program sequence the variables for you as happens when
one uses the stepwise option, in which variables are selected on the basis of their contribution to
R2. Although stepwise regression has certain surface similarities with hierarchical MRC (and
hierarchical MRC and stepwise regression are the same thing when the investigator "forces" the
sequencing of the IVs), it is considered separately, primarily because it differs in its underlying
philosophy. Stepwise programs are designed to select from a group of IVs the one variable
at each stage that has the largest sr2 and hence makes the largest contribution to R2. Such
programs typically stop admitting IVs into the equation when no IV makes a contribution
that is statistically significant at a level specified by the program user.11 Thus, the stepwise
procedure defines an a posteriori order based solely on the relative uniqueness of the variables
in the sample at hand.

When an investigator has a large pool of potential IVs and very little theory to guide selection
among them, these programs are a sore temptation. If the computer selects the variables, the
investigator is relieved of the responsibility of making decisions about their logical or causal
priority or relevance before the analysis, although interpretation of the findings may not be
made easier. We take a dim view of the routine use of stepwise regression in explanatory
research for various reasons (see the following), but mostly because we feel that more orderly
advance in the behavioral sciences is likely to occur when researchers armed with theories
provide an a priori ordering that reflects causal hypotheses rather than when computers order
IVs post and ad hoc for a given sample.

An option that is available on some computer programs allows for the a priori specification
("forcing") of a hierarchy among groups of IVs. An investigator may be clear that some groups
of variables are logically, causally, or structurally prior to others, and yet not have a basis for
ordering variables within such groups. Under such conditions, variables may be labeled for
entering in the equation as one of the first, second, or up to /2th group of variables. The sequence
of variables within each group is determined by the computer in the usual stepwise manner.
This type of analysis is likely to be primarily hierarchical (between classes of IVs) and only
incidentally stepwise (within classes), and computer programs so organized may be effectively
used to accomplish hierarchical MRC analysis by sets of IVs as described in Section 5.4.4.

Probably the most serious problem in the use of stepwise regression programs arises when a
relatively large number of IVs is used. Because the significance tests of each IVs contribution
to R2 and associated confidence intervals proceed in ignorance of the large number of other
competing IVs, there can be very serious capitalization on chance and underestimation of
confidence intervals. A related problem with the free use of stepwise regression is that in many
research problems the ad hoc order produced from a set of IVs in one sample is likely not to be
found in other samples from the same population. When among the variables competing for
entry at any given step there are trivial differences among their partial relationships with 7, the
computer will dutifully choose the largest for addition at that step. In other samples and, more
important, in the population, such differences may well be reversed. When the competing IVs
are substantially correlated with each other, the problem is likely to be compounded, because
the losers in the competition may not make a sufficiently large unique contribution to be entered
at any subsequent step before the problem is terminated by the absence of a variable making
a statistically significant addition.

11 Some stepwise programs operate backward, that is, by elimination. All k IVs are entered simultaneously and the
one making the smallest contribution is dropped. Then the k — 1 remaining variables are regressed on Y, and again
the one making the smallest contribution is dropped, and so on. The output is given in reverse order of elimination.
This order need not agree with that of the forward or accretion method described here.
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Although, in general, stepwise programs are designed to approach the maximum R2 with a
minimum number of IVs for the sample at hand, they may not succeed very well in practice.
Sometimes, with a large number of IVs, variables that were entered into the equation early
no longer have nontrivial relationships after other variables have been added. Some programs
provide for the removal of such variables, but others do not. Also, although it is admittedly not
a common phenomenon in practice, when there is suppression between two variables, neither
may reach the criterion for entrance to the equation, although if both were entered they would
make a useful contribution to R2.

However, our distrust of stepwise regression is not absolute, and decreases to the extent that
the following conditions obtain:

1. The research goal is entirely or primarily predictive (technological) and not at all, or only
secondarily, explanatory (scientific). The substantive interpretation of stepwise results
is made particularly difficult by the problems described earlier.

2. n is very large, and the original k (that is, before stepwise selection) is not too large;
a k/n ratio of 1 to at least 40 is prudent.

3. Particularly if the results are to be substantively interpreted, a cross-validation of the
stepwise analysis in a new sample should be undertaken and only those conclusions that
hold for both samples should be drawn. Alternatively, the original (large) sample may
be randomly divided in half and the two half-samples treated in this manner.

5.4 THE ANALYSIS OF SETS OF INDEPENDENT VARIABLES

A set of variables is a group classified as belonging together for some reason. As we will
describe them, the grouping of variables into sets may be motivated by structural or formal
properties of the variables that the sets include or the sets may have a common functional role
in the substantive logic of the research. The basic concepts of proportion of variance accounted
for and of correlation (simple, partial, semipartial, multiple) developed in Chapter 3 for single
IVs hold as well for sets of IVs. This use of sets as units of analysis in MRC is a powerful tool
for the exploitation of data.

5.4.1 Types of Sets

Structural Sets
We use the term research factor to identify an influence operating on Y or, more generally,

an entity whose relationship to Y is under study. The word/actor is used here to imply a single
construct that may require two or more variables for its complete representation. Such will be
the case when the construct consists of multiple independent or overlapping categories, or when
more than one variable is required to express the shape of the relationship between a quantitative
scale and the dependent variable. Examples of categorical variables are experimental treatment,
religion, diagnosis, ethnicity, kinship system, and geographic area. In general it will require
g—l variables to represent g groups or categories (see Chapter 8). When they are not mutually
exclusive, g variables will generally be required. Thus, in a laboratory experiment in which
subjects are randomly assigned to three different experimental groups and two different control
groups (hence, g = 5), the research factor G of treatment group requires exactly g — 1 = 4 IVs
to fully represent the aspects of G, that is, the distinctions among the 5 treatment groups. The
several different methods for accomplishing this representation are the subject of Chapter 8,
but in each case g—l variables are required to fully represent G.
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Quantitative scales, such as scores of psychological tests, rating scales, or sociological
indices, may also require multiple variables to fully represent them. When one needs to take
into account the possibility that a research factor such as age may be related curvilinearly to Y
(or to other research factors), other aspects of age must be considered. Age as such represents
only one aspect of the A research factor, its linear aspect. Other aspects, which provide for
various kinds of nonlinearity in the relationship of A to Y, may be represented by other IVs
such as age squared and age cubed. Considerations and methods of representing aspects of
scaled research factors are the subject of Chapter 6.

The preceding implies that if we are determining the proportion of variance in a dependent
variable Y due to a single research factor, we will (in general) be finding a squared multiple
correlation, because the latter will require a set of two or more IVs.

Functional Sets
Quite apart from structural considerations, IVs are grouped into sets for reasons of their

substantive content and the function they play in the logic of the research. Thus, if you
are studying the relationship between the psychological variable field dependence (F) and
personality (P) and ability (A) characteristics, P may contain a set of kp scales from a per-
sonality questionnaire and A a set of kA subtests from an intelligence scale. The question
of the relative importance of personality and ability (as represented by these variables) in
accounting for Y would be assessed by determining RyP, the squared multiple correlation
of Y with the kp IVs of P, and RyA, the squared multiple correlation of Y with kA IVs of
A, and then comparing them. Similarly, research that is investigating (among other things)
the socioeconomic status (S) of school children might represent S by occupational status of
head of household, family income, mother's education, and father's education, a substan-
tive set of four (= fcs) IVs. For simplicity, these illustrations have been of sets of single
research factors, but a functional set can be made up of research factors that are themselves
sets. For example, a demographic set (D) may be made up of structural sets to represent
ethnicity, marital status, and age. A group of sets is itself a set and requires no special
treatment.

It is often the nature of research that in order to determine the effect of some research
factor(s) of interest (a set B), it is necessary to statistically control for (partial out) the Y
variance due to causally antecedent variables in the cases under study. A group of variables
deemed antecedent either temporally or logically in terms of the purpose of the research
could be treated as a functional set for the purpose of partialing out of 7's total variance the
portion of the variance due to these antecedent conditions. Thus, in a comparative evalua-
tion of compensatory early education programs (5), with school achievement as Y, the set
to be partialed might include such factors as family socioeconomic status, ethnicity, num-
ber of older siblings, and pre-experimental reading readiness. This large and diverse group
of IVs functions as a single covariate set A in the research described. In research with
other goals these IVs might have different functions and be treated separately or in other
combinations.

An admonitory word is in order. Because it is possible to do so, the temptation exists to
assure coverage of a theoretical construct by measuring it in many ways, with the resulting
large number of IVs then constituted as a set. Such practice is to be strongly discouraged,
because it tends to result in reduced statistical power and precision for the sets and an increase
in spuriously "significant" single-IV results, and generally bespeaks muddy thinking. It is
far better to sharply reduce the size of such a set, and by almost any means.12 One way is

12See the discussion of multicollinearity in Section 3.8 and in later chapters, especially Chapter 10.
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through a tightened conceptualization of the construct, a priori. In other situations, the large
array of measures is understood to cover only a few behavioral dimensions, in which case
their reduction to scores on one or more factors by means of factor analysis or latent variable
modeling (Chapter 12) is likely to be most salutary for the investigation, with little risk of
losing 7-relevant information. Note that such analyses are performed completely independent
of the sample values of the rK correlations.

It is worth noting here that the organization of IVs into sets of whatever kind bears on the
interpretation of MRC results but has no effect on the basic computation. For any Y and k IVs
(Xl,X2,... ,Xk) in a given analysis, each X,'s coefficients (srhprh #,, fa) and their associated
confidence intervals and significance tests are determined as described in Chapter 3.

5.4.2 The Simultaneous and Hierarchical Analyses of Sets

We saw in Chapter 3 that, given k IVs, we can regress Y on all of them simultaneously and
obtain R\ n k as well as partial statistics for each Xt. We will generally write these partial
statistics in shorthand notation (i.e., (3r, Bit sr(, /?r(), where it is understood that all the other
IVs are being partialed. This immediately generalizes to sets of IVs: when sets f/, V, W are
simultaneously regressed on Y, there are a total of kv + kv + kw = k IVs that together
determine Ry uvw. The partial statistics for each IV in the set U has all the remaining k — 1 IVs
partialed: both those from V and W (numbering kv and kw) and also the remaining IVs from
its own set. It can be shown that, for example, the adjusted Y means of ANCOVA (analysis of
covariance) are functions of the regression coefficients when a covariate set and a set of groups
are simultaneously regressed on Y.

In Section 5.3 we saw that each of the k IVs can be entered cumulatively in some specified
hierarchy, at each stage of which an R2 is determined. The R2 for all k variables can thus be
analyzed into cumulative increments in the proportion of Y variance due to the addition of
each IV to those higher in the hierarchy. These increments in R2 were noted to be squared
semipartial correlation coefficients, and the formula for the hierarchical procedure for single
IVs was given as

The hierarchical procedure is directly generalizable from single IVs to sets of IVs. Replacing
k single IVs by h sets of IVs, we can state that these h sets can be entered cumulatively in a
specified hierarchical order, and upon the addition of each new set an R2 is determined. The
R2 for all h sets can thus be analyzed into increments in the proportion of Y variance due to
the addition of each new set of IVs to those higher in the hierarchy. These increments in R2

are, in fact, squared multiple semipartial correlation coefficients, and a general hierarchical
equation for sets analogous to Eq. (5.3.1) may be written. To avoid awkwardness of notation,
we write it for four (= h) sets in alphabetical hierarchical order and use the full dot notation;
its generalization to any number of sets is intuitively obvious:

We defer a detailed discussion of the multiple semipartial R2 to the next section. Here it is
sufficient to note merely that it is an increment to the proportion of Y variance accounted for
by a given set of IVs (of whatever nature) beyond what has already been accounted for by
prior sets, that is, sets previously entered in the hierarchy. Further, the amount of the increment
in Y variance accounted for by that set cannot be influenced by Y variance associated with
subsequent sets; that is, those which are later in the hierarchy.
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Consider an investigation of length of hospital stay (Y) of n = 500 randomly selected
psychiatric admissions to eight mental hospitals in a state system for a given period. Assume
that data are gathered and organized to make up the following sets of TVs:

1. Set D—Demographic characteristics of patients: age, sex, socioeconomic status,
ethnicity. Note that this is a substantive set, and may be thought of as a set of control vari-
ables, meaning that they are not themselves of major interest but are there to make sure that
effects attributed to later sets are not really due to demographic differences with which they
are correlated. Assume kD = 9.

2. Set /—Patient illness scores on nine of the scales of the Minnesota Multiphasic Per-
sonality Inventory. This set is also substantive, and kt = 9. This set is placed prior to the
information on which hospital the patient has been treated in because it is known that patient
illness enters into the decision about which hospital will treat them.

3. Set H—Hospitals. The hospital to which each patient is admitted is a nominally scaled
research factor. With eight hospitals contributing data, we will require a (structural) set of
kH = 1 IVs to represent fully the hospital group membership of the patients (see Chapter 8).

Although there are 25 (kD + kj + kH = k) IVs, our analysis may proceed in terms of the
three (= h) sets hierarchically ordered in the assumed causal priority of accounting for variance
in length of hospital stay as Z),/,//.

Suppose that we find that R\D = .20, indicating that the demographic set, made up of nine
IVs accounts for 20% of the Y variance. Note that this ignores any association with illness
scores (/) or effects of hospital differences (H). When we add the IVs of the / set, we find
that R\ DI = .22; hence, the increment due to 7 over and above D, or with D partialed, is
RY(I D) = -02- Thus, an additional 2% of the Y variance is accounted for by illness beyond
the demographic set. Finally, the addition of the seven IVs for hospitals (set H) produces an
RY.DIH = -33, an increment over R\ DI of .11, which equals R\(H.Diy Thus, we can say that
which hospital patients enter accounts for 11 % of the variance in length of stay, after we partial
out (or statistically control, or adjust for, or hold constant) the effect of differences in patients'
demographic and illness characteristics. We have, in fact, performed by MRC an analysis of
covariance (ANCOVA) for the research factor "hospitals," using sets D and / as covariates.13

Of course, one's substantive interest is likely to focus on the actual BYl coefficients as each new
set is entered. To the extent to which one is interested in the final "adjusted" mean differences in
LOS between hospitals, the answer will lie in the final regression coefficients. However, much
can also be learned by examination of the extent to which these coefficients differ from those
obtained when set H is entered without the "covariate" sets D and /. For example, it may be that
some initially large differences between hospitals were entirely attributable to demographic and
symptom differences between patients. This could be concluded when certain BYl coefficients
from the equation with only set H were what could be considered large in the context (and had
acceptably narrow confidence limits), but declined substantially in value when the covariate
set D, or sets D and /, were added.

There is much to be said about the hierarchical procedure and, indeed, it is said in the next
section and throughout the book. For example, as pointed out in regard to single variables, the
increment due to a set may depend critically upon where it appears in the hierarchy; that is,
what has been partialed from it, which, in turn, depends on the investigator's theory about the
mechanisms that have generated the associations between the variables. As we will see, not
all theories permit unambiguous sequencing.

13Omitting the significance test; see subsequent section. Also, a valid ANCOVA requires that there be no interaction
between H and the aggregate /, D covariate set (see Chapter 9).
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5.4.3 Variance Proportions for Sets and the Ballantine Again

We again employ the ballantine to illustrate the structure of relationships of sets of IVs to a
dependent variable Y. It was presented in Fig. 3.3.1 for single IVs Xl and X2, and we present
it as Fig. 5.4.1 here for sets A and B. It is changed in no essential regard, and we show how the
relationships of sets of IVs to Y, expressed as proportions of Y variance, are directly analogous
to similarly expressed relationships of single IVs.

A circle in a ballantine represents the total variance of a variable, and the overlap of two
such circles represents shared variance or squared correlation. This seems reasonable enough
for single variables, but what does it mean when we attach the set designation A to such a
circle? What does the variance of a set of multiple variables mean? Although each of the kA

variables has its own variance, remember that a multiple R\ 12 k is in fact a simple r2 between

Y and Y, the latter optimally estimated from the regression equation of the kA IVs that make
up set A (and similarly for set B—i.e., YB—or any other set of IVs). Thus, by treating a set in
terms of how it bears on Y, we effectively reduce it to a single variable. This lies at the core of
the generalizability of the ballantine from single IVs to sets of IVs.

The ballantine in Fig. 5.4.1 presents the general case: A and/? share variance with Y, but also
with each other.14 This is, of course, the critical distinction between MRC and the standard

FIGURE 5.4.1 The ballantine for sets A and B.

14It can be proved that the correlation between A and B, where each is scored by using the equation that predicts
Y from the variables within that set, is given by

where i indexes an Xi in set A,j indexes an Xj in set B, and the summation is taken over all i,j pairs (of which there
are kAkB).
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orthogonal analysis of variance. In an A x B factorial design ANOVA, the requirement of
proportional cell frequencies makes A and B (specifically YA and YB) uncorrelated with each
other; therefore the A and B circles do not overlap each other, and each accounts for a separate
and distinguishable (that is, additive) portion of the Y variance. This is also what makes the
computation simpler in ANOVA than in MRC.

The ballantine allows proportions of variance (i.e., squared correlations of various kinds)
to be represented as ratios of the corresponding areas of the circle to the whole area of F, as
we saw in Section 3.3. The total variance of Y is taken to equal unity (or 100%) and the Y
circle is divided into four distinct areas identified by the letters a, b, c, and e. Because overlap
represents shared variance or squared correlation, we can see immediately from Fig. 5.4.1 that
set A overlaps Y in areas a and c; hence

The c area arises inevitably from the AB overlap, just as it did in the single IV ballantine in
Section 3.3, and is conceptually identical with it. It designates the part of the Y circle jointly
overlapped by A and B, because

Because the c area is part of both A's and B's overlap with Y, for sets, as for single IVs, it is
clear that (for the general case, where YA and YB are correlated) the proportion of Y variance
accounted for by sets A and B together is not simply the sum of their separate contributions,
because area c would then be counted twice, but rather

Thus, the areas a and b represent the proportions of Y variance uniquely accounted for
respectively by set A and set B. By uniquely we mean relative to the other set, thus area b is
Y variance not accounted for by set A, but only by set B; the reverse is true for area a.

This idea of unique variance in Y for a set is directly analogous to the unique variance of
a single IV discussed in Chapter 3. There we saw that for X,, the unique variance in Y is the
squared semipartial correlation of Y with Xf, which in abbreviated notation we called srf. It
was shown literally to be the r2 between that part of X{ that could not be estimated from the
other IVs and all of 7, the complete cumbersome notation for which is ry(..12 (;) k), the inner
parentheses signifying omission. For a set B, we similarly define its unique variance in Y to
be the squared multiple semipartial correlation of B with the part of Y that is not estimable
from A, or 1 — YA. Its literal notation would be R\(B.A^ or, even more simply, sR\. In the latter
notation, Y is understood, as is the other set (or sets) being partialed. (Obviously, all the above
holds when A and B are interchanged.)

The Semipartial R2

The ballantine may again make this visually clear. "That part of B which is not estimable
from A" is represented by the part of the B circle not overlapped by the A circle, that is, the
combined area made up of b and/. That area overlaps with the (complete) Y circle only in
area b, therefore the proportion of the total Y variance accounted for uniquely by set B is
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and, by symmetry, the proportion of Y variance accounted for uniquely by set A is

The ballantine shows how these quantities can be computed. If R2
Y.AB is area a + b + c

(Eq. 5.4.5) and R\,A is area a + c (Eq. 5.4.3), then patently

The sR2 can readily be found by subtracting from the R2 for both sets the R2 for the set to be
partialed.

It is not necessary to provide for the case of more than two sets of IVs in the ballantine,15

or, indeed, in the preceding equations. Because the result of the aggregation of any number
of sets is itself a set, these equations are self-generalizing. Thus, if the unique variance in Y
for set B among a group of sets is of interest, we can simply designate the sets other than B
collectively as set A, and find sR^ from Eq. (5.4.8). This principle is applied successively as
each set is added in the hierarchical analysis, each added set being designated B relative to the
aggregate of prior sets, designated A. We shall see that this framework neatly accommodates
both significance testing and power analysis.

We offer one more bit of notation, which, although not strictly necessary, will be found
convenient later on in various applications of hierarchical analysis. In the latter, the addition
of a new set B (or single IV X,) results in an increase in R2 (strictly, a nondecrease). These
increases are, of course, the sRg (or srf), as already noted. It is a nuisance in presenting
such statistics, particularly in tables, to always specify all the prior sets or single IVs that are
partialed. Because in hierarchical MRC the hierarchy of sets (or single IVs) is explicit, we
will have occasion to identify such sR\ (or sr2) as increments to Y variance at the stage of the
hierarchy where B (or X,) enters.

The Partial R2

We have already identified the overlap of that part of a set circle that is unique (e.g., areas
b + / of set B) with the total Y circle as a squared multiple se/rapartial correlation (e.g.,
sR\ = R^B.A) = area b). With sets as with single IVs, it is a semipartial because we have
related the partialed B • A with all of Y. We wrote it as b/l in Eq. (5.4.6) to make it explicit that
we were assessing the unique variance b as a proportion of the total Y variance of 1. We can
however also relate the partialed B - A with the partialed Y, that is, we can assess the unique
b variance as a proportion not of the total Y variance, but of that part of the Y variance not
estimable by set A, actually Y — YA. The result is that we have defined the squared multiple
partial correlation as

and symmetrically for set Aas

15 A fortunate circumstance, because the complete representation of three sets would require a three-dimensional
ballantine and, generally, the representation of h sets, an to-dimensional ballantine.
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Thus, sR2 and pR2 (as sr2 and pr2) differ in the base to which they relate the unique variance
as a proportion: sR2 takes as its base the total Y variance whereas pR2 takes as its base that
proportion of the Y variance not accounted for by the other set(s). Inevitably, with its base
smaller than (or at most equal to) 1, pR2 will be larger than (or at least equal to) sR2 for any
given set.

It is easy enough to compute the pR2. We have seen how, for example, the b area is found
by [Eq. (5.4.8)]; the combined areas b + e constitute the Y variance not accounted for by set
A, hence 1 - R2

Y A. Substituting in Eq. (5.4.9),

and, symmetrically,

To illustrate the distinction between sR2 and pR2, we refer to the example of the hierarchy
of sets of demographics (D), illness (/), and hospitals (//) in relationship to length of hospital
stay (Y) of Section 5.3.2. R\ D = .20, and when / is added, Ry DI = .22. The increment was
.02; hence, sR2 = .02, that is, 2% of the total Y variance is uniquely (relative toD) accounted
for by /. But if we ask "what proportion of the variance of Y not accounted for by D is uniquely
accounted for by /?" our base is not the total Y variance, but only 1 — R2^ = 1 - .20 = .80
of it, and the answer is pRJ — .02/.80 = .025. Letting D = A and / = B, we have simply
substituted in Eqs. (5.4.7) and (5.4.11).

It was also found that the further addition of H resulted in RY.DIH = -33- Thus» H accounted
for an additional .11 of the total Y variance, hence sRJj = .11. If we shift our base from total
Y variance to Y variance not already accounted for by D and /, the relevant proportion is
.11/(1 - .22) = .141 (i.e., pRfy. Now letting sets D + / = A, and H - B, we again have
simply substituted in Eqs. (5.4.7) and (5.4.11). Any desired combination of sets can be created:
If we wished to combine / and H into set B, with D = A, we could determine that sRJH = .13,
andpRja = .13/(I - .20) = .162, by the same equations.

It is worth noting that thep/?2 is rather in the spirit of ANCOVA. In ANCOVA, the variance
due to the covariates is removed from Y and the effects of research factors are assessed with
regard to this adjusted (partialed) Y variance. Thus, in the latter example, D and / may be
considered to be covariates whose function is to "equate" the hospitals, so that they may be
compared for length of stay, free of any possible hospital differences in the D and / of their
patients. In that spirit, we are interested only in the 1 — R2

 DI portion of the Y variance,
and the pRjj takes as its base the .78 of the Y variance not associated with D and /; hence,
pRJj = .11/.78 = .141 of this adjusted (or partialed, or residual) variance is the quantity of
interest.

5.4.4 B and p Coefficients for Variables Within Sets

As we have noted, the strongest scientific inferences are likely to come from an examination
of raw or standardized regression coefficients. When variables are treated in sets, attention to
these coefficients is still indicated. To understand these issues, let us first attend to the influence
of other variables in the same set on B and 0. We will assume that a functional set is being
examined, that is, that there is some theoretical role shared by the variables in the set, such
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as control for spurious effects, or representation of a set of related concepts. Effects of other
variables in a categorical set are discussed in Chapters 9 and 10.

It is usually the case that members of functional sets are at least somewhat correlated. Thus,
the fundamental principal that regression coefficients reflect the influence of a variable net of
the influence (controlling for or ceteris paribus) of all other variables in the equation, applies
equally to other IVs in the same set and those in other sets. When the correlations among the
variables in a set are relatively large, it can happen that no individual variable is significantly
related to Y even when the set as a whole accounts for a large and statistically significant
proportion of the Y variance. In such a case we will find large SEs on at least some Bs and PS,
relative to zero-order SEs on the bivariate rYl or Byi.

16 We will discuss this problem at the end
of this chapter in a section on balancing Type I and Type II errors (Section 5.7.1). In the present
discussion it will suffice for the reader to keep firmly in mind that each of these coefficients is
indicating the effect of the individual variables net of others in the set (as well as any variables
in other sets that are also in the equation).

As noted earlier, sometimes the causal hierarchical ordering of functional sets cannot be
unambiguously asserted. It is not infrequent that variable sets are created to represent domains
of influence on Y that may best be thought of as also influencing one another. For example,
a previous illustration presented an analysis of the influence of demographic and person-
ality differences of patients in different hospitals on length of hospital stay. Suppose we
wanted to add to this analysis a set of variables representing the functional impairment of
patients (e.g., competence in activities of daily living, reliability and tenure in occupational
settings, ability to relate to and care for others). We may now feel ourselves to be in the
all-too-frequent position of ambiguity as to whether the personality (symptom) set or the
impairment set should be considered causally prior, and thus added to the equation at an
earlier point.

A common practice in such a situation is to examine differences in the estimated regression
coefficients (as well as sR2) when the hierarchical ordering is altered. Again, it is also useful
to attend to changes in the SEs for these individual partial coefficients, because, as was shown
in Eq. (3.6.1), they are enlarged by the multiple correlation of the variable in question with
other variables in the equation.

Area c
Finally, returning once more to the ballantine for sets (Fig. 5.4.1), we call the reader's

attention to area c, the double overlap of sets A and B in Y. It is conceptually the same as
the area c in the ballantine for single IVs (Fig. 3.3.1) and shares its problems. Although in
the ballantine it occupies an area, unlike the areas a, b, and e it cannot be understood to be a
proportion of Y variance, because, unlike these other areas, it may take on a negative value as
discussed in Section 3.3. Note that it is never properly interpreted as a proportion of variance,
whether or not in any given application it is found to be positive, because we cannot alter
the fundamental conception of what a statistic means as a function of its algebraic sign in a
particular problem. Because variance is sd2, a negative quantity leads to sd being an imaginary
number, for example, V—-10, a circumstance we simply cannot tolerate. Better to let area c
stand as a useful metaphor that reflects the fact that Ry AB is not equal in general to R2

YA + RyB,
but may be either smaller (positive c) or larger (negative c) than the sum. When area c is
negative for sets A and B, we have exactly the same relationship of suppression between the
two sets as was described for pairs of single IVs in Section 3.4.

16Note, too, the discussion of this issue in Section 4.5.3.
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5.5 SIGNIFICANCE TESTING FOR SETS

We have seen that the addition of a set of variables B to a set A results in an increment in the
Y variance accounted for by R2

 Y.Ag — RyA(= sRg), represented by the area b in the ballantine
(Fig. 5.4.1). This quantity is properly called an increment because it is not mathematically
possible for it to be negative, because Ry AB cannot be smaller than RyA.11

Our interest, of course, is not in the characteristics of the sample for which these values are
determined as such but rather in those of the population from which it comes. Our mechanism
of statistical inference posits the null (nil) hypothesis to the effect that in the population,
there is literally no increment in Y variance accounted for when B is added to A, that is, that
RY AB — RyA = 0 in the population. When this null hypothesis is rejected, we conclude that
set B does account for Y variance beyond that accounted for by set A in the population. This
null hypothesis may be tested by means of

for the source (numerator) df = kB, the error (denominator) df = n—kA— kB — l, and referred
to the F tables in the appendices (Appendix Tables D.I and D.2).

This formula is applied repeatedly in varying contexts throughout this book, and its structure
is worth some comment. Both the numerator and denominator are proportions of Y variance
divided by their respective df, thus both are "normalized" mean squares. The numerator is the
normalized mean square for unique B variance (area b of the ballantine) and the denominator is
the normalized mean square for a particular estimate of error (i.e., 1 — R\ AB), that represents Y
variation accounted for by neither A norB (area e of the ballantine). F is the ratio of these mean
squares and, when the null hypothesis is true, has an expected value of about one. When F is
sufficiently large to meet the significance criterion, as determined by reference to Appendix
Tables D.I and D.2, the null hypothesis is rejected.18

For computational purposes Eq. (5.5.1) can be somewhat simplified:

17This proposition does not hold for R2 corrected for shrinkage, that is, R\ AB — R\ A may be negative. This will
occur whenever the F of Eq. (5.5.1) is less than one.

18Readers who know ANOVA will find this all familiar. But the reasoning and structure are not merely analogous
but rather mathematically identical, because ANOVA and MRC are applications of the OLS model.

(for df = kB, n — kA — kB — 1, as before). F may equivalently be determined by means of the
regression sums of squares (SS) and mean squares usually provided by the computer output.
The numerator for F for the increment equals the difference between the regression SS for the
equation including A and B and the regression SS for the equation including only A, divided
by the df for B. The denominator equals the residual MS for the equation with both A and B.
Thus:

When there are additional IV sets to be considered this method is referred to as employing
Model 1 error. An alternative strategy is to use the residual MS from the equation that includes
all sets, with error df equal to the dffor that term. Such a strategy may be considered to employ
Model 2 error in the significance tests.



172 5. DATA-ANALYTIC STRATEGIES USING MRC

5.5.1 Application in Hierarchical Analysis

To illustrate the application of this formula, let us return to the study presented in the previous
sections on the length of stay of 500 hospital admissions, using demographic (D, kD = 9),
illness (I,kt = 10), and hospital (H, kH = 7) sets in that hierarchical order. We let A be the
set(s) to be partialed and B the set(s) whose unique variance in Y is posited as zero by the null
hypothesis. Table 5.5.1 organizes the ingredients of the computation to facilitate the exposition.

The null hypothesis that with D partialed (holding demographic characteristics constant) /
accounts for no Y variance in the population is appraised as follows (Table 5.5.1, Example 1).
It was given that R\D = .20 and R\ DI = .22, an increase of .02. To use Eq. (5.5.2), call I set
B and D set A. For n = 500, kB = 10, kA = 9, we find

which for dfof 10 (= kB} and 480 (= n — kA — kB — 1) fails to be significant at the a = .05
level (the criterion value for df = 10, 400 is 1.85, Appendix Table D.2). The increase of .02
of the Y variance accounted for by / over D in the sample is thus consistent with there being
no increase in the population.

In Example 2 of Table 5.5.1, we test the null hypothesis that the addition of H (which
we will now call set B, so kB = 7) to the sets D and / (which together we will call set A, so
kA = 9 +10 = 19) results in no increase in Y variance in the population. Because R\ DIH = -33
and Ry DI = .22 (and hence sR2

H = .11), substituting the values for sets A and B as redefined
we find

TABLE 5.5.1
Illustrative F Tests Using Model 1 Error

RyD =

Example

1
2
3
4
5
6
7
8
9

10
11
12
13

20;R2
YIH =

Set 5

/
H
I,H
D
I
D
D
H
I
H
D
I
H

kB

10
7

17
9

10
9
9
7

10
7
9

10
7

.18; Ryi =

Set A

D
D,I
D
I,H
D,H
I
H
D
H
I
—
—
—

*A

9
19
9

17
16
10
7
9
7

10
0
0
0

.03; RY.DI — -22; RY DH -

p2
*^Y.AB

.22

.33

.33

.33

.33

.22

.32

.32

.18

.18

.20

.03

.17

p2KY.A

.20

.22

.20

.18

.32

.03

.17

.20

.17

.03
0
0
0

E- RY.AB ~ RY.A „ n-kA-kB-l

R2 kKY.AB KB
with source (numerator) df = kB, error I (denominator) df

p2
^(B-A)
= sR2

B

.02

.11

.13

.15

.01

.19

.15

.12

.01

.15

.20

.03

.17

= n-kA

— • 3£y YH ~

Error
1 - RY.AB

.78

.67

.67

.67

.67

.78

.68

.68

.82

.82

.80

.97

.83

-kB -I.

= .17;4.Dm = .33.

Source
df

10
7

17
9

10
9
9
7

10
7
9

10
7

Error
df

480
473
473
473
473
480
483
483
482
482
490
489
492

F

1.23
11.09

5.40
11.77

.71
12.99
11.84
12.18

.59
12.60
13.61

1.51
14.40

MRC
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which for df = 7,473 is highly significant, because the criterion F at a = .01 for #"7,400
is 2.69 (Appendix Table D.I).

It was pointed out in Section 5.4.4 that our appraisal of this . 11 increment by H over D and
/ constitutes the equivalent of an ANCOVA with the 19 IVs of the combined D and / sets as
covariates. Indeed, hierarchical MRC may be viewed as equivalent to a series of ANCOVAs,
at each stage of which all prior sets are covariates (because they are partialed), whereas the set
just entered is the research factor whose effects are under scrutiny. The set just entered may
itself be an aggregate of sets. Although it would not likely be of substantive interest in this
research, Example 3 of Table 5.5.1 illustrates the F test for the aggregate of I and H (as set B)
with/) (as set A) partialed.

5.5.2 Application in Simultaneous Analysis

The F test of Eqs. (5.5.1) and (5.5.2) is also applicable in simultaneous analysis. The latter
simply means that, given h sets, we are interested in appraising the variance of one of them
with all the remaining h — 1 sets partialed. Whereas in the hierarchical model only higher-order
(prior) sets are partialed, in the absence of a clear rationale for such a hierarchy it is all other
sets that are partialed. For this application of the F test we designate B as the unique source of
variance under scrutiny and aggregate the remaining sets that are to be partialed into set A.

Let us reconsider the running example of length of stay (F) as a function of D, /, and H,
but now propose that our interest is one of appraising the unique Y variance accounted for by
each set. No hierarchy is intended, so by "unique" to a set we mean relative to all (here, both)
other sets (i.e., D relative to / and H, I relative to D and H, and H relative to D and 7). To
proceed, we need some additional R2 values not previously given in this problem: R\ IH = .18
and R\ DH = .32.

To determine the unique contribution of D relative to / and H, one simply finds R\ DIH —
R\ m = .33 — .18 = .15 = RY(DIH)> me S^D w*m b0* ^ an^ H partialed. This quantity might
be of focal interest to a sociologist in that it represents the proportion of variance in length of
stay of patients associated with differences in their demographic (D) characteristics, the latter
freed of any illness differences (/) and differences in admitting hospitals (H) associated with
D. This . 15 is a sample quantity, and Example 4 (Table 5.5.1) treats D as set B and aggregates
I and H as set A for substitution in Eq. (5.5.2):

which is statistically significant because the criterion F at a = .01 for df = 9,400 is 2.45
(Appendix Table D.I). Note, incidentally, that this example simply reverses the roles of D and
7,//of Example 3.

The unique variance contribution of/ relative to D and H is tested without further elabora-
tion as Example 5. This might be of particular interest to a clinical psychologist or personality
measurement specialist interested in controlling demographic variables and systematic differ-
ences between hospitals in assessing the relationship of illness to length of stay. The last of
this series, the Y variance associated with H • DI, has already been presented and discussed as
Example 2.

Thus, the investigator's choice of what to partial from what is determined by the logic
and purpose of the inquiry. For specificity, assume that the h sets are partitioned into three
groups of sets as follows: the groups whose unique source is under scrutiny is, as before,
designated set B, the covariate group to be partialed from B (again as before) constitutes set A,
but now the remaining set(s) constitute a group to be ignored, which we designate set C. All
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we are doing with this scheme is making explicit the obvious fact that not all sets of IVs on
which there are data in an investigation need to be active participants in each phase of the
analysis. Indeed, the (fully) hierarchical analysis with h sets is simply a predefined sequence
of simultaneous analyses in the first of which a prespecified h — 1 sets are ignored, in the
second a prespecified h — 2 sets are ignored, and, generally, in they'th of which a prespecified
h—j sets are ignored until finally, in the last of which, none is ignored. The analysis at each
stage is simultaneous—all IVs in the equation at that stage are being partialed from each other.
Thus, a single simultaneous analysis with all other sets partialed and a strictly hierarchical
progression of analyses may be viewed as end points of a continuum of analytic possibilities.
A flexible application of MRC permits the selection of some intermediate possibilities when
they are dictated by the causal theory and logic of the given research investigation.

5.5.3 Using Computer Output to Determine
Statistical Significance

Of course, current data analysts are likely to accept the statistical tests presented by the com-
puter output. In some programs it is possible to specify a set of variables the contribution of
which to R2 is to be evaluated. If such an option is not available, the computer-provided output
for various sets and combinations of sets of variables may be employed in Eq. (5.5.2A or B).

In Chapter 3 we saw that the partialed statistics of a single IV, Xz (i.e., srhprh Bt, and p\) all
shared equivalent null (nil) hypotheses and hence the same t test for the same df = n — k — 1.
Conceptually, this can be explained as due to the fact that when any one of these coefficients
equals zero, they all must necessarily equal zero.

For any set B, the same identity in significance tests holds for sRg and pRg (hence for sRB

andpRg). Recall that these are both unique proportions of Y variance, the first to the base unity
and the second to the base 1 — R\ A. In terms of areas of the ballantine for sets (Fig. 5.5.1),
sRg = b, and pRg = b/(b + e). But the null hypothesis posits that area b is zero, hence
pRjg = 0. Whether one reports sR\ as was done in Table 5.5.1, or divides it by 1 — R\ A and
reports pRg, or reports both, the F test of Eq. (5.5.2) tests statistical significance of both sRg
and pRg because the null hypothesis is the same.

One highly desired test is a comparison of the utility of two different sets of variables in
predicting the same Y. Because determination of the standard errors of these coefficients and
their difference is extremely complicated, involving the covariance among all predictor sets,
it is not possible to calculate from the output ordinarily provided to the users of standard
statistical programs. Olkin and Finn (1995) provide the test for the special case in which each
of the sets consists of a single variable, which is itself complex. It is hoped that a solution to
this problem will be found for variable sets and programmed in the next few years.

5.5.4 An Alternative F Test: Using Model 2 Error Estimate
From the Final Model

An F test is a ratio of two mean square or variance estimates, the numerator associated with
a source of Y variance being tested, and the denominator providing a reference amount in the
form of an estimate of error or residual variance. In the previous section, identifying A and
B as sets or set aggregates, the numerator source was B • A, and the denominator contained
1 — R\ AB (area e of the ballantine; Fig. 5.4.1) thus treating all Y variance not accounted for
by A and B as error in the F test of Eqs. (5.5.1) and (5.5.2). We later introduced the idea of a
third set (or set of sets) C, whose modest purpose was "to be ignored." Not only was it ignored
in that it was not partialed from B in defining B • A as the source for the numerator, but it was
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ignored in that whatever Y variance it might uniquely contribute was not included in R\ AB

and therefore was part of the error, 1 — Ry AB-
These two ways of ignoring C are conceptually quite distinct and may be considered inde-

pendently. We obviously have the option of not partialing whatever we do not wish to partial
from B. Presumably the source of variance in the numerator is precisely what the theory and
logic of the investigation dictates it to be (i.e., B • A and not B • AC). We may either choose
or not choose to ignore C in defining the error term. The first choice, Model 1 error uses
1 — RY.AB m me Ftest °f Eqs. (5.5.1) and (5.5.2) and thus ignores C. The alternative, Model
2 error, defines an F ratio for B • A that removes whatever additional unique Y variance can be
accounted for by C from the error term, resulting in the following error term and associated df,
expressed here both in terms of the various R2 values (proportions of variance) and in terms
of the SS and error MS from various equations:

where k is the total number of FVs in all sets, that is, k = kA + kB + kc or equivalently,

with numerator df = kB, and error df = n — k — 1. Note that, as with the F that considers
only the sets already entered, this tests both sR^ andpR^. The standard F tables (Appendix
Tables D. 1 and D.2) are used. Of course, although we have discussed Model 2 error in the
context of the hierarchical analysis of sets of IVs, any set may consist of a single variable, and
the procedure may thus be employed equally appropriately in the case of the determination of
statistical significance for a single IV.

Which model to choose? One view notes that because the removal of additional Y variance
associated uniquely with C serves to produce a smaller and "purer" error term, one should
generally prefer Model 2 error. But although 1 — R\ ABC will always be smaller (strictly, not
larger) than 1 — R\ AB and hence operate so as to increase F, one must pay the price of the
reduction of the error dfby kc, that is from n — kA — kB — 1 of Eq. (5.5.2) to n — kA — kB — kc — 1
of Eq. (5.5.4), which clearly operates to decrease F. In addition, as error df diminish, the
criterion F ratio for significance increases and sample estimates become less stable, seriously
so when the diminished error df are absolutely small. The competing factors of reducing
proportion of error variance and reducing error df, depending on their magnitudes, may either
increase or decrease the F using Model 2 error relative to the F using Model 1 error.

We can illustrate both possibilities with the running example (Table 5.5.1), comparing
Model 1 F (Eq. 5.5.2) with Model 2 F (Eq. 5.5.4). If, in testing / D in Example 1, instead of
using Model 1 error, 1 - R\ DM = .78 with 480 (=500-9-10-1) df, we use Model 2 error,
1 - R2

Y1)MH = .67 with 473 (= 500 = 9 - 10 - 7 - 1) df, F increases to 1.412 from 1.231
(neither significant). On the other hand, shifting to Model 2 error in testing D • H in Example
7 brings F down from 11.838 to 11.766 (both significant atp < .01).

In Table 5.5.1 the F ratios of the two models differ little and nowhere lead to different
decisions about the null hypothesis. But before one jumps to the conclusion that the choice
makes little or no difference in general, certain characteristics of this example should be noted
and discussed, particularly the relatively large n, the fact that there are only three sets, and
that two of these (D and H) account uniquely for relatively large proportions of variance. If
n were much smaller, the differences of kc loss in error df in Model 2 could substantially
reduce the size and significance of F, particularly in the case where we let / be set C: the
addition of I to D and H results in only a quite small decrease in error variance, specifically
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from 1 - Ryj)H = -68 to 1 — Ryj)HM — -67- If n were 100, the drop df from
Model 1 to Model 2 would be from 83 to 73. Example 7, which tests D • H would yield a
significant Model 1 F = 2.034 (df = 9,83,p < .05), but a nonsignificant Model 2F = 1.816
(# = 9,73).

Further, consider the consequence of Model 2 error when the number of sets, and therefore
the number of sets in C and, particularly, kc is large. Many behavioral science investigations
can easily involve upward of a dozen sets, so that collectively C may include many IVs and
thus df. The optimal strategy in such circumstances may be to order the sets from those judged
a priori to be most important to those judged to contribute least, or least confidently judged to
account for Y variance, and use Model 1 error. Using the latter successively at each level of
the hierarchy, the lower-order sets are ignored and, although their (likely small) contribution
to reducing the proportion of error variance is given up, their large contribution to the error df
is retained.

On the other hand, if sets are few and powerful in accounting uniquely for Y variance,
Model 1 error will contain important sources of variance due to the ignored C, and may well
sharply negatively bias (reduce) F at a relatively small gain in error df. No simple advice can be
offered on the choice between error models in hierarchical analysis of MRC. In general, large
n, few sets, small k, and sets whose sR2 are large move us toward a preference for Model 2
error. One is understandably uneasy with the prospect of not removing from the Model 1
error the variability due to a set suspected a priori of having a large sR2 (e.g., Examples 9
through 13) during the planning of an investigation, which ideally is when it should be made.
Unfortunately, because most computer programs do not offer Model 2 error as an option, the
data analyst who relies completely on the program-produced tests of statistical significance
will necessarily be using Model 1 error.

5.6 POWER ANALYSIS FOR SETS

In Chapters 2 and 3 we focused on the precision of estimates and the statistical power for
detecting differences from various null hypotheses for the relationship, zero-order or partial,
between a single IV and Y. In determining the power against the null hypothesis of no contri-
bution to the Y variance in the population for a set of variables, we will again generally use a
computer program to determine:

1. The power of the F test of significance for partialed sets, given the sample size (n), k,
the significance criterion (a), and the effect size (ES), an alternative to the null (nil)
hypothetical value for the population. This ES is a ratio of two variances, that due to the
predictor(s) being considered (sRg), and the error variance (1 — Ry).

2. The necessary sample size («*) for the significance test of a set involving k variables,
given the desired power, a, and the alternate hypothetical value for the contribution to
R2, relative to the null hypothesis of no population effect.

Assume that an investigation is being planned in which at some point the proportion of
Y variance accounted for by a set B, over and above that accounted for by a set A, will be
determined. We have seen that this critically important quantity is R\ AB —R2

A and has variously
and equivalently been identified as the increment due to B, the squared multiple semipartial
correlations for B (sRg or R2

B .A)) and as area b in the ballantine for sets (Fig. 5.4.1). This
sample quantity will then be tested for significance, that is, the status of the null hypothesis
that its value in the population is zero will be determined by means of an F test.
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5.6.1 Determining /»* for the F Test of sR2
Bwith Model 1

or Model 2 Error

As was the case for determining n* for an F test on R\ 12 k (Section 3.7), the procedure for
determining n* for an F test on sRg = R\ AB — R2

A proceeds with the following steps:

1. Set the significance criterion to be used, a.
2. Set desired power for the F test.
3. Identify the number of IVs to be included in Set A, in Set B, and, if Model 2 error is to

be used, in Set C.
4. Identify the alternate hypothetical ES in the population for which n* is to be determined,

that is, the population sR^.
5. Identify the anticipated error variance, that is, (1 — R\ AB) for Model 1 or (1 — R\ ABC)

for Model 2 error.

If a computer power analysis program is used to determine n*, these values are entered into
the program and the necessary n* is read out. If the computation is done by hand, the next step
is to look up the value of L for the given kB (row) and desired power (column) in a table for
the selected a (Appendix Table E.I or E.2). One then determines the ES index/2, which is the
ratio of the variances determined in steps 4 and 5. In determining n* to test Ry AB~ RYA usm§
Model 1 error,

(5.6.1) f2 = «Y.AB "YA

1 — /?v

J?2 _ n2
+ *-V AO Y

IY.AB

or, using Model 2 error,

o2 _ p2
(5.6.2) /2 = *r-**2*r.A.

1 RY.ABC

We remind the reader that these R2s are alternate hypothetical values referring to the population,
not sample values. When the same ratio for sample values is combined with the df, the formulas
are equivalent to those for F [Eqs. (5.5.1) and (5.5.3)]. This occurs after there is a sample,
whereas in the planning taking place before the investigation the formulation is "iff2 is thus
and such in the population, given a and the desired probability of rejecting the null, what n* do
I need?" To estimate this one draws on past experience in the research area, theory, intuition,
or conventional values to answer the questions "What additional proportion of Y variance do
I expect B to account for beyond A? (the numerator), and "What proportion of Y variance will
no be accounted for by A or B, or not by A or B or C"? (the denominators for Model 1 and
Model 2 error, respectively). The values from these steps are then substituted in

for Model 2 error. The result is the number of cases necessary to have the specified probability
of rejecting the null hypothesis (power) at the a level of significance when/2 in the population
is as posited.

for Model 1 erro, or
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For illustration, we return to the running example, where length of stay of psychiatric
admissions (7) is studied as a function of sets of variables representing their demographic
characteristics (D), their illness scores (/), and the hospitals where they were admitted (H) as
described originally in Section 5.4.4. To this point this example has been discussed after the
fact—results from a sample of 500 cases were presented and used to illustrate significance test-
ing. Now we shift our perspective backward in time to illustrate the power analysis associated
with the planning of this research.

In planning this investigation we know that we will eventually be testing the null hypothesis
(among others) that / will account for no variance in Y beyond what is accounted for by D.
Thus, / is the set B andD is the set that is partialed from B, set A, and this null hypothesis is
that R2

Y DI - R2
YD = R2

Y M - R2
YA = 0, to be tested with Model 1 error, 1 - R\ DI = 1 - R\ ^

(that is, the test eventually performed as Example 1, Table 5.5.1). Assume that we intend to
use as significance criterion a = .05 (step 1) and that we wish the probability of rejecting this
hypothesis (the power of the test) to be .90 (step 2). There are 9 variables in set/) and 10 TVs in
set/, so kB = 10 (step 3). We estimate the actual population value for sRj = R\ DI —R\D = .03
and R\ DI = .18 (and hence, necessarily, R\D = .15). If determining the necessary n* by
computer program, these values are entered and n* = 580 is read out. For hand calculation
from Eq. (5.6.1),

(step 4). Looking up the value for L in Appendix Table E.2 for a = .05, in row kB = 10,
column power = .90, we find L = 20.53, and, solving Eq. (5.6.1) for

approximately the same value provided by the program.19 Thus, if the unique Y variance of
/ • D in the population (sRj) is .03, and Model 1 error is 1 - .18 = .82, then in order to have
a .90 probability of rejecting the null hypothesis at a = .05, the sample should contain 581
cases. As was the case for single variables, lowering a, the desired power, or the number of
variables will reduce the estimated number of cases required, whereas lowering the estimate
of the population effect size, or the proportion of Y variance accounted for by other sets will
increase the number of cases required.

What if we had decided to use Model 2 error? In this case we add an estimate of the (net)
effect of differences among the hospitals on Y, length of stay, that is, estimate R\ DIH. Suppose
we posit this value to be .25 so that Model 2 error is 1 — .25 = .75. Therefore,

from Eq. (5.6.2), which, of course, cannot be smaller than the/2 for Model 1, which was
.0366. Again, we either enter these values in the computer program or go on to look up L in
the relevant Appendix Table E. We find L = 20.53, as it was for the Model 1 calculations.
Solving Eq. (5.6.4), we find

19Hand calculation inevitably involves the use of tabled approximations, whereas the computer provides a more
nearly exact value. Of course the degree of precision is adequate in either, as one can see by the crude approximation
of the population ES that is necessary for these estimates.
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for Model 2, compared with 581 for Model 1. In this case we found that n* was smaller
for Model 2 than for Model 1 for the same specifications. However, this case should not be
overgeneralized, as we have already argued. The relative size of the n* of the two models
depends on how much reduction in the (alternate hypothetical) proportion of error variance
occurs relative to the cost of dfdue to the addition of the kc IVs of set C. Model 2 will require
smaller n* than Model 1 when sR^, is large relative to kc, but larger n* than Model 1 when sR^
is small relative to kc. If, for example, we had posited Ry DIH to be .19, so that the Model 2
f2 = .03/(I - .19) = .0370. Solving Eq. (5.6.4), we find '

as compared to 581 for Model 1. (The exact values provided by the computer program actually
finds n* to be equivalent in the two cases.) It is interesting to note that even when we posited that
the differences between the eight hospitals uniquely accounted for only 1% of the Y variance,
the Model 2 n* was very close to the Model 1 n*.

5.6.2 Estimating the Population sR2 Values

The key decision required in the power analysis necessary for research planning in MRC, and
generally the most difficult, is estimating the population ESs. One obviously cannot know the
various population R2 values, or the research would be unnecessary. Nevertheless, unless some
estimates are made in advance, there is no rational basis for planning. Furthermore, unless they
bear some reasonable resemblance to the true state of affairs in the population, sample sizes
will be too large or (more often) too small, or, when sample sizes are not under the control of
the researcher, the power of the research will be under- or (more often) overestimated.

The best way to proceed is to muster all one's resources of empirical knowledge, both hard
and soft, about the substantive field of study and apply them, together with some insight into
how magnitudes of phenomena are translated into proportions of variance, in order to make
the estimates of the population R2 values that are required. Some guidance may be obtained
from a handbook of power analysis (J. Cohen, 1988), which proposed operational definitions
or conventions that link qualitative adjectives to amounts of correlation broadly appropriate
to the behavioral sciences. Translated into proportion of variance terms (r2 or sr2), these are
"small," .01; "medium," .09; and "large," .25. The rationale for these quantities and cautions
about their use are given by J. Cohen (1962, 1988).

One may think of/2 as the approximate percentage of the Y variance not accounted for by the
other variables (in the error term) that is accounted for by the set (B) under consideration. With
some hesitation, we offer the following as a frame of reference: "small" = .02, "medium" =
.15, and "large" = .35. Our hesitation arises from the following considerations. First, there
is the general consideration of obvious diversity of the areas of study covered by the rubric
"behavioral and social sciences." For example, what is large for a personality psychologist may
well be small for a sociologist. The conventional values offered can only strike a rough average.
Second, because we are required to estimate two or three distinct quantities (proportions of Y
variance), their confection into a single quantity offers opportunities for judgment to go astray.
Thus, what might be thought of as a medium-sized expected sR\ (numerator) may well result in
either a large or quite modest variance ratio, depending on whether the expected contributions
to R2 of sets A and C are small or large. Furthermore, 15% may be appropriately thought of
as a "medium" ES in the context of 5 or 10 IVs in a set but seems too small when k = 15 or
more, indicating that, on the average, these variables account for, at most (.15/15 =) .01 of
the Y variance. Nevertheless, conventions have their uses, and the ones modestly offered here
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should serve to give the reader some sense of the ES to attach to these verbal formulations,
particularly when it is hard to cope with estimating the population values themselves. The
latter is, as we have said, the preferred route to determining power and sample size. For further
discussion of this issue, see J. Cohen (1988, Chapters 8 and 9).

5.6.3 Setting Power for /?*

In the form of power analysis discussed thus far, we find the necessary sample size «* for a
given desired power (given also a and/2). What power do we desire? If we follow our natural
inclinations and set it quite large (say at .95 or .99), we quickly discover that except for very
large/2, n* gets to be very large, often beyond our resources. (For example, in the first example
of Section 5.6.1, the test of 7, for a = .05 and power = .99, n* works out to be 905, about
double what is required at power = .80) If we set power at a low value (say at .50 or .60), n*
is relatively small (for this example, at power = .50, n* = 271), but we are not likely to be
content to have only a 50-50 chance of rejecting the null hypothesis (when it is as false as we
expect it to be).

The decision as to what power to set is a complex one. It depends upon the result of weighing
the costs of failing to reject the null hypothesis (Type II error in statistical inference) against
the costs of gathering and processing research data. The latter are usually not hard to estimate
objectively, whereas the former include the costs of such imponderables as failing to advance
knowledge, losing face, and editorial rejections, and of such painful ponderables as not getting
continued research support from funding agencies. This weighing of costs is obviously unique
to each investigation or even to each null hypothesis to be tested. This having been carefully
done, the investigator can then formulate the power value desired.

Although there will be exceptions in special circumstances, most investigators choose some
value in the .70 to .90 range. A value in the lower part of this range may seem reasonable when
the dollar cost per case is large or when the more intangible cost of a Type II error in inference is
not great (i.e., when rejecting the null hypothesis in question is of relatively small importance).
Conversely, a value at or near the upper end of this range would be chosen when the additional
cost of collecting and processing cases is not large, or when the hypothesis is an important one.

It has been proposed, in the absence of some preference to the contrary, that power be set
at .80 (J. Cohen, 1965, 1988). This value falls in the middle of the .70 to .90 range and is a
reasonable one to use as a convention when such is needed.

5.6.4 Reconciling Different /i*s

When more than one hypothesis is to be tested in a given investigation, the application of the
methods described earlier will result in multiple n*s. Because a single investigation will have
a single n, these different n*s will require reconciliation.

For concreteness, assume plans to test three null hypotheses (//,) whose specifications have
resulted in n\ = 100, n2 = 300, and n^ = 400. If we decide to use n = 400 in the study, we
will meet the specifications of H3 and have much more power than specified for Hl and more
for H2. This if fine if, in assessing our resources and weighing them against the importance
of //3, we deem it worthwhile. Alternatively, if we proceed with n = 100 we will meet the
specification of HI but fall short of the power desires for H2 and H3. Finally, if we strike an
average of these «*s and proceed with n = 267, we shall have more power than specified for
HI , slightly less for H2, and much less for #3.

There is of course no way to have a single n that will simultaneously meet the n* speci-
fications of multiple hypotheses. No problem arises when resources are sufficient to proceed
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with the largest n*; obviously there is no harm in exceeding the desired power for the other
hypotheses and improving the precision of those estimates. But such is not the usual case, and
difficult choices may be posed for the investigator. Some help is afforded if one can determine
exactly how much power drops from the desired value when n is to be less than n* for some
given hypothesis. Stated more generally, it is useful to be able to estimate the power of a test
given some specified n, the inverse of the problem of determining n* given some specified
desired power. The next section is devoted to the solution of this problem.

5.6.5 Power as a Function of n

Thus far, we have been pursuing that particular form of statistical power analysis wherein
n* is determined for a specified desired power value (for given a and/2). Although this is
probably the most frequently useful form of power analysis, we have just seen the utility of
inverting n and power, that is, determining the power that would result for some specified n
(for given a and/2). The latter is not only useful in the reconciliation of different n*, but in
other circumstances, such as when the n available for study is fixed or when a power analysis
is done on a hypothesis post hoc as in a power survey (J. Cohen, 1962). To find power as a
function of «, we enter the computer program with n, a, and/2, and read out the power.

If this calculation is to be done by hand, one needs to use the L tables (J. Cohen, 1988)
backward. Enter the table for the significance criterion a to be used in the row for kB, and
read across to find where the obtained L* falls. Then read off at the column heading the power
values that bracket it.20

To illustrate: In Section 5.6.1 we considered a test of/?2, DI - R\D using Model 1 error at
a = .05, where kz = kB = W,kD = kA = 9, and/2 = .0366. Instead of positing desired
power (e.g., .80) and determining n*( = 581), let us instead assume that (for whatever reason)
we will be using n = 350 cases. Enter these values into the computer program to determine
the power or alternatively, use hand calculation to find

where k is the number of variables contributing to the R2 in the denominator of/2 (the error
term), whether one is using Model 1 or Model 2 error. In our illustration L* = .0366 (350 —
9 - 10 - 1) = 12.07.

Recall that L is itself a function of kB,a, and power. To find power one simply uses the
L tables backward. Enter Appendix E Table E.I or E.2 for the significance criterion a to
be used in the row for kB, and read across to find where the obtained L* falls. Then read
off at the column heading the power values that bracket it. We find that for this example,
L* = 12.07 falls between L = 11.15 at power = .60 and L = 13.40 at power = .70. Thus,
with n = 350 for these specifications, power is between .60 and .70. (Linear interpolation
gives us an approximate value of .64, which agrees closely with the computer program value
of .65). Power may similarly be found for the other hypotheses to be tested in this data set,
with a specified n of 350.

A major advantage of computer programs such as those cited here is the possibility of plot-
ting the power as a function of n and in general obtaining a clearer picture of the consequences
for each of the parameters in the equation as a function of changes in other parameters.

20It is for such applications that the tables provide for low power values (.10 to .60). When a specified n results in
low power, it is useful to have some idea of what the power actually is.
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5.6.6 Tactics of Power Analysis

We noted earlier that power analysis concerns relationships among four parameters: power,
n, a, and ES (indexed by/2 in these applications). Mathematically, any one of these parameters
is determined by the other three. We have considered the cases where n and power are each
functions of three others. It may also be useful to exploit the other two possibilities. For
example, if one specifies desired power, n, and a for a hypothesis, the computer program will
provide the detectable ES, that is, the population/2 one can expect to detect using this a, with
probability given by the specified power desired in a sample of n cases. One can also determine
what a one should use, given the ES, desired power, and a sample of size n.

It must be understood that these mathematical relationships among the four parameters
should serve as tools in the service of the behavioral scientist turned applied statistician, not
as formalisms for their own sake. We have in the interest of expository simplicity implicitly
assumed that when we seek to determine n*, there is only one possible a, one possible value for
desired power, and one possible ES. Similarly, in seeking to determine power, we have largely
operated as if only one value each for a, ES, and n is to be considered. But the realities of
research planning often are such that more than one value for one of these parameters can and
indeed must be entertained. Thus, if one finds that for a hypothesis for which a = .01, power =
.80, and /2 = .04, the resulting n* is 600, and this number far exceeds our resources, it is
sensible to see what n* results when we change a to .05. If that is also too large, we can invert
the problem, specify the largest n we can manage, and see what power results for this n at
a = .05. If this is too low, we might examine our conscience and see if it is reasonable to
entertain the possibility that/2 is larger, perhaps .05 instead of .04. If so, what does that do
for power at that given n? At the end of the line of such reasoning, the investigator either has
found a combination of parameters that makes sense in the substantive context or has decided to
abandon the research, at least as originally planned. Many examples of such reasoning among
a priori alternatives are given in J. Cohen (1988).

With the multiple hypotheses that generally characterize MRC analysis, the need for explor-
ing such alternatives among combinations of parameters is likely to increase. If Hl requires
n* = 300 for desired power of .80, and 300 cases give power of .50 for H2 and .60 for //3, etc.,
only a consideration of alternate parameters for one or more of these hypotheses may result in
a research plan that is worth undertaking.

To conclude this section with an optimistic note, we should point out that we do not always
work in an economy of scarcity. It sometimes occurs that an initial set of specifications results
in «* much smaller than our resources permit. Then we may find that when the parameters are
made quite conservative (for example, a = .01, desired power = .95,/2 at the lower end of our
range of reasonable expectation), we still find n* smaller than our resources permit. We might
then use the power analysis to avoid "overkill," and perhaps use our additional resources for
obtaining better data, for testing additional hypotheses, or even for additional investigations.

5.7 STATISTICAL INFERENCE STRATEGY IN MULTIPLE
REGRESSION/CORRELATION

5.7.1 Controlling and Balancing Type I
and Type II Errors in Inference

In the preceding sections we have set forth in some detail the methods of hypothesis testing and
power analysis for sets. Testing for significance is the procedure of applying criteria designed
to control at some rate a, the making of a Type I error in inference, that is, the error of rejecting
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true null hypotheses or, less formally, finding things that are not there. Power analysis focuses
on the other side of the coin of statistical inference, and seeks to control the making of a Type
II error, the error of failing to reject false null hypotheses and failing to find things that are
there. Of course current thinking (e.g., Harlow, Mulaik, & Steiger, 1997) notes that it is likely
very rare that an effect in a population will be precisely zero, and that failing to find an effect
to be significantly different from zero should never be so interpreted. However, the making of
provisional judgments about the presence in the population of an effect of practical or material
magnitude is, in many cases, aided by the use of tests of statistical significance (Abelson, 1995,
1997). Thus, one fundamental demand of an effective strategy of statistical inference is the
balancing of Type I and Type n errors in a manner consistent with the substantive issues of the
research. In practice, this takes the form of seeking to maintain a reasonably low rate of Type I
errors while not allowing the rate of Type n errors to become unduly large or, equivalently,
maintaining good power for realistic alternatives to the null hypothesis.

For any discrete null hypothesis, given the usual statistical assumptions and the requisite
specification, the procedures for significance testing and power analysis are relatively simple,
as we have seen. When one must deal with multiple hypotheses, however, statistical inference
becomes exceedingly complex. One dimension of this complexity has to do with whether the
Type I error rate is calculated per hypothesis, per group of related hypotheses ("experiment-
wise"), or for even larger units ("investigation-wise"). Another is whether a is held constant
over the multiple hypotheses or is varied. Still another is whether the hypotheses are planned
in advance or stated after the data have been examined (post hoc) the latter being sometimes
referred to as "data snooping." And there are yet others. Each of the possible combinations
of these alternatives has one or more specific procedures for testing the multiple hypotheses,
and each procedure has its own set of implications to the statistical power of the tests it
performs.

An example may help clarify the preceding. Assume an investigator is concerned with
hypotheses about the means of a dependent variable across levels of a research factor, G, made
up of 6 (= g) groups. Any of the following kinds of multiple hypotheses may be of interest,
and each has its own procedure(s):

1. A/1 simple comparisons between means. There are g(g - l)/2 = 15 different
pairs of means and 15 simple comparisons and their null hypotheses. Assume each is t tested
at a = .05; thus the Type I error rate per hypothesis is controlled at .05. But if, in fact, the
population means are all equal, it is intuitively evident that the probability that at least one
comparison will be "significant" (i.e., the experiment-wise error rate) is greater than .05. The
actual rate for g = 6 is approximately .40.21 Thus, the separate a's escalate in this case to
.40. This error rate may well be unacceptable to the investigator, and almost certainly so to
scientific peers. But each t test at a = .05 will be relatively powerful.

There is a large collection of statistical methods designed to cope with the problem of making
all simple comparisons among g means. These vary in their definition of the problem, partic-
ularly in their conceptualization of Type I error, and they therefore vary in power and in their
results. For example, the Tukey HSD test (Winer, 1971, pp. 197-198) controls the experiment-
wise error rate at a. The Newman-Keuls test and the Duncan test both approach Type I error
via "protection levels" that are functions of a, but the per-hypothesis Type I error risks for the
former are constant and for the latter vary systematically (Winer, 1971, pp. 196-198). Bon-
ferroni tests employ the principle of dividing an overall a into as many (usually equal) parts
as there are hypotheses, and then setting the per-hypothesis significance criterion accordingly;

21 The calculation requires special tables and the result depends somewhat on sample size. Some other experi-
mentwise error rates for these conditions are (approximately) for g = 10, .60 and for g = 20, .90. Even for g = 3 it
is .13. Only for g = 2 is it .05.
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thus, for a = .05, each of the 15 comparisons would be tested with significance criterion set
at a = .05/15 = .0033 (R. G. Miller, 1966, pp. 67-70). The preceding tests of all pairs of
means are the most frequently employed, and by no means exhaustive (Games, 1971).

One of the oldest and simplest procedures for all pairs of g means is Fisher's "protected
t" (or LSD) test (Carmer & Swanson, 1973). First, an ordinary (ANOVA) overall F test is
performed on the set of g means (df = g — l,n — g). If F is not significant, no pair-wise
comparisons are made. Only if F is significant at the a criterion level are the means compared;
this being done by an ordinary t test. The t tests are protected from large experiment-wise Type
I error by the requirement that the preliminary F test must meet the a criterion. As we will
see, this procedure is readily adapted for general use in MRC analysis.

Note that each of these tests approaches the control of Type I errors differently, and that there-
fore each carries different implications to the rate of Type n errors and hence to the test's power.

2. Some simple comparisons between means. With g means, only differences
between some pairs may be of interest. A frequent instance of this case occurs when g — 1
of the groups are to be compared with a single control or reference group, which thus calls
for g — 1 hypotheses that are simple comparisons. In this special case the Dunnett test, whose
a is controlled experiment-wise, applies (Winer, 1971, pp. 201-204). For the more general
case where not all pair-wise hypotheses are to be tested, protected t and Bonferroni tests (and
others) may be used. Again these different tests, with their different strategies of Type I error
control have different power characteristics.

3. Orthogonal comparisons. With g groups, it is possible to test up to g - 1 null
hypotheses on comparisons (linear contrasts) that are orthogonal (i.e., independent of each
other). These may be simple or complex. A complex comparison is one that involves more
than two means, for example, Ml versus the mean of M3,M4,M5, or the mean of MI and
M2 versus the mean of M3 and M5. These two complex "mean of means" comparisons are,
however, not orthogonal. (The criterion for orthogonality of contrasts and some examples are
given in Chapter 8.) When the maximum possible number of orthogonal contrasts, g — 1, are
each tested at a, the experiment-wise Type I error rate is larger, specifically, it is approximately
1 - (1 - a)g-1 = .226. It is common practice, however, not to reduce the per-contrast rate
a below its customary value in order to reduce the experiment-wise rate when orthogonal
contrasts are used (Games, 1971).

Planned (a priori) orthogonal comparisons are generally considered the most elegant mul-
tiple comparison procedure and have good power characteristics, but alas, they can only
infrequently be employed in behavioral science investigations because the questions to be
put to the data are simply not usually independent (e.g., those described in paragraphs 1 and 2
previously discussed and in the next paragraph).

4. Nonorthogonal, many, and post hoc comparisons. Although only g - 1
orthogonal contrasts are mathematically possible, the total number of different mean of means
contrasts is large, and the total number of different contrasts of all kinds is infinite for g > 2.
An investigator may wish to make more than g — 1 (and therefore necessarily nonorthogonal)
comparisons, or may wish to make comparisons that were not contemplated in advance of
data collection, but rather suggested post hoc by the sample means found in the research. Such
"data snooping" is an important part of the research process, but unless Type I error is con-
trolled in accordance with this practice, the experiment-wise rate of spuriously "significant" t
values on comparisons becomes unacceptably high. The Scheffe test (Edwards, 1972; Games,
1971; R. G. Miller, 1966) is designed for these circumstances. It permits all possible compar-
isons, orthogonal or nonorthogonal, planned or post hoc, to be made subject to a controlled
experiment-wise Type I error rate. Because it is so permissive, however, in most applications
it results in very conservative tests, i.e., in tests of relatively low power (Games, 1971).
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The reasons for presenting this brief survey are twofold. The first is to alert the reader to the
fact that for specific and well defined circumstances of hypothesis formulation and Type I
error definition, there exist specific statistical test procedures. But even for the simple case of
a single nominally scaled research factor G made up of g groups, the basis for choice among
the alternatives is complex. Indeed, an entire book addressed to mathematical statisticians has
been written in this area (R. G. Miller, 1966).

The second reason for presenting this survey is to emphasize the fact that given the variety
of approaches to the conception of Type I errors, there are differential consequences to the rate
of Type n errors and thus to the statistical power of the tests. Conventional statistical inference
is effectively employed only to the extent that Type I and Type n error risks are appropriately
balanced. The investigator can neither afford to make spurious positive claims (Type I) nor
fail to find important relationships (Type II). Since, all other things equal, these two types of
errors are inversely related, some balance is needed. Yet the complexity that we encountered
earlier when confronted only with the special case of a single nominal scale makes it clear that
any effort to treat this problem in comprehensive detail is far outside the bounds of practicality
and not in keeping with this book's purpose and data-analytic philosophy, nor with the needs
of its intended audience.

What is required instead are some general principles and simple methods that, over the wide
range of circumstances in research in the behavioral and social sciences, will serve to provide
a practical basis for keeping both types of errors acceptably low and in reasonable balance.
The major elements of this approach include parsimony in the number of variables employed,
the use of a hierarchical strategy, and the adaptation of the Fisher protected t test to MRC.

5.7.2 Less is More

A frequent dilemma of the investigator in behavioral science arises in regard to the number of
variables she will employ in a given investigation. On the one hand is the need to make sure
that the substantive issues are well covered and nothing is overlooked, and on the other is the
need to keep in bounds the cost in time, money, and increased complexity that is incurred with
an increase in variables. Unfortunately, the dilemma very often is resolved in favor of having
more variables to assure coverage.

In addition to the time and money costs of more variables (which are frequently negligible,
hence easily incurred), there are more important costs to the validity of statistical inference that
are very often overlooked. The more variables, dependent or independent, there are in an inves-
tigation, the more hypotheses are tested (either formally or implicitly). The more hypotheses
are tested, the greater the probability of occurrence of spurious significance (investigation-
wise Type I error). Thus, with 5 dependent and 12 independent variables analyzed by 5 MRC
analyses (one per dependent variable), there are a total of 60 potential t tests on null hypotheses
for partial coefficients alone. At a = .05 per hypothesis, if all these null hypotheses were true,
the probability that one or more fs would be found "significant" approaches unity. Even at
a = .01 per hypothesis, the investigation-wise rate would be in the vicinity of .50.22 It is rare
in research reports to find their results appraised from this perspective, and many investigations
are not reported in sufficient detail to make it possible for a reader to do so—variables that
"don't work" may never surface in the final report of a research.

One might think that profligacy in the number of variables would at least increase the
probability of finding true effects when they are present in the population, even at the risk of

22Because the 60 tests are not independent, exact investigation-wise error rates cannot be given. If they were
independent, the two investigation-wise Type I error rates would be (1 — .95)60 = .954 (for a = .05) and (1 — .99)60 =
.453 (for a = .01).
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finding spurious ones. But another consideration arises. In each MRC, the greater the number of
IVs (= k\ the lower the power of the test on each IV (or set of IVs). We have seen this in several
ways. First, for any given n, the error df = n — k — 1 and are thus diminished as k increases.
Second, a glance at the L tables (Appendix Tables E.I and E.2) quickly reveals that all other
things being equal, as kg increases, L increases, and therefore power decreases for any given
/2, a, and n. Also, it is likely that as k increases, the Rts among the IVs increase, which in turn
increases the standard errors of partial coefficients (e.g., SEBis) and reduces the r,-s and hence
the power. Thus, having more variables when fewer are possible increases the risks of both
finding things that are not so and failing to find things that are. These are serious costs, indeed.

Note that a large n does not solve the difficulties in inference that accompany large numbers
of variables. True, the error df will be large, which, taken by itself, increases power. The
investigation-wise Type I error rate depends, however, on the number of hypotheses and not
on n. And even potentially high power conferred by large n may be dissipated by large k, and
by the large Rts (low tolerances) that large k may produce.

Within the goals of a research study, the investigator usually has considerable leeway in
the number of variables to include, and too frequently the choice is made for more rather
than fewer. The probability of this increases with the "softness" of the research area and the
degree to which the investigation is exploratory in character, but no area is immune. When
a theoretical construct is to be represented in data, a large number of variables may be used
to represent it in the interest of "thoroughness" and "just to make sure" that the construct is
covered. It is almost always the case, however, that the large number is unnecessary. It may be
that a few (or even one) of the variables are really central to the construct and the remainder
peripheral and largely redundant. The latter are better excluded. Or, the variables may all be
about equally related to the construct and define a common factor in the factor-analytic sense,
in which case they should be combined into an index, factor score, or sum (or treated in a
latent variable model, see Chapter 12). The latter not only will represent the construct with
greater reliability and validity, but will do so with a single variable (recall in this connection the
lessons of unit weighting in Section 3.8.3). Perhaps more than one common factor is required,
but this is still far more effective than a large number of single variables designed to cover
(actually smother) the construct. These remarks obtain for constructs in both dependent and
independent variables.

Other problems in research inference are attendant upon using many variables in the repre-
sentation of a construct. When used as successive dependent variables, they frequently lead to
inconsistent results that, as they stand, are difficult to interpret. When used as a set of IVs, the
partialing process highlights their uniqueness, tends to dissipate whatever common factor they
share, may produce paradoxical suppression effects, and is thus also likely to create severe
difficulties in interpretation.

5.7.3 Least Is Last

The hierarchical model with Model 1 error can be an important element in an effective strategy
of inference. We have already commented briefly on its use when IVs may be classified
into levels of research relevance (Section 5.3.2). This type of application is appropriate in
investigations that are designed to test a small number of central hypotheses but may have data
on some additional research factors that are of exploratory interest, and also in studies that
are largely or wholly exploratory in character. In such circumstances, the IVs can be grouped
into two or more classes and the classes ordered with regard to their status in centrality or
relevance. Each class is made up of one or more research factors, which are generally sets of
IVs. Thus, for example, the first group of IVs may represent the research factors whose effects
the research was designed to appraise, the second some research factors of distinctly secondary
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interest, and the third those of the "I wonder if" or "just in case" variety. Depending on the
investigator's interest and the internal structure of the research, the levels of the hierarchy may
simply be the priority classes or one or more of these may also be internally ordered by research
factors or single IVs.

The use of the hierarchical model, particularly when used with Model 1 error at each
priority class level, then prevents variables of lower priority, which are likely to account
uniquely for little Y variance, from reducing the power of the tests on those of higher priority
by stealing some of their variance, increasing the standard errors of their partial coefficients,
and reducing the dffor error. In using this stratagem, it is also a good idea to lend less credence
to significant results for research factors of low priority, particularly so when many IVs are
involved, because the investigation-wise Type I error rate over their IVs is likely to be large.
We thus avoid diluting the significance of the high priority research factors. This is in keeping
with the sound research philosophy that holds that what is properly obtained from exploratory
research are not conclusions, but hypotheses to be tested in subsequent investigations.

When hierarchical MRC is used for relevance ordering, it is recommended that Model 1
error be used at each level of relevance, that is, the first class (17) made up of the centrally
relevant research factors uses 1 — Ryu (with df = n — kv — 1) as the error term for its F and t
tests, the second class (V) made up of more peripheral research factors used 1 — R\ ^y (with
df = n — kv — kv — 1), and so on. This tends to make it probable that the tests at each level have
minimum error variance per dfand thus maximal power. Of course, it is always possible that a
test using Model 1 error is negatively biased by an important source of variance remaining in
its error term, but the declining gradient of unique relevance in this type of application makes
this rather unlikely. It is, in fact, in analyses of this kind that Model 1 error has its major
justification and use.

We summarize this principle, then, as "least is last"—when research factors can be ordered
as to their centrality, those of least relevance are appraised last in the hierarchy and their results
taken as indicative rather than conclusive.

5.7.4 Adaptation of Fisher's Protected t Test

The preceding sections of the chapter have been devoted to the use of sets of IVs as units of
analysis in MRC. We have seen how Y variance associated with a set or partialed set can be
determined, tested for significance, and power analyzed. The chapters that follow show how
research factors can be represented as sets of IVs. It should thus not come as a surprise that in
formulating a general strategy of statistical inference in MRC, we accord the set a central role.

In Section 5.7.1, in our brief review of alternative schemes of testing multiple hypotheses
for the special case where the research factor is a nominal scale G, we noted that among the
methods available for the comparison of pairs of groups' means was a method attributed to
R. A. Fisher: The usual ANOVA overall F test over the set of g means is first performed, and
if it proves to be significant at the a level specified, the investigator may go on to test any or
all pairs at the same a level, using the ordinary t test for this purpose, and interpret results in
the usual way. If F fails to be significant, no t tests are performed—all g population means
are taken to be potentially equivalent, based on the evidence, so that no difference between
means (or any other linear contrast function of them) can be asserted, whatever value it may
yield. This two-stage procedure combines the good power characteristics of the individual
t tests at a conventional level of a with the protection against large experiment-wise Type I
error afforded by the requirement that the overall F also meet the a significance criterion. For
example, in Section 5.7.1, we saw that when all 15 pair-wise comparisons among 6 means are
performed by t tests using a = .05 per comparison, the probability that one or more will be
found "significant" when all 6 population means are equal (i.e., the experiment-wise Type I
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error rate) is about .40. But if these tests are performed only if the overall F meets the .05
criterion, the latter prevents us from comparing the sample means 95% of the time when the
overall null hypothesis is true. Thus, the t tests are protected from the mounting up of small
per-comparison a to large experiment-wise error rates.

The virtues of simplicity and practicality of the protected t test procedure are evident. What
is surprising is how effective it is in keeping Type I errors low while affording good power. In an
extensive investigation of 10 pair-wise procedures for means compared empirically over a wide
variety of conditions, it was unexcelled in its general performance characteristics (Carmer &
Swanson, 1973).

To adapt and generalize the protected t test to the MRC system, we use the framework of
sets as developed in this chapter and used throughout the book. We discussed in Section 5.4.1
the principle that information on research factors of all kinds can be organized into sets of IVs
for structural and functional reasons and in the ensuing sections illustrated how these sets may
then serve as the primary units of MRC analysis. Now, the protected t test described previously
covers only one type of set—a research factor defined by a nominal scale (i.e., a collection
of g groups). We generalize the protected t procedure, applying it to the functional sets that
organize an MRC analysis, whatever their nature. Specifically,

1. The MRC analysis proceeds by sets, using whatever analytic structure (hierarchical,
simultaneous, or intermediate) is appropriate.

2. The contribution to Y variance of each set (or partialed set) is tested for significance at
the a level by the appropriate standard F test of Eqs. (5.6.2), (5.6.6), or their variants.

3. If the F for a given set is significant, the individual IVs (aspects) that make it up are each
tested for significance at a by means of a standard t test (or its equivalent t2 = F for numerator
df = 1). It is the partial contribution of each X, that is t tested, and any of the equivalent tests
for its srhpr(, or Bf may be used [Eq. (3.6.8)]. All standard MRC computer programs provide
this significance test, usually for Bt.

4. If the setwise F is not significant, no tests on the set's constituent IVs are permitted. (The
computer program will do them automatically, but the ?(s, no matter how large, are ignored.)
Overriding this rule removes the protection against large setwise Type I error rates, which is
the whole point of the procedure.

This procedure is effective in statistical inference in MRC for several reasons. Because the
number of sets is typically small, the investigation-wise Type I error rate does not mount up
to anywhere nearly as large a value over the tests for sets as it would over the tests for the
frequently large total number of IVs. Then, the tests of single IVs are protected against inflated
setwise Type I error rates by the requirement that their set's F meet the a significance criterion.
Further, with Type I errors under control, both the F and t tests are relatively powerful (for
any given n and/2). Thus, both types of errors in inference are kept relatively low and in good
balance.

To illustrate this procedure, we return to the running example of this chapter: length of
hospital stay (F) for n = 500 psychiatric patients was regressed hierarchically on three sets
of IVs, demographic (D, kD = 9), illness (/, kj = 10), and a nominal scale of 8) hospitals
(H, ka = 7), in that order. Using F tests with Model 1 error and a = .05 as the criterion for
significance, it was found that set D was significant. Note that the primary focus on sets helps
control the investigation-wise Type I error risk. Even for a = .05. The latter is in the vicinity
of .14; the more conservative a = .01 for significance per set would put the investigation-wise
Type I error rate in the vicinity of .03.23

23 Again, because the tests are not independent, exact rates cannot be determined. The rates given are "ballpark"
estimates computed on the assumption of independence, that is, 1 - .953 and 1 — .993, respectively.
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Because set D was found to be significant, one may perform a t test (at a = .05) on each
of the nine IVs that represent unique aspects of patient demography.24 Because these t tests
are protected by the significance of F, the mounting up of set-wise Type I error is prevented.
Without this protection, the set-wise error rate for nine t tests, each at a = .05, would be in
the vicinity of (1 - .95)9 = .37.

Set/'s increment (overZ)) to R2 was found to be nonsignificant, so no t tests on the unique
(within / and D) contributions of its 10 IVs are admissible. It would come as no surprise if
the computer output showed that 1 of these 10 t values exceeded the nominal a = .05 level.
With 10 tests each at a = .05, the set-wise Type I error rate would be large. Although the tests
are not independent, the "ballpark" estimate of the error rate computed with an assumption
of independence is (1 — .95)10 = .40. In the protected t strategy, the failure of F for the set
to be significant is treated so as to mean that all IVs in the set have zero population partial
coefficients, a conclusion that cannot be reversed by their individual ts.

Finally, the increment of set H (over D and /) to R2 was found to be significant, and its
constituent kH = g — 1 =7 IVs were t tested, and the significant ones interpreted. These seven
aspects of hospital-group membership may include simple (pair-wise) or complex (involving
more than two hospitals) comparisons among the eight hospital Y means, depending on which
of several different methods of representing group membership was employed. (The latter is the
subject matter of Chapter 8). The method used in this example was presumably chosen so that
the seven partialed IVs would represent those comparisons (aspects) of central interest to the
investigator and their protected ts test these aspects. Thus far, we have proceeded as with any
other set. However, because His a nominal scale and is thus made up of g groups, we admit
under the protection of the F test any comparisons of interest in addition to the 7 (=g — 1)
carried by the IVs. Thus, in full compliance with both the letter and spirit of Fisher's original
protected t test, one could t test any of the (8 x 7)/2 = 28 pair-wise simple comparisons (not
already tested) that may be of substantive interest.25

We reiterate the generality of our adaptation of the protected t test to MRC. Whether one is
dealing with one set or several, whether they are related to Y hierarchically or simultaneously,
whether error Model 1 or 2 is used, and whatever the substantive nature of the set(s), the same
procedure is used: The first order of inference is with regard to the set(s), and only when a set's
significance is established by its F test are its contents further scrutinized for significance.

In using the protected t procedure, it may happen that after a set's F is found to be significant,
none of its IVs yields a significant t. This is apparently an inconsistency, because the significant
F's message is that at least one of the IVs has a nonzero population partial coefficient, yet
each t finds its null hypothesis tenable. A technically correct interpretation is that collectively
(set-wise) there is sufficient evidence that there is something there, but individually, not enough
evidence to identify what it is. A risky but not unreasonable resolution of this dilemma is to
tentatively interpret as significant any IV whose t is almost large enough to meet the significance
criterion; whatever is lost by the inflation of the Type I error is likely to be compensated by
the reduction of Type n error and the resolution of the apparent inconsistency. It is also very
prudent to examine the tolerance for each variable (= 1 — /?2

123 (,) *)to try to identify high
levels of correlations that may have greatly increased the standard errors for some variables
that have apparent high levels of influence as suggested by p\ Fortunately, the occurrence of
this anomaly is rare, and virtually nonexistent when error df are not very small.

24 A refinement of this procedure would be to test the sR2s for subsets (for example, the nominal scale for ethnicity)
by F and then perform t tests on the subset's IVs only if F is significant. This gives added protection to the t tests,
which is probably a good idea when k for the set is large, as it is here.

25In compliance at least with the spirit of Fisher's procedure, one could also test any complex comparisons of
interest, but there would usually be few, if any, that had not been included as IVs.
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Another difficulty that may arise with the protected t test is best described by a hypothetical
example. Assume, for a set made up of many IVs, that one or two of them have large population
partial coefficients and that the remainder all have population partial coefficients equal to zero.
Now when we draw a random sample of reasonable size from this population, we will likely
find that the F for the set is statistically significant. This result is quite valid, because this
F tests the composite hypothesis that all the IVs in the set have zero population coefficient,
and we have posited that this is not true. But using the protected t test, the significance of F
confers upon us the right to t test all the IVs, including those for which the null hypothesis is
approximately true. For that large group of IVs, the subset-wise Type I error rate will obviously
mount up and be high. Of course, we do not know the state of affairs in the population when
we analyze the sample. We cannot distinguish between an IV whose t is large because its null
hypothesis is false from one (of many t values) that is large because of chance. Obviously, in
circumstances such as these our t tests are not as protected as we should like.

Fortunately, a means of coping with this problem is available to us: We invoke the principle
of Section 5.7.2—"less is more." By having few rather than many IVs in a set, a significant F
protects fewer ts for IVs whose null hypotheses may be true and inhibits the mounting up of
Type I error. Moreover, if the investigator's substantive knowledge is used to carefully select
or construct these few IVs, fewer still of the ts are likely to be testing true null hypotheses. In
this connection, we must acknowledge the possibility that sets D and / in our running example
are larger than they need have been; the former may be benefited from reduction by a priori
selection and the latter by either selection or factor-analytic reduction.

5.7.5 Statistical Inference and the Stage
of Scientific Investigations

Some of the problems of statistical inference can be seen in better perspective when the stage
or level of information already available about the phenomena under investigation is taken
into account. In early studies, tests of statistical inference will be useful in establishing the
direction of effect and in aiding decisions about the probable approximate magnitude of effects
in certain populations. These estimates will then be useful in planning future studies. As we
will see in subsequent chapters, such significance tests on individual variables or variable sets
can be very useful in aiding decisions about whether certain covariate sets will be needed in
current or future studies, whether nonlinear functions of variables contribute materially to the
prediction of Y, and whether important interactive effects among IVs are present. All such
significance tests have to be treated as providing very tentative answers to our questions, that
is, answers badly in need of confirmation by replication. (However, the unwary researcher is
warned about the problems associated with modest power in "replicating" studies).

Having established the presence and direction of effects, latter stage investigations may
be devoted to improving the precision of estimated effects and determining the limits of gen-
eralizations across populations and changes in methods, measures, or controlled variables.
When this sequence is followed it is likely that problems associated with Type I errors will
fade. Problems associated with inadequate statistical power should also be minimized once it
is determined what population ES is likely, providing that such estimates can be and are used
in the planning of subsequent studies.

5.8 SUMMARY

This chapter introduces five of the major strategic considerations for the employment of MRC
analyses to answer research questions. Sections 5.1 and 5.2 discuss considerations in selecting
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the coefficients that will best answer particular research questions. Section 5.2 also discusses
methods of making regression coefficients maximally informative. Sections 5.3 and 5.4 present
the hierarchical analyses of individual IVs and of sets of IVs as a strategic aid to answering
research questions. Section 5.4 presents the utility of considering IVs in sets, and multiple
partial correlation coefficients (the ballantine again). Sections 5.5 and 5.6 present significance
testing and power analysis for sets of variables. The final section considers strategies for
controlling and balancing Type I and Type n errors in making inferences from findings.

There are a number of different correlation and regression coefficients produced by MRC
analyses, and each of them is optimal for particular kinds of research questions. The squared
semipartial correlation tells us how much of the variance in Y is uniquely attributable to that IV,
a figure that is particularly useful in situations in which the predictive utility or a comparison of
predictive utility is at issue. A comparison of a zero-order r\% with sr\,w tells us how much the
prediction of Y by X is attributable to W. In contrast, a comparison of BYx with BYX-w te^s us

whether averaged over the values of W, changes in X had the same consequences for Y that they
had when W was ignored. Some investigations may target the question of differential partialed
correlations of two different predictors with Y. A series of questions about differences between
populations in squared zero-order, partial, or semipartial correlations of variance proportions
may be appropriate targets of research studies (Section 5.1).

In order for zero-order and partialed B to provide useful answers to research questions they
must reflect meaningful units of Y and the IV in question. When meaningful units are used, B is
the premier causal indicator. Meaningful units may come from long familiarity and established
conventions. When units represent counts in both Y and X, an alternative to B is elasticity (£),
the percent change on Y per percent change in X, measured at the mean. When measures are
novel, there are several options to be preferred to the simple sum that is frequently used. These
include POMP scores (percent of the maximum possible score) and item averages (when all
items have the same response options). Often the sample's sd may be used as a scale; if both
X and Y are so standardized zero-order and partial B = $ (Section 5.2).

The choice of the analytic model will determine the amount of information extracted from a
data set. Hierarchical analysis allows appropriate consideration of causal priorities and removal
of confounding variables. It may also be used to reflect the research relevance or structural
properties of variables. An alternative strategy, "step-wise" MRC, in which IVs are entered
in a sequence determined by the size of their increment to R2 is also discussed. Use of this
strategy is generally discouraged because of the necessarily post hoc nature of interpretation
of the findings and the substantial probability of capitalizing on chance (Section 5.3).

Sets of IVs may be treated as units or fundamental entities in the analysis of data. From this
perspective, the single IVs and single group of k IVs treated in Chapter 3 are special cases. Two
types of sets are described: sets that come about because of the structure of the research factors
they represent (for example, religion is represented as a set of IVs because it is a categorical
variable), and sets that have a specific function in the logic of the research, such as a set of
control variables that must be adjusted for, or a set of variables that collectively represent
"demographic characteristics"). Groups of sets are also described, and such set aggregates are
treated simply as sets (Section 5.4.1).

The simultaneous and hierarchical procedures of MRC are shown to apply to sets as units
of analysis, and it is shown that Y variance associated with set A may be partialed from that
associated with set B, just as with single IVs. For h sets, the simultaneous procedure appraises
Y variance for a given set with the remaining h — 1 sets partialed. The hierarchical procedure
orders the sets into an a priori hierarchy and proceeds sequentially: For each set in hierarchical
order of succession, all higher level sets (and no lower level sets) are partialed. The chief
quantities of interest are the increments of Y variance accounted for by each set uniquely,
relative to sets of higher order of priority (Section 5.4.2).
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The ballantine for sets is presented as a device for visualizing proportions of Y variance
associated with sets (A,U) and with partialed sets, analogously with those for single IVs.
The increments referred to above are squared multiple semipartial correlations and represent
the proportion of total Y variance associated with B • A. Similarly, we define the squared
multiple partial correlation of B as the proportion of Y variance not accounted for by A that
is associated with B • A. These two statistics are compared and exemplified. As with single
IVs, the troublesome area of overlap of sets A and B with Y, area c, cannot be interpreted
as a proportion of variance because it may be negative, in which case we have an instance of
suppression between sets (Section 5.4.3).

A general test of statistical significance for the Y variance due to a partialed set B • A is
presented. Two error models for this test are described. Model 1 error is 1 — Ry AB, with sets
other than A or B (collectively, set C) ignored. Model 2 error is 1 - R\ ABC, so the Y variance
unique to C (together with its df) is additionally excluded from error in the significance test of
B -As Y variance. The applicability of the two error models to the hierarchical and simultaneous
procedures of MRC is described and exemplified (Section 5.5).

Methods of statistical power analysis for partialed sets, necessary for research planning and
assessment, together with the use of a computer program or hand calculations are presented.
The determination of «*, the necessary sample size to attain a desired degree of power to
reject the null hypothesis at the a level of significance for a given population effect size (ES),
is given for both error models, as well as the means of estimating power that results from a
specified n, a, and ES. The section concludes with a discussion of the tactics of power analysis
in research planning, particularly those of specifying alternative combinations of parameters
and studying their implications (Section 5.6).

Finally, the issue of a general strategy of statistical inference in MRC is addressed. One
element of such a strategy involves minimizing the number of IVs used in representing research
factor constructs by judicious selection and the use of composites. Another exploits the hierar-
chical procedure of MRC and the use of Model 1 error in significance testing. A generalization
of the protected t test is offered as a simple but effective means of coping with the multiplic-
ity of null hypotheses in MRC. This procedure prevents the rapid inflation of set-wise and
investigation-wise Type I error that would occur if the individual ts were not so protected and
at the same time enjoys the good power characteristics of the t test. When an investigation is
placed in a sequence of scientific research, problems associated with both Type I and Type II
errors should be minimized. Early analyses and replications may establish the presence, direc-
tion, and estimated magnitude of effects. Subsequent research can be planned with realistic
levels of statistical power. This work can then improve the precision of estimates and their
variability across changes in methods, measures, and populations (Section 5.7).



6
Quantitative Scales,
Curvilinear Relationships,
and Transformations

6.1 INTRODUCTION

In Chapter 6 we continue our treatment of quantitative scales; that is, scales that can take on
a continuous range of values. We include ordinal, interval, and ratio scales (Section 1.3.3),
and note that they share the minimum property that the scale numbers assigned to the objects
order the objects with regard to the measured attribute. Ordinal (rank-order) scales have only
this property, interval scales add the property of equal units (intervals), and ratio scales have
both equal intervals and equal ratios, hence a true scale zero. Despite these differences in the
amount of information they yield, we find it convenient to treat them together. To this point we
have treated quantitative variables as if they have only a linear relationship to the criterion. We
would argue that in some research problems there may be other nonlinear aspects that should
be used in addition to, or in place of, this linear aspect. This chapter thus addresses itself to the
question of how nonlinear relationships can be detected, represented, and studied within the
confines of linear MRC, by the use of multiple and/or nonlinear aspects of research variables.

6.1.1 What Do We Mean by Linear Regression?

Linear regression refers to regression models that take the form we have used throughout the
book:

More formally, regression equations of the form of Eq. (6.1.1) are said to be linear in the
parameters (or linear in the coefficients), where the parameters refer to the coefficients
BO,BI,. ..,Bk. If a regression equation is linear in the parameters, then the predicted score
is a linear combination of the predictors: Each predictor is simply multiplied by the regres-
sion coefficient and the products are added to produce the predicted score. Any relationship
between a set of predictors and a criterion that can be expressed in the form of Eq. (6.1.1) can
be handled in linear MR. The actual relationship between a predictor and the criterion need
not be a linear (straight line) relationship in order to use linear MR to analyze the relationship.

193
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FIGURE 6.1.1 Quadratic relationship between X (number of credits taken in minor
subject) and Y (interest in further course work in the minor). The triangles characterize
the best fit linear regression of Y on X; the squares, the best fit quadratic regression of
YonX.

Theories in the social sciences sometimes predict a curvilinear relationship between two
variables, such as that illustrated in Fig. 6.1.1. In Fig. 6.1.1, the outcome Y increases as X
increases up to some maximum value; thereafter, as X increases, Y remains the same or even
declines. For example, Janis (1967) hypothesized that one could motivate people to engage
in health protective behaviors (e.g., to quit smoking, exercise) through fear communication
(i.e., through strong threats about disease) but only up to a point. If the fear induced became
too great, then people would deny the existence of the threat and health protective behavior
would decline, rather than continue to rise with increasing fear. We will be able to capture this
curvilinear relationship between X and Y with polynomial regression, a special case of linear
MR, which we develop in Sections 6.2 and 6.3. The point here is that any regression model of
the form of Eq. (6.1.1) can be analyzed in linear MR, even if the relationship of the predictor
to the criterion is not linear.

6.1.2 Linearity in the Variables and Linear Multiple Regression

It is worth reviewing what we mean by a linear relationship, that is, a relationship of X to Y
best summarized by a straight line (as apart from linear regression). The conditional means of
7, that is, the means of Y at each value of X, [iY\x> ue on a straight line (see Section 4.3.1).
More formally, linearity in the variables of a relationship means that the regression of Y on X
is constant across all values of X; that is, a one-unit increase in X is associated with a constant
magnitude of increase in Y (namely, fiyx), regardless of where in the X scale it occurs. If we
use linear MR to characterize a predictor-criterion relationship, we are forcing this constant
regression of Y on X across the range of X.

Of course, linearity is a special case of relationship; there are a variety of nonlinear rela-
tionships that can occur between predictors and a dependent variable. For example, we say that
the cost of college tuition has "risen exponentially over the years"; what we mean is that the
cost of college tuition has been rising at an ever increasing rate over the years. Obviously, the
relationship of time (X) to tuition (Y) fails to meet the definition of linearity in the variables,
which would require a constant increase in tuition with each year.
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In Fig. 6.1.1 linearity in the variables does not hold, since the slope of the regression of Y
on X changes over the range of X. If we predict Y from X in Fig. 6.1.1 with linear regression
equation Y = B^X + BQ, the best fit straight line, shown in Fig. 6.1.1 with the triangles, does
not capture the curvilinearity. The linear regression suggests that Y continues to increase as
X increases; the leveling off and then declining of Y at high levels of X is not captured. To
anticipate our discussion of polynomial regression, the curvilinear relationship of variable X to
Y in Fig. 6.1.1 can be handled within linear MR through a regression equation in which a single
research variable X is entered both as a linear predictor X, and as a curvilinear (second-order)
predictor such as X2. The second-order predictor is simply X2, and together the two predictors
X and X2 represent the relationship of the variable to the criterion:

This equation is linear in the parameters; by this we mean that predictors are simply multiplied
by the regression coefficients and the products summed to form the predicted score, rather than
being in some more complex form, for example, Xl/B. Note that Eq. (6.1.2) is linear in the
parameters, even though it is not linear in the variables, since X2 is a predictor. So long as
an equation is linear in the parameters, it can be analyzed with MR. The characterization of
the relationship of the variables to the criterion in Eq. (6.1.2) is novel in that it requires two
distinct predictors to capture the relationship: X representing a linear aspect and X2 or some
other transform, representing a curvilinear aspect.

6.1.3 Four Approaches to Examining Nonlinear Relationships
in Multiple Regression

There are four broad classes of approaches to examining nonlinear relationships in MR. Of
traditional and common use in the behavioral sciences is polynomial regression, explored here
in depth. Power polynomials are a convenient method of fitting curves of almost any shape,
although other functions such as a log function will often work as well. Second is the use of
monotonic nonlinear transformations (i.e., transformations that shrink or stretch portions of the
scale differentially). That is, these transformations change the relative spacing between adja-
cent points on the scale (i.e., the nonlinearity) but maintain the rank order of the scores (i.e., the
monotonicity). We choose the particular transformation in order to create rescaled variable(s)
after transformation that bear a close to linear relationship to one another so that they may be
treated in linear MR. The choice of transformation may be either theory driven or empirically
driven by the data. Transformations are treated in Section 6.4. Third is nonlinear regression, a
distinctly different class of analysis in which the central point of the analysis is estimation of
complex (nonlinear) relationships among variables that may be implied by theory. We introduce
nonlinear regression here in Section 6.5 and devote much of Chapter 13 to two common forms
of nonlinear regression: logistic regression and Poisson regression. Fourth are nonparametric
regression approaches (Hastie & Tibshirani, 1990), introduced briefly in Section 6.6.

Our presentation is a mix of approaches already familiar in the behavioral sciences and
approaches that have not heretofore been much used in the behavioral sciences, though they
are standardly used in related fields. We hope that the presentation of the unfamiliar approaches
may lead to innovation in the analysis of behavioral science data.

For our treatment of curvilinear relationships we must distinguish between a variable X,
and the predictors that carry the various aspects of the relationship of that variable to the
criterion (e.g., X and X2 of Eq. 6.1.2). The variable will be represented in bold italics (here X),
and its aspects will be characterized by the same letter, in regular type, with the particular
function, X, X2, log X specifically indicated. Capital letters will represent raw scores X, squares
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of raw scores X2, etc. Lowercase letters will represent deviation (centered) scores of the form
x = (X — Mx); x

2 = (X — Mx)
2, as in earlier chapters.

Boxed Material in the Text
In this chapter we adopt a strategy initiated in Chapter 4 of putting some material into boxes,

typically material of interest to the more mathematically inclined reader. The boxes provide
supplementation to the text; the text can be read without the boxes. Boxes appear within the
section in which the boxed material is relevant. Readers not interested in boxed material should
simply skip to the beginning of the next numbered section.

6.2 POWER POLYNOMIALS

6.2.1 Method

It is a most useful mathematical fact that in a graph of n data points relating Y to X (where the
values ofX are all different), an equation of the following form will define a function that fits
these points exactly:

This polynomial equation relates the one variable X to Y by using (n — 1) aspects of AT to the
criterion Y. Each term X, X2, etc., is said to have order equal to its exponent,1 (e.g., X2 is of
order 2). The order of the polynomial equation is the order of the highest term, here (n — 1).
The term with the highest exponent is referred to as the highest order term (here X""1) and
all other terms are referred to as lower order terms. The relationship of variable X to Y is
nonlinear, and several powers of the linear X term serve as predictors in addition to the linear
term. Put another way, the regression equation includes stand-in variables (X2, X3, etc.) that
possess a known nonlinear relationship to the original variables. Yet the regression equation is
linear in the parameters and can be analyzed with MR. By structuring nonlinear relationships
in this way, we make it possible to determine whether and specifically how a relationship is
nonlinear and to write an equation that describes this relationship. The higher order terms
X2, X3, etc. in the polynomial equation are nonlinear transformations of the original X\ thus
polynomial regression falls within the general strategy of creating nonlinear transformations
of variables that can be handled in linear MR.

The linear, quadratic, and cubic polynomials follow. The highest order term in a polynomial
equation determines the overall shape of the regression function within the range between
—oo and +00, that is, the number of bends in the function. The B2^X2 term in the quadratic
Eq. (6.2.3) causes the regression line to be a parabola (one bend), as in Fig. 6.1.1. The B312X

3

term in the cubic Eq. (6.2.4) produces an S-shaped function (two bends), as in Fig. 6.2.1. There
are (q — 1) bends in a polynomial of order q.

In reality, a bend may occur outside the range of the observed values of the predictor.

!In more complex terms considered in Chapter 7, the order is equal to the sum of the exponents (e.g., X2Z is of
order 3).
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FIGURE 6.2.1 Cubic relationship between w and Y. Predictor W is in centered (devi-
ation) form, w = (W - Mw). The triangles characterize the best fit linear regression
of Y on w; the solid circles, the best fit cubic regression of Y on w. The conditional
dependent variable means at each value of w are represented by squares. Note that the
cubic equation does not track the conditional means with complete accuracy.

The signs (positive, negative) of the highest order terms in polynomial regressions determine
the direction of the curvature. In the quadratic equation, positive B2 indicates a curve that
is U-shaped (concave upward, as a smile); negative B2 indicates a curve that is inverted
U-shaped (concave downward, as a frown), as in Fig. 6.1.1. In the cubic equation, negative 53

indicates a curve that is first concave upward and then concave downward as X increases, as
in Fig. 6.2.1; positive B3 yields the opposite pattern, concave downward followed by concave
upward.

What Order Polynomial to Estimate?
From a mathematical perspective, we may fit up to a polynomial of order (q — 1) for a

variable whose scale contains q distinct values (e.g., a 19th-order polynomial for a 20-point
scale). From a research perspective, we have neither theoretical rationale nor practical benefit
from fitting a polynomial of high order that captures every random jiggle in the data. Our
nonlinear curve fitting with power polynomials should make substantive sense. We argue
that theory should guide the choice and that for the most part theory in the social sciences
predicts quadratic, and at most cubic, relationships. For example, opponent process theories
predict phenomena that are properly cubic (i.e., a reaction in one direction followed by a
compensatory over-response in the opposite direction, followed by a return to baseline, as
in physiological responses to stressors). The quality of data must also be considered: social
science data typically do not support explorations above the cubic level. Finally, coefficients of
higher order polynomials (above cubic) are difficult to interpret (Neter, Kutner, Nachtsheim, &
Wasserman, 1996). In this presentation we focus on quadratic and cubic equations.

We realize that theorizing may be weak and that there may be an exploratory character to the
analysis. In the behavioral sciences, the prediction is often that the relationship is "nonlinear"
absent the specific form of the nonlinearity. One may suspect that behavior will approach a peak
(asymptote) and then remain essentially level, or will decline and then level off at some minimal
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level. A quadratic equation can be used to represent either of these relationships. We caution
that polynomial equations may be only approximations to nonlinear relationships. Finally, we
must distinguish nonlinear relationships from relationships that exhibit cyclic variation over
time (e.g., activity levels of people over 24-hour cycles, or mood levels over 7 days of the
week); here time series analysis is appropriate (see Section 15.8).

Detecting Curvilinear Relationships Through Graphical Displays
In the absence of specific predictions concerning nonlinearity, the detection of nonlinear-

ities begins with scatterplots of predictors against the criterion (see Section 4.2.2). These
plots should be augmented with superimposed curves for better visualization of the data, for
example, a curve connecting the means of the criterion Y at specific values of X. A lowess
(or, equivalently, loess) curve, a nonparametric curve that follows the data and traces the X-Y
relationship (Section 4.2.2), will help to visualize nonlinearity; in Fig. 6.2.2(A), the data of
Fig. 6.1.1 are plotted with a lowess curve. Residual scatterplots (Section 4.4.1) are even more
useful. The residual scatterplot in Fig. 6.2.2(B) is generated from the data in Fig. 6.1.1 by
predicting the criterion from only the linear aspect of X: Y = B\X + BQ, and plotting the
residuals from this analysis against the predictor. Once the strong linear increasing trend in the
data has been removed, the curvilinearity is clearly apparent. The residuals are systematically
related to the value of X: below zero for low and high values of X, and above zero for moderate
values of X. The detection of curvilinearity in a residual scatterplot is also enhanced with
a lowess line. Should nonlinearity be suspected, a polynomial regression equation is specified.
Higher order predictor(s) are created simply by squaring (and perhaps cubing) the original
linear variable X. Multiple regression is applied to the polynomial equation.

6.2.2 An Example: Quadratic Fit

Consider again the gestalt of the 100 points in Fig. 6.1.1, which suggests that Y reaches
a maximum and then declines slightly as variable X increases. As an example, we might think
of variable X as the number of elective credits undergraduate students have taken in a particular
minor subject and Y as their expressed interest in taking further electives in this minor. We
hypothesize that interest in course work in a minor will increase as students take more courses
in the minor, but only up to a point. After several courses, students then will shift their interest
to electives in other topics and interest in the particular minor will begin to decline.

The linear correlation between variable X and Y is substantial, r = .75, and reflects the
strong positive relationship between variable X and Y. However, this linear correlation does
not capture the onset of decline in interest above about 12 credits (four 3-credit courses). In
Table 6.2.1 we summarize a series of polynomial regressions fitted to these data, the linear,
quadratic, and cubic polynomials of Eqs. (6.2.2), (6.2.3), and (6.2.4), respectively. We present
the regression equations, tests of significance of each of the individual regression coefficients,
and 95% confidence intervals on the regression coefficients. The triangles in Fig. 6.1.1 are
predicted scores from the linear regression equation 7=1.1 5X^ +8.72. The linear regression
coefficient Bl in the linear equation is significant, due to the strong increasing trend in the data,
Bl = 1.15, confidence interval (C7): [.95, 1.35], f(98) = 11.19,;? < .01. This coefficient only
signifies the generally increasing trend in the data and does not test our curvilinear prediction.

In Fig. 6.1.1 the squares are predicted scores from the quadratic regression equation Y2 =
3.27X - .13X2 + 1.00. The B2l coefficient is negative, B2l = -.13, the 95% confidence
interval does not include zero, CI: [-.17, -.08], and ?(97) = -5.75, p < .01. Negative 52.i
reflects the hypothesized initial rise followed by decline in interest in taking further courses as
number of credits in the minor accumulates.
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(A) Scatterplot of data from Fig. 6.1.1 with best fit linear regression of Y on X
and lowess curve superimposed. The lowess curve is useful in visual detection of
the curvilinear relationship of X to Y.

(B) Residual scatterplot of data from Fig. 6.1.1 following prediction from linear
equation Y = B{X + B0. The increasing linear trend shown in Fig. 6.2.2(A) has
been removed and the residuals exhibit the remaining curvilinearity. A lowess
curve is superimposed to highlight the remaining curvilinearity.

FIGURE 6.2.2 Exploration of data to detect the presence of curvilinearity. The data
are the same as in Fig. 6.1.1.

We might wonder whether the students' interest once again rises among those students who
take many credits in the minor (say after 15 credits or five 3-credit courses); hence we examine
the cubic equation. In the cubic equation, the confidence interval for the B312 coefficient
includes zero, CI: [—.0007, .02]. There is no evidence of a cubic relationship in the data, that
is, after decline in student interest above about 12 credits, interest does not increase again with
higher credits.
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TABLE 6.2.1
Polynomial Multiple Regression Analysis of Regression of Y on X

with Uncentered Data

Structuring Polynomial Equations: Include all
Lower Order Terms
Each polynomial equation in Table 6.2.1 contains all lower order terms, (i.e., the quadratic

equation contains the linear term; the cubic equation, the linear and quadratic terms). In order
that higher order terms have meaning, all lower order terms must be included, since higher
order terms are reflective of the specific level of curvature they represent only if all lower order
terms are partialed out. For example, in Table 6.2.1, had we not included the linear term in
the quadratic equation, the regression coefficient for X2 would have confounded linear and
quadratic variance.

Conditional Effects: Interpretation of Lower Order Coefficients
in Higher Order Equations Based on Uncentered Variables
In equations containing linear predictors and powers of these predictors, the actual slope of

the regression of Y on X differs for each value of X. In Fig. 6.1.1, one can imagine drawing a
tangent line to each of the darkened squares representing the quadratic relationship. The tangent
line summarizes the linear regression of Y on X at that particular value ofX as characterized

Uncentered correlation matrix

Y
X
X2

X3

Mean

18.11
8.17

76.23
781.99

sd

4.75
3.10

53.45
806.44

Y

Y 1.000
X .749
X2 .650
X3 .554

X

.749
1.000
.972
.911

X2

.650

.972
1.000
.981

X3

.554

.911

.981
1.000

Regression Equations

Linear: Flinear =
95% CI:
tBi (98):

Quadratic: Quadratic =
95% CI:
tBi (97):

Cubic: 7cubic =
95% CI:
tBj (96):

Hierarchical Model

Equation IVs

Linear X{

Quadratic X{ X2

Cubic X, X2

1.15X
[.95, 1.35]

11.19

3.27X
[2.52, 4.03]

8.62

4.94 X
[2.99, 6.89]

5.03

R2

.56

.67
X3 .68

+8.72

-.13X2

[-.17, -.08]
-5.75

-.34X2

[-.58, -.10]
-2.86

F df

125.14** 1,98
99.62** 2, 97
69.15** 3,96

+1.00

+.01X3

[-.0007, .02]
1.83

/ Fj

.56 125.14**

.11 33.11**

.01 3.35

-2.58

df

1,98
1,97
1,96

**p < .01
Note: I is the increment in R2.
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in the quadratic equation. The actual slope of each tangent line2 at a particular value of X for
the quadratic equation (Eq. 6.2.3) is given by the expression (Bi 2 + 2B2iX). The value of
this expression depends on X, i.e., is different for every value of X. This expression equals
BI 2 only at X = 0. Hence the B12 coefficient in the quadratic equation represents the linear
regression of Y on X at only the point X = 0, as characterized by the quadratic equation. The
conditional nature of the B12 coefficient makes sense when we consider that the slope of the
linear regression of Y on X is different for every value of X if the relationship is curvilinear. In
our example, the BI 2 coefficient in the quadratic equation (B12 = 3.27) represents the linear
regression of Y on X at X = 0. A glance at Fig. 6.1.1 tells us that this is not a meaningful
value, since there are no data points in which X = 0; all students under consideration have
taken at least one credit in the subject area; that is, observed scores on the predictor range
from 1 through 17. To understand what the B12 coefficient represents, imagine projecting the
quadratic curve (the squares) downward to X = 0. The slope of the regression of Y on X at the
point X = 0 would be steeply positive; the large positive B12 = 3.27 is this slope. That is, if
we extrapolate our quadratic relationship to students who have never taken even a one-credit
course in the subject in question, we would predict a rapid rise in their interest in the subject.
We warn the reader not to report this BL2 coefficient or test of significance of this coefficient
unless (a) zero is a meaningful value that occurs in the data set, (b) one wishes to consider the
linear trend in the data only at the value zero, and (c) the meaning of the coefficient is carefully
explained, since these coefficients are little understood and will be grossly misinterpreted.

6.2.3 Centering Predictors in Polynomial Equations

Lower order coefficients in higher order regression equations (regression equations containing
terms of higher than order unity) only have meaningful interpretation if the variable with which
we are working has a meaningful zero. There is a simple solution to making the value zero
meaningful on any quantitative scale. We center the linear predictor, that is we convert X to
deviation form:

centered linear predictor x: x = (X — Afx).

With centered variables, the mean Mx is, of course, zero. Thus the regression of Y on x at
x = 0 becomes meaningful: it is the linear regression of Y on Z at the mean of the variable
X. Once we have centered the linear predictor, we then form the higher order predictors from
centered x:

centered quadratic predictor*2: x2 = (X — Mx)
2,

and

centered cubic predictor x3: x3 = (X — Mx)
3.

We use these predictors in our polynomial regression equations. For example, the cubic
equation becomes

To gain the benefits of interpretation of lower order terms, we do not need to center the
criterion Y; we leave it in raw score form so that predicted scores will be in the metric of the
observed criterion.

2The expression (B12 + 2B2.i^) is actually the first derivative of Eq. (6.2.3).
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TABLE 6.2.2
Polynomial Multiple Regression Analysis of Regression of Y on X

with Centered Data

Table 6.2.2 provides a reanalysis of the data of Fig. 6.1.1, following centering of X. To
prepare the table, the original X variable with Mx = 8.17 was centered by subtracting the
mean from each value of X, yielding predictor x with Mx = 0. Figure 6.2.3 shows the data set
and the linear and quadratic regression functions based on centered x; x = 0 is approximately
at the middle of the x axis. Note that Figs. 6.1.1 and 6.2.3 are identical in form. The shapes of
the regression functions do not change on centering X\ only the scaling of the x axis changes.

Essential Versus Nonessential Multicollinearity
There are substantial differences, however, between the results presented in Table 6.2.1 for

uncenteredX versus Table 6.2.2 for centered x. The means of the three predictors have changed,
as have the standard deviations of all but the linear term. Dramatic changes have occurred in
the correlation matrix. Consider first the correlation between X and X2. In the uncentered case
(Table 6.2.1), this correlation is .972. However, in the centered case (Table 6.2.2), the corre-
sponding correlation is only .110. Whenever we take an uncentered predictor X (a predictor
with a nonzero mean) and compute powers of the predictor (X2, X3, etc.), these powers will
be highly correlated with the original linear predictor X. There are two sources of correlation
between a predictor and an even power of the predictor, say between X and X2 (Marquardt,

Centered correlation matrix

Mean sd

Y 18.11 4.75
x 0.00 3.10
x2 9.48 12.62
x3 4.27 102.70

Regression Equations

Linear: flinear =
95% CI:
ffll.(98):

Quadratic: Quadratic =
95% CI:
tBi(9T>:

Cubic: ycubic =
95% CI:

fy(96):

Hierarchical Model

Equation IVs

Linear JCj
Quardratic xl , x2

Cubic Xi,X2,x3

**/> < .01
Note: I is the increment in R2.

Y

Y 1.000
x .749
x2 -.250
x3 .586

1.15*
[.95, 1.35]

11.19

1.21*
[1.03, 1.38] [-

13.45

l.OOx
[.70, 1.28] [-

6.86

R2 F

.56 125.14**

.67 99.62**

.68 69.15**

JC

.749
1.000
.110
.787

+18.10

-13*2

.17, -.08]
-5.75

-.14jc2

.19, -.09]
-6.10

df

1,98
2,97
3,96

x2 x3

-.250 .586
.110 .787

1.000 .279
.279 1.000

+19.30

+.01JC3 +19.39
[-.0007, .02]

1.83

/ F, df

.56 125.14** 1,98

.11 33.11** 1,97

.01 3.35 1,96
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FIGURE 6.2.3 Data of Fig. 6.1.1 with predictor X in centered (deviation) form
jc = (X — Mx). The triangles characterize the best fit linear regression of Y on x;
the squares, the best fit quadratic regression of Y on X.

1980). First is nonessential multicollinearity that exists merely due to the scaling (nonzero
mean) of X. If we set the mean of X to zero, then all nonessential multicollinearity is removed.
This accounts for the drop in correlation from .972 to .110. Second is essential multicollinear-
ity, correlation that exists because of any nonsymmetry in the distribution of the original X
variable. For a perfectly symmetric predictor X, if we center it, producing jc, and then square
the centered x, producing x2, x and x2 will be completely uncorrelated. In fact, this will also
be so for the correlation of x with all even powers of* (i.e., Jt2, x4, x6, etc.). The correla-
tion between x and x2 in our example of .110 is attributable to the very slight asymmetry
of X. Centering leads to computational advantages because very high correlations between
predictors may cause computational difficulties. The correlation between X and X3 is .911 in
the uncentered case and .787 in the centered case. Correlations between a predictor and odd
powers (i.e., x3, x5, x7, etc.) of the predictors will not drop dramatically when we center.

Now consider the correlations of each predictor with the criterion Y. The linear transfor-
mation of X to x leaves the correlation with Y unchanged, r = .749. However, the correlation
of the X2 term with Y changes dramatically, from .650 in the uncentered case to —.250 in the
centered case. We know from Figs. 6.1.1 and 6.2.3 that the shape of the relationships in the data
has changed not at all on centering. Consistent with our consideration of MR with correlated
predictors, the examination of hypotheses about the effects of individual predictors is consid-
ered in the context of all other predictors. We interpret partial effects of individual predictors
with all other predictors held constant. The polynomial regression case is no exception. The
zero-order correlations of the linear, quadratic, and cubic predictors with the criterion should
not be interpreted in examining hypotheses about fit. Interpretation of the overall shape of the
regression function should be based on the partial regression coefficient for the highest order
predictor in the context of the full polynomial equation, that is, the regression equation con-
taining all lower order terms. Again, if we omit lower order terms, then the variance attributed
to higher order terms will be confounded with variance attributable to the omitted lower order
terms. Finally, we would not look at effects in reverse order, for example, asking whether the
linear term contributes over and above the quadratic term, even if the quadratic relationship
were expected.
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Regression Coefficients in Centered Versus Uncentered
Polynomial Regressions
Although the regression functions in Figs. 6.1.1 and 6.2.3 are identical, there is a striking

difference between the coefficients of the regression equations. First, the intercepts differ
because they reflect the scaling of the means of the variables. For the uncentered predictor,
zero represents no previous credit hours, whereas for the centered predictor, 0 represents
the mean hours of credit (Mx = 8.17). In addition, the lower order terms differ. Consider the
centered quadratic equation: Y2 = 1.21X -.13X2+19.30. Examine Fig. 6.2.3. Thefi12 = 1.21
coefficient gives the linear regression of Y on x at the point x = 0, now the mean of x. That this
coefficient is positive tells us that at the mean of x, the criterion Y is still increasing. In terms
of our numerical example, at the mean number of credits taken in the minor (raw Mx = 8.17),
interest in the minor is still increasing. Note that the centered B12 of 1-21 is much smaller than
the uncentered B12 of 3.27. Recall that uncentered B12 of 3.27 represented the slope of Y on
X if the regression curve for uncentered X in Fig. 6.1.1 were extended downward to X = 0, a
very steep portion of the curve.

The Bl 2 coefficient in the centered quadratic regression equation also has another useful
interpretation; it is the average linear slope of the regression of Y onXin the quadratic equation.
That B12 = 1.21 tells us that the overall linear trend in the data is positive. It is important
to note that we can use both coefficients of the centered quadratic equation for interpretation.
Both the linear and quadratic terms in the quadratic equation are meaningful once we have
centered predictor X.

The BL2 = 1.21 coefficient from the centered quadratic equation is not identical to that from
the centered linear equation (^ = 1.15). In the quadratic equation, thefij 2 coefficient is that for
x with x2 partialed out; in the linear equation, the Bl coefficient has no terms partialed from it.

The #2.1 coefficient (B2l = —.13) in the quadratic equation is constant over additive
transformations (adding, subtracting a constant) and thus does not change from the uncentered
to centered equation. In a polynomial regression equation of any order the regression coefficient
for the highest order term is identical in the uncentered and centered solutions, but all lower
order coefficients are different.

Predictors in Polynomial Regression
Equations Should Be Centered
Centering renders all the regression coefficients in a polynomial regression equation mean-

ingful as reflecting the regression function at the mean of the predictor. Centering also
eliminates the extreme multicollinearity associated with using powers of predictors in a sin-
gle equation. We therefore strongly recommend the use and reporting of centered polynomial
equations. Although lower order terms have interpretations in uncentered equations, these
interpretations often are not meaningful in terms of the range of the data and are guaranteed
to be misleading to the naive consumer of polynomial regression equations. Only in cases in
which X is measured on a ratio scale with a true 0 point is the use of polynomial equations
with the raw data likely to lead to easily interpretable results.

6.2.4 Relationship of Test of Significance of Highest Order
Coefficient and Gain in Prediction

The tests of the highest order coefficients in polynomial equations are actually tests of whether
these aspects of the relationship of variable X to Y contribute to overall prediction above and
beyond all lower order terms. The hierarchical tests reported in Tables 6.2.1 and 6.2.2 are
the now familiar F tests of the contribution of a set B of predictors to an equation containing
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set A (see Section 5.5). Consider the centered analysis in Table 6.2.2. The squared multiple
correlation R2^^ for the linear equation is .56, for the quadratic equation, /?quadratic = .67.
This represents an increment of .11 (an 11% gain in total prediction) from the aiddition of the
quadratic term to the linear term. This increment / is the squared semipartial correlation sr\ of
the quadratic term with the criterion, over and above the linear term (for x2 with x partialed).
In general the F test for this increment in any order polynomial is computed by treating the
highest order term as set B and all other lower terms as Set A, as in Section 5.5, Eq. (5.5.2A):

Actually, the F test for the gain in prediction by the addition of the quadratic term is the square
of the t test for the significance of the quadratic term3 in the quadratic equation, f(97) = —5.75.

Our emphasis on the increment in prediction by the quadratic term over and above the linear
term should highlight once again that it is not the X2 term per se that carries the quadratic
component of the relationship of variable X to Y. Hence inspection of the correlation of the
X2 term with the criterion does not reflect the curvilinear nature of the data, as we warned
in Section 6.2.3. Rather it is the partialed X2^, that is, X2 with linear X partialed out, that
represents the pure quadratic variable (Cohen, 1978).

6.2.5 Interpreting Polynomial Regression Results

Plots of Curvilinear Relationships
Plotting curvilinear relationships has now been made easy with the graphics contained in

widely available statistical software, but plotting by hand can be accomplished by substituting
values of X into the regression equation and generating the predicted scores. This must be
done for a number of points to capture the shape of the curve. Be certain that if you are
using the centered regression equation, you substitute centered values of X. Further, be certain
that you use the highest order regression equation you have selected, not the linear term
from the linear equation, the quadratic term from the quadratic equation, etc. The graph of the
quadratic function in Fig. 6.2.3 is generated from centered equation Y = 1.2Ix—. 13x2 +19.30.
For example, for centered x = 0,7 = 1.21(0) - .13(02) + 19.30 = 19.30. For centered
x = 5, Y = 1.20(5) - .13(52) = 19.30 = 22.05. It is straightforward to translate the values of
centered x into the original scale. Centered x = 0 corresponds to Mx = 8.17; centered x = 5
corresponds toX = 5 + 8.17 = 13.17.

Maxima and Minima
The polynomial of Eq. (6.2.1) defines a function that contains powers of X up to (let us say)

the Mi, with k — 1 bends. We may be interested in identifying the value of X at which each
of the bends occurs,4 for example, after what number of credits taken does interest in taking
further courses begin to decline. Box 6.2.1 shows the computation of this value for the one
bend in the quadratic polynomial equation.

3Note that this equation is equivalent to that of the test for sr, (Eq. 3.6.8).
4In the quadratic equation, Eq. (6.2.3), the first derivative Bl 2 + 2B2 \X is set to zero to solve for the value of X

at which the function reaches a maximum or minimum.

For the quadratic term,
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BOX 6.2.1
Maximum and Minimum for a Quadratic Equation

For the quadratic, Eq. (6.2.3), there is one bend at the value XM,

In the centered quadratic equation of Table 6.2.2, XM = -1.21/2( - .13) = 4.65. Recall
that the mean of X was 8.17. The value 4.65 is the number of points above the mean
after centering, which is equivalent to 8.17+ 4.65 = 12.82 in raw score units. Students'
interest in further course work in a minor subject is estimated to peak at just under 13
credits of course work in the minor and to decline thereafter. We know from inspection
of Fig. 6.2.3 that the value 4.65 is the value of centered x at which Y is maximum.
In a quadratic equation with a negative B2\ coefficient, the value of Y is a maximum
because the overall shape of the curve is concave downward; with 52.i positive, the
value of Y is a minimum, since the overall shape of the curve is concave upward. Note
that although XM falls within the range of the observed data in this example, it need not.
It may be that we are fitting a quadratic equation to data that rise to some point and then
level off (reach asymptote). The maximum of a quadratic equation may fall outside the
meaningful range of the data (e.g., be higher than the highest value of predictor X) and
will be expected to do so if the data being fitted are asymptotic in the observed range.

The value of Y at its maximum or minimum value (here at centered x = 4.65) can be
found by substituting Eq. (6.2.5) into the quadratic regression equation, which yields

For the quadratic numerical example in Table 6.2.2, this value is 22.12 on the 30-point
scale of interest. Note that because we did not center Y, all predicted values for Y,
including the predicted maximum, are in the original scale of the criterion.

Maxima and minima of polynomial regression equations are of interest in some
applications, but they need not be routinely determined. They also require some caution
in interpretation, since they are subject to sampling error, like other statistics, and
hence are only approximations of the corresponding population values. The values of
XM identified by Eq. (6.2.5) are themselves sample estimates and exhibit sampling
variability. For large samples, approximate standard errors of these sample XM values
can be estimated (see Neter, Wasserman, & Kutner, 1989, p. 337, Eq. 9.22).

Simple Slopes: Regression of Yon Xat Specific Values ofX
Once again refer to Fig. 6.2.3, and focus on the quadratic equation, identified with the

squares. Imagine that we place a tangent line to the curve at each square, which represents the
linear regression of Y on X at the particular value of X represented by the square. Recall from
Section 6.2.2 that we can actually calculate the value of the linear regression of Y on X for
each value of X using the expression

These values are referred to as simple slopes (Aiken & West, 1991). In polynomial equations,
the simple slopes represent the linear regression of Y on X at a particular value of X; each is the
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slope of a tangent line to the polynomial curve at a particular value of X. These values are
useful in describing the polynomial regression function. For the centered quadratic regression
equation in Table 6.2.2, the simple slope is B12 + 252.i* = 1-21 + 2(—.13)*. For a case with
centered x = —3.10 (one standard deviation below the mean of centered jt), for example,
the simple slope = 1.21 + 2(-.13)(-3.10) = 2.02. For centered x = 0, the simple slope is
1.21 + 2(-.13)(0.00) = 1.21, the value of fl}. For centered x = 3.10 (one standard deviation
above the mean of centered x), the simple slope = 1.21 + 2(—.13)(3.10) = .40. Finally, for
centered x — 6.20 (two standard deviations above the mean of centered x), the simple slope
becomes negative, 1.21 + 2(—,13)(6.20) = -.40. Considered together, these four values of
the simple slope confirm that interest rises strongly as students accumulate a few credits in a
subject, then begins to level off, and finally diminishes after they have taken a relatively high
number of credits in the subject.

As has been illustrated here, a series of these simple slopes is useful in describing the
nature of the relationship of X to Y across the range of X (or another predictor). In fact, the
simple slopes may be tested for significance of difference from zero in the population (see
Aiken & West, 1991, p. 78). For example, we might examine whether interest is still rising
significantly after three 3-credit courses (or 9 credit hours). The reader is warned that the
algebraic expression for the simple slope changes as the order of the polynomial changes.

A Warning About Polynomial Regression Results
The quadratic polynomial regression equation plotted in Fig. 6.2.3 shows a relatively strong

downward trend in the data at high values of predictor X. On the other hand, the lowess curve
in Fig. 6.2.2(A) does not. (Recall from Section 4.2.2 that the lowess curve is a nonparametric
curve that is completely driven by the data—no model is imposed.) The question is how to
interpret the outcome of the polynomial regression. The data at hand are very, very sparse
at high values of X. There is insufficient information to make a judgment about whether Y
drops at very high values of X; hence judgment must be suspended. Both lowess curves and
polynomial regression are uninformative at extreme values if data at these extreme values are
sparse. In Section 6.2.7 we suggest a strategy of sampling heavily from extreme values on X
to ameliorate this problem. It is always important to examine the actual data against both the
polynomial regression and some nonparametric curve such as lowess with graphs that show
both the fitted curves and the data points, as in Figs. 6.1.1, 6.2.1, 6.2.2, and 6.2.3. One must
ask whether the data support the interpretation at the extremes of the predictors.

A Warning About Extrapolation
Extrapolation of a polynomial regression function beyond the extremes of observed X is

particularly dangerous. Polynomial regression functions may be very steep and/or change
directions at the extremes of the data. If we fit a second order polynomial to an asymptotic
relationship that levels off but does not decline at high values of observed X and we project
that function to even higher values of X, the function will eventually reverse direction. If we
were to extrapolate beyond the highest observed X to predict the criterion, we would make
incorrect predictions of scores that differed from the observed asymptote.

6.2.6 Another Example: A Cubic Fit

We offer another example of polynomial regression to demonstrate its operation for a more
complex relationship and to further exemplify the general method. The variable W is of a
different nature than X\ it has only 6 integer values (1, 2, 3, 4, 5, 6 in uncentered form), they
are equally spaced, and for each of these values there is the same number of points, 6 per value

CH06EX02
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TABLE 6.2.3
Polynomial Multiple Regression Analysis of Regression of Y on W

with Centered Data

of W. These features suggest that Wis a variable produced by experimental manipulation (e.g.,
number of exposures to a stimulus, or drug dosage level) and that the data structure is the product
of a laboratory experiment rather than a field study. These features are important to substantive
interpretation of the results but are not relevant to the present analysis; we would proceed as we
do here with data at unequal intervals and/or unequal ns at each level of W (see Section 6.3.3).
The mean of W is 3.5, and we center W, yielding w (—2.5, —1.5, —.5, .5,1.5,2.5) in centered
form. Consider the plot of points in Fig. 6.2.1, relating Y to centered w and the analysis in
Table 6.2.3 for the centered data.

The correlations among the centered predictors are instructive. The centered linear predictor
w is perfectly symmetric. Its correlation with the centered quadratic predictor w2 is 0.00. (Recall
that in the previous example the correlation between centered x and x2 was only .110, with
this very small correlation due to minor asymmetry in x.) However, the correlation between
w and w3, the centered cubic predictor, is .934. Even with centering, all odd powers of the
linear predictor (w, w3, w5, etc.) will be highly intercorrelated; similarly, all even powers will
be highly intercorrelated (w2, w4, w6, etc.). Even with these high interpredictor correlations,
the analysis can proceed.

The correlation of Y with w (the centered linear aspect of W) is found to be .415, so that
17.2% of the Y variance can be accounted for by w, corresponding to a moderate to large effect

Centered correlation matrix

Mean sd

Y 52.75 18.09
w 0.00 1.73
w2 2.92 2.53
w3 0.00 9.36

Regression Equations

Linear: flinear =
95% CI:
^(34) :

Quadratic: Quadratic =
95% CI:
fy(33):

Cubic: 7cubic =
95% CI:
ffl|.(32):

Hierarchical Model

Equation FVs

Linear wl

Quadratic Wj , vv2

Cubic w1,w2,H'3

Y

Y 1.000
w .415

w2 -.052
w3 .251

4.34w
[1.03, 7.65]

2.66

4.34w
[.98, 7.70]

2.63

14.89w
[6.20, 23.58]

3.49

R2 F

.17 7.09

.18 3.51

.32 5.10

w

.415
1.000
.000
.934

+52.75

-.38w2

[-2.67, 1.92]
-.33

-.38w2

[-2.49, 1.74]
-.36

df

1,34
2,33
3,32

w2 w3

-.052 .251
.000 .934

1.000 .000
.000 1.000

+53.84

-2.09w3

[-3.70, -.48]
-2.65

/ FI

.173 7.09**

.003 .11

.148 7.01**

+53.84

df

1,34
1,33
1,32

**p < .01
Note: I is the increment in R2.
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size (Cohen, 1988). Again we caution the reader that this only means that in the population
(as well as in the sample) a straight line accounts for some variance and not necessarily that
it provides an optimal fit. The equation for this line is given in the middle of Table 6.2.3;
the confidence interval for BI, CI\ [1.03, 7.65], does not include zero and reflects the strong
positive trend in the data, with f(34) = 2.66,p < .05, or, equivalently, F(l, 34) for prediction
from the linear prediction equation = 7.07,p < .05, where t = \/F. The linear equation is
plotted in Fig. 6.2.1, noted by triangles. Since this data set is structured to have replications at
each value of w (i.e., 6 cases at each value of w), we can examine the arithmetic mean observed
Y score at each value of w, represented by the squares in Fig. 6.2.1. Although the straight line
accounts for substantial variance in Y, we note the S-shaped function of these means; they
decrease from w = —2.5 to w = —1.5, then rise to w = 1.5, and then drop again, a two-bend
pattern.

When the quadratic term w2 is added into the equation, R2 increases by only .003, and the
confidence interval CI: [—2.67, 1.92] for the B2.i coefficient (52.i = —.38) in the quadratic
equation includes zero. The data do not support the relevance of the quadratic aspect of Wto Y.
Note that it is not curvilinearity that is being rejected, but quadratic curvilinearity, that is, a ten-
dency for a parabolic arc to be at least partially descriptive of the regression; a higher order, nec-
essarily curvilinear, aspect of W may characterize the overall form of the relationship of W to Y.

The addition of the cubic term w3, in contrast, does make a substantial difference, with
an increment in R2 over the quadratic R2 of .15, a moderate effect size (J. Cohen, 1988).
The confidence interval for the cubic coefficient, CI: [—3.70,—.48] does not include zero,
f(32) = — 2.65,p < .05. Table 6.2.3 gives the cubic equation, which is also plotted in Fig. 6.2.1
(noted by filled circles). The cubic always gives a two-bend function (although the bends
need not appear within the part of the range of the independent variable under study—see
Section 6.2.5), and the fit of the cubic equation to the data is visibly improved; the cubic
equation better tracks the means of Y at each value of w, though the match is not perfect. We
conclude that this regression equation is curvilinear and, more particularly, that it is cubic. By
this we mean that the cubic aspect of W relates to Y, and also that the best fitting equation
utilizing w, w2, and w3 will account for more Y variance in the population than one that has
only w and w2, or (necessarily) only w.

Since we have centered W, the coefficients for the w and w2 terms in the cubic equations
have meaning, though the utility of these terms seems less clear than for the quadratic equation.
The Bl 23 coefficient is the slope of a tangent line to the cubic function at the value w = 0.
Note in Fig. 6.2.3 that the slope of the cubic function is much steeper at this point than the
slope of the linear function, and the Bl2i coefficient from the cubic equation is substantially
larger (14.89) than the B12 coefficient in the quadratic equation (Eq. 4.34). The 5213 coefficient
indicates the curvature (concave upward, concave downward) at the value w = 0. Once again
we caution that if one reports these coefficients, their meaning should be explained, because
they are little understood.

The cubic function has both a maximum and a minimum; values of the independent variable
W at these points may be useful in interpretation. Simple slopes can also be calculated for a
cubic function and can be used to describe the function. Computations are given in Box 6.2.2.

6.2.7 Strategy and Limitations

What Order Polynomial, Revisited
In Section 6.2.1 we argued that theory should drive the choice of the order polynomial to be

estimated. Yet there may be some exploratory aspect to the analysis. In the quadratic example
of student interest in academic minor subjects, we hypothesized a quadratic relationship of
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BOX 6.2.2
Maximum, Minimum, and Simple Slopes for a Cubic Equation

In the case of the quadratic equation there is either a minimum or maximum point; in the
full cubic equation (Eq. 6.2.4), there are both a minimum and a maximum value. The
values of W at which the minimum and maximum occur are given as the two solutions
to Eq. (6.2.8).

For the cubic numerical example in Table 6.2.3, the two solutions to WM are — 1.60
and 1.48, on the centered X scale. These values correspond to uncentered .90 and 3.98
respectively on the original 1 to 6 point X scale. The corresponding values of Y = 37.60
(the minimum) and Y = 68.28 (the maximum), respectively.

The simple slope of the regression of Y on W in the cubic equation5 is given as

Once again, the simple slope indicates the slope of Y on W at a particular value of W in
the polynomial equation. For centered w = —1.5, just above the value of w at which Y
attains a minimum, the simple slope is 14.89 + 2( - .38)( - 1.5) + 3( - 2.09)( - 1.5)2 =
1.92 (i.e., the function is rising). For centered w = 1.5, just above the value of w at which
Y attains a maximum, the simple slope is 14.89 + 2( - .38)(1.5) + 3( - 2.09)(1.5)2 =
—.36 (i.e., the function has begun to fall below the maximum).

rising followed by falling interest. We also had some curiosity about whether interest returned
among students who had taken a large number of credits, as would be detected with a cubic
polynomial. We thus examined the quadratic and cubic relationships. We recommend that the
application of polynomial regression begin with setting out the theoretical rationale that might
be provided for each polynomial examined. It makes little sense to fit a series of increasingly
higher order polynomials and to identify a high-order polynomial term as significant when
there is no rationale for the meaning of this term. We also caution that vagaries of the data,
particularly outliers in Y with X values at the ends of the range of observed values, may
dramatically alter the order of the polynomial that is detected.

Two approaches to exploring polynomial equations exist. First is a build-up procedure
in which one examines first the linear equation, then the quadratic equation, and so forth;
each equation examined includes all lower order terms. A tear-down procedure reverses the
process, beginning with the highest order equation of interest and simplifying by working down
to lower order equations. First, the highest order term in the complete highest order equation
also containing all lower order terms is examined by some criterion (traditional significance
level, effect size, confidence interval). If the term accounts for a proportion of variance deemed
material by the researcher, then the polynomial at this level is retained. If not, then the highest
order term is eliminated from the equation, the next lower order equation is estimated, and the
highest order term in this equation is examined.

5In the cubic equation, Eq. (6.2.4), the first derivative is #1.23 + 2B2^W + 3fi312W2- This derivative is set to
zero to determine the minimum and maximum of the cubic function, given in Eq. (6.2.5).
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Each of these approaches has its advantages and its limitations. The difficulty in the build-up
procedure is in deciding when to stop in adding terms. Consider the cubic numerical example
of Table 6.2.3, in which the linear term is significant in the linear equation and accounts for
17% of the criterion variance: The quadratic term is not significant in the quadratic equation,
accounting for less than 1% of variance over and above the linear term, but the cubic term
is significant in the cubic equation, accounting for an additional 15% of the variance in the
criterion. A rule that indicates we should stop adding terms at the point at which there is no
longer a gain in predictability (measured in terms of significance or effect size) would lead us,
in the cubic example, to stop with the linear equation. The quadratic term does not contribute
material accounted for variance over and above the linear effect. But the relationship is cubic;
by build-up cutoff rules we would not reach the cubic equation.

The tear-down procedure has the advantage of insuring a test of the highest order term of
interest. In the cubic numerical example, the tear-down procedure would begin with a test of
the cubic term in the cubic equation (assuming we had some hypothesis of a cubic relationship).
Having found the cubic term to be significant (or to have a large effect size), we would stop
the exploration; that is, we would retain the cubic equation and not test terms from lower
order equations. Of course, we would still miss any higher order terms that might have been
statistically significant although unanticipated.

Must one pick one of the two strategies and rigidly adhere to it in deciding upon the order
of the polynomial? Absolutely not. One can first target the theoretically predicted equation
(e.g., the quadratic equation in our earlier example of taking further credits in one's minor,
depicted in Fig. 6.1.1.) If there is some reason to suspect a higher order trend in the data
(e.g., the cubic term), we may then examine the cubic equation. There are no rigid rules
for identifying the appropriate equation. Consider a cubic example. Suppose we identified
the cubic equation as appropriate in a large sample based on the highest order term but in
plotting the equation we saw that the curvature was slight compared to the strong linear
trend and that the cubic equation very closely approximated the linear equation plotted on
the same graph. We could estimate the linear equation to determine the percentage of variance
accounted for by only the linear trend. We might even decide, based on effect size (addi-
tional variance accounted for) that we would not retain the cubic equation but would use
the linear equation, particularly if there were not a strong theoretical rationale for the higher
order term.

There are no hard and fast rules for the inclusion of higher order terms in polynomial
equations. An aspect of selecting the final equation is the behavior of residuals, as illustrated
in Fig. 6.2.2(B). Model checking (described in Section 4.4) will be informative and is advised.
For example, an added variable plot for a higher order term may help clarify the role of this
higher order term. To decide between two equations of adjacent order, one of several criteria
may be employed:

1. Statistical significance. We would examine the loss (or gain) in prediction attribut-
able to the highest order term in a tear-down (or build-up) procedure, employing some
conventional level of significance.

2. Change in R2. The difference in R2 between two adjacent polynomial equations is
closely related to the measure of effect size for change in prediction specified by J. Cohen
(1988, pp. 412-413). The change from R\A to R\AB is the squared semipartial correlation of
B with the criterion, over and above A. The squared partial correlation is given as Eq. (5.4.11):
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Cohen (1988) suggested that squared partial correlations of .02, .13, and .26 were reflective of
small, moderate, and large effect sizes, respectively.

3. Change in R2. Thus far in this chapter, we have been concerned only with the
observed R2 and changes in R2. However, we know that the addition of any independent
variable to a set, even a random, nonpredictive variable, will result in an increase in R2—a
decrease is mathematically impossible and an increment of exactly zero is exceedingly rare. It
can be instructive to track the change in the shrunken R2, the estimated proportion of variance
in Y accounted for in the population by a polynomial of that order (see Section 3.5.3). Unlike
the increment in the R2 observed, this increment may be positive or negative. A reasonable
criterion for deciding between two equations is that the change in R2 between the equations is
some arbitrary minimum constant, say between .02 and .05.

The overriding preference in using polynomial equations is that the order of the polynomial
be small. Relatively weak data quality in the social sciences (i.e., the presence of substantial
measurement error), mitigates against fitting high order equations. Our theories do not predict
higher order terms. We gain no benefit in interpretation from fitting an equation of high order.
We do not advocate a curve fitting approach in which higher order terms are added merely
because they increase the R2 by small amounts. The likelihood of replication is low indeed.
Finally, the polynomial terms may be included in more complex equations. The variable
represented by a polynomial may be hypothesized to interact with other variables. As we will
see in Chapter 7, each interaction requires predictors involving all the terms in the polynomial
equation.

Impact of Outliers and Sampling to Increase Stability
Polynomial equations may be highly unstable and can be grossly affected by individual

outliers. Examine Fig. 6.1.1 for the quadratic polynomial. Note that at the highest value of
X,X = 17, there is only one data point. Its Y value (Y = 23.38) lies between the linear and
quadratic equations. Changing the value of Y for this point to the highest scale value (Y =
30.00, or an increment of 6.62 points) produces substantial changes in the regression equation.
In the original analysis, summarized in Table 6.2.2, the increments in prediction were .56,
.11, and .01 for the linear, quadratic, and cubic terms, respectively; the cubic term was not
significant. In the analysis with the one modified data point, the corresponding increments are
.59, .07, and .03. The cubic term is significant, 5312 = .01,C/:[.01,.02],f(96) = 3.22,;? < .01.
One data point out of 100 cases has produced the cubic effect.

Sparseness of the data points at the ends of the X distribution contributes to the instability.
We may sample cases systematically to increase both the stability of regression equations and
the power to detect effects (McClelland & Judd, 1993; Pitts & West, 2001). The X variable
in the quadratic example is normally distributed, with relatively few cases in the two tails.
If X were rectangularly (uniformly) distributed, with an approximately equal number of data
points at each value of X, then there would be many more points in the tails, on average just
under 6 data points for each of the 17 observed values of X (see Fig. 6.2.4). In a simulation
in which 100 values of X were rectangularly distributed, and the same population regression
equation was employed, there were 6 points with X = 17. Of these 6 points, the point with the
highest Y value, initially 30.93, was modified by increasing the Y value the same amount as
was done in the normally distributed case, 6.62 points, to 37.55. Before modifying the point the
increments in prediction were .63, .24, and .00, for linear, quadratic, and cubic, respectively.
After modifying the point, these increments were .64, .22, and .00, respectively. The cubic
term accounted for essentially no variance either before or after the modification of the single
point.
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FIGURE 6.2.4 Quadratic relationship with predictorX sampled to have a rectangular
distribution. The population regression equation for the quadratic regression equation
is identical to that generating the data of Figure 6.1.1 (or centered data of Fig. 6.2.3).
The triangles characterize the best fit linear regression of Y on x; the squares, the best
fit quadratic regression of Y on x. Note that the density of points in the extremes of the
distribution is much greater here than with normally distributed predictor X in Fig. 6.2.3.

There are other more complex rules for sampling X than simple rectangular sampling. These
rules arise from an area of statistics termed optimal design; McClelland and Judd (1993) and
Pitts and West (2001) provide easily accessible introductions to the topic. See Atkinson and
Donev (1992) for a complete development.

6.2.8 More Complex Equations

Polynomial equations may also include other predictors. Recall that Janis (1967) predicted
that compliance with medical recommendations (Y) would first increase and then decrease as
fear of a health threat (X) increases. Medical compliance also increases with the belief that
health can be controlled by medical practitioners (W) (Wallston, Wallston, & DeVellis, 1978).
We would specify these predictions in the equation Y = B^X + B2^X2 + #3.12^ + #o-
A simulated data set that follows these predictions is illustrated in Fig. 6.2.5. Instead of the
usual flat regression plane generated by two predictors that bear linear relationships to the
criterion, we have a curved regression surface. The curve is produced by predictor X that
follows the Jam's (1967) prediction. A strategy for examining this equation is first to estimate
the full equation containing X, X2 and W as predictors, as well as an equation containing only
the linear X and linear W terms. The difference in prediction between these two equations is
used to gauge whether the curvilinear term is required. Once this is decided, the effect of the
W predictor should be considered in the presence of the X terms retained. Note that in this
strategy, the test of curvilinearity of the relationship of X to Y is carried out in the presence
of W. The test of W is carried out in the presence of X in the form in which it apparently relates
to the criterion. Since predictors X and/or X2 may be correlated with W, it is appropriate to treat
each variable in the presence of the others, as is usual in multiple regression with correlated
predictors. The relationship between predictors X and W may not be linear. Darlington (1991)
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FIGURE 6.2.5 Regression surface for equation Y = .06x - .I2x2 + Mw + 66.08.
Predictor variables X and W produce a regression surface. The quadratic relationship
of variable X to Y produces the concave downward shape of the surface. The positive
linear relationship of W to Y produces the tilt of the plane. Note that the front right hand
corner of the figure represents the lowest values of centered predictors x and w.

warns that difficulties are introduced when there are nonlinear relationships between predictors.
In this case, nonlinear relationships of the predictor to the criterion may be obscured in residual
scatterplots.

6.3 ORTHOGONAL POLYNOMIALS

In instances in which the values of a variable W form ordered categories, as in the cubic
numerical example, it is possible to examine nonlinearity with a special class of variables,
orthogonal polynomials. Orthogonal polynomials are unique variables that are structured to
capture specific curve components—linear, quadratic, cubic, etc. Orthogonal polynomials
exist in sets (one linear, one quadratic, one cubic, etc.). For a variable W with u categories,
there are (u — 1) orthogonal polynomials in the complete set; for the cubic example with
u = 6, there are (u — 1) = 5 orthogonal polynomials (linear, quadratic, cubic, quartic,
quintic). The orthogonal polynomials are used as predictors in a regression equation to represent
the variable W. The members of a set of orthogonal polynomials have the special property
of being mutually orthogonal, that is, they are uncorrelated with one another. Thus they
account for independent portions of variance in a criterion when W represents a complete set
of categories (X = 1,2,3,..., M, with no skipped categories) and there are equal «s at each
value of W.

Each orthogonal polynomial is a series of integer coefficients or weights; the weights for
each orthogonal polynomial sum to zero. Orthogonal polynomials have two defining properties:
mutually orthogonal codes that sum to zero.6 The specific integer weights of an orthogonal poly-
nomial depend upon the number of values (ordered categories) of the predictors. Table 6.3.1
provides sets of orthogonal polynomials for the linear, quadratic and cubic terms of predictors

6 Orthogonal polynomials are a special case of code variables called contrast codes, which have the properties
of being mutually orthogonal and summing to zero. In general, code variables are structured variables specifically
designed to be applied to categorical predictors. Chapter 8 is devoted to code variables; contrast codes are presented
in Section 8.5.
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TABLE 6.3.1
Orthogonal Polynomial Coding for ty-Point Scales; First-, Second-,

and Third-Order Polynomials for u = 3 to 12*

M = 3

x,

1
0

-1

Xi

-7
-5
-3
-1
1
3
5
7

X2

1
-2
1

M = 8

X2

7
1

-3
-5
-5
-3
1
7

M = 4

Xi

-3
-1
1
3

X3 X,

-7 -4
5 -3
7 -2
3 -1

-3 0
-7 1
-5 2
7 3

4

X2

1
-1
-1
1

u =

X2

28
7

-8
-17
-20
-17
-8
7
28

X3

-1
3

-3
1

9

*3

-14
7
13
9
0
-9
-13
-7
14

W = 5

*i

-2
-1
0
1
2

Xl

-9
-7
-5
-3
-1
1
3
5
7
9

X2

2
-1
-2
-1
2

M =

X2

6
2

-1
-3
-4
—4
-3
-1
2
6

X3

-1
2
0

-2
1

10

X3

-42
14
35
31
12

-12
-31
-35
-14
42

x,

-5
-3
-1
1
3
5

*i

-5
-4
-3
-2
-1
0
1
2
3
4
5

M = 6

*2

5
-1
-4
-4
-1
5

«=11

X2

15
6

-1
-6
-9
-10
-9
-6
-1
6
15

*3

-5
7
4
-4
-7
5

X3

-30
6
22
23
14
0

-14
-23
-22
-6
30

*i

-3
-2
-1
0
1
2
3

*i

-11
-9
-7
-5
-3
-1
1
3
5
7
9
11

11 = 7

*2

5
0

-3
-4
-3
0
5

M=12

X2

55
25
1

-17
-29
-35
-35
-29
-17

1
25
55

X3

-1
1
1
0

-1
-1
1

*3

-33
3
21
25
19
7
-7
-19
-25
-21
-3
33

This table is abridged from Table 20.1 in Owen (1962). (Courtesy of the U.S. AEC.)

with from u = 3 to 12 categories.7 Although for u ordered categories there exist a set of
u — 1 codes, those above cubic are not likely to be useful for reasons we have discussed
(Section 6.2.7). Note that within any set for u = k categories, the sum of the products of corre-
sponding weights for any pair of polynomials is zero, for example for the quadratic and cubic
terms for u = 5: (2)(-l) + (-1)(2) + (-2)(0) + (-l)(-2) + (2)(1) = 0; this is the orthog-
onality property. Finally, each column of coefficients in Table 6.3.1, when plotted against an
equal interval scale from low to high has the distinctive shape of its order (e.g., the quadratic
coefficients for X2 form a concave upward parabola).

Orthogonal polynomials are applied to ordered categories which are assumed to be equally
spaced along some underlying continuum. For example, if the continuum were a drug dosage
continuum, the categories should result from equal increments in dosages across the continuum.
There are two further requirements for the use of orthogonal polynomials to produce orthogonal
portions of variance accounted for by individual curve components. First, the ordered values
of the original predictor must be a. full set of numerically equally spaced categories; that is, if

7 High-order polynomials and larger numbers of points are available elsewhere. The most extensive are those of
Anderson and Houseman (1942), which go up to the fifth order and to M = 104. Pearson and Hartley (1954) give up
to the sixth order and to u = 52. Kleinbaum, Kupper, and Muller (1988) provide all (M — 1) polynomial coefficients
for u = 3,..., 10 categories.
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there are six categories, all six categories must be represented in the data set. Second, there
must be equal numbers of cases in each ordered category.8 These conditions for the use of
orthogonal polynomials are most likely to be met in laboratory experiments, as in the example
of dose responses to drugs.

The polynomials we have used as predictors to this point are natural polynomials, gen-
erated from the linear predictor by centering and then powering the linear predictor. Natural
polynomials are typically correlated so that effects (linear, quadratic, etc.) are necessarily
partialed effects. Orthogonal polynomials eliminate this complexity by eliminating the corre-
lation among polynomials. With correlated natural polynomials, we examined increments of
variance accounted for by individual polynomial terms. Since, given equal ns, the orthogonal
polynomials are uncorrelated with each other, the square of the correlation of each orthog-
onal polynomial with the criterion r\ indicates the proportion of variation accounted for by
that curve component in the regression equation containing the set of orthogonal polynomials.
This squared correlation is exactly equal to the increment in prediction of the criterion by
the inclusion of the particular polynomial. In other words, since the orthogonal polynomials
are mutually uncorrelated (with equal ns) and there is thus nothing to partial, the correla-
tions rK will equal the semipartial correlations srYl. These correlations rK will also equal the
standardized regression coefficients for the orthogonal polynomials p\.

6.3.1 The Cubic Example Revisited

To accomplish polynomial regression, the natural polynomials are replaced as predictors in the
regression equation by the orthogonal polynomials. The linear orthogonal polynomial XUnear =
—5, —3, —1,1,3,5 replaces w, the quadratic polynomial Xquadratic = 5, —1, —4, —4, —1,5
replaces w2; similarly, Xcubic replaces w3.

Results of a simultaneous MR analysis are given in Table 6.3.2. Note first that the cor-
relations among the predictors Xlinear,Xquadratic, and Xcubic are all zero. This occurs because
the data set contains an equal number of cases at each value of W. Were this not the case,
then despite the orthogonality of the polynomial coefficients, the predictors created from
substituting the coefficients of the orthogonal polynomials would be correlated. Since the
predictors are uncorrelated, the squared correlation of each predictor with the criterion is
the proportion of variation accounted for by that curve component. These are identical to
the respective increments / for the individual curve components in Table 6.2.3. The partial-
ing out of lower order terms for correlated natural polynomials in Table 6.2.3 is replaced in
Table 6.3.2 by the use of orthogonal predictors, thus rendering partialing unnecessary. Because
the orthogonal polynomial predictors are uncorrelated, Ry 123 is simply the sum of the three
rK: ^y.i23 = -172 + .003 + .148 = .323, as in the original cubic example. The unstandardized
regression coefficients for linear'^quadratic' and ^cubic *n Table 6.3.2 do not equal the corre-
sponding coefficients for w, w2 and w3 in Table 6.2.3. Nonetheless, the two equations generate
identical predicted scores; that is, the same cubic function is generated by both equations.

Tests of Significance and Confidence Intervals
for Curve Components
We describe three approaches to testing the significance of coefficients in orthogonal poly-

nomials. These approaches are all special cases of the general strategy for testing sets of

8The derivation of orthogonal polynomials for unequal ns is given in Gaito (1965) and in Appendix C of Kirk
(1995).
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TABLE 6.3.2
Simultaneous Orthogonal Polynomial Multiple Regression Analysis of Regression of Y

on W (same data as Table 6.2.3).

predictors in Section 5.5, in which there is a set B of predictor(s) that is tested while another
set A is partialed out, the Model 1 approach. What varies from approach to approach is the
specific terms partialed out, (i.e., set A).

1. The first strategy involves specifying a single polynomial equation at the highest order
trend level of interest and testing each regression coefficient in the equation against the MSresidual

from that highest order regression equation. Tests of terms in the cubic equation in Table 6.2.3
exemplify this strategy. The MSresidual is a Model 1 error in that the particular term being tested
constitutes set B, and all other terms in the equation, all of which are partialed, constitute set
A. In the cubic equation of Table 6.2.3, the test of the quadratic coeffcient (set B) is carried
out with both the linear and cubic terms (set A) partialed out.

2. The second strategy is a hierarchical strategy, as described in Section 6.2.4, in which
one tests the linear term in the linear equation, the quadratic term in the quadratic equation,
and so forth. The MSresidua] for each test comes from a different regression equation. Again
this is a form of the Model 1 strategy; the particular term being tested constitutes set B; all
lower order terms constitute set A. In this strategy, the quadratic term (set B) is tested in the
quadratic equation, with the linear term (set A) partialed out.

Uncentered correlation matrix

Mean sd Y linear quadratic cubic r2. tTt

Y 52.75 18.09 Y 1.000 .415 -.052 -.385
linear .00 3.46 linear .415 1.000 .000 .000 .172 2.663*
quadratic .00 3.80 quadratic -.052 .000 1.000 .000 .003 -.306
cubic .00 5.56 cubic -.385 .000 .000 1.000 .148 2.433*

Regression Equation

Cubic: Ycubic = 2. 17 linear -.25 quadratic -1.25 cubic +52.75
95% CI: [.62,3.72] [-1.66,1.16] [-2.22,2.89]
fs. (32): 2.86* -.36 -2.65*

R2 (linear, quadratic, cubic) = .32356 with 3, 32 df.

Analysis of Variance of Trend Components

Source SS df MS F

Treatment 4020.9167 5
Linear 1976.0024 1 1976.0024 7.97*
Quadratic 31.5000 1 31.5000 .12
Cubic 1697.5148 1 1697.5148 6.85*

Higher order 315.8995 2 157.9497 .64
Error (within) 7429.8333 30 247.6611
Total 11450.7500

R2 (linear, quadratic, cubic, quartic, quintic) = .35115 with 5, 30 df.

* p < .05.
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3. The third strategy is one that we have not heretofore encountered. In this strategy, all
(u — 1) possible trend components are included in a single regression equation. The coefficient
for each trend component is tested against MSresidua] from the complete equation. This is again
a form of Model 1 testing, in which the term being tested constitutes set B and all other
terms, both lower and higher order, constitute set A. For the cubic example, with (u — 1) = 5
orthogonal polynomials, the test of the quadratic term (set B) would be carried out with the
linear, cubic, quartic, and quintic terms (set B) partialed out.

Coefficients in different equations. With orthogonal polynomials and equal ns, since
the predictors are uncorrelated, each coefficient in the equation containing one set of curve
components equals the corresponding coefficient in an equation with fewer or more curve
components. For the cubic example, the linear, quadratic, and cubic equations are as follows:
linear, Y = 2.17 linear + 52.75; quadratic: Y = 2.17 linear —.25 quadratic + 52.75; cubic:
Y = 2.11 linear - .25 quadratic - 1.25 cubic + 52.75.

Residua/ variance in different equations and resulting statistical power.
Although the three approaches will yield the same regression coefficients for corresponding
polynomial components, these approaches differ in the specific sources of variance included in
MSresidual, as we have seen for the test of the quadratic term in each strategy described earlier.
Thus they yield different values of MSresidual with different associated degrees of freedom, and
thus different tests of significance of individual coefficients and different confidence intervals
on the coefficients. The relative statistical power of the three approaches depends on the mag-
nitude of trend components other than the specific individual trend being tested and whether
these other trends are included as predictors in the model or are pooled into MSresidual.

Table 6.3.3 shows the t tests for the linear coefficient in the data from Table 6.3.2 according
to the three testing approaches. There is a general principle that emerges: If one includes in
the model extra terms that do not account for material amounts of variance (e.g., the quar-
tic and quintic terms), one reduces power. In contrast, including a term that accounts for
a material amount of variance (here the cubic term), increases power for the tests of other
effects.

TABLE 6.3.3
t Tests of Alternative Models for Testing Orthogonal

Under Three Approaches to Testing

Aspect of W

Approach

(1) (2)
Simultaneous subset Hierarchical buildup

Increment t df t df

Polynomials

(3)
Simultaneous full set

t df

Linear

Quadratic
Cubic
Quartic
Quintic

.173

.003

.148

2.857
-.361

-2.648

32
32
32

2.663
-.332

-2.648

34
33
32

2.825
-.357

-2.618
.755
.840

30
30
30
30
30

Note: Approach (1): each term tested in a model contained the same subset of all possible trend components
(linear, quadratic, and cubic); approach (2): each term tested in a model in which all lower order terms are
included; approach (3); each term tested in a model containing all possible trend components (linear, quadratic,
cubic, quartic, and quintic).
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Choosing Among the Three Approaches
The choice among the three approaches requires resolution of the competing demands of

maximizing statistical power, minimizing the risk of having negatively biased statistical tests
(i.e., tests that underestimate statistical signficance), and obtaining confidence intervals that
are as narrow as possible.

Approach 1 requires that a particular level of polynomial be specified in advance, hopefully
driven by theory. It is recommended when k is small (e.g., 3) and n is large. We expect that k
chosen based on theorizing in the behavioral sciences will, in fact, be small—at most cubic.
It is generally sensible to exclude from error the k terms in which one is seriously interested,
and when n is sizable, the dffor MSresidual, n — k — 1 df, are sufficient to maintain power.

Approach 2 in the build-up mode is very much exploratory. If there are substantial higher
order components, then tests of lower order components are negatively biased, as in the
cubic numerical example. When there are clear hypotheses about the order of the appropriate
equation, approach 1 is preferred.

Approach 3 is safe in its avoidance of underestimating tests of significance because all
trend components are included. It requires that n — u be large enough to achieve adequate
power for the effect size expected for the critical term. It should be used if the test of gain in
prediction from the higher order terms (e.g., the quartic and quintic test in our cubic example)
is of substantial effect size (i.e., accounting for more than a few percent of variance). In such
a case, the approach 1 tests would be negatively biased.

Trend Analysis in Analysis of Variance
and Orthogonal Polynomial Regression
The third approach to testing orthogonal polynomials in MR is isomorphic with trend

analysis in a one factor non-repeated measures ANOVA applied to a factor consisting of
ordered categories. In trend analysis, SS^ ,̂, ^u from the overall design is partitioned into
(u — 1) trend components (linear, quadratic, etc.) for the u levels of the factor. MSresidual

from the regression analysis with all trend components is identical to MSwithin cell from the
one factor ANOVA. The bottom section of Table 6.3.2 presents a trend analysis of the cubic
data set from Table 6.3.2, showing the partition of SS ,̂.,̂ ^ into trend components. The ratio
of the SS for each component (linear, quadratic, etc.) to SStotal yields the squared correlation
of each trend component with the criterion. The F tests for the individual components, each
with (1, 30) dfai& the squares of the t tests reported in Table 6.3.3, approach 3. The overall
R2 = SSdeatjnent/SStota! = .35 with the five components included represents the maximum
predictability possible from a full set of trend components. Here trend analysis is applied to
non-repeated measures data, with different subjects in each ordered category of predictor W.
Trend analysis may also be applied to repeated measures data, in which the same individuals
appear at each level of the repeated measured factor (see Section 15.3.2).

6.3.2 Unequal n and Unequal Intervals

The previous example had equal ns at each of the u points of variable W. This property is
required in order that the curve components of variable W account for orthogonal portions of
variance hi the criterion Y. When the ns are not equal, the correlations rtj among the aspects
of W are generally not zero, because the orthogonal polynomial coefficients are unequally
weighted. With the curve components not independent, equality among r^s and sr^s in the
simultaneous model is lost and r\ no longer equals the amount of variance accounted for
purely by the ith trend component, /,. This, however, constitutes no problem in analyzing the
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data—we simply revert to strategies involving the exploration of partialed effects, as discussed
in Section 6.2.4.

Another circumstance that defeats the simplicity of the use of orthogonal polynomials but
can be handled in MR is inequality of the given intervals in the variable W. A scale with unequal
given intervals can be conceived as one with equal intervals some of whose scale points have
no data. For example, on a u = 9-point scale (e.g., an experiment with potentially 9 equally
spaced drug dosages) data may have been obtained for only q = 5 values of W: 1, 2, 4, 6, 9.
We can code these as if we had a 9-point scale, using coefficients under u = 9 in Table 6.3.1,
but, of course, omitting the coded values for points 3, 5, 7, and 8. The effect on the rtj among
the trend components is as before: They take on generally nonzero values, and the analysis
proceeds by examining partialed effects. With q different observed values of variable W, in
all only (q — 1) trend components are required to perfectly fit the q means of the criterion,
computed for each value of W.

Finally, using orthogonal polynomial coefficients and partialed contributions of individual
trend components, we can analyze problems in which neither the given intervals nor the num-
bers of observations per scale are equal, by simply proceeding as in the preceding paragraph
(J. Cohen, 1980).

6.3.3 Applications and Discussion

A number of circumstances in research may seem to invite the use of orthogonal polynomials.
However, alternative approaches, discussed here, may be more appropriate.

Experiments
The greatest simplicity in the application of orthogonal polynomials occurs under equal n,

and u equally spaced points of a variable V. Such data are produced by experiments where
V is some manipulated variable (number of rewards, level of illumination, size of discussion
group) and Y is causally dependent on this input. Typically, such data sets are characterized by
relatively small number of observations per condition. These are the circumstances in which
testing approach 1 would be preferred if there are few trends of interest, approach 2 if there
are a large number of trends of interest. Note that throughout this chapter, the n observations at
each of the u points of predictor X are taken to be independent. The frequently occurring case
where n subjects or matched sets of subjects yield observations for each of the conditions is not
analyzed as described previously. Chapter 15 addresses the analysis of repeated measures data.

Sampling from a Continuum
In some research applications cases are sampled at specific values or small subranges across

a continuum. For example, in a developmental study, cases may be sampled in discrete age
ranges (e.g., 3-3.5 years of age, 4-4.5 years, etc.). If so, then these discrete categories may be
considered as points on a continuum, as in experiments, and orthogonal polynomials applied to
the series of ordered age categories. There is argument in favor of treating the ages continuously
in MR with polynomial regression applied to the actual ages. Statistical power is higher with
MR applied to actual ages than to data sampled with coarse categories (Pitts & West, 2001).

Sometimes, as in surveys, continua are broken into response categories, as in age: under 20,
20-30, 30-40,..., over 70. Such variables may be treated provisionally as if they represented
equal intervals, even if the two extreme categories are "open." The end intervals produce
lateral displacements of the true curve. If the true relationship is (or is assumed to be) smooth,
distortion due to inequality of the end intervals may be detected by the polynomial.
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Serial Data Without Replication
Thus far we have been assuming that at each of the u points of a variable V, there are

multiple Y observations or "replications," the means of which define the function to be fitted.
We now consider instances in which a single individual is observed repeatedly over time, for
example, ratings by a psychotherapist of each of a series of 50 consecutive weekly sessions;
thus n = u = 50. The purpose of analysis might be to test propositions about the nature of the
trend over time of Y for this patient. Observations on a single case collected repeated over time
are referred to as time series data and are appropriately treated in time series analysis, discussed
in Section 15.8. Time series analysis takes into account the autocorrelation among successive
observations on the individual (see Sections 4.4 and 4.5 for discussions of autocorrelation).

6.4 NONLINEAR TRANSFORMATIONS

Thus far in this chapter, we have sought to assure the proper representation of a quantitatively
expressed research factor X, by coding it as a set of k IVs, each representing a single aspect
of X: as a set of integer powers X,X2,... ,Xk in polynomial regression (Section 6.2) or as a
set of orthogonal polynomials (Section 6.3). In these treatments of the IV, we left the scale
of the dependent variable Y intact. The purpose of our treatments of the IVs as polynomials
or orthogonal polynomials was to permit the use of linear MR to characterize a nonlinear
relationship of the IV to F.

6.4.1 Purposes of Transformation and the
Nature of Transformations

In this section we consider a wide variety of transformations that can be made on predictors
X or the dependent variable Y. By transformations we mean changes in the scale or units of a
variable, for example, from X to logX or to Vx. From a statistical perspective there are three
overarching goals for carrying out transformations.

1. Simplify the relationship. First, transformations are employed to simplify the
relationship between X and Y. Nonlinear transformations always change the form of the
relationship between X and Y. The primary goal is to select a transformation that leads to
the simplest possible X-Y relationship—nearly always a linear relationship. This first goal, of
simplifying the relationship, often is not merely to create a mathematical condition (linearity)
but rather to create more conceptually meaningful units. For example, when economists use
log(dollars) as their unit of analysis, it is partly because this function better reflects the utility of
money; the use of the decibel scale for loudness and the Richter scale for earthquake intensity
provide other examples (Hoaglin, 1988).

2. Eliminate heteroscedasticity. Transformations of Y also serve to change the struc-
ture of the variance of the residuals around the best fitting regression function. The second
goal of transformations is to eliminate problems of heteroscedasticity (unequal conditional
variances of residuals, see Sections 4.3.1 and 4.4.4).

3. Normalize residuals. Finally, nonlinear transformations serve to change the distri-
bution of both the original variable and the residuals. The third goal of transformations is to
make the distribution of the residuals closer to normal in form.

In many cases, particularly when data are highly skewed and the range of variables is wide,
transformations simultaneously achieve all three goals, greatly simplifying the interpretation of
the results and meeting the assumptions in linear MR. Yet this result is not inevitable. Nonlinear
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transformations operate simultaneously on the form of the relationship, the variance of the
residuals, and the distribution of the residuals. Occasionally, transformations may improve the
regression with respect to one goal while degrading it with respect to others.

The effect of a linear transformation of a variable (multiplying or dividing by a constant,
adding or subtracting a constant) is to stretch or contract the variable uniformly and/or to shift
it up or down the numerical scale. Because of the nature of the product-moment correlation,
particularly its standardization of the variables, linear transformation of X or Y has no effect on
correlation coefficients of any order or on the proportions of variance that their squares yield.
The POMP scores described in Section 5.2.2 are a linear transformation of an original scale.

The transformations we will encounter here, in contrast, are nonlinear transformations,
such as logX, or ax, or 2 arcsin ^/X. These transformations stretch or contract X nonuniformly.
However, they are also strictly monotonic, that is, as X increases, the transformed value either
steadily increases or steadily decreases.

Linearizing Relationships
When the analyst is seeking to simplify the relationship between X and Y and a constant

additive change in X is associated with other than a constant additive change in 7, the need
for nonlinear transformations may arise. Certain kinds of variables and certain circumstances
are prone to monotonic nonlinearity. For example, in learning experiments, increases in the
number of trials do not generally produce uniform (linear) increases in the amount learned. As
another example, it is a fundamental law of psychophysics that constant increases in the size of
a physical stimulus are not associated with constant increases in the subjective sensation. As
children mature, the rate of development slows down. As total length of prior hospitalization of
psychiatric patients increases, scores of psychological tests and rating scales do not generally
change linearly. Certain variables are more prone to give rise to nonlinear relationships than
others: time-based variables such as age, length of exposure, response latency; money-based
variables such as annual income, savings; variables based on counts, such as number of errors,
size of family, number of hospital beds; and proportions of all kinds.

The application of nonlinear transformations arises from the utilization of a simple mathe-
matical trick. If Y is a logarithmic function of X, then, being nonlinear, the Y-X relationship is
not optimally fitted by linear correlation and regression. However, the relationship between Y
and logX is linear. Similarly, if Y and X are reciprocally and hence nonlinearly related, Y and
l/X are linearly related. Thus, by taking nonlinear functions of X or Y that represent specific
nonlinear aspects, we can linearize some relationships and bring them into our MR system.

Assumptions of Homoscedasticity and Normality of Residuals
In addition to the linearization of relationships, nonlinear transformation is of importance

in connection with the formal statistical assumptions of regression analysis—that residuals be
normally distributed and of constant variance (homoscedastic) over sets of values of the TVs (see
Section 4.3.1). If data exhibit heteroscedasticity, the standard errors of regression coefficients
are biased, as they are if residuals are non-normal, thus leading to less accurate inferences. If
heteroscedasticity and nonnormality of residuals obtain in MR, it may be possible to find a
nonlinear transformation of Y that not only linearizes the X-Y relationship but simultaneously
transforms the residuals from MR predicting the transformed Y to be closer to meeting the
conditions of homoscedasticity and normality.

In the remainder of Section 6.4 we consider, in turn, the linearizing of relationships and
transforming to achieve homoscedasticity and normality of residuals. We also address issues
in the use of transformations. Some of what we present is familiar in the behavioral sciences.
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Yet other approaches to transformations presented here have rarely been employed in the
behavioral sciences, although they are standardly used in statistics and other social sciences—
for example, economics. We believe that part of the reason they have not been employed in
the behavioral sciences is that researchers in the behavioral sciences have paid less attention to
the assumptions of MR and the negative impact of violation of these assumptions on accuracy
of inference.

6.4.2 The Conceptual Basis of Transformations and Model
Checking Before and After Transformation—Is It Always
Ideal to Transform?

It is very important to consider the conceptual basis of transformations. In many disciplines,
certain transformations are considered standard procedure, arising out of long experience.
Transformations should always be conducted with cognizance of other researchers' experience
with similar variables. In fact, there are times when it may be unwise to carry out (or not)
a transformation on a particular data set, when the circumstances of that data set suggest
something other than what is standard in a research area. On the other hand, slavish adherence to
historical precedents may be problematic, if an area has failed in the past to consider important
aspects of the data (e.g., heteroscedasticity) that may suggest the need for transformation.

Diagnostic plots, described in Sections 4.2 and 4.4, are useful for examining whether
relationships are linear and for checking assumptions on residuals. These plots may signal the
need for transformation. Kernel density plots of individual variables are useful for detecting
skewness (see Fig. 4.2.3). Scatterplots of residuals against predicted scores with lowess fit lines
highlight nonlinearity of relationship. If plots include lowess lines one standard deviation above
and below the lowess fit line, heteroscedasticity is also highlighted, as illustrated in Fig. 4.4.5.
Before undertaking transformations, it is also important to use regression diagnostics to ask
whether one or few influential data points are producing the nonlinearity or violations of
assumptions, as in the example in Section 6.2.7, in which a single outlying case produced a
cubic trend. If justified, the removal of the case may eliminate the need for transformation.

Model checking after transformation is also important, because transformation to remedy
one aspect of a regression situation (e.g., nonlinearity) may lead to problems in other aspects
of the regression situation. For example, in a situation in which Y is transformed to achieve
linearity, there may be no outliers in the original analysis with Y as the dependent variable.
However, in the revised analysis in which transformed dependent variable Y' is employed,
outliers may have been produced by the transformation. Or, it is possible that in the original
regression equation with Y, the residuals were approximately homoscedastic and normal;
after transformation, they may not be, so that it may be more desirable to stay with the
original nonlinear regression. The issue of when to transform is discussed in more detail in
Section 6.4.18.

6.4.3 Logarithms and Exponents; Additive
and Proportional Relationships

The transformations we employ often involve logarithms and exponents (or powers). A quick
review of their workings is in order. Regression equations we estimate after variable transfor-
mation often involve combinations of variables in original form and variables transformed into
logarithms; the meaning of relationships in these equations is also explored here.

A logarithm of a value X to the base m is the exponent to which the value m must be
raised in order to produce the original number. We are probably most familiar with base 10
logarithms, noted Iog10, where m = 10. For example, Iog10 1000 = 3, since 103 = 1000.
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TABLE 6.4.1
Exponents, Logarithms, and Their Relationships

' _^_^__________^______^_^^^_^___________^_^
A. Some rules for exponents

(l)XaXb=X(a+b)

(2)Xa/Xb=X(a~b)

(3)X-" = l/X"
(4) X1'2 = JX
(5)X° = 1

B. Some rules for logarithms
(6)log(WQ = logfc + logX
(7)log(fc/X) = logfc-logX
(8)log(X*) = HogX

C. Relationship between exponents and logarithms
(9) logm mx = X, so Iog10 10* = X for base 10 logs

and lne e
x = X for natural (base e) logs

Note: This presentation is drawn from presentations by Hagle
(1995) and Hamilton (1992).

Many presentations of transformations use natural logarithms, noted In, with a base (specially
noted e instead of m) of e = 2.71878 (approximately). For example, In 1000 = 6.907755279,
since 2.718786-907755279 = 1000. A third form of logarithms are base 2 logarithms, for example,
Iog2 8 = 3, since 23 = 8.

The computations for base 10 and natural logarithms can be accomplished on a simple
statistical calculator that has the following functions: log, hi, 10*, and ex. Enter 1000, press
log to get Iog10 1000. Enter 3, press 10* to get 103 = 1000. Enter 1000, press In, to get
In 1000 = 6.907755279. Enter 6.907755279, press ex to get 2.718786-907755279 = 1000. From
the perspective of transforming variables using logarithms, it actually does not matter whether
Iog10 or hi is used—the two logarithms are linearly related to one another. In fact, 2.302585 In =
Iog10. We will use the general notation "log" throughout this section, to indicate that either In
or Iog10 can be employed.

In the numerical examples, we first took the logarithm of the number 1000. Then we took the
result and raised the base of the logarithm to the log (e.g. 103); the latter manipulation is called
taking the antilog of a logarithm. Having found the logarithm of a number, taking the antilog
returns the original number. In general, raising any number to a power is called exponentiation,
and the power to which a number is raised is called the exponent. Logarithms and exponents are
inverse functions of one another. In Table 6.4.1, we present rules for exponents, for logarithms,
and for the relationship between exponents and logarithms.

Logarithms and Proportional Change

When, as X changes by a constant proportion, Y changes by a constant additive amount, then
Y is a logarithmic function of X; hence Y is a linear function of log X. Following are a series of
values of X in which each value is 1.5 times the prior value, a constant proportionate increase;
for example, 12 = 1.5(8). In the corresponding series of 7, each value of Y is 3 points higher
than the prior value (e.g., 8 = 5 + 3); Y exhibits constant additive increase. When a variable
like X increases by a proportionate amount, logX (either Iog10 or In) increases by a constant
additive amount. Within rounding error, log10X increases by .18 through the series; ]nX
increases by .40 through the series; Iog2 X increases by .585 through the series. The increases



X
logio*

InX
log2X

Y

8
.90

2.08
3
5

12
1.08
2.48
3.58
8

18
1.26
2.89
4.17

11

27
1.43
3.29
4.75

14
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in logX are constant additive increases, as with Y. Thus, the relationship between logX and
Y is linear and can be estimated in linear OLS regression, as in Eq. (6.4.7).

40.5 where X(l+1) = 1.5X,
1.61
3.70
5.34

17 where y(l-+1) = F; + 3

Conversely, if constant additive changes in X are associated with proportional changes in Y,
then log Y is a linear function of X, and again the linear regression model correctly represents
the relationship.

In some circumstances, we may transform Y rather than X. When only Y is log transformed,
our basic regression equation for transformed Y becomes Y' = log Y = B±X + B0. In this
equation, Bl is the amount of change that occurs in Y' given a 1-unit change in X. Note that
now the change in Y is in log Y units. A 1-unit increase in Iog10 Y is associated with a 10-fold
increase in raw Y; a 2-unit increase in Iog10 Y is associated with a 100-fold increase in raw Y.
Similarly a 1-unit increase in Iog2 Y is associated with a twofold increase (doubling of raw 7),
and a 2-unit increase in Iog2 Y is associated with a fourfold increase in raw Y.

Finally, proportionate changes in X may be associated with proportionate changes in 7, for
example:

X 8 12 18 27 40.5 where X(l+1) = 1.5 X,
Y 2 4 8 16 32 where F(l+1) = 2 Yt

If logarithms of both variables are taken, then

log,0X .90 1.08 1.26 1.43 1.61
Iog10y .30 .60 .90 1.20 1.51

Each proceeds by constant additive changes and again log Y is a linear function of logX, this
time after logarithmic transformation of both X and Y, as in Eq. (6.4.11) below.

6.4.4 Linearizing Relationships

Given that some nonlinear relationship exists, how does one determine which, if any, of a num-
ber of transformations is appropriate to linearize the relationship? For some relationships—for
example, psychophysical relationships between stimulus intensity and subjective magnitude—
there are strong theoretical models underlying the data that specify the form of the relationship;
the task is one of transforming the variables into a form amenable to linear MRC analysis.
Weaker models imply certain features or aspects of variables that are likely to linearize rela-
tionships. In the absence of any model to guide selection of a transformation, empirically
driven approaches, based on the data themselves, suggest appropriate transformation. These
include procedures presented here, including the ladder of re-expression and bulge rules of
Tukey (1977) and Mosteller and Tukey (1977), and more formal mathematical approaches like
the Box-Cox and Box-Tidwell procedures.

Intrinsically Linear Versus Intrinsically Nonlinear Relationships
Whether a strong theoretical model can be linearized for treatment in linear MR depends

upon the way that random error is built into the model, as a familiar additive function or as a
multiplicative function. Multiplicative error in a model signifies that the amount of error in the



226 6. CURVILINEAR RELATIONSHIPS AND TRANSFORMATIONS

dependent variable Y increases as the value of 7 increases. Suppose we have a multiplicative
theoretical model with multiplicative error.

where e refers to random error, and e is the base of the natural logarithm.
This form of regression equation, with regression coefficients as exponents, is not the

familiar form of an OLS regression; it signals a nonlinear relationship of the predictors to Y.9

The question before us is whether we can somehow transform the equation into an equation
that can be analyzed with OLS regression.

Using rule (8) from Table 6.4.1, we take the logarithms of both sides of the equation. This
yields a transformed equation that is linear in the coefficients (Section 6.1) and that thus can
be analyzed using OLS regression:

Eq. (6.4.1) has been linearized by taking the logarithms of both sides. As shown in Eq. (6.4.2)
the regression coefficients BI and B2 can be estimated by regressing logF on logXj and
logX2; the resulting BI and B2 values are the values of Bl and B2 in Eq. (6.4.1). The value
of B0 in Eq. (6.4.1) can be found by taking the antilog of the resulting regression constant
from Eq. (6.4.2). In other words, we started with a nonlinear equation (Eq. 6.4.1), transformed
the equation into an equation (Eq. 6.4.2) that could be solved through OLS regression, and
were able to recover the regression coefficients of the original nonlinear equation (Eq. 6.4.1).
The errors are assumed to be normally distributed with constant variance in the transformed
equation (Eq. 6.4.2). Because Eq. (6.4.1) can be linearized into a form that can be analyzed
in OLS regression, it is said to be intrinsically linearizable. In Section 6.4.5 we illustrate four
nonlinear models used in psychology and other social and biological sciences. All four are
intrinsically linearizable; we show how the linearization can be accomplished.

Now we modify the equation slightly to

where the error e is additive, not multiplicative; that is, the variance due to error in predicting
Y is constant across the range of the predictors in the form of regression equation Eq. (6.4.3).
Additive error is our standard assumption in linear MR. If we try to linearize Eq. (6.4.3) by
taking the logarithms of both sides, we discover that in the resulting expression the error vari-
ance is a function of the value of 7. Heteroscedasticity would be introduced by the logarithmic
transformation of the equation (see Myers, 1986, for a complete demonstration). The equation
is intrinsically nonlinear. Nonlinear regression, introduced in Section 6.5, must be employed.

Whether we specify a model with multiplicative or additive error is a matter for theory. As
Draper and Smith (1998) point out, a strategy that is often used is to begin with transformation of
variable(s) to linearize the relationship (implicitly assuming that the error is multiplicative in the
original scale); OLS (ordinary least squares) regression is then employed on the transformed
variables. Then the residuals from the OLS regression with the transformed variable(s) are
examined to see if they approximately meet the assumptions of homoscedasticity and normality.
If not, then a nonlinear regression approach may be considered. (From now on, we will refer
to linear MR as OLS regression in order to clearly distinguish this model from alternative
regression models.)

9Logistic regression, covered in Chapter 13, is a form of nonlinear regression with regression coefficients as
exponents.
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Equation (6.4.2) illustrates that transformations to linearize relationships may involve both
the predictors X^X2,...,Xk and the dependent variable Y. As indicated later, the choice of
transformation of both X and Y may be driven by strong theory.

6.4.5 Linearizing Relationships Based
on Strong Theoretical Models

In such fields as mathematical biology, psychology and sociology, neuropsychology, and
econometrics, relatively strong theories have been developed that result in postulation of (gen-
erally nonlinear) relationships between dependent and independent variables. The adequacy of
these models is assessed by observing how well the equations specifying the relationships fit
suitably gathered data. We emphasize that the equations are not arbitrary but are hypothetically
descriptive of "how things work." The independent and dependent variables are observables,
the form of the equation is a statement about a process, and the values of the constants of the
equation are estimates of parameters that are constrained or even predicted by the model. In
our presentations of models, we assume multiplicative error in the nonlinearized form, omit
the error term, and show the expression with the predicted score Y in place of the observed Y.
(We discuss the treatment of the same models but with additive error assumed in Section 6.5
on nonlinear regression.) Here we illustrate four different nonlinear relationships that appear
as formal models in the biological or social sciences, including psychology and economics.

Logarithmic Relationships
Psychophysics is a branch of perceptual psychology that addresses the growth of subjective

magnitude of sensation (e.g., how bright, how loud a stimulus seems) as a function of the
physical intensity of a stimulus. A common psychophysical model of the relationship of energy
X of a physical stimulus to the perceived magnitude Y of the stimulus is given in Eq. (6.4.4),

where c and d are constants. The equation asserts that changes in stimulus strength X are
associated with changes in subjective response Y as a power of a constant. The relationship
between X and Y is clearly nonlinear. Figure 6.4.1 (A) illustrates an example of this relationship
for the specific equation 8y = 6X, where c = 8 and d = 6. Suppose we wish to analyze data
that are proposed to follow the model in Eq. (6.4.5) and to estimate the coefficients c and d. We
transform Eq. (6.4.5) into a form that can be analyzed in OLS regression. We take logarithms
of both sides of the equation, yielding

If we let (log d)/(log c) = BQ and l/(logc) = BI, we see that the psychophysical model in
Eq. (6.4.4) postulates a logarithmic relationship between stimulus strength (X), and subjective
response (Y), which is, in fact, a form of Fechner's psychophysical law (Fechner, 1860), given
in Eq. (6.4.7).

Solving for Y we find
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We can apply Eq. (6.4.7) to suitably generated data using OLS regression by regressing Y
(e.g., judgments of brightness of lights) on logXt (e.g., the logarithm of a measure of light
intensity). This yields estimates of fit and B0. From these estimates, we solve for the constant
c in Eq. (6.4.4) from the relationship 1 /(log c) = Bl, or the reciprocal, yielding logc = l/Bl.
Then

To solve for the constant d, we use (logd)/(log c) = BQ, which yields

The values of c and d will be of interest because they estimate parameters in the process
being modeled (e.g., the relationship of light intensity to perceived brightness), as will R2 as
a measure of the fit of the model (see Section 6.4.16). Finally, the shape of the function in
Fig. 6.4.1 (A) is typical of logarithmic relationships between X and Y in which Y varies linearly
as a function of log X.

Power Relationships
Now consider an alternative formulation of the psychophysical relationship of stimulus to

subjective magnitude expressed by the equation

where c and d are constants, and Y is a power function of X, such that proportional growth
in Y relates to proportional growth in X. This theoretical model has been offered by Stevens
(1961) as the psychophysical law that relates X, the energy of the physical stimulus, to the
perceived magnitude of sensation Y. In Stevens' model, the exponent or power d estimates a
parameter that characterizes the specific sensory function and is not dependent on the units of
measurement, whereas c does depend on the units in which X and Y are measured. We stress
that Stevens' law is not merely one of finding an equation that fits data—it is rather an attempt
at a parsimonious description of how human discrimination proceeds. It challenges Fechner's
law, which posits a different fundamental equation, one of the form of Eq. (6.4.4), in which
proportional growth in X relates to additive growth in Y. Two specific examples of Eq. (6.4.5)
are given in Fig. 6.4.1(B). The left hand panel of Fig. 6.4.1(B) illustrates a power function
with an exponent d > 1, specifically Y = .07X17, where c = .07 and d = 1.7. The right-hand
panel of Fig. 6.4.1(B) illustrates a power function with d < 1, specifically Y = .07X2, where
c = .07 and d = .20. Values of d are a critical component of Stevens' law applied to different
sensory continua. For example, the exponent d for perceived brightness of short duration lights
is d = .33; for perceived saltiness of sips of sodium chloride (salt) solution, d = 1.3 (Marks,
1974).

To linearize the relationship in Eq. (6.4.10), we take the logarithms of both sides, yielding

(6.4.11) \ogY = d\ogX + logc or logf = Bl\ogXl + BQ.

To analyze the relationship between X and Y in Eq. (6.4.10) using OLS regression, we would
compute the logarithms of X and Y and predict log Y from logX. In Eq. (6.4.11) B0 = log c,
so that



FIGURE 6.4.1 Some functions used to characterize the relationship of X to Y in
theoretical models.

Note that Eq. (6.4.11) informs us that the predicted scores will be in the log metric; to convert
the predicted scores to the raw metric, we would take the antilog of each predicted score in the
log metric, that is, antilog rlog = foriginal ^.

Exponent/a/ Growth Model Relationships
There is great interest in psychology in the trajectories of growth of various phenomena over

time (e.g., drug use, learning, intellectual growth and decline). An exponential relationship
between X and 7 used to model growth or decay of Y as a function of X is given by

In this model, the change in Y at any point depends on the level of Y. If d > 0, Y grows from
a starting value of c when X = 0, with Y rising in ever increasing amounts, for example, as in
college tuition over time, referred to as exponential growth. Exponential growth is illustrated in
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(A) Logarithmic relationship.

(B) Power relationships.
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(C) Exponential growth relationships.

(D) Hyperbolic (inverse polynomial) relationships.

Note: The scaling of the j-axis changes from panel to panel.

FIGURE 6.4.1 Continued.

the right-hand panel of Fig. 6.4.1(C), specifically in the equation Y = .lOe2*, where c = .10
and d = .2. If d < 0, we have exponential decay. Y declines from an initial value of c
when X = 0, illustrated in the left-hand panel of Fig. 6.4.1(C), specifically in the equation
Y = lOOOe"AX, where c = 1000 and d = —A. lie were the amount of knowledge of statistics
one had on the day of a statistics final exam, and the amount one forgot each day following the
exam were proportional to the amount retained by the early morning of the day, we would have
exponential decay. Eq. (6.4.14) is linearized by taking the logarithms of both sides, yielding



6.4 NONLINEAR TRANSFORMATIONS 231

and

If the model Y = ce^ is expanded to include an asymptote a, as in the expression Y = a+ce***,
and the coefficients c and d are negative, then the resulting form of the equation will be a curve
that rises and levels off at the value a—as, for example, the additional amount of statistics
learned for each additional hour of studying before an exam, up to an asymptote representing
all the material in the statistics course. If the model is applied in an experiment with a treated
and a control group, another dichotomous predictor can be added to code the groups; the result
will be curves of different elevations with the difference in height representing the effect of
treatment (Neter, Kutner, Nachtsheim, & Wasserman, 1996, Chapter 13).

Hyperbolic Relationship (Inverse Polynomial Model)
A second form of growth model used in economics and biology (Myers, 1986) is a dimin-

ishing returns model, which characterizes growth to some asymptote (upper limit or lower
limit). This is the hyperbolic (inverse polynomial) function:

In this model the value l/d is the asymptote; the increase in Y is inversely related to distance
from the asymptote, hence the term diminishing return. Figure 6.4.1(D) illlustrates two such
curves. The left hand panel shows the equation Y = X/(.\ + .2X), where c = .1 and d = .2;
it rises to an asymptote of 5, since d = .2, and l/d = 5. The right-hand figure shows the
equation Y = X/(—.l + .2X), where c = — .1 and d = .2; it falls to an asymptote of 5, again
because d = .2.

Unlike the use of logarithms to linearize the previous equations, linearizing Eq. (6.4.18)
involves the use of reciprocals. By algebraic manipulation, Eq. (6.4.18) can be written as a
linear function of the reciprocals of X and Y:

To estimate this equation using OLS regression, we would predict the reciprocal of Y from the
reciprocal of X. The coefficient BI from the OLS regression equals c from Eq. (6.4.18), and
B0 = d.

Assessing Model Fit
Even when we accomplish the transformation to linear form, as has been shown for four

different theoretical models, a problem exists that is worth mentioning. When the dependent
variable analyzed in the transformed equation is not itself Y, but is rather some function of
Y—for example, log Y or l/Y—the B0 and Bl coefficients from the transformed equation are
the coefficients that minimize the sum of squared residuals (the least squares estimates) for
predicting the transformed Y. They are not the least squares estimates that would result if the
untransformed Y were predicted. There is no direct function for converting the coefficients
from the transformed equation to corresponding coefficients from the untransformed equation.
The issue arises as to whether there is better fit in a variance accounted for sense (Ry) in
the transformed over the untransformed equation. The /?2s associated with models predicting
different forms of Y (e.g., Y, log Y, VF) are not directly comparable. In general, one cannot
directly compare the fit of two models with different dependent variables. Comparing fit across
models employing different transformations is explored in Section 6.4.16.
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6.4.6 Linearizing Relationships Based
on Weak Theoretical Models

We may employ the same transformations from strong theoretical models in linearizing rela-
tionships between variables that are well below the level of exact mathematical specification
of the strong theoretical models discussed previously. However, our present "weak theory"
framework is more modest; we are here not generally interested in estimating model parame-
ters c and d, as we are in Section 6.4.5, because we do not have a theory that generated the
equations in the first place.

Logarithmic Transformations
Logarithmic transformations often prove useful in biological, psychological, social science,

and economics applications. All we might have, for example, is a notion that when we measure a
certain construct X by means of a scale X, it changes proportionally in association with additive
changes in other variables. As we discussed earlier, if we expect that proportionate changes in
X are associated with additive changes in Y, we might well transform X to logX. If we expect
proportionate changes in Y to be associated with proportionate changes in X, we might well
transform Y to log Y and X to logX. Variables such as age or time-related ordinal predictors
such as learning trials or blocks of trials are frequently effectively log-transformed to linearize
relationships. This is also frequently the case for physical variables, as for example energy
(intensity) measures of light, sound, chemical concentration of stimuli in psychophysical or
neuropsychological studies, or physical measures of biological response. At the other end of
the behavioral science spectrum, variables such as family size and counts of populations as
occur in vital statistics or census data are frequently made more tractable by taking logarithms.
So, often, are variables expressed in units of money, for example, annual income or gross
national product.

By logarithmic transformation, we intend to convey not only \ogX but such functions as
log (X — K) or log (K — X), where K is a nonarbitrary constant. Note that such functions are not
linearly related to logX, so that when they are appropriate, logX will not be. K, for example,
may be a sensory threshold or some asymptotic value. (In Section 6.4.8 we discuss the use of
small arbitrary additive constants for handling the transformation of Y scores of zero, yielding
started logs and powers.)

Reciprocal Transformation
Reciprocals arise quite naturally in the consideration of rate data. Imagine a perceptual-

motor or learning task presented in time limit form—all subjects are given a constant amount
of time (7"), during which they complete a varying number of units (u). One might express the
scores in the form of rates at u/T, but because T is a constant, we may ignore T and simply use u
as the score. Now, consider the same task, but presented in work limit form—subjects are given
a constant number of units to complete (U) and are scored as to the varying amounts of time (t)
they take. Now if we express their performance as rates, it is U/t and, if we ignore the constant
U, we are left with 1 ft, not t. If rate is linearly related to some other variable X, then for the time
limit task, X will be linearly related to u, but for the work limit task, X will be linearly related
not to t, but to 1/t. There are other advantages to working with l/t. Often, as a practical matter
in a work limit task, a time cutoff is used that a few subjects reach without completing the task.
Their exact t scores are not known, but they are known to be very large. This embarrassment is
avoided by taking reciprocals, because the reciprocals of very large numbers are all very close
to zero and the variance due to the error of using the cutoff l/t rather than the unknown true
value of l/t is negligible relative to the total variance of the observations.
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6.4.7 Empirically Driven Transformations in the
Absence of Strong or Weak Models

Suppose that through our use of diagnostic approaches suggested in Chapter 4, we discover
in our data characteristics that suggest the need for transformation. Graphical displays of
X-Y relationships (e.g., lowess plots, Section 4.2.2) may suggest nonlinear relationships.
Scatterplots of residuals around the lowess line (Section 4.4.4 and Fig. 4.4.5) may suggest
heteroscedasticity. Quantile-quantile (q-q, Section 4.4.6) plots of residuals against a normal
variate may uncover their nonnormality.

Suppose, however, that we have neither strong nor weak models to suggest specific trans-
formations to ameliorate these conditions in our data. We can nonetheless draw on a rich
collection of strategies for linearizing relationships and for improving the characteristics of
residuals. Sections 6.4.8 through 6.4.14 describe these strategies. Our use of these strategies is
empirically driven by our data rather than by theory. This approach is usual in statistics but to
date has had less impact in the behavioral sciences. The approach is certainly appropriate and
potentially useful for behavioral science data. The purpose of undertaking empirically driven
transformations is to produce a regression equation that both characterizes the data and meets
the conditions required for accurate statistical inference. Section 4.5 provides a discussion
of the form of relationships and conditions in the data that lead to particular strategies for
transformation.

6.4.8 Empirically Driven Transformation for Linearization:
The Ladder of Re-expression and the Bulging Rule

Let us assume that a lowess plot of Y against X has revealed a curvilinear relationship that is
monotonic with one bend, as in all the illustrations of Fig. 6.4.1. Also assume that we have
no theoretical rationale for declaring that a particular mathematical function generated the
curve. How should we approach linearizing (straightening) the relationship? Both informal (by
inspection) and formal (numerical) approaches have been developed to guide transformation
for linearization. If the relationship we observe is monotonic and has a single bend, one
strong possibility for transformation is the use of power transformations, in which a variable
is transformed by raising it to some power. In general, the power function is

where Y is the original variable, Y' is the transformed variable, and X is the exponent, (i.e.,
the power to which Y is raised). The transformed variable then replaces the original variable
in regression analysis.

The Ladder of Re-expression
Actually, we have already encountered and will continue to encounter examples of power

transformations, which include reciprocals, logarithms, powers in polynomial regression,
square roots, and other roots. In their classic work, Mosteller and Tukey (1977) described a
ladder of re-expression (re-expression is another term for transformation) that organizes these
seemingly disparate transformations under a single umbrella. This ladder of re-expression was
proposed to guide the selection of transformations of X and Y to linearize relationships. The
ladder can also be used to transform skewed variables prior to analysis.



234 6. CURVILINEAR RELATIONSHIPS AND TRANSFORMATIONS

The ladder is a series of power functions of the form Y' = F\ which transform Y into Y'
(or, equivalently, X into X'). Again, power functions are useful for straightening a relation-
ship between X and Y that is monotonic and has a single bend; hence power functions are
characterized as one-bend transformations.

The problem is to find an appropriate value of X to use in transforming a variable that
makes its distribution more normal or that eliminates nonlinearity of relationship between that
variable and another variable. Some values of X, shown below, lead to familiar transformations
(Neter, Kutner, Nachtsheim, & Wasserman, 1996, p. 132), though many values of X other than
those given here are possible.

Transforming Individual Variables Using the Ladder
of Re-expression and Changes in Skew
Transforming individual variables to be more symmetric is not our focus here (linearizing

relationships through appropriate selection of a X is), but it is useful to understand how the
various powers on the ladder change the distribution of individual variables. These changes are
the basis of straightening out nonlinear relationships. Values of X > 1 compress the lower tail
of a distribution and stretch out the upper tail; a negatively skewed (i.e., long, low tail) variable
becomes less skewed when a transformation with X > 1 is applied. Values of X < 1 stretch
the lower tail of a distribution and compress the upper tail; a positively skewed (i.e., long, high
tail) variable becomes less skewed when a transformation with X < 1 is applied. The farther
from 1 on either side is the value of X, the more extreme is the compression and stretching.
This allows us to compare the familiar logarithmic and square root transformations: logX
(associated with X = 0) and \/X (where X = ¥2). The logarithmic transformation is stronger;
that is, it compresses the upper tail and stretches the lower tail of a distribution more than does
the square root transformation.

The Bulging Rule
In addressing the problem of how to select a value of X to apply to X or Y so as to linearize

a relationship, Mosteller and Tukey (1977) proposed a simple graphical bulging rule. To use
the bulging rule, one examines one's data in a scatterplot of Y against X, imposes a lowess
curve to suggest the nature of the curvature in the data, and selects a transformation based on
the shape of the curve. Suppose the curve in the data follows the curve in Figure 6.4.1 (A),
that is, Y rises rapidly for low values of X and then the curve flattens out for high values
of X. There are two options for transforming that will straighten the relationship between
X and 7. One option is to transform Y by moving up the ladder above X = 1; this means
applying a power transformation to Y with an exponent greater than 1, (e.g., 715, Y2). This
will stretch up the high end of Y (pulling the high values of Y even higher), straightening the
relationship. Alternatively, one may transform X by moving down the ladder below X = 1

10The logarithm bears special comment. In fact, the expression Y° transforms all values of Y to 1.0, since Y° = 1.
However, as X -> 0, the expression (Yx — 1)/X -> In Y, leading to the use of the natural logarithm as the transformation
when X = 0.

In general
Square
Square root
Logarithm

Reciprocal

r = y\
7' = Y2; X = 2.
r = F1/2 = Y5 = VY- x = .5.
r = In Y; X = 0 (a special case).10

r = i;x = -i.
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(e.g., X5 = \/X,logX). This will stretch the low end of X (to the left), again straightening
out the relationship. Suppose one finds in one's data that Y increases as X increases, but with
but with the shape of the curvature as in Fig. 6.4.1(B, left-hand panel), that is, a slow initial
rise in Y as a function of X for low values of X and a rapid rise at high values of X. We may
straighten the relationship by moving up the ladder for X (e.g., to X2) or down the ladder for
Y (e.g., Y5 = V^F,log Y). For a shape like that in Fig. 6.4.1 (C, left-hand panel) one could
either move down the ladder for X or down the ladder for Y. One may try a range of values
of X applied to either X or Y, typically between —2 and +2. Mosteller and Tukey (1977)
present a simple numerical method for deciding if straightening has been successful. Modern
graphical computer packages11 make this work easy by providing a "slider" representing values
of \ that can be moved up and down with a mouse. As the slider is moved, the value of X
is changed; the data are graphically displayed in a scatterplot of Y against X with a lowess
function superimposed, and one can visually select the value of X that straightens the X-Y
relationship. Sections 6.4.9 and 6.4.10 describe quantitative approaches to selecting value of
X to transfrom Y and X, respectively.

Should X or Y Be Transformed?
The bulging rule makes it clear that for linearizing a one-bend nonlinear relationship, we

may transform either X or Y. The choice between X and Y is dictated by the nature of the
residuals when untransformed Y is regressed on untransformed X. If the residuals are well
behaved with the untransformed data, then transformation of Y will lead to heteroscedasticity;
one should transform X. If, on the other hand, the residuals are problematic (heteroscedastic,
non-normal) with the untransformed data, then transforming Y may improve the distribution
of residuals, as well as linearize the relationship. Figure 6.4.2, discussed in Section 6.4.17,
illustrates transformation of Y versus X.

What to Do with Zeros in the Raw Data:
Started Logs and Powers
Use of the family of power functions assumes that the variables to be transformed have zero

as their lowest value. Logarithms, a frequently used transformation from the power function
family, are undefined for numbers less or equal to zero. Mosteller and Tukey (1977) proposed a
remedy for distributions containing scores equal to zero—add a very small constant c to all the
scores in the distribution and apply the logarithmic transformation to log(F + c). For negative
values of X the same approach is used; one transforms (Y + c)\ These transformations are
referred to as started logs and started powers.

Variab/e Range and Power Transformations
Power transformations assume that all values of the variable being transformed are positive

and without bound at the upper end. Power functions are most effective when the ratio of the
highest to lowest value on a variable is large, at least 10 (e.g., Draper & Smith, 1998). If the
ratio is small, then power transformations are likely to be ineffective, because for very small
ratios, the power transformations are nearly linear with the original scores.

1 'The ARC software developed by R. D. Cook and Weisberg (1999) provides this technology, and much other tech-
nology useful for regression graphics and transformations. ARC is freeware accessible from the School of Statistics,
University of Minnesota: www.stat.umn.edu/arc/.

www.stat.umn.edu/arc/


236 6. CURVILINEAR RELATIONSHIPS AND TRANSFORMATIONS

(A) The regression of Yl-73 on X.

InX

FIGURE 6.4.2 Power transformation of Y versus logarithmic transformation of X to
linearize a relationship. The data are the same data as in Fig. 6.1.1 and Table 6.2.1.

6.4.9 Empirically Driven Transformation for Linearization
in the Absence of Models: Box-Cox Family
of Power Transformations on Y

Again suppose we find a one-bend monotonic relationship in our data and also observe problems
with the residuals from an OLS regresion. In lieu of a trial and error approach to selecting X to
transform Y, Box and Cox (1964) provided a numerical procedure for selecting a value of X to
be applied the dependent variable Y (but notX). The goal of the Box-Cox procedure is to select
X to achieve a linear relationship with residuals that exhibit normality and homoscedasticity.
Both linearization and improved behavior of residuals drive the choice of X. Box-Cox is a
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standard approach in statistics; although it has not been much used in some areas of behavioral
science, Box-Cox transformation may be usefully applied to behavioral science data.

The mathematical details of the Box-Cox transformation are given in Box 6.4.1 for the inter-
ested reader. Maximum likelihood estimation (described in Section 13.2.9) is used to estimate
X in statistical software. Box 6.4.1 also provides a strategy for comparing the fit of regression
models that use different transformations. Suppose we wished to try two transformations of
Y, say \/F and log Y. One cannot simply fit two regression equations, one with Y' = VY
as the DV and one with Y' = log Y as the DV and compare the fit of these models directly,
because the dependent variables are on different scales (see also Section 6.4.16 for model
comparison across transformations). Finally, Box 6.4.1 describes an approach to a diagnostic
test whether a transformation is required; this approach also provides a preliminary estimate of
X. The approach can be implemented with OLS regression software; no specialized software is
required. The value of X produced by Box-Cox is often used to suggest the choice of a familiar
transformation. For example, if X from Box-Cox is .43, we might well choose a square root
transformation, where X = .5.

BOX 6.4.1
Achieving Linearization with the Box-Cox Transformation of Y

The Box-Cox transformation in its non-normalized form (Atkinson, 1985; Draper &
Smith, 1998, p. 280) is given as

The notation y(x), used by Ryan (1997), distinguishes the full Box-Cox transformation
from simply raising Y to the power X, written as y\ Division by X in Eq. (6.4.22a)
preserves the direction of ordering from low to high after transformation of Y to F(X)

when X < 0 (Fox, 1997).
Expressions (6.4.22a) and (6.4.22b) are non-normalized, which means that we cannot

try different values of X, fit regression models, and compare the results directly to see
which value of X produces the best fit. Instead, we use the normalized transformation,
which allows comparison across models of the same data using different values of X
(Draper & Smith, 1998, p. 280):

The term YG is the geometric mean of the Y scores in the untransformed metric and is
computed as follows:

The geometric mean of a set of Y scores is easily calculated hi two steps, following
the transformation of each Y score into In Y. First, compute the arithmetic mean of the

and 
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In Y scores:

Then exponentiate this value to find the geometric mean

The use of the geometric mean preserves scaling as Y is transformed to Z(x). This, in
turn, means that values of SSresiduai as a measure of lack of model fit may be compared
across equations using different values of X.

There are three ways to proceed in using Box-Cox to select a value of X. One may
try a series of values of X to transform Y for a single data set (Draper & Smith, 1998).
For each value of X one would compute the values of Z(x) according to normalized
Eqs. (6.4.23a) and (6.4.23b), and predict Z(x) in an OLS regression, retaining the value
of residual sums of squares for that equation SSresidual.z(x). Then one would plot the values
of SSresidual.z(x> against X and select a value of X that appeared to bring SSresidua].z(x> close
to a minimum. A range of X from about —2 to +2 might be tried, perhaps in increments
of 1/2: -2, -1.5, -1.0,... ,2 (Draper & Smith, 1998).

Second, a form of statistical estimation (a method of selecting estimates of parameters)
called maximum likelihood estimation12 can be used mathematically to estimate the
value of X and simultaneously to estimate the values of the regression coefficients
for Xi,X2,... ,XK for predicting Z(x) in the regression equation Z(x) = 50 + B^ +
B2X2 + h BkXk. The value of X selected by the method of maximum likelihood is
referred to as the maximum likelihood estimate of X. In addition, a confidence interval can
be computed around the maximum likelihood estimate of X. If the confidence interval
includes the value X = 1, this suggests that there is no need for transformation, since
any score raised to the power 1 is simply the score itself.

Constructed variables and a diagnostic test of the need for transformation. A third
method for estimating X derives from a statistical test of whether a transformation of
the dependent variable Y would improve prediction, suggested by Atkinson (1985) and
described in detail in Fox (1997, p. 323). The null hypothesis is HQ: X = 1, i.e., that
no power transformation is needed. To operationalize the test, we create a constructed
variable of the form:

where YG is the geometric mean given in Eq. (6.4.25).
This constructed variable is included as an additional predictor in an OLS regression

predicting Y in its original untransformed scale from the set of predictors Xl, X2,..., Xk:

If the 6 coefficient is significant, this supports the need for transformation. The value
(1 — 0) = X provides a preliminary estimate of X for use in transformation. The question
then arises as to how we apply the estimated value of X to generate a transformed Y score.
We can use Eqs. (6.4.22a) and (6.4.22b) to generate transformed 7(X). Alternatively,
when X = 0, we can simply compute 7X, using log Y.

12Maximum likelihood estimation for X in Box-Cox is implemented in the ARC software of R. D. Cook and
Weisberg (1999). The likelihood function to be maximized in selecting X is monotonically related to SSresiduai: Z\
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6.4.10 Empirically Driven Transformation for Linearization
in the Absence of Models: Box-Tidwell Family of
Power Transformations on X

Suppose we observe a one-bend nonlinear relationship, but the residuals are well behaved
(i.e., are homoscedastic and normal in form). To linearize the relationship we should trans-
form X; transforming Y may introduce heteroscedasticity and/or non-normality of residuals.
Again, we confront the question of how to choose the value of X. Paralleling the Box-Cox
procedure for transforming Y, Box and Tidwell (1962) provided a numerical strategy for the
choice of transformations on predictors. The Box-Tidwell procedure may be simultaneously
applied to several predictors, each with a different power transformation. Box 6.4.2 presents
the procedure for a single predictor X. Atkinson (1985), Fox (1997), and Ryan (1997) present
the multiple-predictor case in detail. As with Box-Cox, a test is provided for whether trans-
formation of the predictor is required; the strategy also yields a preliminary estimate of X and
requires only OLS regression software. Again, this is a standard procedure in statistics that
may well be useful for behavioral science data.

BOX 6.4.2
Achieving Linearization With the
Box-Tidwell Transformation of X

The expressions for transformed X in Box-Tidwell closely resemble those in
Eqs. (6.4.22a) and (6.4.22b) for Box-Cox:

Unlike Box-Cox, there is no need for normalization of the transformed scores in order to
compare models using different values of X, since the dependent variable Y is identical
across equations being compared.

One may use a constructed variable strategy to provide a test of the need for trans-
formation and a preliminary estimate of X. For a single predictor X, the constructed
variable is given as

In a series of steps provided by Box and Tidwell (1962) and described in detail in
Fox (1997 p. 325), one can test whether a transformation of X will provide improved
prediction of Y; again, HQ: X = 1 (no transformation is required). One can also estimate
the value of X in Eqs. (6.4.28a) and (6.4.28b).

1. First, predict Y from untransformed X in the equation Yf =B0+ B^.
2. Then, predict Y from untransformed X plus constructed variable V from

Eq. (6.4.29) in the following equation:

If the $ coefficient is significant, this supports the need for transformation.
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3. An estimate of X is given as follows:

where BI is taken from step 1, and (J) is taken from step 2.

A second iteration of the same three steps, but using Xf in place of X throughout,
(i.e., in the regression equations in steps 1 and 2, and in the computation of Vt = Xt InX,
for step 2 where X is taken from the first pass of step 3), yields a better estimate of the
maximum likelihood estimate of X. These iterations continue until the estimates of X
change by only tiny amounts.

6.4.11 Linearization of Relationships With Correlations:
Fisher z' Transform of r

Sometimes a variable is measured and expressed in terms of the Pearson product moment
correlation r. Two examples arise from personality psychology. First, measures of consistency
of judgments of personality by the same person over time are cast as correlations. Second,
in the Q-sort technique for assessing personality, items are sorted into rating categories of
prescribed size (usually defining a quasi-normal distribution) so as to describe a complex
phenomenon such as personality. The similarity of two such Q-sort descriptions, for example,
actual self and ideal self, is then indexed by the r between ratings over the set of items. The
sampling distribution of r is skewed; the Fisher z' transformation described in Section 2.8.2
functions to normalize the distribution of r. The Fisher z' transformations of correlations
are more likely to relate linearly to other variables than are the correlations themselves. The
Fisher z' transformation has its greatest effect as the magnitude of r approaches 1.0. The z'
transformation of r is given in Appendix Table B.

6.4.12 Transformations That Linearize Relationships
for Counts and Proportions

In our presentation of transformations to linearize relationships, we have not mentioned depen-
dent variables with special characteristics, such as counts of the number of events that occur in
a given time period, or proportions. Counts have the special property that they are bounded at
(cannot be lower than) zero and are positively skewed for rare events. Proportions are bounded
at zero at the low end of the scale and at one at the high end of the scale. The fact that both counts
and proportions are bounded means that they may not be linearly related to other continuous
variables.

Arcsine, Logit, and Probit Transformations of Proportions
Since proportions are bounded at zero and one, the plot of a DV in the form of proportions

against a continuous predictor may be S-shaped, as illustrated in Fig. 13.1.1(B), with values
of Y compressed (flattened out) for low and high values of X. We note that there are two
bends in the S-shaped curve. Therefore a simple power transformation will not straighten the
function. Three transformations are commonly employed to transform dependent variables in
the form of proportions; the arcsine, logit, and probit transformations. All three transformations
linearize relationships by stretching out the tails of the distribution of proportions, eliminating
the two bends of the S-shape. Hence, they are referred to as two-bend transformations. Of
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the three, only the arcsine transformation stabilizes variances, as well a straightening out
the relationship. Here we illustrate how these transformations can be calculated by hand to
facilitate reader insight. In practice, standard statistical packages are used to calculate these
transformations.

Arcsine transformation. The arcsine transformation is given as follows:

that is, twice the angle (measured in radians) whose trigonometric sine equals the square root
of the proportion being transformed. Use of this transformation assumes that the number of
scores on which the proportions in a data set are based is constant across cases (e.g., when the
proportion of correct responses as a DV is taken as the proportion correct on a 40-item scale
completed by all participants).

Table 6.4.2 gives the A values for proportions P up to .50. For A values for P > .50, let
P' = (1 — P), find AP from the table, and then compute

For example, for the arcsine transformation of .64, find A for .36 (= 1 — .64), which equals
1.29, then find 3.14 - 1.29 = 1.85. Table 6.4.2 will be sufficient for almost all purposes. The
transformation is easily calculated on a statistical calculator . First, set the calculator mode
to Radians. Enter the value of the proportion, take the square root, hit sin"1, and multiply
the result by 2. Statistical packages also provide this transformation.13 See also Owen (1962,
pp. 293-303) for extensive tables of the arcsine transformation.

The amount of tail stretching effected by a transformation may be indexed by the ratio of
the length of the scale on the transformation of the P interval from .01 to .11 to that of the
interval from .40 to .50, that is, two equal intervals, one at the end and one at the middle of the
distribution, respectively. For A, this index is 2.4 (compared with 4.0 for the probit and 6.2 for
the logit).

Probit transformation. This transformation is variously called probit, normit, or, most
descriptively, normalizing transformation of proportions, a specific instance of the general
normalizing transformation. We use the term probit in recognition of its wide use in bioassay,
where it is so designated.

Its rationale is straightforward. Consider P to be the cumulative proportion of a unit normal
curve (that is, a normal curve "percentile"), determine its baseline value, ZP, which is expressed
in sd departures from a mean of zero, and add 5 to assure that the value is positive. The probit
(PR) is

Table 6.4.2 gives PR as a function of P for the lower half of the scale. When P = 0 and 1,
PR is at minus and plus infinity, respectively, something of an embarrassment for numerical
calculation. We recommend that for P = 0 and 1, they be revised to

and

13Most statistical software provides the arcsine transformation: in SPSS, within the COMPUTE statement; in
SAS, as a statement in PROC TRANSREG; in SYSTAT, in DATA(LET-ACS).
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TABLE 6.4.2
Arcsine (A), Probit (PR), and Logit (L) Transformations

for Proportions (P)

P

.000

.002

.004

.006

.008

.010

.012

.014

.016

.018

.020

.022

.024

.026

.028

.030

.035

.040

.045

.050

.055

.060

.065

.070

.075

.080

.085

.090

.095

.100

.11

.12

.13

.14

.15

A

.00

.09

.13

.16

.18

.20

.22

.24

.25

.27

.28

.30

.31

.32

.34

.35

.38

.40

.43

.45

.47

.49

.52

.54

.55

.57

.59

.61

.63

.64

.68

.71

.74

.77

.80

PR

b

2.12
2.35
2.49
2.59
2.67
2.74
2.80
2.86
2.90
2.95
2.99
3.02
3.06
3.09
3.12
3.19
3.25
3.30
3.36
3.40
3.45
3.49
3.52
3.56
3.59
3.63
3.66
3.69
3.72
3.77
3.83
3.87
3.92
3.96

L

b

-3.11
-2.76
-2.56
-2.41
-2.30
-2.21
-2.13
-2.06
-2.00
-1.96
-1.90
-1.85
-1.81
-1.77
-1.74
-1.66
-1.59
-1.53
-1.47
-1.42
-1.38
-1.33
-1.29
-1.26
-1.22
-1.19
-1.16
-1.13
-1.00
-1.05
-1.00

-.95
-.91
-.87

P

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

.27

.28

.29

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49
.50°

A

.82

.85

.88

.90

.93

.95

.98
1.00
1.02
1.05
1.07
1.09
1.12
1.14
1.16
1.18
1.20
1.22
1.25
1.27
1.29
1.31
1.33
1.35
1.37
1.39
1.41
1.43
1.45
1. 47
1.49
1.51
1.53
1.55
1.57

PR

4.01
4.05
4.08
4.12
4.16
4.19
4.23
4.26
4.29
4.33
4.36
4.39
4.42
4.45
4.48
4.50
4.53
4.56
4.59
4.61
4.64
4.67
4.69
4.72
4.75
4.77
4.80
4.82
4.85
4.87
4.90
4.92
4.95
4.97
5.00

L

-.83
-.79
-.76
-.72
-.69
-.66
-.63
-.60
-.58
-.55
-.52
-.50
-.47
-.45
-.42
-.40
-.38
-.35
-.33
-.31
-.29
-.27
-.24
-.22
-.20
-.18
-.16
-.14
-.12
-.10
-.08
-.06
-.04
-.02

.00

"See text for values when;? > .50.
fcSee text for transformation when P = 0 or 1.

where v is the denominator of the counted fraction. This is arbitrary, but usually reasonable. If
in such circumstances this transformation makes a critical difference, prudence suggests that
this transformation be avoided.

For PR values for P > .50, as before, let P' = 1 - P, find PRP from Table 6.4.2, and then
find
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For example, the PR for P = .83 is found by looking up P for .17 = (1 — .83) which equals
4.05, and then finding 10 — 4.05 = 5.95. For a denser argument for probits, which maybe
desirable in the tails, see Fisher and Yates (1963, pp. 68-71), but any good table of the inverse
of the normal probability distribution will provide the necessary zp values (Owen, 1962, p. 12).
Statistical computing packages also provide inverse distribution functions.14

Logit transformation. This transformation is related to the logistic curve, which is
similar in shape to the normal curve but generally more mathematically tractable. The logis-
tic distribution is discussed in more detail in Section 13.2.4 in the presentation of logistic
regression. The logit transform is

where In is, as before, the natural logarithm (base e); the Vi is not a necessary part of the
definition of the logit and is here included by convention. The relationship of values of L to P
is illustrated in Fig. 13.2.1; the manner in which the logit stretches both tails of the distribution
of proportions is clearly illustrated. As with probits, the logits for P = 0 and 1 are at minus
and plus infinity, and the same device for coping with this problem (Eqs. 6.4.35 and 6.4.36)
is recommended: replace P = 0 by P = l/(2v) and P = 1 by (2v - l)/(2v) and find the
logits of the revised values. As before, Table 6.4.2 gives the L for P up to .50; for P > .50, let
P' — 1 — P, find LP and change its sign to positive for LP,, that is,

For P = .98, for example, find L for .02 (= 1 — .98), which equals — 1.96, and change its sign,
thus L for .98 is+1.96.

The logit stretches the tails of the P distribution the most of the three transformations. The
tail-stretching index (described previously) for the logit is 6.2, compared with 4.0 for the probit
and 2.4 for the arcsine.

The quantity P/(l - P) is the odds related to P (e.g., when P = .75, the odds are .757.25
or simply 3). The logit, then, is simply half the natural logarithm of the odds. Therefore logits
have the property that for equal intervals on the logit scale, the odds are changed by a constant
multiple; for example, an increase of .35 on the logit scale represents a doubling of the odds,
because .35 is Vi In 2, where the odds are 2. The relationship of the logit to odds and their role
in logistic regression is explained in detail in Section 13.2.4.

We also note the close relationship between the logit transformation of P and Fisher's z'
transformation of the product-moment r (see Section 2.8.2 and Appendix Table B). If we
let r = IP — 1, then the z' transformation of r is the logit of P. Logit transformations are
easily calculated with a statistical calculator: divide P by (1 — P) and hit the In key. Or, the
computation is easily programmed within standard statistical software (see, for example, the
SPSS code in Table 13.2.1).

Note that all three transformations are given in the form most frequently used or more
conveniently tabled. They may be further transformed linearly if it is found convenient by the
user to do so. For example, if the use of negative values is awkward, one can add a constant to
L of 5, as is done for the same purpose in probits. Neither the 2 in the arcsine transformation
in Eq. (6.4.32) nor the ¥2 in the logit transformation in Eq. (6.4.38) is necessary for purposes
of correlation, but they do no harm and are tabled with these constants as part of them in
accordance with their conventional definitions.

14The inverse normal function is also provided in SPSS, with the function IDF.NORMAL within the COMPUTE
syntax.
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The choice among the arcsine, probit, and logit transformations to achieve linearity may
be guided by examining a scatterplot of each of the three transformations of the proportion
against the variable with which it exhibited a nonlinear relationship in the untransformed state.
A lowess line plus a linear regression line superimposed on the scatterplot will aid in discerning
how well the linearization has been achieved by each transformation. Once again, the reader
is warned that if the transformed proportion variable is the DV, then the fit of the regression
equations with the three different transformed variables cannot be directly compared (see
Section 6.4.16).

6.4.13 Variance Stabilizing Transformations and Alternatives
for Treatment of Heteroscedasticity

Although we assume homoscedasticity in OLS regression, there are numerous data structures in
which the predicted score Yt is related to the variance of the residuals sd2 ~ among individuals
with that particular predicted score Fr Often the variance increases as the predicted score
increases; this is so for variables that have a lower bound of zero but no upper bound. Consider
again "count" variables (e.g., the count of number of sneezes in an hour during cold season).
If we take people with an average of 1 sneeze per hour, the variance in their number of sneezes
over hours will be quite small. If we take people with an average of 20 sneezes per hour, the
variance in number of sneezes over hours can be much larger. If we predict number of sneezes
per hour in an OLS regression, we may well encounter heteroscedasticity of residuals. Now
consider a measure of proportion (e.g., the proportion of days during winter flu season on
which a person takes "flu" remedies). Here the variance does not simply increase as the mean
proportion increases; rather, the variance increases as the mean proportion increases from 0 to
.5, and then declines as the mean proportion increases further from .5 to 1.0.

Approaches to Variance Stabilization: Transformation,
Weighted Least Squares, the Generalized Linear Model
Dependent variables that exhibit heteroscedasticity (nonconstant variance of the residuals)

pose difficulties for OLS regression. Several approaches are taken to address the problem
of heteroscedasticity. The first is transformation of the DV. Second is use of weighted least
squares regression, presented in Section 4.5.4. Third and newest is the application of a class of
regression methods subsumed under the name generalized linear model; this class of methods
is composed of particular regression models that address specific forms of heterogeneity that
commonly arise in certain data structures, such as dichotomous (binary) or count DVs. Most of
Chapter 13 is devoted to two such methods: logistic regression for analysis of dichotomous and
ordered categorical dependent variables, and Poisson regression for the analysis of count data.
The availability of these three approaches reflects the evolution of statistical methodology.
It is recommended that the reader carefully consider the developments in Chapter 13 before
selecting among the solutions to the variance heterogeneity problem. Where the choice is
available to transform data or to employ an appropriate form of the generalized linear model,
current recommendations lean to the use of the generalized linear model.

Variance Stabilizing Transformations
The choice of variance stabilizing transformation depends on the relationship between the

value of the predicted score Y{ in a regression analysis and the variance of the residuals sd*-
among individuals with that particular predicted score. We discuss the use of four variance sta-
bilizing transformations: square roots, logarithms, reciprocals, and the arcsine transformation.
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The first three are one-bend transformations from the power family that we also employ to
linearize relationships. The fourth is a two-bend transformation. That we encounter the same
transformations for linearization and for variance stabilization illustrates that one transforma-
tion may, hi fact, ameliorate more than one difficulty with data. We again warn, however, that a
transformation that fixes one problem in the data (e.g., variance heterogeneity), may introduce
another problem (e.g., nonlinearity).

We first present the three one-bend transformations from the power family F\ the square
root transformation (X = ¥2), the logarithmic transformation (X = 0) , and the reciprocal
transformation (X = —1). We then suggest approaches for selecting an approximate value of
X for variance stabilization.

Square Hoot Transformation (X = V*) and Count Variables
The most likely use of a square root transformation occurs for count variables that follow

a Poisson probability distribution, a positively skewed distribution of counts of rare events
that occur in a specific time period, for example, counts of bizarre behaviors exhibited by
individuals in a one-hour public gathering (see Section 13.4.2 for further description of the
Poisson distribution). In a Poisson distribution of residuals, which may arise from a count DV,
the variance of the residual scores sd2* around a particular predicted score y, is proportional

•*• /11 i—
to the predicted score Y,-. Count data are handled by taking VT • This will likely operate so
as to equalize the variance, reduce the skew, and linearize relationships to other variables. A
refinement of this transformation, \/F + JY + 1 suggested by Freeman and Tukey (1950)
provides more homogeneous variances when the mean of the count variable across the data
set is very low (i.e., the event being counted is very rare). Poisson regression, developed in
Section 13.4, is a more appropriate approach to count dependent variables, when treatment of
Y with a square root transformation fails to produce homoscedasticity.

Logarithmic Transformation (X = 0)

The logarithmic transformation is most often employed to linearize relationships. If the
variance of the residuals sd2 - is proportional to the square of the predicted score Y?, the
logarithmic transformation will also stabilize variances. Cook and Weisberg (1999) suggest
the use of logarithmic transformations to stabilize variance when residuals are a percentage of
the score on the criterion Y.

Reciprocal Transformation (X = -1)

We encountered the reciprocal transformation in our consideration of linearizing relation-
ships. If the residuals arise from a distribution in which the predicted score Y,- is proportional to
the square of the variance of the residuals C«^ p2,me reciprocal transformation will stabilize

An Estimate ofk for Variance Stabilization:
The Family of Power Transformations Revisited
The choice among the square root (X = !/2);log(X = 0), or reciprocal (X = —1) as a variance

stabilizing transformation depends on the relationship between the predicted score Yf and the
variance of residuals sd2 -. An approach for selecting an appropriate X for variance stabilization
is described in Box 6.4.3. An alternative to this approach is to transform Y with each of the three
transformations, carry out the regression analysis with each transformed DV, and examine the
residuals from each analysis. The transformation that leads to the best behaved residuals is
selected. Again, the reader is warned that measures of fit cannot be directly compared across

variances.
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BOX 6.4.3
What Value of X: Selecting a Variance Stabilizing Transformation

From Among the Family of Power Transformations
To solve for a value of X for variance stabilization, we find an estimate of S that relates
predicted score Y{ to the standard deviation of the residuals sdY\Y, according to the
expression sdY\Y is proportional to F8 or, equivalently, In sdY^ = 80 + Sin Y. Draper
and Smith (1998) suggest that one regress untransformed Y on untransformed X, then
select several vaues of the predicted score Yh and for each of these values of Yt, find
the band width (range) of the residuals (a procedure that requires a number of scores
with essentially the same value of Y). One then assumes that this range is approximately
4 sdh where sdf is the standard deviation of the residuals for the value Yh and plots In
sd{ as a function of hi Yt to estimate the slope 8. To stabilize the variance of Y, we use
X = (1 - S) to transform Y.

the regression equations because the dependent variables are on different scales. Strategies for
model comparison across power transformations of the DV are discussed in Section 6.4.16 and
in Box 6.4.1, with a complete numerical example provided in Section 6.4.17.

Box-Cox Transformation Revisited and Variance Stabilization
We introduced the Box-Cox approach to selection of X in the context of linearization of rela-

tionships. The Box-Cox approach aims to simultaneously achieve linearization, homoscedas-
ticity, and normality of residuals, and is applicable to the problem of variance stabilization.

Variance Stabilization of Proportions
Suppose our dependent variable were a proportion (e.g., the proportion of correct responses

on a test comprised of a fixed number of items). The variance of a proportion is greatest
when the proportion P = .50, and diminishes as P approaches either 0 or 1; specifically,
G2

P = P(l — P). The arcsine transformation introduced in Section 6.4.12 stabilizes variances.

Weighted Least Squares Regression for Variance Stabilization
Weighted least squares regression provides an alternative approach to the analysis of data that

exhibit heteroscedasticity of residuals. This approach was described in detail in Section 4.5.4.

6.4.14 Transformations to Normalize Variables

We undertake transformations to normalize variables in several circumstances. One is that we
have skewed Xs and/or Y. Another is that we are dealing with variables that are inherently not
normally distributed, for example ranks.

Transformations to Eliminate Skew
Recall that inference in OLS regression assumes that residuals are normally distributed. If

we analyze a data set with OLS regression and find that residuals are not normally distributed,
for example, by examining a q-q plot of residuals against a normal variate (Section 4.3), then
transformation of Y may be in order. Skew in the dependent variable may well be the source
of the skewed residuals. Our approach, then, is to transform the DV in the hopes of achieving
more normal residuals.
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We can transform Y to be more normally distributed following the rules from the ladder of
re-expression, that values of X > 1 decrease negative skew, and values of X < 1 decrease pos-
itive skew in the distribution of the transformed variable (see Section 6.4.8). Several values of
X can be tried, the transformed variable plotted as a histogram with a normal distribution over-
layed or in a q-q plot against a normal variate (see Section 4.4.6). Modern statistical graphics
packages provide a slider for values of X and display the distribution of the variable as X changes
continuously. Alternatively, we may employ Box-Cox transformation of Y, which attempts to
achieve more normally distributed residuals, as well as linearity and homoscedasticity.

Normalization of Ranks
A normalization strategy based on percentiles of the normal curve may be useful when data

consist of ranks. When a third-grade teacher characterizes the aggressiveness of her 30 pupils
by ranking them from 1 to 30, the resulting 30 values may occasion difficulties when they
are treated numerically as measures. Ranks are necessarily rectangularly distributed; that is,
there is one score of 1, one score of 2,.. . , one score of 30. If, as is likely, the difference in
aggressiveness between the most and next-most (or the least and next-least) aggressive child
is greater than between two adjacent children in the middle (e.g., those ranked 14 and 15),
then the scale provided by the ranks is not likely to produce linear relationships with other
variables. The need to stretch the tails is the same phenomenon encountered with proportions;
it presupposes that the distribution of the construct to be represented has tails, that is, is
bell shaped or normal. Because individual differences for many well-measured biological and
behavioral phenomena seem to approximate this distribution, in the face of ranked data it is a
reasonable transformation to apply in the absence of specific notions to the contrary. Even if
the normalized scale is not optimal, it is likely to be superior to the original ranks.

The method for accomplishing this is simple. Following the procedure described in ele-
mentary statistics textbooks for finding centiles (percentiles), express the ranks as cumulative
proportions, and refer these to a unit normal curve (Appendix Table C) to read off ZP, or use
the PR column of Table 6.4.2, where 5 has been added to ZP to yield probits. Mosteller and
Tukey (1977) suggest an alternative approach for transforming ranks, but with the same goal
of normalization in mind. Other methods of addressing ordinal data are presented by Cliff
(1996).

6.4.15 Diagnostics Following Transformation

We reiterate the admonition about transformation made in Section 6.4.2, that it is imperative to
recheck the regression model that results from use of the transformed variable(s). Transforma-
tion may fix one difficulty and produce another. Examining whether relationships have been
linearized, checking for outliers produced by transformation, and examining residuals are all
as important after transformation as before. If difficulties are produced by transformation (e.g.,
heteroscedasticity of residuals), the decision may be made not to transform.15

15The constructed variable strategy described for Box-Cox transformation in Box 6.4.1, and Box-Tidwell in
Box 6.4.2 provides an opportunity for the use of regression diagnostics to determine whether the apparent need for
transformation signaled by the test of 0 in Eq. (6.4.27), or of (|> in Eq. (6.4.30) is being produced by a few outliers.
An added variable plot (partial regression residual plot) is created in which the part of Y which is independent of
untransformed X is plotted against the part of W in Eq. (6.4.26) for Box-Cox or V in Eq. (6.4.29) for Box-Tidwell,
which is independent of untransformed X; the plot is inspected for outliers that may be producing the apparent need
for transformation.
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6.4.16 Measuring and Comparing Model Fit

We transform variables in part in the hope that our overall model will improve with
transformation. In selecting transformations, we need to compare model fit among regres-
sion equations employing the same data but different transformations. We warn that when
different nonlinear transformations of Y are employed, the R2 values generated for the differ-
ent models are not directly comparable. In other words, one cannot compare the R\ resulting
from predicting untransformed Y versus R2,- from predicting transformed Y' = -</F, versus

R2 Y from predicting transformed Y" = log Y. Each dependent variable is on a different scale;
the R2s are not comparable (Kvalseth, 1985). Very misleading results with regard to the fit of
models in the raw versus transformed metric may be reached by comparing the R2 values that
are reported in statistical software for these models (Alastair & Wild, 1991). To assess model
fit after transformation, the predicted scores should be converted back to raw score units by
reversing the transformation. For example, for Y" = log 7, the predicted scores ^transformed are

in logarithmic units. The antilog (Section 6.4.3) of each predicted score should be computed,
yielding predicted scores in the original metric arising from the prediction of Y' = log Y, that
is, ^transformed — Y^^^ units. (If the square root transformation were used, then we would square
each predicted score to return to a predicted score in raw units.) Then two options are available
for measuring fit. We may compute an index of fit as follows (Kvalseth, 1985):

Alternatively, we may compute the correlation between the observed Y scores and YOTisinili units

(Ryan, 1997), R2 « , and compare these values across models. Ryan (1997) warns
M'^ original units,-

that both approaches may yield difficulties. First, if predicted scores are negative, then they
cannot be transformed back to original units for many values of X. Second, if ^transformed *s verv

close to zero, then the corresponding Yoli^nai units may be a huge number, causing Eq. (6.4.40)
to be negative. Ryan (1997) recommends use of R2 - , with cases yielding negative

'i»'original units,-

predicted scores discarded.

6.4.17 Second-Order Polynomial Numerical Example Revisited

The data presented in Figs. 6.1.1 and 6.2.3 were actually simulated to follow a second-order
polynomial with additive homoscedastic, normally distributed error. The second-order poly-
nomial in Table 6.2.1 provides a well-fitting model with /^ond-order polynomial = -67- In real

life, we would not know the true form of the regression equation in the population that led
to the observed data. We might try several transformations. What happens if we try a power
transformation of Y to linearize the relationship? The bulge in the data follows Fig. 6.4.1 (A),
suggesting that we either transform X with X < 1.0 or transform Y with X > 1.0. Using
Box-Cox transformation, the maximum likelihood estimate of X is 1.73, derived from an
iterative solution. We compute IBOX-COX = Y1 '73 and predict l^ox-cox fr°m untransformed X.
The data, resulting linear regression line, >BOX_COX = 14.82X + 35.56, plus a lowess line
are shown in Fig. 6.4.2(A) (p. 236). From inspection of the lowess lines in Fig. 6.2.2(A) for
untransformed Y versus Fig. 6.4.2(A) for transformed Y, the X-Y relationship appears more
linear in Fig. 6.4.2(A), a result of transforming Y. However, the lowess curve in Fig. 6.4.2(A)
tells us that we have not completely transformed away the curvilinear relationship in the data.
Moreover, the transformation of Y has produced heteroscedasticity in Y: The spread of the Y
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scores increases as X increases. As we have warned, transformation to fix one problem (here,
nonlinearity) has produced another problem (nonconstant variance). We compare the fit of the
polynomial model to that of the Box-Cox transformed Y model. Following Ryan (1997), we
compute the predicted scores from JBOX-COX = 14.82X + 35.56, which are in the transformed
metric. We then convert the FBox_Cox predicted scores back to the original metric by computing
Original units = (^BOX-COX)1/1>73- F°r example, for a single case X = 7, and observed Y = 16.08,
^BOX-COX = ^173 = 16.081-73 = 122.11. The predicted score from the regression equation
JWcox = 14.82X +35.56 = 139.29. Finally yoriginal units = (^ox-cox)171'73 = 139.291/1-73 =
17.35. We then compute R2 . = .60, the squared correlation between observed Y in

'(•'original units,

its original units and the predicted score from the Box-Cox equation transformed back into
original units. The Box-Cox transformation leads to a slightly less well fitting model than does
the original polynomial equation. It also adds the woes of heteroscedasticity.

Suppose we focus on transforming X. The bulge rule suggests a value of X < 1. With
the left bulge, a logarithmic relationship is often helpful; we compute In X and predict Y
from In X. The resulting data, the regression equation Y = 8.34 hi X + 1.34, and a lowess
curve are given in Fig. 6.4.2(B). The lowess line tells us that the logarithmic transformation
succeeded in linearizing the relationship. The data look quite homoscedastic (though sparse
at the low end). Because we have left Y in its original metric, the predicted scores are in the
original metric as well. We do not have to transform the predicted scores before examining
model fit; we may use the squared multiple correlation resulting from the regression equation
Y = 8.34 In X+1.34, which i s / ?y l x = .67, the same fit as from the second-order polynomial.
With the data of Fig. 6.2.1, the second order polynomial and the logarithmic transformation
are indistinguishable. The real difference between the logarithmic transformation and the
quadratic polynomial is that the quadratic polynomial turns downward at the high end, as in
Figure 6.1.1, but the logarithmic transformation, a one-bend transformation from the power
family, does not. The data are too sparse at the high end to distinguish the polynomial equation
from the logarithmic transformation. The lowess curve is not informative in this regard, due
to the weakness of lowess at the ends of the X continuum. In contrast, the rectangularly
distributed data in Fig. 6.2.4, with a number of cases with high values of X, would distinguish
the polynomial versus logarithmic transformation; the downward turn in the data is obvious.

6.4.18 When to Transform and the Choice of Transformation

The choice between an untransformed versus a transformed analysis must take into consid-
eration a number of factors: (a) whether strong theory, (as in psychophysics) dictates the use
of transformation for estimation of critical model parameters, (b) whether the equation in
the transformed metric provides a better explanation of the phenomenon under investigation
than in the raw metric, for example, in the use of log dollars to reflect the utility of money,
(c) whether overall fit is substantially improved by virtue of transformation, and (d) whether
transformation introduces new difficulties into the model. In the behavioral sciences our focus
is often on regression coefficients of particular predictors of strong theoretical interest, above
and beyond an interest in overall level of prediction.

There are certainly examples of cases in which transformation yields new findings not
detected in the original metric. For example, R. E. Millsap (personal communication, February
23,2000) found evidence of salary discrimination in one of two demographic groups relative to
another when salary as Y was transformed using a log metric, but not when salary was treated
in the raw metric. When critical results like this differ across transformations, the researcher
is pressed to develop an explanation of why the results in the transformed metric are more
appropriate.
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The opposite possibility exists, that is, that an important effect may be transformed
away. There are instances in which we may predict a curvilinear relationship (e.g., a rise
in performance as X increases to an asymptote) or an interaction between two variables (Chap-
ter 7 is devoted to interactions). Transformation may remove the very effect we have proposed.
In that case, we would obviously stay in the original metric, having once assured ourselves that
the curvilinearity or interaction was not due to one or a few outliers. If the data in the original
metric posed other problems (e.g., heteroscedasticity), we could retain the data in the original
metric but use a more appropriate regression model, here weighted least squares regression
instead of OLS regression.

In many instances, transformation may have little effect, particularly if scores contain
substantial measurement error. In addition, if scores have a small range, the family of power
transformations will have little effect. If data are in the form of proportions and most proportions
fall between .3 and .7, or even .2 and .8, then the arcsine, logit, and probit transformation will
have little effect; it is when events are very rare or very frequent (P close to 0 or 1) that
transformations will make a difference. Reflection on these conditions leads us to expect that
in a substantial number of cases in psychological research, (e.g., when our dependent variables
are rating scales with small range), transformations will have little effect. In contrast, in areas
where the DVs are physical measurements covering a large range, transformations will often
be of considerable value.

An easy approach to examining whether a variable distribution (e.g., extreme skew in a
predictor or the dependent variable) is producing an effect is to convert the variable to ranks16

and repeat the analysis replacing the variable itself by its associated ranks. If the results remain
the same, particularly whether theoretically important variables do or do not have an effect,
then we have some confidence that the results in the raw metric are appropriate.

The choice among transformations, say the log versus square root for highly positively
skewed data, will be guided by which transformation provides the better fit, given that there is
no strong theoretical rationale for the choice of either. The choice will also be guided by the
extent to which transformation leads to residuals that have constant variance and are normally
distributed. However, the similarity of curves that are generated by different transformation
equations (as illustrated in Fig. 6.4.1) coupled with random error in data mean that we may well
not be able to distinguish among the transformations that may be applied to an individual data
set. An interesting choice arises between polynomial regression, relatively often employed
in psychology, and other transformations of the same data that lead to approximately the
same fit (e.g., the use of a quadratic polynomial versus a logarithmic transformation of X).
If one finds that with both transformations, the assumptions on residuals are similarly met,
then interpretability in relationship to theory dictates choice. If the nonlinear relationship of
X to Y is nonmonotonic, then polynomial regression must be employed; the family of power
transformations handles only monotonic relationships. Finally, even when data properties point
to a particular transformation, researchers should not act without simultaneously considering
theoretical appropriateness.

Transformations should be tried when both violations of assumptions and evidence of
nonlinearity exist and the researcher wishes to use OLS regression. The researcher should
consider whether a form of the generalized linear model is more appropriate (Chapter 13).
This may well be the case (e.g., the use of Poisson regression for counts of rare events).

Two alternatives exist to the use of either polynomial regression or the transformations
described in Section 6.4: nonlinear least squares regression when an intrinsically nonlinear

16The Rank Cases procedure in SPSS ranks scores, as does rank transformation in SAS PROC TRANSREG and
the rank option in the SYSTAT data module.
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relationship is to be fitted, and nonparametric regression, in which no assumptions are made
concerning the form of relationship of X to Y.

Sources on Transformation in Regression
The legacy of the ladder of re-expression and the bulge rule and much practical wisdom

about transformation are found in Mosteller and Tukey (1977). Draper and Smith (1998) and
Fox (1997) are useful starting points for further reading. Cook and Weisberg (1999) show the
integration of the use of graphics and graphical software into transformation. Classic sources
from mathematical statistics on transformation in regression include Atkinson (1985) and
Carroll and Ruppert (1988).

6.5 NONLINEAR REGRESSION

Nonlinear regression (NR) is a form of regression analysis in which one estimates the coeffi-
cients of a nonlinear regression model that is intrinsically nonlinear, that is, cannot be linearized
by suitable transformation (Section 6.4.4). Recall that whether an equation is intrinsically linear
versus intrinsically nonlinear depends on whether the errors are assumed to be multiplicative
versus additive, respectively. The nonlinear equations presented in Section 6.4.5 were all
shown to be linearizable, but if and only if we assumed that the errors were multiplicative in
the original metric, as was the assumption for all the models presented in Section 6.4.5. For
example, when we assumed multiplicative error underlying the exponential growth model in
Eq. (6.4.14), that is Y = c(edx^i, where e represents error, the equation could be linearized to
Eq. (6.4.15), log Y = B^Xi +B0. If, on the other hand, we were to have assumed additive error,
such that Y = c(edx) + e,, we would have needed to estimate the coefficients c and d using NR.

The use of NR begins with choice of a nonlinear model, either due to strong theory or some
weaker evidence of the appropriateness of the model. The user of NR regression software
must specify the particular nonlinear equation to be estimated. This is, of course, unlike the
use of OLS regression or variants like WLS regression, which always employ a linear model.
Ratkowsky (1990) provides graphical representations of relationships that can be useful in
selecting a nonlinear model. The criterion for the choice of weights in NR is the same as in
OLS regression, the least squares criterion (Section 4.3.2). However, there is not an analytic
solution in the form of a set of equations (the normal equations) that we use to solve directly for
the regression coefficients, as there are in OLS regression. The coefficients in NR must be found
by trial and error, in an iterative solution. (Iterative solutions are explained in Section 13.2.9.)
Iterative solutions require initial estimates of the coefficients, termed start values (e.g., initial
estimates of the c and d coefficients in the equation Y = ce**), in order that the iterative
search for estimates of coefficients be successful. The values of coefficients obtained from
using OLS regression to estimate the corresponding linearized equation (for example, the
coefficients from fitting log Y = B]X\ + BQ) may serve as start values for NR on the same data.
The regression coefficients from NR may be tested for significance under assumptions that
the coefficients are asymptotically approximately normally distributed and that their variances
are asymptotically approximately distributed as chi square; large sample sizes are required
to approach these asymptotic conditions. An overall goodness of fit measure for the model
follows the same approach as for transformed variables, given in Eq. (6.4.40).

Sources on Nonlinear Regression
In Chapter 13, we present logistic regression, a form of nonlinear regression, in some

detail and also introduce another form of nonlinear regression, Poisson regression. Matters
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of statistical inference, diagnostics, model fit are all explored for the logistic model and are
applicable more generally to NR. Rawlings (1988) provides a highly readable introduction
to nonlinear regression, and characterizes commonly used nonlinear models. Neter, Kutner,
Nachtsheim and Wasserman (1996) provide an example of relevance to psychologists of fitting
a common learning curve in two groups with an exponential growth model expanded to include
an asymptote plus a variable representing group membership. Neter, Kutner, Nachtsheim and
Wasserman (1996), Ryan (1997), and Draper and Smith (1998) provide useful practical advice
and examples. Seber and Wild (1989) present a more advanced treatment.

6.6 NONPARAMETRIC REGRESSION

Nonparametric regression is an approach to discerning the pattern of the relationship of a
predictor X (or set of predictors) to a dependent variable Y without first specifying a regression
model, such as the familiar OLS regression model Y = B0 + B^ + B2X2 H h BkXk + B0.
In nonparametric regression we discover the form of the relationship between X and Y by
developing a smooth function relating X to Y driven solely by the data themselves absent
any assumption about the form of the relationship. The nonparametric regression line (or
curve) follows the trends in the data; the curve is smoothed by generating each point on
the curve from a number of neighboring data points. The lowess (or loess) methodology
explained in Chapter 4 and utilized in Fig. 6.2.2(A) is a central methodology in nonparametric
regression. (See Section 4.2.1 for a discussion of smoothing and Section 4.2.2 for a discussion
of lowess). Fox (2000a) provides a highly accessible introduction to nonparametric simple
(one-predictor) regression; an accompanying volume (Fox, 2000b) extends to nonparametric
multiple regression.

The lowess curve in Fig. 6.2.2(A) is a regression function. However, we note that it is not
accompanied by a regression equation (i.e., there is no regression coefficient or regression
constant). Yet we gain a great deal of information from the curve—that the relationship of
X to Y is curvilinear, that there is one clearly discernable bend at low values of X, and that
the relationship "bulges" to the upper left in the Mosteller and Tukey (1977) sense, illustrated
in Fig. 6.4.2. We used the lowess curve in Fig. 6.2.2(A) to argue that quadratic polynomial
regression was warranted to characterize the relationship. We could have gleaned further
inferential information from the lowess analysis. The lowess curve in Fig. 6.2.2(A) provides a
predicted score for each value of X on the lowess line: ?jowess. Thus it is possible to generate a
measure of residual variation SSresiduai = £(F, — Jewess /)2» which leads to an F test of the null
hypothesis that there is no relationship between X and Y. Further, since the linear regression
line shown in Fig. 6.2.2(A) is nested in the more general lowess regression curve, we could
have tested whether the lowess curve contributed significantly more predictability than the
linear regression.

Nonparametric regression represents a new way of thinking about fitting functions to data,
one that has been hardly exploited in the behavioral sciences at the time of this writing.
How might we use nonparametric regression when considering the relation of X to y? First,
the lowess regression curve might be graphically presented, along with the statistical tests
of relationship and nonlinearity, and the relationship described simply by the lowess curve.
Second, the appearance of the lowess curve could guide the choice of transformation, either
polynomial regression or one of the transformations reviewed in Section 6.4, or the selection
of a function for nonlinear regression.

Nonparametric regression can be extended to multiple predictors. In the additive nonpara-
metric model, a separate nonparametric regression function is fitted to each predictor (e.g., a
lowess curve for each predictor). Overall fit can be tested, as can the partial contribution of
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each predictor to prediction over and above the other predictors. Illustrating the shape of the
regression function for two predictors as a two-dimensional irregular mountain rising from the
regression plane is straightforward with modern graphical packages. Difficulty in visualizing
the relationship arises with more than two predictors. Further, large sample sizes are required
for multiple nonparametric regression in order to have sufficient cases at various combinations
of values on all the predictors to generate the predicted scores for nonparametric regression
(i.e., to develop the shape of the nonparametric regression surface). Nonetheless, nonparamet-
ric regression holds promise for highly informative exploration of relationships of predictors
to a dependent variable. A classic reference in multiple nonparametric regression is Hastie and
Tibshirani (1990).

6.7 SUMMARY

Multiple regression analysis may be employed to study the shape of the relationship between
independent and dependent variables when these variables are measured on ordinal, interval, or
ratio scales. Polynomial regression methods capture and represent the curvilinear relationship
of one or more predictors to the dependent variable. Alternatively, transformations of variables
in MR are undertaken to achieve linear relationships, and to eliminate heteroscedasticity and
nonnormality of residuals as well so that data may be analyzed with linear MR. Nonlinear
regression and nonparametric regression are also employed when data exhibit nonlinearity.

1. Power polynomials. The multiple representation of a research factor X by a series
of predictors, X,X2,X3, etc., makes possible the fitting of regression functions of Y on X of
any shape. Hierarchical MR makes possible the assessment of the size and significance of
linear, quadratic, cubic (etc.), aspects of the regression function, and the multiple regression
equation may be used for plotting nonlinear regression of Y on X (Section 6.2).

2. Orthogonal polynomials. For some purposes (for example, laboratory experiments
where the number of observed values of X is not large), it is advantageous to code X so that
the Xt not only carry information about the different curve components (linear, quadratic, etc.)
but are orthogonal to each other as well. Some interpretive and computational advantages and
alternate error models are discussed (Section 6.3).

3. Nonlinear transformations. Nonlinear transformations are one-to-one mathemat-
ical relationships that change the relative spacing of scores on a scale (e.g., the numbers 1,
10,100 versus their base10 logs 0,1, 2). Nonlinear transformations of predictors X and/or the
dependent variable Y are carried out for three reasons. First, they are employed to simplify
relationships between predictors and the DV; simplification most often means linearization
of the relationship so that the relationship can be examined in linear MR. Second, they are
employed to stabilize the variances of the residuals, that is, to eliminate heteroscedasticity of
residuals. Third, they are used to normalize residuals. Homoscedasticity and normality of resid-
uals are required for inference in linear MR. The circumstances in which logarithmic, square
root, and reciprocal transformations are likely to be effective for linearization are described.
Such transformations arise frequently in conjunction with formal mathematical models that
are expressed in nonlinear equations, for example in exponential growth models. More gener-
ally, a full family of power transformations are employed for linearization. To select among
transformations, graphical and statistical methods are employed; these include the ladder of
re-expression and the bulging rule, plus the Box-Cox and Box-Tidwell methodologies. Tail-
stretching transformations of proportions are also employed; they include the arcsine, probit,
and logit transformations. Transformations also serve to render residuals homoscedastic and
normal, so that data are amenable to treatment in linear MR (Section 6.4).
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4. Nonlinear regression (NR). Nonlinear regression is a form of regression analysis
in which one estimates the coefficients of a nonlinear regression model that is intrinsically
nonlinear, that is, cannot be linearized by suitable transformation (Section 6.5).

5. Nonparametric regression. Nonparametric regression is an approach to discerning
the pattern of the relationship of a predictor X (or set of predictors) to a dependent variable
Y without first specifying a regression model. In nonparametric regression the form of the
relationship between X and Y is discerned by developing a smooth function relating X to Y
driven solely by the data themselves absent any assumption about the form of the relationship
(Section 6.6).



7
Interactions Among
Continuous Variables

7.1 INTRODUCTION

In this chapter we extend MR analysis to interactions among continuous predictors. By inter-
actions we mean an interplay among predictors that produces an effect on the outcome Y that
is different from the sum of the effects of the individual predictors. Many theories in the social
sciences hypothesize that two or more continuous variables interact; it is safe to say that the
testing of interactions is at the very heart of theory testing in the social sciences. Consider as an
example how ability (X) and motivation (Z) impact achievement in graduate school (F). One
possibility is that their effects are additive. The combined impact of ability and motivation
on achievement equals the sum of their separate effects; there is no interaction between X
and Z. We might say that the whole equals the sum of the parts. A second alternative is that
ability and motivation may interact synergistically, such that graduate students with both high
ability and high motivation achieve much more in graduate school than would be expected
from the simple sum of the separate effects of ability and motivation. Graduate students with
both high ability and high motivation become "superstars"; we would say that the whole is
greater than the sum of the parts. A third alternative is that ability and motivation compen-
sate for one another. For those students who are extremely high in ability, motivation is less
important to achievement, whereas for students highest in motivation, sheer native ability has
less impact. Here we would say that the whole is less than the sum of the parts; there is some
partial trade-off between ability and motivation in the prediction of achievement. The second
and third alternatives exemplify interactions between predictors, that is, combined effects of
predictors that differ from the sum of their separate effects.

When two predictors in regression analysis interact with one another, the regression of Y
on one of those predictors depends on or is conditional on the value of the other predictor.
In the second alternative, a synergistic interaction between ability X and motivation Z, the
regression coefficient for the regression of achievement Y on ability X increases as motivation
Z increases. Under the synergistic model, when motivation is very low, ability has little effect
because the student is hardly engaged in the graduate school enterprise. When motivation is
higher, then more able students exhibit greater achievement.

Continuous variable interactions such as those portrayed in alternatives two and three can
be tested in MR analysis, treating both the original variables and their interaction as continuous
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predictors. In this chapter we explore how to specify interactions between continuous variables
in multiple regression equations, how to test for the statistical signficance of interactions, how
to plot them, and how to interpret them through post hoc probing.

We suspect that some readers are familiar with the testing, plotting, post hoc probing,
and interpretation of interactions between categorical variables in the analysis of variance
(ANOVA) context. Historically, continuous variable interactions have often been analyzed by
breaking the continuous variables into categories, so that interactions between them can be
examined in ANOVA. For example, an analyst might perform median splits on ability and
motivation to create four combinations (hi-hi, hi-lo, lo-hi, and lo-lo) of ability and motivation
that could be examined in a 2 x 2 ANOVA. This dichotomization strategy is ill-advised, and we
strongly recommend against it. The strategy evolved because methods were fully developed for
probing interactions in ANOVA long before they were fully developed in MR. Dichotomiza-
tion is problematic first because it decreases measured relationships between variables. For
example, dichotomization at the median of a single continuous normally distributed predictor
X reduces its squared correlation with a normally distributed dependent variable Y to .64 of
the original correlation (Cohen, 1983). Dichotomization of a single predictor is equivalent
to throwing out over a third of the cases in the data set. Dichotomization of two continuous
variables X and Z so that their interaction can be examined in ANOVA lowers the power
for detecting a true nonzero interaction between the two continuous predictors. As Maxwell
and Delaney (1993) point out, if loss of power were the only impact of dichotomization and
researchers found significance nonetheless after dichotomization, the practice might not seem
so undesirable from a theoretical standpoint. But Maxwell and Delaney (1993) show much
more deleterious effects from a validity standpoint. Carrying out median splits on two contin-
uous predictors X and Z can produce spurious main effects, that is, effects of the individual
predictors that are "significant" when the dichotomized data are analyzed, although the effects
do not, in fact, exist in the population. Moreover, in one special circumstance in which there
is no true interaction between two continuous predictors X and Z, a spurious interaction may
be produced between the dichotomized predictors. This can happen if one of the predictors X
or Z has a quadratic relationship to Y.

In this chapter we provide prescriptions for specifying, plotting, testing, post hoc probing,
and interpretating interactions among continuous variables. In Chapter 8, we introduce the
implementation of true categorical predictors (e.g., gender, ethnicity) in MR. In Chapter 9, we
extend MR to interactions among categorical variables and between categorical and continuous
variables.

7.1.1 Interactions Versus Additive Effects

Regression equations that contain as IVs only predictors taken separately signify that the effects
of continuous variables such as X and Z are additive in their impact on the criterion, that is,

Note that Eq. (7.1.1) is the same equation as Eq. (3.2.1), except that the notation X and Z has
been substituted for Xl and X2, respectively.

For a specific instance, consider the following numerical example:

The estimated DV increases .2 points for each 1-point increase in X and another .6 points for
each 1-point increase in Z. (Strictly speaking, this is correct only ifX and Z are uncorrelated. If
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they are correlated, these effects hold only when the two FVs are used together to estimate F.)
The effects of X and Z are additive. By additivity is meant that the regression of the criterion
on one predictor, say predictor X, is constant over all values of the other predictor Z.

Interactions as Joint Effects

In Eq. (7.1.2) we add a predictor XZ to carry an interaction between X and Z:

Literally, the predictor is the product of scores on predictors X and Z, calculated for each case.
While the interaction is carried by the XZ product term, the interaction itself is actually that
part of XZ that is independent of X and Z, from which X and Z have been partialed (more about
this in Section 7.6).

Consider our numerical example, but with the product term added:

If X and Z are uncorrelated, the criterion Y increases .2 points for each 1-point increase in X
and an additional .6 points for each 1-point increase in Z. Moreover, the criterion Y increases
an additional .4 points for a 1-point increment in the part of the cross-product XZ that is
independent of X and Z. The partialed component of the cross-product represents a unique
combined effect of the two variables working together, above and beyond their separate effects;
here a synergistic effect, as in the example of ability X and motivation Z as predictors of graduate
school achievement Y. Thus two variables X and Z are said to interact in their accounting for
variance in Y when over and above any additive combination of their separate effects, they
have a joint effect.

We can compare the joint or interactive effect of X and Z with the simple additive effects
of X and Z in three-dimensional graphs. For data, we plot 36 cases for which we have scores
on predictors X and Z (see Table 7.1.1 A). Both X and Z take on the values 0, 2, 4, 6, 8, and
10; the 36 cases were created by forming every possible combination of one X value and one
Z value. This method of creating cases makes X and Z uniformly distributed, that is, produces
an equal number of scores at each value of X and Z. The method also assures that X and Z
are uncorrelated. These special properties facilitate the example but are not at all necessary or
typical for the inclusion of interactions in MR equations. The means and standard deviations
of X and Z, as well as their correlations with Y, are given in Table 7.LIB.

Figure 7.1.1 (A) illustrates the additive effects (absent any interaction) of X and Z from the
equation Y = .2X + ,6Z + 2. Predictors X and Z form the axes on the floor of the graph; all
36 cases (i.e., points representing combinations of values of the predictors) lie on the floor.
Predicted Ys for each case (unique combinations of X and Z) were generated from the regression
equation. The regression plane, the tilted plane above the floor, represents the location of Y
for every possible combination of values of X and Z. Note that the regression plane is a flat
surface. Regardless of the particular combination of values of X and Z, the Y is incremented
(geometrically raised off the floor) by a constant value relative to the values of X and Z, that
is, by the value (.2X + .6Z).

The regression plane in Fig. 7.1.1(B) illustrates the additive effects of X and Z plus the
interaction between X and Z in the equation Y = .2X + .6Z + .4XZ + 2. The same 36
combinations of X and Z were used again. However, 7s were generated from the equation
containing the interaction. Table 7.LIB gives the mean and standard deviation of the product
term that carries the interaction, and its correlation with the criterion F. In Fig. 7.1.1(B) the
regression plane is now a stretched surface, pulled up in the corner above the height of the



TABLE 7.1.1
Multiple Regression Equations Containing Interactions:

Uncentered Versus Centered Predictors

A. Thirty-six cases generated from every possible combination of scores on predictors X and Z.

X (0,2,4,6,8,10)
Z (0,2,4,6,8,10)

Cases (X, Z combinations)
(0,0), (0,2),..., (4,6),..., (6,8),..., (10,10)

B. Summary Statistics for X, Z, and XZ (uncentered, in raw score form).

Means and standard deviations

X
Z

XZ

M

5.000
5.000

25.000

sd

3.464
3.464

27.203

X
Z

XZ

Correlation matrix

X Z

1.00 0.00
1.00

XZ

.637

.637
1.00

Y

.600

.709

.995

C. Unstandardized regression equations: prediction of Y from X and Z, and from X, Z, and
XZ (uncentered, in raw score form).

1. Uncentered regression equation, no interaction:

Y = .2X + .6Z + 2

2. Uncentered regression equation, with interaction:

Y = 2X + .6Z + .4XZ + 2

D. Simple regression equations for Y on X at values of Z with uncentered predictors and
criterion.

At Zhigh : Y = 3AX + 6.8
At Zmean : Y = 2.2X + 5.0
AtZ l o w : y=1.0X + 3.2

E. Summary statistics for x, z and xz (centered, in deviation form).

Means and standard deviations Correlation matrix

X

z
xz

M

0.000
0.000
0.000

sd

3.464
3.464

11.832

x z

x 1.00 .000
z 1.00
xz

xz

.000

.000
1.00

Y

.600

.709

.372

F. Unstandardized regression equations: prediction of Y from x and z, and from x, z, and xz
(centered, in deviation form).
1. Centered regression equation, no interaction:

2. Centered regression equation, with interaction:

G. Simple regression equations for Y on x at values of z with centered predictors
and criterion.

258
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(A) Regression surface: Y = .2X + .6Z + 2

(B) Regression surface: Y = .2X + .62 + AXZ + 2

FIGURE 7.1.1 Regression surface predicated in (A) an additive regression equa-
tion containing no interaction and (B) a regression equation containing an interaction.
Predictors and criterion are in raw score (uncentered) form.

flat regression plane in Fig. 7.1.1 (A). The amount by which the stretched surface is lifted
above the flat regression plane represents unique variance due to the interaction of X and Z,
over and above the individual additive effects of X and Z. What is the source of the upward
stretching? The stretching occurs because the increment in Y depends not only on additive
values of X and Z but also on their product XZ, and the product XZ increases in a curvilinear
fashion as X and Z increase linearly. Note the dramatic rise in the product XZ relative to the
sum X + Z:

X 0 2 4 6 8 10
Z 0 2 4 6 8 10

X + Z 0 4 8 12 16 20
XZ 0 4 16 36 64 100

7.1.2 Conditional First-Order Effects in Equations
Containing Interactions

As in polynomial regression explained in Chapter 6, we make the distinction between first-
order effects and higher order effects in regression equations containing interactions. First-order
effects refer to the effects of the individual predictors on the criterion. Higher order effects refer
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to the partialed effects of multiplicative functions of the individual predictors, for example the
XZ term with X and Z partialed out in Eq. (7.1.2).

When the effects of individual predictors are purely additive, as in Eq. (7.1.1), the first-
order regression coefficient for each predictor is constant over all values of the other predictor
(again, this is the definition of additivity). The constancy is illustrated in Fig. 7.1.1 (A). In
Fig. 7.1.1 (A), three lines on the regression plane defined by Y = .2X + .6Z + 2 are dark-
ened: at Z = 2,Z = 5 (i.e., the mean of Z, Mz) and Z = 8. These lines show the
regression of Y on X at each of these three values of Z: Z]ow,Zmean, and ZMgh, respec-
tively. These three regression lines are parallel, signifying that the regression of Y on X
is constant over values of Z. Thus the regression coefficient for the X predictor applies
equally across the range of Z. The only characteristic that varies across the three regres-
sion lines is the overall height of the regression line (distance from the floor of the graph).
The displacement upward of the lines as Z increases signifies that as Z increases, the crite-
rion Y increases as well (a first-order effect). On average, values of Y are higher for higher
values of Z.

Figure 7.1.1(B) represents the regression equation Y = 2X + ,6Z + AXZ + 2. Regression
lines for the regression of Y on X are drawn at the same three values of Z as in Fig. 7.1.1(A):
Z = 2,5,8. We see immediately that the regression line for Y on X becomes steeper as Z
increases. The regression of Y onX is not constant over all values of Z but depends specifically
on the particular value of Z at which the regression of Y on X is taken. Predictors X and Z are no
longer additive in their effects on Y; they are interactive. The regression of Y onX is conditional
upon (i.e., depends upon) the value of Z. In regression equations containing interactions, the
first-order effects of variables are conditional on (depend upon, or are moderated by) the values
of the other predictors with which they interact.

We have cast this discussion of conditional effects in terms of the regression of Y on X at
values of Z. However, the interaction between X and Z is symmetric. We could examine the
regression of Y on Z at values of X. The result would be the same: the regression of Y on Z
would differ as a function of X; that is, the regression of Y on Z is again conditional upon the
value of X.

Now we focus on the angle formed between the regression plane and the floor of
Fig. 7.1.1 (A). This angle is best seen at the right edge of Fig. 7.1.1 (A) (predictor X), where
Z = 0. In Fig. 7.1.1 (A), with no interaction, the slope of the regression of Y on X equals .2 at
Z = 0. Recall that .2 is the regression coefficient for Y on X in Eq. (7.1.1). This same angle is
maintained across the range of Z, which is another way of saying that the regression of Y on
X is constant across all values of Z, meeting the definition of additivity.

Examine the right edge of Fig. 7.1.1(B) (predictor X), where Z = 0. The regression of
Y on X also equals .2 at Z = 0 in Fig. 7.1.1(B), and the regression coefficient Bl for Y
on X in our numerical example containing an interaction is .2. However, in Fig. 7.1.1(B),
the slope of the regression of Y on X is only .2 at Z = 0. As Z increases, the slope of
Y on X also increases. Thus the numerical value of the regression coefficient Bl = .2 is
only an accurate representation of the regression of Y on X at one point on the regression
plane. In general, in a regression equation containing an interaction, the first-order regression
coefficient for each predictor involved in the interaction represents the regression of Y on
that predictor, only at the value of zero on all other individual predictors with which the
predictor interacts. The first-order coefficients have different meanings depending on whether
the regression equation does or does not include interactions. To reiterate, without an interaction
term the Bl coefficient for X represents the overall effect of X on Y across the full range of
Z. However, in Eq. (7.1.2), the Bl coefficient for X represents the effect of X on the criterion
only at Z = 0.
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7.2 CENTERING PREDICTORS AND THE INTERPRETATION
OF REGRESSION COEFFICIENTS IN EQUATIONS

CONTAINING INTERACTIONS

The interpretation of the first-order coefficients Bl and B2 in the presence of interactions is
usually problematic in typical social science data. The Bl coefficient represents the regression
of Y on X at Z = 0, and the B2 coefficient represents the regression of Y on Z at X = 0.
Only rarely in the social sciences is zero a meaningful point on a scale. For example, suppose,
in a developmental psychology study, we predict a level of language development (7) of
children aged 2 to 6 years from mother's language development (D), child's age (A), and the
interaction of mother's language development and child's age, carried by the DA term. In the
regression equation Y = B\D + B2A + B3DA + #0, the regression coefficient BI of child's
language development on mother's language development D is at child's age A = 0, not a
useful value in that all children in the study fall between ages 2 and 6. To interpret this B{

coefficient, we would have to extrapolate from our sample to newborns in whom the process of
language development has not yet begun. (Our comments about the dangers of extrapolation
in Section 6.2.5 apply here as well.)

7.2.1 Regression With Centered Predictors

We can make a simple linear transformation of the age predictor that renders zero on the age
scale meaningful. Simply, we center age, that is, put age hi deviation form by subtracting MA

from each observed age (i.e., a = A — MA). If age were symmetrically distributed over the
values 2, 3, 4, 5, and 6 years, MA = 4 years, and the centered age variable a would take on
the values —2, — 1,0,1,2. The mean of the centered age variable a necessarily would be zero.
When a is used in the regression equation Y = B±D + B2a + B3Da + B0, the Bl coefficient
represents the regression of child's language development on mother's language development
at the mean age of the children in the sample. This strategy of centering to make the regression
coefficients of first-order terms meaningful is identical to the use of centering in polynomial
regression (Section 6.2.3.).

The symmetry in interactions applies to centering predictors. If we center mother's language
development into variable d — D—MD and estimate the regression equation Y = BId+B2A +
B3dA + 50, then the B2 coefficient represents the regression of child's language development
on child's age at the mean of mother's language development in the sample.

Finally, suppose we wish to assess the interaction between age and mother's language
development. We center both predictors and form the product of the centered variables da
to cany the interaction and estimate the regression equation Y = Bvd + B2a + B3da + B0.
Both the Bl and B2 coefficients represent the first-order relationships at the centroid (mean on
both predictors) of the sample. The regression equation characterizes the typical case. In sum,
if all the predictors in a regression equation containing interactions are centered, then each
first-order coefficient has an interpretation that is meaningful in terms of the variables under
investigation: the regression of the criterion on the predictor at the sample means of all other
variables in the equation.

With centered predictors, each first-order regression coefficient has yet a second meaning-
ful interpretation, as the average regression of the criterion on the predictor across the range
of the other predictors. In the developmental study, if the d by a interaction were nonzero,
then the regression of child's language development on mother's language development would
differ at each age. Assume that there were an equal number of children at each age. Imagine
computing the regression coefficient B± of child's language development on mother's language
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development separately at each age and then averaging all these Bl coefficients. The B1 coef-
ficient for the impact of mother's language development in the overall centered regression
equation containing all ages would equal the average of the individual BI coefficients at each
child's age. If there were an unequal number of children at each age, then the overall BI coef-
ficient would equal the weighted average of the individual BI coefficients, where the weights
were the number of children at each age. In sum, when predictors are centered, then each
first-order coefficient in a regression equation containing interactions is the average regression
of the criterion on a predictor across the range of the other predictors in the equation.

7.2.2 Relationship Between Regression Coefficients
in the Uncentered and Centered Equations

As noted in Chapter 2, correlational properties of variables do not change under linear trans-
formation of variables. Linear transformations include adding or subtracting constants, and
multiplying and dividing by constants. If we correlate height in inches with weight in pounds,
we obtain the same value as if we correlate height in inches with weight in ounces or kilo-
grams. Centering, or putting predictors in deviation score form by subtracting the mean of the
predictor from each score on the predictor, is a linear transformation. Thus our first intuition
might be that if predictors were centered before they were entered into a regression equation,
the resulting regression coefficients would equal those from the uncentered equation. This
intuition is correct only for regression equations that contain no interactions.

As we have seen, centering predictors provides tremendous interpretational advantages in
regression equations containing interactions, but centering produces a very puzzling effect.
When predictors are centered and entered into regression equations containing interactions,
the regression coefficients for the first-order effects Bl and B2 are different numerically from
those we obtain performing a regression analysis on the same data in raw score or uncentered
form. We encountered an analogous phenomenon in Chapter 6 in polynomial regression; when
we centered the predictor X, the regression coefficient for all but the highest order polynomial
term changed (see Section 6.2.3). The explanation of this phenomenon is straightforward and is
easily grasped from three-dimensional representations of interactions such as Fig. 7.1.1 (B). An
understanding of the phenomenon provides insight into the meaning of regression coefficients
in regression equations containing interactions.

7.2.3 Centered Equations With No Interaction

We return to the numerical example in Table 7.1.1 and Fig. 7.1.1. The means of both predictors
X and Z equal 5.00. Uncentered and centered X and Z would be as follows:

Now, assume that we keep the criterion Y in its original uncentered metric, but we use x
and z, and re-estimate the regression equation without an interaction. The resulting regression
equation is

The regression coefficients for x and z equal those for uncentered X and Z. Only the
regression intercept has changed. From Chapter 3, Eq. (3.2.6), the intercept is given as

and
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BQ = My — B^MX — B2MZ. Centering X and Z changed their means from 5.00 to 0.00, leading
to the change in B0. In fact, there is a simple algebraic relationship between B0 in the centered
versus uncentered equations. For the uncentered regression equation Y = BVX + B2Z + B0

versus the centered regression equation Y = B\x + B2z + BQ,

The centered regression equation is plotted in Fig. 7.2.1 (A). The only difference between
Fig. 7.1.1(A) and Fig. 7.2.1(A) is that the scales of the X and Z axes in Fig. 7.2.1(A) have
been changed from those in Fig. 7.1.1 (A) to reflect centering. Note that x = 0 and z = 0
in Fig. 7.2.1 (A) are now in the middle of the axes, rather than at one end of the axes, as in
Fig. 7.1.1 (A). Note also that the criterion Y is left uncentered.

Figure 7.2.1 (A) confirms the numerical result that the regression coefficients Bl and B2

do not change when we center predictors in regression equations containing no interactions.

(A) Regression surface from centered regression equation: Y = .2x + .6z + 6

FIGURE 7.2.1 Regression surface predicted in (A) an additive regression equation
containing no interaction and (B) a regression equation containing an interaction.
Predictors are in centered (deviation) form.

(B) Regression surface from centered regression equation: Y = 2.2x + 2.6z + .4xz + 16

For our exampli, this is
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Consider B^ the slope of Y on X at Z = 0 in Fig. 7.1.1 (A) is the same as that for Y on x at
z = 0 in Figure 7.2.1 (A), though the location of Z = 0 differs across the figures.

A comparison of Figures 7.1.1(A) and 7.2.1(A) also confirms the change in intercept. The
intercept is the height of the regression plane from the floor at the point X = 0, Z = 0. In
Fig. 7.1.1 (A) for the uncentered equation, this point is in the lower right-hand corner of the
plane; here the plane is only two units from the floor, so B0 = 2. As pointed out earlier,
in Fig. 7.2.1 (A) for the centered equation, the point x = Q,z = 0 is now in the center of
the regression plane. (When all predictors have been centered, the value 0, 0 is the centroid
of the predictor space.) The overall elevation of the plane is farther from the floor at this
point, specifically six units from the floor, so B0 = 6. The change in the location of the point
X = 0, Z = 0 produced by centering also produces the change in the intercept.

7.2.4 Essential Versus Nonessential Multicollinearity

The correlation matrix among the centered predictors, including xz, and of the centered predic-
tors with the criterion is given in Table 7.1. IE. This correlation matrix should be compared with
that in Table 7.1 .IB for the uncentered predictors. There is one dramatic change when predic-
tors are uncentered versus centered. The correlations of the X and Z terms with XZ (r = .637
in each case) are substantial in the uncentered case but fall to zero in the centered case. This
drop is another example of essential versus nonessential multicollinearity (Marquardt, 1980),
also encountered in our work with polynomial regression equations (Section 6.2.3).

Algebraically, the covariance (numerator of the correlation coefficient) between X and XZ
is in part a function of the arithmetic means of X and Z. If X and Z are each completely
symmetrical, as in our numerical example, then the covariance (cov) between X and XZ is as
follows (Aiken & West, 1991, p. 180, eq. A.15):

If X and Z are centered, then Mx and Mz are both zero, and the covariance between x and
xz is zero as well. Thus the correlation between x and xz is also zero. The same holds for
the correlation between z and xz. The amount of correlation that is produced between X and
XZ or Z and XZ by the nonzero means of X and Z, respectively, is referred to as nonessen-
tial multicollinearity (Marquardt, 1980). This nonessential multicollinearity is due purely to
scaling—when variables are centered, it disappears. The amount of correlation between X and
XZ that is due to skew in X cannot be removed by centering. This source of correlation between
X and XZ is termed essential multicollinearity. The same is true for the correlation between Z
andXZ.

7.2.5 Centered Equations With Interactions

Now consider the use of centered predictors in an equation containing an interaction. How do
the coefficients of the uncentered equation Y = B\X + B2Z + B3XZ + B0 relate to those in the
centered equation Y = Blx+B2z + B3xz + B07 For the same reason as in the equation without
an interaction, the intercept changes here. However, B^ and B2 also change, often dramatically,
in association with the changes in the correlation matrix of predictors just described.

In the numerical example of Table 7.1.1, the centered equation is

This equation was found by retaining the criterion Y in raw score form, centering X and Z into
x and z, respectively, forming the cross-product of centered X and Z (i.e., xz), and predicting
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Y from x, z, and xz. Note that the intercept BQ has changed from B0 = 2 in the uncentered
regression equation to 16 in the centered equation. Coefficients B\ and B2 have changed from
.2 and .6, respectively, to 2.2 and 2.6, respectively. As we will see, these changes do not mean
that the relationships of X and Z to the criterion Y have somehow changed with centering.

The centered regression equation containing an interaction is plotted in Fig. 7.2.1(B). As
noted earlier, the value x = 0, z = 0 has moved from the lower right-hand corner of the
regression plane in Fig. 7.1.1(B) to the middle of the regression plane in Fig. 7.2.1(B) due to
centering.

A comparison of Fig. 7.1.1 (B) with Fig. 7.2.1 (B) gives insight into the source of the change in
regression coefficients. In the uncentered equation, the Bl coefficient represented the regression
of Y on X at Z = 0, at the far right edge of Fig. 7.1.1(B). For higher values of Z (moving left
along Fig. 7.1.1(B), the regression of Y on X became increasingly steep. With centered z, in
Fig. 7.2.1(B), the value z = 0 is no longer at the right edge of the figure; it is halfway up the
regression plane. At zmean = 0 the regression of Y on jc has risen to 2.2, the value of B± in the
centered regression equation.

In general, centering predictors moves the value of zero on the predictors along the regres-
sion surface. If the regression surface is a flat plane (i.e., the regression equation contains no
interaction), then the regression of Y on X is constant at all locations on the plane. Moving
the value of zero by linear transformation has no effect on the regression coefficient for the
predictor. If the regression surface is not flat (i.e., the regression equation contains an inter-
action), then the regression of Y on X varies across locations on the plane. The value of the
BI regression coefficient will always be the slope of Y on X at Z = 0 on the plane, but the
location of Z = 0 on the plane will change with centering.

What about the interpretation of Bl as the average regression slope of Y on jc across all values
of z in the centered regression equation, Y = B^x + B2z + B3xz + BQ1 A closer examination
of Fig. 7.2.1(B) confirms this interpretation. In Fig. 7.2.1, the far right-hand edge now is at
z = — 5; at this point the regression of Y on X is .2. At the far left edge, z = 5 and the slope of
the regression of Y on X is 4.2. The distribution of Z is uniform, so the average slope across
all cases represented in the observed regression plane is (.2 + 4.2)/2 = 2.2; this is the value
of the BI coefficient. Thus Bl is the average slope of the regression of Y on X across all values
of centered predictor Z.

There are straightforward algebraic relationships between the B0, Bl9 and B2 coefficients in
the uncentered versus centered regression equation containing the interactions:

For our numerical example,

Note that if there is no interaction (i.e., B3 = 0), then the BI and B2 coefficients would remain
the same if X and Z were centered versus uncentered. This confirms what we know—only if
there is an interaction does rescaling a variable by a linear transformation change the first
order regression coefficients.

For the relationship of the intercept 50,centered to ^o,uncentered» we nave
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For our numerical example

Equations (7.2.1), (7.2.2), and (7.2.3) pertain only to Eq. (7.1.1). These relationships differ
for every form of regression equation containing at least one interaction term; they would
be different for more complex equations, for example, Eqs. (7.6.1) and (7.9.2) given below.
Aiken and West (1991, Appendix B) provide an extensive mapping of uncentered to centered
regression equations.

7.2.6 The Highest Order Interaction in the Centered Versus
Uncentered Equation

By inspection the shapes of the regression surfaces in Fig. 7.1.1(B) for uncentered data and
Fig. 7.2.1(B) for centered data are identical. Consistent with this, there is no effect of centering
predictors on the value of regression coefficient B3 in Eq. (7.1.2). The 53 coefficient is for the
highest order effect in the equation; that is, there are no three-way or higher order interactions.
The interaction, carried by the XZ term, reflects the shape of the regression surface, specifically
how this shape differs from the flat regression plane associated with regression equations having
only first-order terms. This shape does not change when variables are centered. In general,
centering predictors has no effect on the value of the regression coefficient for the highest order
term in the regression equation. For Eq. (7.1.2) we have

7.2.7 Do Not Center Y

In computing the centered regression equations and in displaying the regression surfaces in
Figs. 7.1.1 and 7.2.1, Y has been left in uncentered form. There is no need to center Y because
when it is in its original scale, predicted scores will also be in the units of the original scale
and will have the same arithmetic mean as the observed criterion scores.

7.2.8 A Recommendation for Centering

We recommend that continuous predictors be centered before being entered into regression
analyses containing interactions. Doing so has no effect on the estimate of the highest order
interaction in the regression equation. Doing so yields two straightforward, meaningful inter-
pretations of each first-order regression coefficient of predictors entered into the regression
equation: (1) effects of the individual predictors at the mean of the sample, and (2) average
effects of each individual predictors across the range of the other variables. Doing so also elim-
inates nonessential multicollinearity between first-order predictors and predictors that carry
their interaction with other predictors.1

There is one exception to this recommendation: If a predictor has a meaningful zero point,
then one may wish to keep the predictor in uncentered form. Let us return to the example of
language development. Suppose we keep the predictor of child's age (A). Our second predictor

'The issue of centering is not confined to continuous variables; it also comes into play in the coding of categorical
variables that interact with other categorical variables or with continuous variables in MR analysis, a topic developed
in Chapter 9.
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is number of siblings (S). Following our previous argument, we center age. However, zero
siblings is a meaningful number of siblings; we decide to retain number of siblings S in its
uncentered form. We expect age and number of siblings to interact; we form the cross-product
aS of centered a with uncentered S and estimate the following regression equation:

The interpretation of the two first-order effects differs. The effect of number of siblings is
at a = 0; since a is centered, B2 is the regression of language development on number of
siblings at the mean age of children in the sample. The effect of child's age is at S = 0,
where 5 = 0 stands for zero siblings. Hence Bl is the regression of language development
on age for children with no siblings. If this is a meaningful coefficient from the perspec-
tive of data summarization or theory testing, then centering is not advised. But even if the
variable has a meaningful zero point, it may be centered for interpretational reasons. If num-
ber of siblings had been centered, then BI would be interpreted as the regression of language
development on age at mean number of siblings. Finally, B3 is not affected by predictor scaling
and provides an estimate of the interaction between the predictors regardless of predictor
scaling.

Our discussion of centering predictors has been confined to those predictors that are included
in the interaction. But it is entirely possible that we include a predictor that is not part of any
interaction in a regression equation that contains interactions among other variables. Suppose
in the example of language development, we wish to control for mother's education level (E)
while studying the interaction between child's age and number of siblings in predicting child's
language development. Assume we wish to center number of siblings for interpretational
reasons. We estimate the following regression equation:

It is not necessary to center E. The Bl,B2, and B3 coefficients will not be affected by the scaling
of £ because E does not interact with any other predictors in the equation. In addition, since E
does not interact with the other predictors, the B4 coefficient will be completely unaffected by
changes in scaling of age and number of siblings. In fact, the only effect of centering E is on
the intercept BQ. However, we recommend that for simplicity, if one is centering the variables
entering the interaction, one should also center the remaining variables in the equation.

To reiterate our position on centering, we strongly recommend the centering of all predictors
that enter into higher order interactions in MR prior to analysis. The cross-product terms that
carry the interactions should be formed from the centered predictors (i.e., center each predictor
first and then form the cross-products). Centering all predictors has interpretational advantages
and eliminates confusing nonessential multicollinearity.

There is only one exception to this recommendation to center. If a predictor has a meaningful
zero point, then one may wish to have regression coefficients in the overall regression equation
refer to the regression of the criterion on predictors at this zero point. For the remainder of this
chapter, we will assume that all predictors in regression equations containing an interaction
have been centered, unless otherwise specified.

7.3 SIMPLE REGRESSION EQUATIONS AND SIMPLE SLOPES

If an interaction is found to exist in a regression equation, the issue becomes one of interpre-
tation of the interaction. The approach we take harkens back to the idea of conditional effects
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in MR with interactions: When X and Z interact, the regression of each predictor depends on
the value of the other predictor. To characterize interactions, we examine the regression of the
criterion Y on one predictor X at each of several values of the other predictor Z, as when we
examine the regression of Y on x at zlow, zmean> and £high in Fig- 7.2.1(B). Following Aiken and
West (1991), we call the regression line of Y on X at one value of Z a simple regression line.
Hence, Figs. 7.2.1 (A) and 7.2.1(B) each contain three simple regression lines.

In Fig. 7.3.1, we plot the centered simple regression lines of Fig. 7.2.1 in more familiar
two-dimension representations. In Fig. 7.3.1(A), the regression lines of Y on jc at Zi0w»£mean>
and zhigh are reproduced from Fig. 7.2.1 (A). Similarly, the three regression lines of Y on x
in Fig. 7.3.1(B) are those from Fig. 7.2.1(B). Each line in Figs. 7.3.1(A) and 7.3.1(B) is the
regression of Y on x at one value of the other predictor z, a simple regression line. The rule for
discerning the presence of an interaction is straightforward. If the lines are parallel, there is no
interaction, since the regression of Y on X is constant across all values of Z. If the lines are not
parallel, there is an interaction, since the regression of Y on X is changing as a function of Z.

(A) Simple regression lines and equations based on Eq. (7.1.1), no
interaction. Simple regression lines correspond to those in Fig. 7.2.1 (A).

(B) Simple regression b'nes and equations based on Eq. (7.1.2), with
interaction. Simple regression b'nes correspond to those in Fig. 7.2.1(B).

FIGURE 7.3.1 Simple regression lines and equations for Y on centered x at three
values of centered z. The simple regression lines correspond directly to the simple
regression lines in Fig. 7.2.1.
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7.3.1 Plotting Interactions

Plotting interactions is the first step to their interpretation. We recommend plotting the regres-
sion of Y on X at three values of Z: the mean of Z plus a low and a high value of Z. Often
a convenient set of values to choose are the mean of Z (Zmean), one standard deviation below
the mean of Z (Zlow), and one standard deviation above the mean of Z (Z^gh). However, there
may be specific meaningful values of Z—for example, clinical cutoffs for diagnostic levels of
illness, or the income in dollars defined as the poverty level for a family of four. The symmetry
of interactions means that the choice of plotting Y on X at values of Z as compared to Y on Z
at values of X will depend on the theoretically more meaningful characterization of the data.

7.3.2 Moderator Variables

Psychological theories often hypothesize that a relationship between two variables will depend
on a third variable. The third variable is referred to as a moderator (Baron & Kenny, 1986).
These third variables may be organismic (e.g., gender, ethnicity, personality traits, abilities)
or situational (e.g., controllable versus uncontrollable stressful events). They may be merely
observed or manipulated. Of course, they are characterized statistically in terms of interactions.
If a theory predicts that a variable M will moderate the relationship of another variable X to
the criterion, then it is appropriate to plot regression of Y on X at meaningful values of the
moderator M.

7.3.3 Simple Regression Equations

We can write a simple regression equation for each of the simple regression lines of
Figs. 7.3.1(A) and 7.3.1(B). The use of simple regression equations is the key to the inter-
pretation of interactions in MR analysis. A simple regression equation is the equation for the
regression of the criterion on one predictor at a specific value of the other predictor(s), here Y
on x at specific values of z.

For Figs. 7.2.1 (A) and 7.3.1 (A) with centered x and z, we place brackets in the regression
equation with no interaction, Y = .2x + .6z + 6, to show the regression of Y on x at values of
z, in the form of a simple regression equation:

Here the intercept of the simple regression equation [.6z + 6] depends on the value of z; the
slope of .2 does not. For each of the three values of z, we generate a simple regression equation.
Recall that centered z takes on the values (—5, —3, — 1,1,3,5), with zmean = 0- We choose

We note that in all three equations the regression coefficient for x has the constant value .2.
The intercept increases from 4.2 to 6.0 to 7.8, as z increases from —3 to 0 to 3.

To plot a simple regression line, we follow standard practice for plotting lines: we substitute
into the equation two values of*, and find Y corresponding to those two values, giving us two
points for plotting. For example, for zhigh» where Y = .2x + 7.8, if x = —3, then Y — 7.2;
if x = 3, Y = 8.4. To plot the simple regression line for Zfogh in Fig- 7.3.1 (A), we used the
points (-3,7.2) and (3, 8.4).
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The numerical result corresponds completely with the graphical results in Figs. 7.2.1 (A)
and 7.3.1(A). The simple slopes of the simple regression lines (i.e., the regression coefficients
for Y on* in the simple regression equations) are constant at .2. The simple intercepts, that is,
the regression constants in the simple regression equations (values of Y at x = 0 for specific
values of z), increase with increasing values of z.

For Figs. 7.2.1(B) and 7.3.1(B), we first rearrange the regression equation containing the
interaction, Y = 2.2* + 2.6z + Axz +16, placing the terms involving x at the beginning of the
equation:

We then factor out x and include some brackets to show the regression of Y on x at z in the
form of a simple regression equation:

The expression [2.2 + Az] is the simple slope of the regression of Y on x at a particular value
of z; [2.6z + 16] is the simple intercept. In an equation with an xz interaction, both the simple
slope and simple intercept for the regression of Y on x depend on the value of z.

For each of the three values of z, we generate a simple regression equation:

The numerical result is the same as the graphical results in Fig. 7.2.1(B) and 7.3.1(B): The
simple slopes of the simple regression lines increase from 1.0 to 2.2 to 3.4 as z increases; the
simple intercepts (values of Y at x = 0), increase from 8.2 to 16.0 to 23.8 as z increases. To
plot a simple regression we follow the same approach as described earlier, that is, to substitute
two values of x and solve for 7. For z]ow, where Y = l.Ojc + 8.2, if x = —3, then Y = 5.2; if
x = 3, then Y = 11.2. To plot the regression line for ZIQW in Fig 7.3.1(B), we used the points
(-3,5.2) and (3,11.2).

7.3.4 Overall Regression Coefficient and Simple Slope
at the Mean

The overall regression coefficient BI for the regression of Y on x in the centered regression
equation containing the interaction is 2.2 and represents the regression of Y on x at z = 0.
The simple regression coefficient for Y on centered x at zmean = 0 is also 2.2. This equality
of coefficients is expected, since both coefficients represent the regression of Y on x at z = 0.
In general, the simple regression coefficient for the regression of Y on jc at the mean of z will
equal the overall regression coefficient of Y on x in the centered regression equation.

We may cast simple regression equations in a general form. First, we have the overall
regression equation containing predictors X and Z and their interaction:

where 53 is the regression coefficient for the interaction. We rearrange Eq. (7.1.2) to show the
regression of Y on X at values of Z:
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the simple regression equation for the regression of Y on X at specific values of Z. The
coefficient [B{ + 53Z] for X in Eq. (7.3.1) is the simple slope, an expression for the slopes of
simple regression lines such as those in Fig. 7.3.1(B). If B3 is nonzero, meaning that there is
an interaction between X and Z, then the value of this simple slope [5j + #3Z] will differ for
every value of Z. If B3 is zero, signifying that there is no interaction between X and Z, then the
simple slope will always equal Bl, the coefficient for predictor X, regardless of the value of Z.

We stated earlier that the interaction between X and Z is symmetric. Thus we can also
rearrange Eq. (7.1.2) to show the regression of Y on Z at values of X:

The simple slope [B2 + B3X] for the regression of Y on Z shows that if 53 is nonzero, the
regression of Y on Z will differ for each value of X. If 53 is zero, meaning that there is no
interaction, the regression of Y on Z is constant for all values of X. The symmetry is complete. It
should also be noted that the expressions for simple slopes depend completely on the regression
equation for the entire sample, including both main effects and interactions.

7.3.5 Simple Slopes From Uncentered Versus Centered Equations
Are Identical

We learned in Section (7.2.6) that the regression coefficient B3 for the highest order interaction
term XZ in Eq. (7.1.2) remains invariant when predictors are centered; this is so because the
shape of the regression surface is unchanged by centering. Simple slopes are regressions of Y
on a predictor, say X, at particular points on that surface, defined by the other predictor, here
Z. If simple regression equations are computed at analogous values of Z in the centered and
uncentered case, then the slopes of these simple regression lines will be identical in the centered
versus uncentered case; only the intercepts will differ. This point cannot be overemphasized.
The interpretation of the interaction remains identical across the centered versus the uncentered
form of a regression equation. This is why we can move between the uncentered and centered
forms of an equation without jeopardizing interpretation.

In our example, uncentered Z has the values (0, 2, 4, 6, 8, 10) and the corresponding
values of centered z are (—5, —3, —1,1,3,5). Uncentered Z = 2, for example, corresponds
to centered z = — 3. We rearrange the uncentered equation Y = ,2X + AXZ + .6Z + 2 into
the simple regression equation Y = (.2 + AZ)X + (.6Z + 2) and substitute Z = 2, yielding
Y = (.2 + .4(2))X + (.6(2) + 2), or Y = 1 .OX + 3.2. The simple regression of Y on x at z = -3
in the centered equation Y = 2.2x + 2.6z + Axz + 16 is Y = l.Qx + 8.2. The simple slopes
are identical; only the intercept has changed. Simple slopes from the uncentered and centered
regression equations are given in Table 7.1. ID and G, respectively.

7.3.6 Linear by Linear Interactions

The interaction between X and Z in Eq. (7.1.2) is a linear by linear interaction. This means
that the regression of Y on X is linear at every value of Z or, equivalently, that the regression
coefficient of Y on X changes at a constant rate as a function of changes in Z. Thus we find
the symmetric fanning of simple regression lines illustrated in Fig. 7.3.1(B). All the simple
regression equations characterize straight lines; they change slope at a constant rate as Z
increases. This linearity is symmetric: The regression of Y on Z is linear at every value of X;
the regression of Y on Z changes at a constant rate as a function of changes in X.
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Chapter 6 explored the treatment of curvilinear relationships of individual variables through
polynomial regression. Interactions of curvilinear functions of one predictor with linear or
curvilinear components of another predictor are possible. In Section 7.9 we will take up more
complex interactions that include curvilinear relationships.

7.3.7 Interpreting Interactions in Multiple Regression
and Analysis of Variance

The reader familiar with ANOVA will note the similarity of the proposed strategy to the
well-developed strategy used in ANOVA for the interpretation of interactions. In ANOVA
with factors A and B interacting, the approach involves examining the effect of one factor A
involved in the interaction at each of the several levels of the other factor B involved in the
interaction. The purpose of the analysis is to determine the levels of factor B at which factor
A manifests an effect. In ANOVA, the effect of a factor on the outcome, confined to one level
of another factor, is termed a simple main effect (e.g., Kirk, 1995; Winer, Brown, & Michels,
1991). The format of Fig. 7.3.1 is highly similar to that typically used in ANOVA to illustrate
the effects of two factors simultaneously. In ANOVA we have plots of means of one factor at
specific levels of another factor. In MR, we have plots of simple regression lines of the criterion
on one predictor at specific values of another predictor. In Section 7.4 we present a method
for post hoc probing of simple slopes of simple regression lines in MR that parallels post hoc
probing of simple main effects in ANOVA.

7.4 POST HOC PROBING OF INTERACTIONS

Plotting interactions provides substantial information about their nature. In addition to inspect-
ing simple slopes to describe the specific nature of interactions, we may also create confidence
intervals around simple slopes. Further we may test whether a specific simple slope, computed
at one value of the other predictor(s), differs from zero (or from some other value).

7.4.1 Standard Error of Simple Slopes

In Chapter 3 (Section 3.6.1), we introduced the standard error of a partial regression coefficient,
SEB., a measure of the expected instability of a partial regression coefficient from one random
sample to another. The square of the standard error is the variance of the regression coefficient.

We also may measure the standard error of a simple slope, that is, of the simple regression
coefficient for the regression of Y on X at a particular value of Z. For example, if Z were a
7-point attitude scale ranging from 1 to 7, Mz = 4, and we centered Z into z, ranging from —3
to +3, we might examine the simple slope of Y on x at values of z across the centered attitude
scale, say at the values [—3 —1 1 3]. The numerical value of the standard error of the
simple slope of Y on x is different at each value of z.

In Eq. (7.3.1) for the regression of Y on X at values of z, the simple slope is [Bl + #3Z]. The
standard error of the simple slope depends upon the variances of both Bl and fi3. It also varies
as a function of the covariance between the estimates of BI and B3. This is a new concept—
that regression coefficients from the same equation may be more or less related to one another.
Some intuition can be gained if one imagines carrying out the same regression analysis on
repeated random samples and making note of the values of B\ and B3 in each sample. Having
carried out the analysis many times, we could measure the covariance between the BI and B3

coefficients across the many samples; this is the covariance we seek.
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For Eq. (7.1.2), the variances ofBi,B2, and B3 and their covariances are organized into a
matrix called the covariance matrix of the regression coefficients; it appears as follows:

where SE% is the variance of regression coefficient 5, and COVB. is the covariance between
regression coefficients Bt and Bj. This matrix is provided by standard programs for multiple
regression, including SAS, SPSS, and SYSTAT.

The standard error of the simple slope for the regression of Y on X at a particular value of
Z is given as follows:

Specific values are taken from the covariance matrix in Eq. (7.4.1) and from the predictor Z
itself. This equation applies whether centered or uncentered variables are used. However, the
values in the SB matrix will differ depending on predictor scaling, just as do the values in the
correlation matrix of the predictors themselves.

Each standard error of a simple slope only applies to a particular regression coefficient in
a particular regression equation. For the regression of Y on Z at values of X, the standard
error is

7.4.2 Equation Dependence of Simple Slopes
and Their Standard Errors

As was stated earlier, the expressions for both the simple slopes depend on the particular
regression equation for the full sample. This is also the case for the standard errors of simple
slopes. The simple slopes determined by Eqs. (7.3.1) and (7.3.2), and their respective standard
errors in Eqs. (7.4.2) and (7.4.3), apply only to equations with two-variable linear interactions
such as Eq. (7.1.2). These expressions are not appropriate for more complex equations with
higher order terms or interactions involving quadratic terms, such as Eqs. (7.6.1) and (7.9.2).
Aiken and West (1991, pp. 60 and 64) provide expressions for both the simple slopes and the
standard errors of simple slopes for a variety of regression equations.

7.4.3 Tests of Significance of Simple Slopes

Tests of significance of individual predictors in a multiple regression equation are given in
Chapter 3 (Section 3.6.4). These tests generalize directly to tests of significance of simple
slopes. Suppose we wish to test the hypothesis that the simple slope of Y on X is zero at some
particular value of Z. The t test for this hypothesis is

where k is the number of predictors. For the significance of difference from zero of the
regression of Y on Z at values of X, the appropriate t test is
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7.4.4 Confidence Intervals Around Simple Slopes

The structure of the confidence interval for a simple slope follows that described in Section 2.8.2
for the confidence interval on the predictor in a one-predictor equation and in Section 3.6.1
for the confidence interval on a regression coefficient in a multiple prediction equation. For
a two-tailed confidence interval for the regression of Y on X at a specific level of confidence
(1 — a) the margin of error (me) is given as follows:

where /i_a/2 refers to a two-tailed critical value of t for specified a, with (n — k— \ ) d f . The
critical value of t is the same value as for the t test for the significance of each regression
coefficient in the overall regression analysis and for the significance of the simple slope.

The confidence interval is given as

where |3y on x at z is the value of the simple slope in the population. For the regression of Y on
Z at values of X, the margin of error and confidence interval are as follows:

where tl_a/2 is as in Eq. (7.4.6).
The confidence interval on the simple slope is

where {}£ on z at x is the value of the simple slope in the population.
The interpretation of the CI for a simple slope follows that for a regression coefficient. For

example, for level of confidence 95%, we can be 95% confident that the true simple slope
Py on A: at z fe^ within the interval we have calculated from our observed data. An alternative
frequentist interpretation is that if we were to draw a large number of random samples from the
same population, carry out the regression analysis, and compute the confidence interval of Y
on X at one specific value of Z, 95% of those intervals would be expected to contain the value
Py on x at z- ®f course, the CI on the simple slope provides all the information provided by the
null hypothesis significance tests given in Eq. (7.4.4) when the a selected in determining the
me is equivalent. If the confidence interval on the simple slope includes zero, we do not reject
the null hypothesis that the simple slope differs from zero.

Some caution in our thinking is required here. Consider once again the developmental
example of the prediction of child's language development (Y) from child's age (A) as a
function of number of siblings (5). In each of a large number of samples of children from the
same population, we might construct the 95% confidence interval for the regression of Y on
A for S = 1 sibling. Our frequentist interpretation would be that across a large number of
samples, 95% of the confidence intervals would include the true population value of the slope
for the regression of child's language development on child's age for children with only one
sibling. Suppose, however, we computed the regression of Y on A for the mean number of
siblings in each sample; that is, we would not pick a specific number of siblings, but would
rather use the mean number of siblings in a particular sample as the value of S for examining
the regression of Y on age (A) at 5. The mean number of siblings varies across samples. Thus
the CI on the simple slope would be for a different value of S in each sample. We could not
strictly use the frequentist interpretation of the CI calculated at the mean of any particular
sample. Put another way, in comparing the simple regression of Y on X at a value of Z across
different samples, the value of Z must be held constant (fixed) across the samples.
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7.4.5 A Numerical Example

In Table 7.4.1 and Fig. 7.4.1 we present an example in which physical endurance (K) of n = 245
adults is predicted from their age (X) and the number of years of vigorous physical exercise
(Z) in which they have engaged. In the sample, the mean age is 49.18 (sd = 10.11, range 20
to 82), and the mean number of years of vigorous physical exercise is 10.67 (sd = 4.78, range
0 to 26 years). Physical endurance is measured as the number of minutes of sustained jogging
on a treadmill. The mean number of minutes of sustained performance is 26.53 (sd = 10.82,
range 0 to 55 minutes, a sample with noteworthy stamina).

Centered and Uncentered Scale in Plots
In Fig. 7.4.1 we have adopted a convention of plotting on the x axis both the original raw

score scale of the predictor and the centered scale in which data are being analyzed. This
strategy is useful for conceptually retaining the meaning of the original scale units of the
predictor during analysis and interpretation. Since the criterion is not centered for analysis, it
is shown only in raw score form in the graph. We plot the range of the variable on the x axis
from one standard deviation below the mean (age = 39.07 years) to one standard deviation
above the mean (age = 59.29 years). This range is smaller than the full range of the X variable
of 20 to 82 years.

In the overall centered regression of endurance (Y) on centered age (jc) and centered years
of exercise (z), Y = -.262* + .973z + Mlxz + 25.888. Endurance, not surprisingly, declines
with age. Since the predictors are centered, the amount of decline with age signified by the
regression coefficient (B^ = —.26) is a loss in endurance of .26 minutes on the treadmill test
for a one-year increase in age for people at the mean level of years of exercise in the sample
(uncentered Afz = 10.67 years). Endurance, in contrast, increases with exercise (B2 = .97),
with the amount of increase of .97 minutes on the endurance test for each year of vigorous
exercise, applicable to people at the mean age of the sample (uncentered Mx = 49.18 years).

The XZ interaction signifies that the decline in endurance with age depends on a history of
exercise, as illustrated in Fig. 7.4.1 (A); the regression of endurance (F) on age (x) is plotted at
three values of exercise (z). In fact, the decline in endurance with age is buffered by a history of
exercise; that is, the more vigorous is exercise across the life span, the less dramatic the decline
in endurance with age. In general, if one variable weakens the impact of another variable on
the criterion, that variable is said to buffer the effect of the other variable. One can intuit the
numerical workings of the interaction by considering some cross-product values of centered x
and z. If a person is above the mean age and above the mean exercise, then the cross-product is
positive and increases predicted endurance; that is, the person's predicted endurance is higher
than would be expected from his/her age alone. If the person is above the mean age but below
the mean exercise, the cross-product is negative and decreases predicted endurance below that
expected for people of that age at the average exercise level in the sample.

A comment is in order about the magnitude of the interaction. As shown in Table 7.4.IB,
R2 with only x and z but without the interaction as predictors is. 17; inclusion of the interaction
increases R2 to .21. Thus the interaction accounts for 4% of the variance in the criterion, over
and above the main effects, Fgain(l,241) = 12.08,;? < .01. This may seem to be a small
amount, but it is of the order of magnitude typically found in behavioral research (Chaplin,
1991; Champoux & Peters, 1987; Jaccard & Wan, 1995). While this is "only" 4% of the
variance accounted for, the buffering effect is strong indeed, as shown in Fig. 7.4.1(A). With a
short history of exercise, there is a decline of .49 minutes in treadmill performance per year of
age; yet with a long history of exercise, there is essentially no decline in treadmill performance
(a bit of wishful thinking on the part of the creator of this example).

CH07EX01



TABLE 7.4.1
Regression Analysis of Physical Endurance (Y) as a Function of Age (X)

and Years of Vigorous Exercise (Z), n = 245

A. Summary Statistics for centered x and z and cross-product xz.

Means and standard deviations

X

z
xz
Y

M

0.00
0.00

13.59
26.53

sd

10.11
4.78

46.01
10.82

X

z
xz
Y

Correlation matrix

x z

1.00 .28
1.00

xz

.01
-.12
1.00

Y

-.13
.34
.15

1.00

B. Centered regression equations:
1. Prediction of Y from centered x and z'.

2. Prediction of Y from centered x and z, and xz:

C. Covariance matrix of the regression coefficients in the centered regression equation
containing interactions (Part B2):

B,
B2
B,

B,

.00410
-.00248
-.00001806

B2 B3

-.00248 -.00001806
.01864 .0002207
.0002207 .0001848

D. Analysis of simple regression equations for regression of uncentered endurance (Y) on
centered age (x) at three values of centered years of exercise (z):

Simple regression
Value of z

Atz,ow = -4.78
Atzmean=0.00
At zhigh = +4.78

Y =
Y =
Y =

equation

-.487* + 2 1.24
-.262* + 25.89
-.036* + 30.53

Standard error of
simple slope

.092

.064

.090

rtest

-5.29**
-4.09**
- .40**

95% Cl

[-.67, -.31]
[-.39, -.14]
[-.21,. 14]

E. Analysis of simple regression equations for regression of uncentered endurance (7) on
centered years of exercise (z) at three values of centered age (x):

Simple regression
Value of*

A* r/" -Mow —

At r^" -*mean

At*high =

-10.11
= 0.00
+10.11

Y =
Y =
Y —

equation

A95z + 28.53
.973z + 25.89
1.450z + 23.24

Standard error of
simple slope

.182

.137

.205

t test

2.72**
7.12**
7.08**

95% Cl

[.14, .85]
[.70, 1.24]
[1.05, 1.85]

F. Regression equation with uncentered data (Mx — 49.18;MZ = 10.67)

**/> < .01; *p < .05.

276
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(A) Regression of endurance (Y) on age (*) at three levels of exercise (z). Simple regression equations
are for centered data.

(B) Regression of endurance (Y) on exercise (z) at three levels of age (*). Simple regression
equations are for centered data.

FIGURE 7.4.1 Simple slope analysis for example in Table 7.4.1, based on centered
regression equation.

Tests of Significance of Simple Slopes
The analysis of simple slopes of endurance (F) on centered age (*) at various years of

centered exercise (z), given in Table 7.4. ID corroborates our inspection of Fig. 7.4.1 (A). First,
we rearrange the overall equation to show the regression of Y on x at values of z:

Then we compute three simple regression equations, using the mean of z (zmean = 0 for centered
z), and the values one standard deviation above and below the mean of centered z (sd = 4.78).
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These simple regression equations are given in Table 7.4. ID. For example, for zMgh = 4.78,
within rounding error we have

To test for the significance of difference of each simple slope from zero, we compute the
standard error of the simple slope of Y on x at a particular value of z (Eq. 7.4.2). The covariance
matrix of the predictors is given in Table 7.4.1C. We need the values

Finally, the t test is

evidence of decline in endurance with age when there is a long history of exercise.

Confidence Intervals Around Simple Slopes
We may estimate a confidence interval on the simple slope at z^gh for the decline in endurance

(minutes on the treadmill) with age at one standard deviation above the mean on exercise. Using
Eq. (7.4.6) for the margin of error (me) for a = .05, we find

From (7.4.7) the 95% confidence interval is given as

where P£ onX atz is a population value of a simple slope.
The confidence interval includes zero, indicating a lack of statistical evidence for decline in

endurance with increasing age for people with a substantial history of exercise (one sd above
the mean), consistent with the outcome of the statistical test.

We need not confine ourselves to values of z like z^ or zlow. We might wish to estimate
a confidence interval on the decline with age in endurance for people who have exercised
a particular numbers of years. Here, as examples, we choose decline for people who have
exercised not at all, in comparison to those who have exercised a full decade (10 years). The
choice of 0 years and 10 years is arbitrary; researchers might pick other values on the basis



We form confidence intervals at each number of centered years. First we compute the simple
slope for the regression of Y on x at z = —10.67, corresponding to 0 years of exercise:

Then we compute the standard errors at each number of centered years, using

For zero years of exercise (equal to —10.67 years on the centered scale),

Then we compute the margin of error for a = .05, using

Finally, we compute the confidence interval using

This confidence interval indicates that we can be 95% certain that there is somewhere between
a half minute (—.448) and full minute (—1.078) decline on the endurance test for each year of
increasing age for individuals who have no history of exercise.

What is the decline for individuals who have a 10-year history of exercise? Ten raw-score
years translates into —.67 years on the centered scale (since the mean years of exercise is
10.67).

The simple slope for the regression of Y on x at z = —.67 is

The standard error of this simple slope is given as

Then we compute the margin of error, a = .05, using

Raw years of exercise (Z) 0
Centered years of exercise (z) — 10.67

10
-.67
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of theory or because the values represent practical points of interest. Note that 0 years and
10 years are on the uncentered scale (in the original units of number of years of exercise). To
center years of exercise, we subtracted Mz = 10.67 from each score on raw years. Now we
convert 0 and 10 raw years to the centered scale by subtracting 10.67 from each number of
raw years:
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Finally, we compute the 95% confidence interval using

This confidence interval indicates that we can be 95% certain that for individuals who have
exercised for 10 years, the true decline is from about a sixth (i.e., —.165) of a minute to at most
4/10 (i.e., — .421) of a minute for each year of age. If we compare the two confidence intervals,
that for zero versus 10 years of exercise, we see that the intervals do not overlap. Thus we may
also conclude that there is materially less decline in endurance among people with a 10-year
history of exercise than among those with no exercise.

No Tests of Significance of Difference Between Simple Slopes
We might be tempted to say that the simple slope for the decline of endurance with increasing

age at 10 years of exercise (—.293) is "significantly less" than the decline of endurance with
increasing age at 0 years of exercise (—.763). We cannot say this, however. There exists no
test of significance of difference between simple slopes computed at single values (points)
along a continuum (e.g., along the age continuum). The issue then comes down to a matter
of meaningfulness. Here we would ask if the savings of almost a half minute in a measure of
endurance with each year of exercise is meaningful (judging how long people live, a half a
minute a year translates into a lot of endurance over the life span). We said there was a material
difference in the two measures of decline in endurance since the C/s did not overlap. However,
the C/s might overlap and the difference in simple slopes be material from a substantive
perspective.

Regression ofYonz at Values ofx
We also display the XZ interaction in Fig. 7.4.1(B), but now showing the regression of

endurance (7) on exercise (z) at three values of age (*). That is, instead of Y on x at values of z,
we have Y on z at values ofx. This display tells us about the impact of exercise on endurance
as a function of age. We would expect exercise to have a more profound effect on endurance
as age increases. The appearance of the interaction is quite different, but tells the same story in
a different way. Figure 7.4.1(B) shows us that as age increases, the positive impact of exercise
on endurance becomes more pronounced (i.e., a steeper positive slope, even though, overall,
younger individuals have greater endurance than older individuals. The corresponding simple
slope analysis is carried out in Table 7.4. IE. In fact, there is a significant gain in endurance with
increased length of exercise history at the mean age (Mx =49.18 years, which is equivalent
to centered Mx = 0.00 years), at one sd below the mean age (Xlow = 39.07 years, equivalent
to centered *low = —10.11 years) and at one sd above the mean age (X^ = 59.29 years,
*high = 10.11 years).

Simple Slope Analysis by Computer
The numerical example develops the analysis of simple slopes for Y on X at values of Z by

hand computation for Eq. (7.1.2). The complete analysis of simple slopes can easily be carried
out by computer using standard regression analysis software. Aiken and West (1991) explain
the computer method and provide computer code for computing simple slopes, standard errors,
and tests of significance of simple slopes.
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7.4.6 The Uncentered Regression Equation Revisited

We strongly recommend working with centered data. We visit the uncentered regression equa-
tion briefly to show just how difficult it may be to interpret uncentered regression coefficients.
Uncentered equations are primarily useful when there are true zeros on the predictor scales.

As shown in Table 7.4.IF, the regression equation based on uncentered data is

This equation is different from the centered equation in that now the regression of endurance on
exercise (Z) is significantly negative: the more exercise, the less endurance. How can this be?
A consideration of the regression of endurance on exercise at values of age (Y on uncentered
Z at values of uncentered X) provides clarification. The simple regressions are computed from
the overall uncentered regression equation by:

We choose meaningful values of age on the uncentered scale: X^^ = 49.18 years, Xlow =
39.07 (one standard deviation below the mean age), and X^ = 59.29. (Again, these values
correspond to centered ages of — 10.11,0, and 10.11, respectively in the simple slope analysis
of Table 7.4.IE. For ages 39.07 to 59.29, the regression of endurance on exercise is positive,
as we expect. At Xlow = 39.08 years, (B2 + B3Z) = [-1.351 + (.047)(39.08)] = .96; at
Xhigh = 59.29, (B2 + 53Z) = 1.44. As we already know, the slopes of the simple regression
lines from the uncentered equation and those from the corresponding simple regression lines
from the centered regression equation are the same. The interpretation of the interaction is
unchanged by centering.

The significantly negative B2 coefficient (—1.351) from the uncentered equation represents
the regression of endurance (7) on exercise (Z), for individuals at age zero (X = 0). At X = 0,
the simple slope (B2 + fl3Z) = [-1.351 + (.047)(0)] = -1.351. We know that this simple
regression line for age zero with its negative slope is nonsensical, because it represents the
number of years of exercise completed by people of age zero years (i.e., newborns). We may
compute simple regression lines for regions of the regression plane that exist mathematically,
since mathematically the regression plane extends to infinity in all directions. However, the
simple regression equations only make sense in terms of the meaningful range of the data. It
is reasonable, for example, that someone 29.01 years of age might have a 12-year history of
strenuous exercise, if he played high school and college football or she ran in high school and
college track. However, in this example, years of exercise is limited by age. Moreover, the age
range studied is adults who have had an opportunity to exercise over a period of years.

In computing simple regression lines we must consider the meaningful range of each vari-
able in the regression equation and limit our choice of simple regression lines to this meaningful
range. This is why we caution about the uncentered regression equation once again—zero is
often not a meaningful point on scales in the behavioral sciences. We do not mean to say
that the use of uncentered variables produces incorrect results; rather, uncentered regression
equations often produce interpretation difficulties for behavioral science data, difficulties that
are eliminated by centering.

7.4.7 First-Order Coefficients in Equations Without
and With Interactions

Suppose we have a data set that contains an interaction, as in the example of endurance,
age, and exercise in Table 7.4.1. We compare the centered regression equation without the
interaction versus with the interaction in Table 7.4.IB. We note that the Bl coefficient for x
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is —.257 versus —.262 in the equation without versus with the interaction, respectively. The
B2 coefficient is .916 versus .973, respectively. Why do these coefficients change when the
interaction term is added? These coefficients are partial regression coefficients, and x and z
are both slightly correlated with the cross-product term xz, as shown in Table 7.4.1 A. These
very slight correlations reflect essential multicollinearity (Section 7.2.4) due to very slight
nonsymmetry of X and Z. If X and Z were perfectly symmetric, then rxxz = 0 and rzxz = 0.
In this latter case, the addition of the cross-product xz term would have no effect on the BI and
B2 coefficients.

The result of adding the interaction term in the uncentered equation is dramatically different.
The uncentered equation containng the interaction is given in Table 7.4. IF. The uncentered
equation without the interaction is Y = —.251X + .916Z + 29.395. The large changes in
Bl and B2 when the XZ term is added are due to the fact that the BI and B2 coefficients in
the uncentered equation without versus with the interaction represent different things. In the
equation without the interaction they are overall effects; in the equation with the interaction,
the Bl and B2 coefficients are conditional, at the value of zero on the other predictor. In
the centered equation, the BI and B2 coefficients are again conditional at zero on the other
predictor. However, they also represent the average effect of a predictor across the range of
the predictor, much more closely aligned with the meaning of the Bl and B2 coefficients in the
overall centered equation without an interaction.

The reader is cautioned that this discussion pertains to predicting the same dependent
variable from only first-order effects and then from first-order effects plus interactions, as in
the age, exercise, and endurance example. The example in Section 7.2 is not structured in this
manner, but rather is a special pedagogical case—the dependent variables are different for the
equation without versus with interactions, so the principles articulated here do not apply.

7.4.8 Interpretation and the Range of Data

A principle is illustrated in our cautions about interpreting coefficients in the uncentered data—
regression analyses should be interpreted only within the range of the observed data. This is
so whether or not equations contain interactions, and whether or not variables are centered. In
graphical characterizations of the nature of the interaction between age and years of exercise
on endurance, we confined the range of the x and y axes in Figs. 7.4.1 (A) and 7.4.1 (B) to well
within the range of the observed data. We certainly would not extrapolate findings beyond
the youngest and beyond the oldest participant ages (20 years, 82 years). Beyond limiting our
interpretations to the confines of the range of the observed data, we encounter the issue of
sparseness (very few data points) near the extremes of the observed data, just as we did in
polynomial regression (Section 6.2.5). The limitation that sparseness places on interpretation
of regression results is further discussed in Section 7.7.1.

7.5 STANDARDIZED ESTIMATES FOR EQUATIONS
CONTAINING INTERACTIONS

To create a standardized solution for regression equations containing interactions, we must
take special steps. First, we must standardize X and Z into zx and zz. Then we must form
the cross-product term zxzz to carry the interaction. The appropriate standardized solution has
as the cross-product term the cross-product of the z-scoresfor the individual predictors entering
the interaction. What happens if we simply use the "standardized" solution that accompanies
the centered solution in usual regression analysis output? This "standardized" solution is
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improper in the interaction term. The XZ term that purportedly carries the interaction in the
"standardized" solution reported in standard statistical packages is formed from the XZ term
standardizing subjects' scores on the XZ product after the product is formed. It is the z-score of
the product XZ, rather than the correct product of the z-scores zxzz. The "standardized" solution
that accompanies regression analyses containing interactions should be ignored. Instead, X and
Z should be standardized first, then the cross-product of the z-scores should be computed, and
these predictors should be entered into a regression analysis. The "raw" coefficients from
the analysis based on z-scores are the proper standardized solution (Friedrich, 1982; Jaccard,
Turrisi, & Wan, 1990). The improper and proper standardized solutions are given in Table 7.5.1
for the endurance example. The improper solution is given in Table 7.5.1 A, the proper solution
in Table 7.5.IB. There are two differences between the two solutions. First, the value of the

TABLE 7.5.1
Standardized Solution for the Regression of Endurance on Age and

Years of Strenuous Exercise (n = 245)

A. Improper standardized solution taken from computer printout. The solution is the
"standardized" solution that accompanies the centered regression analysis
reported in Table 7.4.1.

B. Proper standardized solution. The solution is computed by forming z-scores from
centered predictors and forming the cross-product of the z-scores.

1. Summary statistics for centered x and z and cross-product xz.

Means and standard
deviations

X

z
xz
y

M

0.00
0.00

.28
0.00

sd

1.000
1.000
.953

1.000

X

Z

xz
y

Correlation matrix

x z xz

1.00 .28 .01
1.00 -.12

1.00

y
-.13

.34

.15
1.00

2. Proper standardized regression equation containing interaction:

Y = -.244X + .429Z + .211XZ - .059.

Coefficient

B,
B2

B,
BQ

= -.244
= .429
= .211
= -.059

SE

.060

.060

.061

t test

-4.085
7.124
3.476

Coefficient

Bl = -.244
B2 = .429
B3 = .201
BQ = 0.00

SE

.060

.060

.058

t test

-4.085
7.124
3.476
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coefficient for the interaction B3 changes slightly. The change, however slight in the present
example, is important, because it affects the values of the simple slopes. In other circumstances,
the difference may be more pronounced. Second, there is a nonzero intercept in the proper
solution, since the zxzz term will have a nonzero mean to the extent thatX and Z are correlated.

7.6 INTERACTIONS AS PARTIALED EFFECTS: BUILDING
REGRESSION EQUATIONS WITH INTERACTIONS

In Eq. (7.1.2) the regression coefficient for the interaction, 53, is a partial regression coefficient.
It represents the effect of the interaction if and only if the two predictors comprising the
interaction are included in the regression equation (Cohen, 1978). If only the XZ term were
included in the regression equation and the X and Z terms were omitted, then the effect
attributed to XZ would include any first order effects of X and Z that were correlated with
the XZ term as well. Recall that in our numerical example X and Z each had an effect on
the criterion, independent of their interaction. If X and Z had been omitted from regression
Eq. (7.1.2), then any first-order effects of X and Z that were correlated with XZ would have
been incorrectly attributed to the interaction. Only when X and Z have been linearly partialed
from XZ does it, in general, become the interaction predictor we seek; thus,

Interactions in MR analysis may be far more complex than the simple two-way interaction
portrayed here. The next order of generalization we make is to more than two predictors.
Whatever their nature, the predictors X, Z, and W may form a three-way interaction in their
relationship to Y; that is, they may operate jointly in accounting for Y variance beyond what
is accounted for by X, Z, W, XZ, XW, and ZW. This could mean, for example, that the nature
of an interaction between X and Z differs as a function of the value of W. Put another way,
the three-way interaction would signal that the Y on X regression varies with differing ZW
joint values, or is conditional on the specific Z, W combination, being greater for some than
others. The symmetry makes possible the valid interchange of X, Z, and W. The X by Z by W
interaction is carried by the XZW product, which requires refining by partialing of constituent
variables and two-way products of variables; that is,

The proper regression equation for assessing the three-way interaction is

All lower order terms must be included in the regression equation for the 57 coefficient to
represent the effect of the three-way interaction on Y. (Consistent with the discussion of
centering predictors in Section 7.2, if we were to center predictors X,Z, and W in Eq. 7.6.1,
then only the value of the B7 coefficient would remain constant across the centered versus
uncentered equation, since now B1 is the invariant highest order term.)

Higher order interactions follow the same pattern, both in interpretation and representation:
a cf-way interaction is represented by the d-way product from which the constituent main effect
variables, the two-way, three-way, etc. up to (d — l)-way products have been partialed, most
readily accomplished by including all these lower order terms in the same multiple regression
equation with the highest order term.
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The fact that the mathematics can rigorously support the analysis of interactions of high
order, however, does not mean that they should necessarily be constructed and used. Inter-
actions greater than three-way certainly may exist. The many variables that are controlled to
create uniform laboratory environments in the biological, physical, and social sciences are all
potential sources of higher order interactions. Nonetheless, our current designs (and theories,
to some extent) make it unlikely that we will detect and understand these effects. Recall that
in Chapter 6, a similar argument was made about polynomial terms above the cubic (X3). The
reader should recognize that a quadratic polynomial term (X2) is of the same order as a two-
way cross-product term, XZ; both are of order 2. The cubic (X3) term and the XZW interaction
terms are of order 3. Data quality may well not support the treatment of interactions among
more than three variables.

7.7 PATTERNS OF FIRST-ORDER AND INTERACTIVE EFFECTS

Thus far, we have encountered two different patterns of first-order and interaction effects
in the two numerical examples. In our first numerical example the increases in predictor Z
strengthened the relationship of X to 7, as illustrated in Fig. 7.3.1(B). In the second example,
illustrated in Fig. 7.4.1 (A), the nature of the interaction was quite different, in that a history of
exercise weakened the deleterious effect of increased age on endurance.

In fact, a variety of interaction patterns are possible, and are reflected in the possible
combinations of values of regression coefficients Bi,B2 and 53 in Eq. (7.1.2). We may have
any combination whatever of zero, positive, and negative regression coefficients of first-order
effects (Bi and B2), coupled with positive and negative interactive effects (53). The appearance
of the interaction will depend on the signs of all three coefficients. Moreover, the precise nature
of the interactions will be determined by the relative magnitudes of these coefficients.

7.7.1 Three Theoretically Meaningful Patterns of First-Order
and Interaction Effects

We characterize three theoretically meaningful and interesting interaction patterns between
two predictors; each pattern depends on the values of Bi,B2, and 53 in Eq. (7.1.2). First are
synergistic or enhancing interactions in which both predictors affect the criterion Y in the
same direction, and together they produce a stronger than additive effect on the outcome. As
already mentioned, the interaction in the first numerical example (Fig. 7.3. IB) is synergistic;
all three regression coefficients in the centered equation are positive. When both the first-order
and interactive effects are of the same sign, the interaction is synergistic or enhancing. If all
three signs are negative, we have the same synergistic effect. Suppose life satisfaction (Y) is
negatively related to job stress (X) and to level of marital problems (Z). Their interaction is
negative, so that having both high job stress and high marital problems leads to even less life
satisfaction than the sum of X and Z would predict.

A theoretically prominent pattern of first-order and interactive effects is the buffering inter-
action, already defined in Section 7.4.5. Here the two predictors have regression coefficients
of opposite sign. In addition, one predictor weakens the effect of the other predictor; that is, as
the impact of one predictor increases in value, the impact of the other predictor is diminished.
Buffering interactions are discussed in both mental and physical health research in which one
predictor may represent a risk factor for mental or physical illness while the other predictor
represents a protective factor that mitigates the threat of the risk factor (e.g., Cleary & Kessler,
1982; Cohen & Wills, 1985; Krause, 1995). In the second numerical example in this chapter,
increasing age (X) is the risk factor for diminished endurance (F) and vigorous exercise is
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the protective factor (Z); the negative impact of age on endurance is lessened by a history of
vigorous exercise. In this example Bl <0,B2 > 0, and B3 > 0.

A third pattern of interaction is an interference or antagonistic interaction in which both
predictors work on the criterion in the same direction, and the interaction is of opposite sign
(Neter, Kutner, Nachtsheim, & Wasserman, 1996). Recall the example mentioned at the outset
of Section 7.1, that perhaps ability and motivation have compensatory effects on graduate
school achievement. Surely both ability and motivation are each positively related to achieve-
ment (Bl > 0 and B2 > 0). Yet the importance of exceptional ability may be lessened by
exceptional motivation, and vice versa, a partially "either-or" pattern of influence of the two
predictors on the criterion. If so, their interaction is negative (B3 < 0), that is, of the opposite
sign of the two first-order effects.

It is clear from these examples that it is not simply the sign of the 53 regression coefficient for
the interaction that determines whether an interaction is enhancing or buffering or antagonistic.
Rather the pattern of signs and magnitudes of the coefficients for all three terms in Eq. (7.1.2)
determine the form of the interaction.

All the interactions we have considered here are linear by linear (see Section 7.3.4); the
simple slopes are all linear in form. Such patterns of interactions may be observed in more
complex regression equations, for example, as components of three-way interactions, described
in Section 7.8. The patterns of interactions are not confined to linear by linear interactions.
These patterns generalize as well to more complex equations with curvilinear relationships as
well, described in Section 7.9.

7.7.2 Ordinal Versus Disordinal Interactions

The interactions in both numerical examples [illustrated in Figs. 7.3.1(B) and 7.4.1 (A)] are
both ordinal interactions. Ordinal interactions are those interactions in which the rank order of
the outcomes of one predictor is maintained across all levels of the other predictor within the
observed range of the second predictor. These interactions are typical of interactions obtained
in observational studies. In psychological research in which existing variables are measured
(there is no manipulation), we most often observe ordinal interactions.

Figure 7.7.1 illustrates a disordinal interaction between level of problem solving training
(X} and type of training (Z) on problem solving performance (Y). Here the rank order of factor
Z in relation to the criterion Y changes as a function of the value of factor X (i.e., whether cases
with high or low scores on variable Z have higher criterion scores varies with changing X).

What produces the noncrossing (ordinal) versus crossing (disordinal) appearance of
Fig. 7.4.1 (A) versus Fig. 7.7.1 (A) is the strength of the first-order effects also portrayed in
the figures. In Fig. 7.4.1 (A), the large first-order effect of exercise on endurance forces the
three regression lines apart; people with a long history of exercise have much greater endurance
regardless of age than those with moderate exercise histories; the same is true for moderate
versus low histories of exercise. Figure 7.4.1 (A) actually portrays both the first-order effects of
exercise and age and their interaction. If we subtracted out the effects of exercise and age, leav-
ing a pure interaction plot, then the simple regression lines would cross. All the figures in this
chapter include both first-order and interactive effects; they are not pure graphs of interactions
only and so are better termed plots of simple regression lines than plots of interactions per se.

The more specific term crossover interaction is sometimes applied to interactions with
effects in opposite directions; hence, Fig. 7.7.1 (A) can also be termed a crossover interaction
(see Section 9.1 for further discussion). Crossover interactions are often predicted in exper-
imental settings. In a study of teaching methods (lecture versus seminar), we might predict
that teaching method interacts with subject matter. For example, our prediction might be that
lecture leads to better learning of statistical methods, whereas a seminar format leads to better



7.7 PATTERNS OF FIRST-ORDER AND INTERACTIVE EFFECTS 287

(A) Performance in an experiment on Type R versus Type S prob-
lems as a function of level of training (Low, High) received in the
experiment.

(B) Performance in an observational study as a function of training
experienced by individuals prior to participation in the observational
study.

(C) Weak interaction with strong first-order effect of problem type.

FIGURE 7.7.1 Forms of interactions as a function of sampled range of predictor
variables and strength of first-order versus interaction effects.

learning of substantive material, a crossover prediction. We do not mean to imply that crossover
interactions never obtain in observational research in which there is no manipulation—they
are simply more rare.

The phrase within the range of the observed data adds a level of complexity in MR analy-
sis applied to observational data rather than to data gathered in experimental settings. In
experiments, the experimental conditions implemented define the range of the predictors (the
conditions of experimental variables are translated into predictors in MR). In Fig. 7.7.1 (A), sup-
pose there is a crossover interaction between amount of training and performance on two types
of problems, Types R and S. Extensive training on Type S facilitates performance but extensive
training on Type R leads to boredom and performance deficits. The range of the x axis, amount
of training, is fixed by the specific conditions implemented in the experiment. Now consider an
observational study in which people are interviewed to assess their amount of previous train-
ing on a specific type of task (a continuous variable) and then their performance is assessed
on tasks R and S. The study is observational because there is no experimental manipulation
of training on the tasks. Instead of a fixed range of training having been manipulated in the
experiment, the range of training is determined by the previous experience of the particular
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subjects sampled. Suppose all subjects have had moderate to extensive levels of training. The
simple regression equations might appear as in the right-hand portion of Fig. 7.7.1(B), the por-
tion of "observed data." Within the range of training represented on variable X in the sample,
the simple regression lines do not cross. In fact, these simple regression lines would cross at
lower levels of extent of training, not observed in the sample. This crossover is represented by
the dashed portion of the regression lines in Fig. 7.7.1(B)—if we assume linear relationships
across all levels of training. In sum, whether we observe ordinal or disordinal interactions in
MR analysis may depend upon the range of values on particular predictors across the subjects
of a sample. We say may here, because the simple regression lines may cross at some numerical
point outside the meaningful range of the variable.

In the experimental setting, the researcher controls the range of manipulated variables
such as training level by the nature of the particular conditions implemented. In fact, wise
experimenters pilot test various forms of their manipulations until they find ones strong enough
to produce effects they seek (this is not to say experimenters "cheat," but rather they structure
their experiments to optimize the possibility of observing the predicted relationships.) Hence,
an experimenter would wisely create dramatically different training levels in the two training
conditions to optimize the possibility of observing the crossover (here, perhaps, by training
people not at all or by training them to distraction). In an observational setting, the researcher
may also control this range by systematic sampling of cases (Pitts & West, 2001) if there is prior
knowledge of subjects' scores on variables of interest—here, level of previous experience. In
our training example, if experience scores on a large pool of subjects had been available, then
the researcher might have systematically sampled a very wide range of experience, thereby
leading to the observation of the disordinal (crossover) interaction.

Crossing Point of Simple Regression Lines
The value of a predictor at which simple regression lines cross can be determined alge-

braically for any specific regression equation and predictor within that equation. For Eq. (7.1.2),
the value of X at which the simple regressions of Y on X cross is

for the simple regressions of Y on X at values of Z.
For Eq. (7.1.2), the value of Z at which the simple regressions of Y on Z cross is

for the simple regressions of Y on Z at values of X. Equation (7.7.1) and (7.7.2) are instructive
in three ways.

1. First, the denominator in both cases is the regression coefficient B3 for the interaction. If
this interaction is zero, then the simple regression lines will not cross—the simple regression
lines are parallel.

2. Second, the numerators of these expressions tell us that the crossing point also depends
on the magnitude of the first-order effects relative to the interaction. In Eq. (7.3.1) for the
regression of Y on X at values of Z, suppose B2, the regression coefficient for Z, is very
large, relative to the interaction (in ANOVA terms, a large main effect coupled with a small
interaction). If so, then if B3 is positive, the regression lines will cross somewhere near minus
infinity for positive B2 or plus infinity for negative B2. This is illustrated in Fig. 7.7.1(C) versus
Fig. 7.7.1 (A). In Fig. 7.7.1 (A), there is no first-order effect of type of task, B2 = 0 (on average
performance on Type R and Type S problems is equal). In Fig. 7.7.1(C), however, there is a
large first-order effect of type of task coupled with a smaller interaction than in Fig. 7.7.1(A).
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That Type R problems are so much better solved than are Type S problems in Fig. 7.7.1(C)
means that regardless of the boredom level induced by training, performance on the Type R
problems will not deteriorate to that on Type S problems.

3. Third, the crossing point of the lines depends on the pattern of signs (positive ver-
sus negative) of the first-order and interactive effects. First, consider the centered regression
equation corresponding to the illustration of simple slopes in Fig. 7.3.1(B); that is, Y =
2.2x + 2.6z + Axz + 16. From Fig. 7.3.1(B) it appears as though the simple regression
lines cross at a low numerical value outside the range of centered variable x. In fact, for
this regression equation x^s* = ~B2/B3 = —2.6/4 = —6.5, well outside the range of
the variables illustrated in Fig. 7.3.1(B). Now consider the centered regression equation
for the prediction of endurance as a function of age (x) and years of vigorous exercise (z),
Y = — .26x + .97'z + .05xz + 25.89. Simple slopes for the regression of endurance on age as a
function of exercise (Y on centered* at centered z) are given in Fig. 7.4.1(A). For this regression
equation, X^ = -B2/B3 = -.97/.05 = -19.40, or 19.40 years below the mean age of 49.18
years. This suggests that for people of age 49.18 - 19.40 = 30.4 years of age, endurance does
not vary as a function of level of vigorous exercise—all the simple slope lines converge. Note
that this crossing point is almost two standard deviations below the mean age (sdage = 10.11).
Data would be expected to be very sparse at two sds below the Afage; in fact, there are only 7
cases of the 245 who are younger than 30. We would not wish to make generalizations about
endurance and age in individuals under 30 with so few data points; there is no guarantee that
the relationships are even linear at younger ages. This is an important point to note—in MR
we may extend the simple regression lines graphically as far as we wish (as opposed to in an
experiment where the experimental conditions set the limits); the issue becomes one of whether
there are data points at the extremes. Now consider Fig. 7.4.1(B), which shows the regression
of endurance on exercise as a function of age (Y on centered z as a function of centered jc).
For this representation of the data, Zcross = -Bl/B3 = -(-.26)/.05 = 5.20, or 5.20 years
above the mean level of exercise. With a mean years of exercise of 10.67 this corresponds to
10.67 + 5.20 = 15.87 years of exercise; the data thus suggest that for individuals who have
exercised vigorously for 16 years, endurance is independent of age. Only 23 individuals of the
245 have exercised more than 16 years. Again we do not wish to make inferences beyond this
point with so few cases, since the form of the regression equation might be quite different for
very long-term exercisers.

It is mathematically true that so long as the interaction term is nonzero (even minuscule!)
there is a point at which the simple regression lines will cross. In the case of both numerical
examples, if we assume that the x axis as illustrated in Fig. 7.3.1 or the x and z axes in
Fig. 7.4.1 represent the meaningful ranges of the variables, then there is no crossover within
these meaningful ranges. Putting this all together, whether an interaction is ordinal or disordinal
depends on the strength of the interaction relative to the strength of the first-order effects
coupled with the presence of cases in the range of predictors where the cross occurs, if B3

is nonzero. When main effects are very strong relative to interactions, crossing points are at
extreme values, even beyond the meaningful range (or actual limits) of the scale on which they
are measured, that is, the scale of predictor X in Eq. (7.7.1) or the scale of Z in Eq. (7.7.2).
Whether we observe the crossing point of simple slopes depends on where it is relative to the
distribution of scores on the predictor in the population being sampled and whether the sample
contains any cases at the crossing point. The crossing point may have no real meaning—for
example, if we were to find a crossing point at 120 years of age (for a sample of humans,
not Galapagos tortoises). In contrast, a crossing point expected to occur at about 70 years of
human age might be illuminated by systematically sampling cases in a range around 70 years
of age, if the crossing point is of theoretical interest.
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Crossing Points Are Equation Specific
There is an algebraic expression for the crossing with regard to each predictor in a regression

equation containing higher order terms. This expression differs by equation; see Aiken and
West (1991) for crossing-point expressions for more complex equations.

7.8 THREE-PREDICTOR INTERACTIONS
IN MULTIPLE REGRESSION

Linear by linear interactions in multiple regression generalize beyond two-variable interactions.
We provide a brief treatment of the three-way interaction Eq. (7.6.1):

First, we reiterate that all lower order terms must be included in the regression equation
containing the XZW variable. The X by Z by W interaction is carried by the XZW term but only
represents the interaction when all lower order terms have been partialed.

In our example of endurance predicted from age (X) and exercise history (Z), suppose we
add a third predictor W, a continuously measured index of healthy life style that includes
having adequate sleep, maintaining appropriate weight, not smoking, and the like. We predict
endurance from age (X), exercise history (Z), and healthy life style (W), using Eq. (7.6.1). We
find that the three-variable interaction is significant and wish to interpret it.

Given three factors, we may break down the interaction into more interpretable form by
considering the interaction of two of the factors at different values of the third factor. Suppose
we consider the XZ interaction of age with strenuous exercise at two values of W, that is, for
those people who have maintained a healthy life style versus not. We choose Wlow and W^gh

to represent people whose life style practices are one standard deviation below and above the
mean life style score. (In a more complete analysis of the XZW interaction, we also would have
plotted the XZ interaction at the mean of W, i.e., at Wmean). Further, we could have chosen any
combination of variables (e.g., the interaction of exercise Z with lifestyle W for different ages).

To plot the three-way interaction as the XZ interaction at values of W, we choose which
variable of X and Z will form the x axis. Suppose we follow Fig. 7.4.1(B), which shows the
regression of endurance on exercise (Z) at values of age (X). We will make two such graphs,
for Wjow and W^gh, respectively. This amounts to characterizing the XZW interaction as a series
of simple regression equations of Y on Z at values of X and W. We arrange Eq. (7.6.1) to show
the regression of Y on Z at values of X and W, yielding the following simple slope expression:

Figure 7.8.1 provides a hypothetical outcome of the three-way interaction. The pattern of
regression of Y (endurance) on Z (exercise) as a function of age (X) differs depending on
the extent of a healthy life style (W), signaling the presence of a three-way XZW interac-
tion. For individuals who have maintained a healthy life style (at W^), endurance increases
with length of exercise history. The amount of increase depends upon age: exercise has an
increasingly salutary effect with increasing age. In statistical terms, there is an XZ interaction
at Whig!,. We note that the interaction is ordinal in the range of the data (the three simple
regression lines do not cross). If individuals older than those represented in Fig. 7.8.1 had
been sampled, these simple regression lines would have been observed to cross, yielding a
disordinal interaction within the range of the observed data. For individuals who have not
maintained a healthy life style (at Wlow), exercise does not have an increasingly salutary effect
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FIGURE 7.8.1 Display of simple slopes for a three-way continuous variable interac-
tion. Regression of endurance (7) on years of vigorous exercise (Z) is shown at three
values of age (X) and at low versus high values of a healthy life style index.

with increasing age. Although endurance increases with increasing exercise, older individuals
do not show a stronger benefit from exercise than do younger individuals. Apparently, the
special benefit of exercise for older individuals is offset by lack of an otherwise healthy life
style. In statistical terms, there is not a significant XZ interaction at W^. We note that the
regression lines at Wlow are parallel; they never cross. ANOVA users will recognize the inter-
actions XZ at W^ and XZ at WIQW to be simple interactions (Kirk, 1995; Winer, Brown, &
Michaels, 1991), interactions between two variables confined to one level (or value) of a third
variable.

As an aid to interpretation of the three-way interaction, one may test each of the six simple
slopes in Fig. 7.8.1 for significance. Aiken and West (1991, Chapter 4) provide a full develop-
ment of post hoc probing of the three-way continuous variable interaction including standard
errors and t tests for the simple slope in Eq. (7.8.1), a numerical example of probing a three-
way interaction, and computer code for probing the three-way interaction with standard MR
software. Beyond simple slopes, one may test for the significance of the interaction between
X and Z at varying values of W, that is, the simple interactions illustrated in Figure 7.8.1
(Aiken & West, 2000).
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7.9 CURVILINEAR BY LINEAR INTERACTIONS

All the interactions we have considered are linear by linear in form. However, curvilinear
variables may interact with linear variables. Figure 7.9.1 provides an example of such an
interaction. In this hypothetical example, we are predicting intentions to quit smoking from
smokers' fear of the negative effects of smoking on health (X). According to theorizing on the
impact of fear communication on behavior mentioned in Chapter 6 (Jam's, 1967), fear should
be curvilinearly related to intention to act. Intention should increase with increasing fear up to a
point. Then as the fear becomes more intense, individuals should wish to avoid the whole issue
or become so focused on managing the fear itself that intention to quit smoking is lowered. If we
considered only the regression of intention on fear, we would have the polynomial regression
equation given in Chapter 6:

where the combination of predictors X and X2 represents the total effect of variable X on Y.
A second predictor is now considered, the individual's self-efficacy for quitting smoking

(Z), that is, the individual's belief that he or she can succeed at quitting smoking. Suppose that
intentions to quit smoking rose in a constant fashion as self-efficacy increased, but that there
was no interaction between fear (X) and self-efficacy (Z). The appropriate regression equation
would be as follows:

Two things would be true about the relationship of X to Y illustrated at different values of Z.
First, the shape of the simple regressions of Y on X would be constant across values of Z; put
another way, any curvilinearity of the relationship of X to Y represented by the B\X + B2X

2

terms would be constant over all values of Z. Second, the simple slope regression curves of Y on

FIGURE 7.9.1 Illustration of a curvilinear by linear interaction. The degree of curvi-
linearity of the relationship of fear (X) to intention (Y) depends linearly upon the level
of self-efficacy for quitting smoking (Z).
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X would be parallel for all values of Z, as before. However, it is quite evident from Fig. 7.9.1 that
neither of these conditions holds. First, the simple slope equations are not parallel, suggesting
the presence of an XZ interaction. Second, the three simple regressions are not of the same
shape; variable Z moderates the curvilinearity of the relationship of X to Y. When self-efficacy
for quitting is low (at Zlow), the relationship of X to Y is strongly curvilinear. As self-efficacy
for quitting increases, the relationship of X to Y becomes increasingly linear; high self-efficacy
appears to overcome the decrease in intentions at high fear. We have a curvilinear by linear
interaction-, that is, the curvilinear relationship of X to Y changes as variable Z increases
linearly. The appropriate regression equation to model this relationship is as follows:

Here for the first time we encounter two interaction components of a single pair of variables,
XZ and X2Z. These interaction terms are formed by crossing each of the terms in the "set" of
variables that represent the impact of X on Y (i.e., X and X2) with the predictor Z. Together XZ
and X2Z represent the interaction of X and Z in predicting Y, given that lower order predictors
X, X2, and Z are included in the equation. There are now two components of the interaction, the
familiar XZ linear by linear component plus the curvilinear by linear component represented
by X2Z. In Eq. (7.9.2) the highest order term is X2Z; for this term to represent the curvilinear
by linear interaction, all lower order terms must be included. To see these terms clearly we
can rewrite X2Z as XXZ. The lower order terms are all the terms that can be constructed by
taking one or two of the three letters of XXZ, that is, X, Z, X2 = XX, and XZ. The equation is
estimated by taking centered x and centered z and forming the higher order terms from them.
The new term x2z is formed by squaring centered x and multiplying the square by centered z.
This term represents the curvilinear by linear interaction between x and z if and only if all the
other terms in Eq. (7.9.2) are included in the model; these are all the lower order terms that
can be created from x and z.

In centered Eq. (7.9.2) the role of each term can be separately characterized, given the
presence of all other terms in the equation. From Fig. 7.9.1 on average, intention to quit
smoking increases on average as fear increases; hence BI is positive. The overall relationship
of X to Y is concave downward; hence B2 is negative. Intention to quit increases as self-
efficacy (Z) increases; therefore B3 is positive. As indicated, the XZterm represents the linear
by linear component of the XZ interaction. If we ignored the curvilinear relationship of X to
Y and just found the best fitting straight line relating X to Y at each value of Z, these simple
regression lines would not be parallel; we have the synergistic interaction that as both fear
and self-efficacy increase, intentions increase by more than just their sum; thus the B4 term is
positive. Finally, the B5 term is positive. It is juxtaposed against the negative B2 term, which
carries the curvilinearity of the X-Y relationship. The positive B5 term in a sense "cancels
out" the downward curvilinearity in the B2 term as Z increases; that is, when Z is high, the
curvilinearity in the prediction of Y by X disappears.

Rearranging Eq. (7.9.2) to show the regression of Y on X at values of Z provides further
insight.

Equation (7.9.3) is in the form of a second-order polynomial of the regression of Y on X.
However, it is more complex than Eq. (6.2.3). In Eq. (7.9.3) we see that the overall linear
regression of Y on X, given in the coefficient (Bl + 54Z) depends on the value of Z, as do both
the extent of curvilinearity of the regression of Y on X2, given in the coefficient (B2 + B5Z\



294 7. INTERACTIONS AMONG CONTINUOUS VARIABLES

and the intercept (B3Z + B0). The coefficients (B1 + 54Z), (B2 + B5Z\ and (B3Z + fl0) give
the global form of the regression of Y on X. These are not simple slope coefficients.

Table 7.9.1 characterizes the data and summarizes the outcome of the regression analysis. In
Table 7.9. IB, Eq. (7.9.1) containing no interaction is estimated. Interestingly, the B2 coefficient
for X2 is not different from zero. Fitting the data with a regression equation that does not
capture the appropriate interaction leads to failure to detect the curvilinearity that exists for
some portion (but not all) of the regression surface. Including the two interaction terms in
the regression equation, as given in Table 7.9.1C, leads to an increment in R2 of .03. The full
interaction carried by the combination of the XZ and X2Z terms accounts for 3% of variance
in the criterion over and above the X,X2 and Z terms, Fgain(2,244) = 8.30, p < .001.

Putting the full regression equation of Table 7.9.1C into the form of Eq. (7.9.3) quantifies
the relationships of jc to y at values of Z observed in Fig. 7.9.1. The rearranged equation is given
in Table 7.9.1D. Now we see that the term (B2 + B5Z) = (-.052 + .065z) becomes less and
less negative as the numerical value of z increases, consonant with the decreasing downward
curvilinearity in the relationship of X to Y as Z increases. With sdz = .76, substituting the
values of z]ow = —.76,zmean = 0.0, and 2^ = .76 yields the three simple regression equations
given in Table 7.9. ID. At z]ow, there is a strong curvilinear relationship between X and Y.
This curvilinear relationship diminishes as z increases. In contrast, the linear component of the
impact of* on y is close to zero at ZIQW and increases as z increases. These simple equations show

TABLE 7.9.1
Regression Analysis of Intention to Quit Smoking (Y) as a Function

of Centered Fear of Health Effects of Smoking (x) and Centered
Self-Efficacy for Quitting Smoking (z) (n = 250)

A. Summary statistics for centered x, x2, centered z, xz, and x2z

Means and standard deviations Correlations

X

X2

z
xz
X2Z

Y

M

0.00
1.47
0.00
.29
.12
3.63

sd

1.22
2.04
.76
.91
1.95
.86

x
X2

z
xz
X2Z

Y

x x2 z

1.00 .19 .32
1.00 .07

1.00

xz

.10

.51
-.01
1.00

X2Z

.58

.23

.62

.07
1.00

Y

.49

.08

.65

.14

.58
1.00

B. Centered regression equation with no interaction (Ry.-m = -51)

C. Centered regression equation with curvilinear by linear interaction (R\ 12345 = .54)

D. Centered regression equation with curvilinear by linear interaction showing regression
ofKonX.

**p < .01; *p < .05.
.Ry 12345 is the squared multiple correlation from all 5 predictors.

CH07EX02
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quantitatively what we observe in Fig. 7.9.1. Estimating curvilinear by linear interactions has
been useful theoretically; for an example, see Krause (1995). Aiken and West (1991) provide
a full treatment of the probing of curvilinear by linear interactions, along with computer code
for use in standard regression software.

7.10 INTERACTIONS AMONG SETS OF VARIABLES

In the curvilinear by linear interaction, Eq. (7.9.2), the interaction was carried by a set of
predictors that included XZ and X2Z. This is but one example of a broad characterization of
interactions. All the statements previously made about interactions among single variables x, z,
and w also hold for sets of variables X, Z, and W (here we denote a set of variables in bold
italics). Specifically, if X is a set of k IVs (*,; i = 1,2,... ,fc), and Z a different set of j IVs
(ij'J = 1,2,... ,7), then we can form an XZ product set of kj variables by multiplying each jc,
by each z;. The X by Z interaction is found in the same way as

As in Eq. (7.9.2) the interaction is now carried by a set of cross-product terms. Generalizing
further, suppose we had two predictors Xl and X2 in set X, and two predictors Z\ and Z2 in set
Z. Then our regression equation is as follows:

The interaction between sets X and Z is carried by the set of terms [B5X^ + BfX^ +
B<jX2Zi + fi8X2Z2]. To assess the contribution of the AT by Z interaction to the overall regression
over and above the first-order effects of the four individual predictors, we must use a hierarchical
approach. The contribution of the interaction to variance accounted for in the criterion is the
difference between Ry 12345678 ̂  R\ 1234.

Interpretively, an exactly analogous joint or conditional meaning obtains for interactions
of sets X and Z: the regression coefficients that relate Y to the X, of the X set are not all
constant, but vary with the changes in the Z, values of the Z set (and, too, when X and Z
are interchanged in this statement). Stated in less abstract terms, this means that the nature
and degree of relationship between Y and X varies, depending on Z. Note again that if only
the first-order effects of set X and Z are included, whatever is found to be true about the
relationship of Y with X alone is true across the full range of the Z set. However, when an
X by Z interaction is present, the relationship of the X set to the criterion changes with (is
conditional on) changes in the Zj values of Z. (Again, symmetry permits interchanging X and
X, with Z and Z;.)

The importance of this analytic strategy lies in the fact that some of the most interesting
findings and research problems in behavioral and social science lie in conditional relationships.
For example, the relationship between performance on a learning task (Y) and anxiety (X) may
vary as a function of psychiatric diagnosis (Z). As another example, the relationship between
income (Y) and education (X) may vary as a function of race (Z). As yet another example, in
aggregate data where the units of analysis are urban neighborhoods, the relationship between
incidence of prematurity at birth (F) and the female age distribution (X) may depend on the
distribution of female marital status (Z). The reader can easily supply other examples of possible
interactions. The reason we represent these research factors as sets is that it may take more than
one variable to represent each or, in the language of our system, each research factor may have
been represented in more than one aspect of interest to us (as discussed in Chapter 5). As we
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saw in Chapter 6, and again in Section 7.9, if a research factor has a curvilinear relationship to
the criterion, then more than one predictor is required to represent that relationship. (If anxiety
bore an inverted U-shaped relationship to performance, we would require two predictors Xt

and Xf to represent the linear and quadratic aspects of anxiety in the prediction equation.) Non-
normally distributed variables (say, of age distributions in census tracts) may be represented
in terms of their first three moments (Xl = mean, X2 = sd, X3 = skew), and any categorical
variable of more than two levels requires for complete representation at least two terms (see
Chapter 8 for categorical predictors).

A most important feature of the aforementioned procedure is the interpretability of each of
the single product terms X(Zj. As noted, the multiplication of the k X predictors of the X set
by they Zpredictors of the Z set results in a product set that contains kj IVs (for example, the
four IVs in Eq. 7.10.1). Each X, is a specifiable and interpretable aspect of AT and each Z; is
a specifiable and interpretable aspect of Z. Thus when partialed, each of these kj IVs, X{ by
Zj represents an interpretable aspect of X by aspect of Z interaction, a distinct conditional or
joint relationship, and like any other IV, its B, sr, pr, and their common t test are meaningful
statements of regression, correlation, and significance status.

There are issues in working with interactions of sets of predictors that bear consideration.
First, we note in Eq. (7.10.1) that multiple cross-product terms necessarily include the same
variable (e.g., the X\Zi and X^ terms both include X^. If the predictors are not centered,
then cross-product terms that share a common predictor will be highly correlated, rendering
separate interpretation of the individual components of the interaction difficult. Centering will
eliminate much of this correlation. Hence our recommendations for centering apply here.
Second, the issue of how Type I error is allocated in testing the interaction must be considered.
The omnibus test of the complete interaction is the hierarchical test of gain in prediction from
the inclusion of all the cross-product terms that comprise the interaction. In the hierarchical
regression, we would assign a nominal Type I error rate, say a = .05, to the overall multiple
degree of freedom omnibus test of the interaction. However, in Eq. (7.10.1), for example, four
terms comprise the single set X by set Z interaction. If these terms are tested in the usual
manner in the MR context, then a nominal Type I error rate, say a = .05, will be assigned to
each of the four components of the interaction. The overall collective error rate for the test of
the set X by set Z will exceed the nominal Type I error rate. The issue here is closely related
to the issue of multiple contrasts in the ANOVA contrast (see Kirk, 1995, pp. 119-123 for an
excellent discussion), where thinking about assignment of Type I error to multiple contrasts
versus an omnibus test is well developed. If there is only a global hypothesis that set X and
set Z interact, then it is appropriate to assign a nominal Type I error rate, say a = .05, to the
overall multiple degree of freedom omnibus test of the interaction, and to control the collective
error on the set of tests of the individual interaction components that comprise the overall test.
If, on the other hand, there are a priori hypotheses about individual components of the overall
interaction, then following practice in ANOVA, one may assign a nominal Type I error rate to
the individual contrast.

As discussed in Chapter 5, the concept of set is not constrained to represent aspects of
a single research factor such as age, psychiatric diagnostic group, or marital status distribu-
tion. Sets may be formed that represent a functional class of research factors, for example,
a set of variables collectively representing demographic status, or a set made up of the sub-
scales of a personality questionnaire or intelligence scale, or, as a quite different example,
one made up of potential common causes, that is, variables that one wishes to statistically
control while studying the effects of others. However defined, the global Xby Z interactions
and their constituent XtZj single-interaction IVs are analyzed and interpreted as described
previously.
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7.11 ISSUES IN THE DETECTION OF INTERACTIONS:
RELIABILITY, PREDICTOR DISTRIBUTIONS,

MODEL SPECIFICATION

7.11.1 Variable Reliability and Power to Detect Interactions

The statistical power to detect interaction effects is a serious concern. We pointed out that
interactions typically observed in psychological and other social science research often account
for only a few percentage points of variance over and above first-order effects (i.e., squared
semipartial or part correlations of .01 to .05 or so). J. Cohen (1988) defined squared partial
correlations of .02, .13, and .26 of a term in MR with the criterion as representing small,
moderate, and large effect sizes, respectively. Large effect size interactions are rarely found in
observational studies in social science, business, and education; small to moderate effect size
interactions predominate.

If predictors are measured without error (i.e., are perfectly reliable), then the sample size
required to detect interactions in Eq. (7.1.2) are 26 for large effect size, 55 for moderate effect
size, and 392 for small effect size interaction (J. Cohen, 1988). Even though fixed effects
regression analysis assumes error-free predictors (see Chapter 4), in reality predictors are
typically less than perfectly reliable. In fact, we are typically pleased if the reliabilities of our
predictors reach .80.

The reliability of the XL cross-product term in Eq. (7.1.2) is a function of the reliabilities of
the individual variables. With population reliabilities p^ and p^ for X and Z, respectively, the
reliability p^>JCZ of the cross-product term of two centered predictors x and z with uncorrelated
true scores (see Section 2.10.2) is the product of the reliabilities of the individual predictors
(Bohmstedt & Marwell, 1978; Busemeyer & Jones, 1983):

For example, if two uncorrelated predictors X and Z each have an acceptable reliability of
.80, the estimate of reliability of their cross-product term according to Eq. (7.11.1) is quite a
bit lower at (.8)(.8) = .64. The effect of unreliability of a variable is to reduce or attenuate its
correlation with other variables (as discussed in Section 2.10.2). If a predictor is uncorrelated
with other predictors in an equation, then the effect of unreliability of the predictor is to
attenuate its relationship to the criterion, so its regression coefficient is underestimated relative
to the true value of the regression coefficient in the population. With centered x and z in
Eq. (7.1.2), we expect minimal correlation between the x and xz, and between the z and xz
terms; the nonessential multicollinearity has been eliminated by centering (see Section 7.2.4).
Thus, when individual predictors are less than perfectly reliable, the interaction term is even
more unreliable, and we expect the power to detect the interaction term to be reduced, relative to
the power to detect the first-order effects, even if they have equal effect sizes in the population.
When predictors X and Z have reliability 1.0 and the true effect size of the interaction is
moderate, 55 cases are required for power .80 to detect the interaction. When each predictor
(X, Z) has reliability .88, the required sample size for power .80 to detect an interaction ranges
from 100 to 150 or more, depending on the amount of variance accounted for by the main
effects of X and Z. For a small effect size interaction, the required sample size for .80 power to
detect an interaction may exceed 1000 cases when the reliabilities of the individual predictors
are each .80! (See Aiken and West, 1991, Chapter 8, for an extensive treatment of reliability,
effect sizes, and power to detect interactions between continuous variables.)
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7.11.2 Sampling Designs to Enhance Power
to Detect Interactions—Optimal Design

Reviews of observational studies indicate that interactional effects may be of only a small
magnitude. In contrast, interactions with substantially larger effect sizes are often obtained in
experiments. Moreover, the types of interactions in experiments are often disordinal interac-
tions (Section 7.7.1). Such interactions are much easier to detect statistically than are the ordinal
interactions typically found in observational studies. In experiments carried out in laboratory
settings, the experimental conditions are likely to be implemented in a highly structured fashion,
such that all cases in a condition receive a nearly identical treatment manipulation. This same
control cannot be exercised in observational studies, where scores on IVs are merely gathered
as they exist in the sample (though efforts can be made to have highly reliable measures).

To further compare experiments with observational studies, we need to make a translation
from the levels of a treatment factor consisting of a treatment and a control condition to a
predictor in MR. In fact, a binary variable (consisting of two values, here corresponding to
treatment and control) can be entered as a predictor in MR. A code variable is created that
equals +1 for all cases who are in the treatment condition and —1 for all cases who are in
the control condition, referred to as an effect code. The conditions of an experiment are thus
translated into a predictor in MR. Chapter 8 is devoted to the treatment of categorical variables
in MR and the creation of such code variables.

A second and critical source of difference between experiments and observational studies
with regard to detection of interactions is the distribution of the predictor variables. McClelland
and Judd (1993) provide an exceptionally clear presentation of the impact of predictor distri-
bution on power to detect interactions; highlights are summarized here. McClelland and Judd
draw on optimal design, a branch of research design and statistics that characterizes designs
that maximize statistical power to detect effects and provide the shortest confidence inter-
vals (i.e., smallest standard errors) of parameter estimates. In experiments, predicting linear
effects, the treatment conditions are implemented at the ends of a continuum, as characterized
in Section 7.7.2. Again, the IVs corresponding to the coded variables are typically effects codes
in which a two-level treatment factor is coded (+!,—!). Thus the scores of all the subjects on
the treatment predictor are at one or the other extreme of the continuum from — 1 to +1; there
are no scores in the middle. If there are two 2-level factors (a 2 x 2 design), the resulting treat-
ment conditions represent four corners of a two-dimensional surface—that is, hi-hi (+!,+!);
hi-lo (+1, —1); lo-hi (—1, +1), and lo-lo (—1, —1). All the cases fall at one of the four corners
based on their scores on the treatment predictors corresponding to the two factors.

The distribution of two predictors X and Z in an observational study is quite another matter.
If X and Z are bivariate normally distributed, then cases in the four corners are extremely rare.
Instead, most cases pile up in the middle of the joint distribution of X and Z. Given the same
population regression equation and the same reliability of predictors, if predictors X and Z are
bivariate normally distributed, then about 20 times as many cases are required to achieve the
same efficiency to detect the XZ interaction as in the four-corners design!

The reader is warned that dichotomizing continuous predictors is not a way to increase
the efficiency of observational studies to detect interactions (Cohen, 1983). Dichotomizing
normally distributed predictors merely introduces measurement error because all the cases
coded as being at a single value of the artificial dichotomy actually have substantially different
true scores (they represent half the range of the predictor's distribution).

A possible strategy for increasing power to detect interactions in observational studies
is to oversample extreme cases, if one has prior information about the value of the cases
on the predictors (Pitts & West, 2001). Merely randomly sampling more cases won't offer
as much improvement, since the most typical cases are in the middle of the distribution. If
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one oversamples extreme cases, then the efficiency of the data set (the statistical power) for
detecting interactions will be improved. A downside of oversampling extreme cases is that the
standardized effect size for the interaction in the sample will exceed that in the population, so
that sample weights will be needed to be used to generate estimates of the population effects.

This discussion merely opens the door to the area of optimal design applied in multi-
ple regression. As regression models change, optimal designs change. Pitts and West (2001)
present an extensive discussion of sampling of cases to optimize the power of tests of interac-
tions in MR, as do McClelland and Judd (1993). This consideration is important in the design
of both laboratory and observational studies that seek to examine high-order effects.

7.11.3 Difficulty in Distinguishing Interactions
Versus Curvilinear Effects

In Chapter 4 we discussed specification errors, that is, errors of estimating a regression equation
in the sample that incorrectly represents the true regression model in the population. One form
of specification error is of particular concern when we are studying interactions in MR. This
error occurs when we specify an interactive model when the true model in the population is
quadratic in form. That is, we estimate the model of Eq. (7.1.2):

when the correct model is as follows (Lubinski & Humphreys, 1990; MacCallum & Mar,
1995):

or even as follows (Ganzach, 1997):

When the true regression model is curvilinear in nature, with no interaction existing in the
population, if Eq. (7.1.2) is mistakenly estimated in the sample, a significant interaction can
potentially be detected. This possibility arises from the correlation between predictors X and
Z. In the common situation in which IVs are correlated, the X2 and Z2 terms will be correlated
with XZ. Centering X and Z does not eliminate this essential multicollinearity. Table 7.9.1 A
provides a numerical illustration. The correlation between x and z is .32; between x2 and xz, .51.
Only if x and z are completely uncorrelated will the correlations of x2 and z2 with xz be zero.
Compounding these inherent correlations is unreliability of X and Z. This unreliability results
in unreliability of the terms constructed from X and Z, that is, X2, Z2, and XZ (Busemeyer &
Jones, 1983). In fact, the reliability of the X2 and the Z2 terms will be lower than that of the XZ
term, except in the instance in which X and Z are completely uncorrelated (MacCallum & Mar,
1995). This is so because the reliability of the XZ term increases as the correlation between X
and Z increases.

Lubinski and Humphreys (1990) suggested that one might choose between X2, Z2, and XZ as
appropriate terms by assessing which of these three predictors contributed most to prediction
over and above the X and Z terms. MacCallum and Mar (1995) in an extensive simulation
study showed that this procedure is biased in favor of choosing XZ over the squared terms
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and attributed this outcome primarily to the lower reliability of the squared terms than the
cross-product term.

There is currently debate about whether one should examine regression Eq. (7.11.2) when
the analyst's central interest is in the XL term. To guard against spurious interactions (i.e.,
interactions detected in a sample that do not exist in the population, particularly in the face of
true quadratic effects), Ganzach (1997) has argued in favor of using Eq. (7.11.4); he provides
empirical examples of the utility of doing so. Both Aiken and West (1991) and MacCallum
and Mar (1995) argue that terms included should be substantively justified and caution that
the inclusion of multiple higher order terms in a single regression equation will introduce
multicollinearity and instability of the regression equation.

7.12 SUMMARY

Interactions among continuous predictors in MR are examined. Such interactions are inter-
preted and illustrated as conditional relationships between Y and two or more variables or
variable sets; for example, an X by Z interaction is interpreted as meaning that the regression
(relationship) of Y to X is conditional on (depends on, varies with, is not uniform over) the
status of Z. An interaction between two variable sets X and Z is represented by multiplication
of their respective IVs and then linearly partialing out the X and Z sets from the product set.
The contribution of the X by Z interaction is the increment to R2 due to the XZ products over
and above the X set and Z set.

The regression equation Y = B^X + B2Z + B3XZ + B0 is first explored in depth. The
geometric representation of the regression surface defined by this regression equation is pro-
vided. The first-order coefficients (Bl, B2) for predictors X and Z, respectively, in an equation
containing an XZ interaction represent the regression of Y on each predictor at the value of zero
on the other predictor; thus BI represents the regression of Y on X at Z = 0. Zero is typically
not meaningful on psychological scales. Centering predictors (i.e., putting them in deviation
form, (x = X — Mx"), (z = Z — Afz) so that Mx = Mz = 0) renders the interpretation of the
first-order coefficients of predictors entering an interaction meaningful: the regression of Y on
each predictor at the arithmetic mean of the other predictor (Section 7.2).

Post hoc probing of interactions in MR involves examining simple regression equations.
Simple regression equations are expressions of the regression of Y on one predictor at specific
values of another predictor, as in the expression Y = [B{ + B3Z]X + [B2Z + B0] for the
regression of Y on X at values of Z. Plotting these regression equations at several values across
the range of Z provides insight into the nature of the interaction. The simple slope is the value
of the regression coefficient for the regression of Y on one predictor at a particular value of the
other predictor, here [B^ + 53Z]. The simple slope of Y on X at a specific value of Z may be
tested for significance, and the confidence interval around the simple slope may be estimated
(Sections 7.3 and 7.4).

Standardized solutions for equations containing interactions pose special complexities
(Section 7.5). The structuring of regression equations containing interactions requires that all
lower order terms be included for interaction effects to be accurately measured (Section 7.6).

Interactions in MR may take on a variety of forms. In interactions, predictors may work syn-
ergistically, one may buffer the effect of the other, or they may work in an interference pattern
(i.e., in an "either-or" fashion). They may be ordinal (preserving rank order) or disordinal
(changing rank order) within the meaningful range of the data (Section 7.7).

More complex equations containing interactions may involve three IVs (Section 7.8). They
may also involve the interaction between a predictor that bears a curvilinear relationship to
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the criterion and one that bears a linear relationship to the criterion (Section 7.9). Further,
interactions may occur between sets of predictors (Section 7.10).

Issues in the assessment of interactions in MR include the low statistical power for their
detection, particularly in the face of predictor unreliability. The power to detect interactions also
varies as a function of the distribution of predictors, particularly the extent to which there are
scores at the extremes of the predictor distributions. It is difficult to distinguish between models
containing an XZ interaction versus quadratic relationships X2 or Z2 except in experimental
settings where X and Z are uncorrelated (Section 7.11).



8
Categorical or Nominal
Independent Variables

8.1 INTRODUCTION

8.1.1 Categories as a Set of Independent Variables

In this chapter, we introduce the options for treating categorical variables (nominal or quali-
tative scales) as independent variables in MRC. These IVs, such as religion or experimental
treatments, may be represented by sets of IVs known as code variables. Each code variable
represents a different aspect of the nominal variable. Taken together, the set of code variables
represents the full information available in the original categories. As we will see, several dif-
ferent methods of selecting code variables are available, with the best method being determined
by the researchers' central questions.

Our presentation in this initial chapter on categorical IVs is limited to simple regression
models that do not involve interactions or nonlinear relationships. However, the central idea of
this chapter—the representation of nominal variables as a set of code variables—sets the stage
for the consideration of more complex regression models that include nominal IVs. Chapter 9
then considers more complex models, including curvilinear relationships in experiments, inter-
actions between nominal variables, and interactions between nominal and continuous variables.
In each case, the basic ideas presented in the present chapter provide the foundation for the
interpretation of unstandardized Bs in even the most complex regression models involving
nominal variables.

8.1.2 The Representation of Categories or Nominal Scales

Nominal scales or categories are those that make qualitative distinctions among the objects they
describe such as religion, treatment groups in experiments, region of country, ethnic group,
occupation, diagnosis, or marital status. Each such research factor G categorizes the partici-
pants into one of g groups, where g > 2. The g groups are mutually exclusive and exhaustive:
No participant is in more than one category, and all participants are categorized into one of the
groups. Again, in the general case the g groups are not necessarily ordered from "lower" to
"higher." To use nominal variables as IVs in MRC, it is necessary to represent them quantita-
tively, that is, as numbers. This problem can be summarized as "How do you score religion?"

302
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There are several frequently used coding systems among the many possible systems used to
accomplish this scoring. As we will see in this chapter, each system, taken as a set, produces
identical results for the overall effect of the nominal variable (R, R2, and the F test of signif-
icance of the IV). However, the regression coefficients produced for each of the variables in
the set when considered simultaneously answer different questions, depending on the coding
system. All coding systems use g — l different IVs (code variables) to represent the g groups,
each representing one aspect of the distinctions among the g groups. As we will see, there are
several different rationales for choosing the code variable set, because each of the alternatives
will put the focus on different specific aspects of the differences among the groups. An impor-
tant characteristic of alternative coding systems to be noted by the novice is that the numerical
value and the interpretation of a regression coefficient for any given variable in the set may
change as a function of the coding system that is chosen.

Taken as a set, the g — 1 code variables that comprise the coding system, however selected,
represent all the information contained in the nominal scale or categories. Thus, if our nominal
scale of religion is a classification into the g = 4 categories Catholic, Protestant, Jewish, and
Other (in which we have decided to include "None" so that all respondents are categorized1),
it will take g — 1 = 3 code variables [Cl5 C2, C3] to fully represent the information in this
classification. One might think that it would take g = 4 code variables [Cl5 C2, C3, C4] to do
so, but in our MRC model, the C4 variable would be fully redundant with (predictable from)
the other three and thus C4 provides no additional information beyond what is contained in
the set [Cj, C2, C3]. This redundancy is most easily seen if we consider a nominal variable
with g = 2 categories such as gender. Once we have a code variable to identify all females,
anyone left over is a male; the distinction on sex has been completely made. A second code
variable identifying males would provide no new information about the distinction on sex.
Indeed, the gth code variable is not only unnecessary, but mathematically mischievous: Its
redundancy renders the regression equation not (uniquely) solvable (see Section 10.5.1 on
exact collinearity).

Given that religion can be represented by a set of three code variables, what are they?
Among the more popular choices are dummy variables, unweighted effects, weighted effects,
and planned contrasts. Each of these coding systems leads to a different interpretation of
the meaning of the results for the individual code variables. Researchers should choose the
coding system that provides information that most directly addresses their substantive research
questions.

8.2 DUMMY-VARIABLE CODING

8.2.1 Coding the Groups

Consider the example of the four groups (Catholic, Protestant, Jewish, and Other) that com-
prise our nominal variable of religion. Table 8.2.1 presents alternative dummy-variable coding
schemes that could be used for our numerical example. In dummy coding, one group (in
Table 8.2. IB, Protestant) is designated as the reference group and is assigned a value of 0 for
every code variable. The choice of the reference group is statistically but not substantively
arbitrary. Hardy (1993) has suggested three practical considerations that should guide this
choice. First, the reference group should serve as a useful comparison (e.g., a control group;

'This decision is substantive rather than statistical, possibly made because the numbers in both groups are too
small to produce reliable estimates, and the expected differences from other groups too heterogeneous to investigate
in either group.
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TABLE 8.2.1
Illustration of Dummy-Variable Coding Systems:

Religious Groups

A. Catholic as reference group. C. Jewish as reference group.

Code variables

Religion

Catholic
Protestant
Jewish
Other

c,
0
1
0
0

C2

0
0
1
0

C^

0
0
0
1

B. Protestant as reference group
(used in chapter).

Religion

Catholic
Protestant
Jewish
Other

Code variables

c,
1
0
0
0

C2

0
1
0
0

C3

0
0
0
1

D. Other as reference group

Code variables

Religion

Catholic
Protestant
Jewish
Other

c,
1
0
0
0

C2

0
0
1
0

c,
0
0
0
1

Religion

Catholic
Protestant
Jewish
Other

Code variables

Q

1
0
0
0

C2

0
1
0
0

Q
0
0
1
0

the group expected to score highest or lowest on Y; a standard treatment). Second, for clarity
of interpretation of the results, the reference group should be well defined and not a "waste-
basket" category (e.g., "Other" for religion). Third, the reference group should not have a
very small sample size relative to the other groups. This consideration enhances the likelihood
of replication of individual effects in future research. We chose Protestant as the reference
category for the example we will use in this chapter. Protestant is a well-defined category,
and Protestants represent the largest religious group in the United States population. We also
chose Protestants for a purely pedagogical reason (contrary to Hardy's first recommendation).
Protestants are expected to have a mean somewhere in the middle of the scale for the DV in
this (fictitious) example, attitude toward abortion (ATA). This choice permits us to illustrate
the interpretation of outcomes in which other groups have higher as well as lower means than
our reference group.

Having chosen Protestant as our reference group, each of the other groups is given a value
of 1 on the dummy-coded variable that will contrast it with the reference group in the regression
analysis and a value of 0 on the other dummy-coded variables. As is illustrated in Table 8.2. IB,
Ci contrasts Catholic with Protestant, C2 contrasts Jewish with Protestant, and C3 contrasts
Other with Protestant in the regression equation. All g — 1 code variables (here, 3) must
be included in the regression equation to represent the overall effect of religion. Each code
variable contributes 1 df to the overall g — 1 df that comprise the nominal variable. If some of
the code variables are omitted, the interpretation of each of the effects can dramatically change
(see Serlin & Levin, 1985). Indeed, we will see later in this section that the interpretation
of zero-order (simple Pearson) correlations or Bs of dummy variables with Y is strikingly
different from the interpretation of regression coefficients.

The other sections in Table 8.2.1 show alternative dummy codes in which each of the cat-
egories of religion are taken as the reference group. Table 8.2.1 A shows that coding system
taking Catholic as the reference group, Table 8.2.1C shows the coding system taking Jewish as
the reference group, and Table 8.2.ID shows the coding system taking Other as the reference
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group. In each case, the group whose row entries are coded [0 0 0] will be the refer-
ence group when the variables are considered as a set. The specific group being contrasted
with the reference group in the regression analysis by the specific code variable (e.g., C{) is
represented by a 1.

Table 8.2.2 displays other examples of dummy coding of nominal variables. In Part A, four
regions of the United States are represented by g — 1 =3 dummy codes. In this example,
South was chosen as the reference group. In Table 8.2.2B, three treatment conditions in a
randomized experiment are represented by 2 dummy codes with Control as the reference group.
In Table 8.2.2C, sex is represented by a single dummy code with male as the reference group.
The coding systems presented in this chapter are completely general and can be applied to any
nominal variable with 2 or more categories. Whether the nominal variable represents a natural
category like religion or experimental treatment groups has no consequence for the analysis.

Table 8.2.3 presents hypothetical data for our example of the four religious groups for
n = 36 cases. The sample sizes of these groups are Catholic (n\ = 9), Protestant («2 = 13),
Jewish (n3 = 6), and Other (n4 = 8). Throughout this chapter we will use these four groups and
the dependent variable of attitude toward abortion (ATA) as our illustration. On this measure,
higher scores represent more favorable attitudes. The sample sizes are deliberately unequal
because this is the more general case. Where equal sample sizes simplify the interpretation of

TABLE 8.2.2
Other Illustrations of Dummy-Variable Coding

A. Dummy coding of regions of the United States (g = 4).

Code variables

Region

Northeast
Midwest
West
South

c,
1
0
0
0

C2

0
1
0
0

C3

0
0
1
0

B. Dummy coding of experimental treatment groups (g = 3).

Code variables

Experimental group

Treatment 1
Treatment 2
Control

Ci
1
0
0

C2

0
1
0

C. Dummy coding of sex (g = 2).

Code variable

Sex

Female
Male

Ci
1
0

Note: The reference group for each dummy variable coding scheme
is in boldface type.
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TABLE 8.2.3
Illustrative Data for Dummy-Variable Coding for
Religion and Attitude Toward Abortion (g = 4)

Case no.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Group

C
O
P
C
C
O
P
C
0
O
C
O
P
C
P
C
C
J
O
C
P
J
P
P
J
O
P
0
J
P
P
P
J
P
J
P

DV

61
78
47
65
45
106
120
49
45
62
79
54
140
52
88
70
56
124
98
69
56
135
64
130
74
58
116
60
84
68
90
112
94
80
110
102

Ci
1
0
0
1
1
0
0
1
0
0
1
0
0
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
1
0

Q

0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0

Group means: Mc = 60.67; MP = 93.31; Mj =
103.50; M0 = 70.13.

Note: DV is attitude toward abortion. Higher scores represent
more favorable attitudes. For religious group, C = Catholic; P =
Protestant; J = Jewish; O = Other.

the results, this will be pointed out. Table 8.2.3 also includes the set of dummy code variables
Clt C2, and C3 presented in the coding system in Part B of Table 8.3.1. Thus, cases 3, 7, 13,
15, and 21 (among others) are Protestant. As members of the reference group, their Ct, C2, C3

scores are [0 0 0]. Similarly, cases 1, 4, and 5 (among others) are Catholic and are scored
[1 0 0]; cases 18, 22, and 25 (among others) are Jewish and are scored [0 1 0]; and
Cases 2, 6 and 9 (among others) are members of other religions and are scored [0 0 1].

CH08EX01
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TABLE 8.2.4
Correlations, Means, and Standard Deviations of the Illustrative

Data for Dummy-Variable Coding

Note: GI is the dummy code for Catholic, C2 is the dummy code for Jewish, and C3 is
the dummy code for Other religions (see Table 8.2. IB). C\ represents Catholic vs. non-
Catholic, C2 represents Jewish vs. non-Jewish, and C3 represents Other vs. non-Other,
if each code variable is taken separately. ATA = attitude toward abortion. *P < .05.

Through the use of dummy codes, the categorical information has been rendered in quanti-
tative form. We can now fully and meaningfully exploit the data in Table 8.2.3 through the use
of MRC: Statistics on individual variables and combinations of variables can be computed,
bounded by confidence limits, and tested for statistical significance to provide projections
to the population. The MRC results for our illustrative example are given in Tables 8.2.4
and 8.2.5.

TABLE 8.2.5
Analysis of Illustrative Data: Attitude Toward Abortion

A. Dummy-variable coding: partial and semipartial correlations and regression coefficients.

c,
c,
C2

C3

P'i

-.494
.154

-.363

rf

.2441

.0237

.1317

srt

-.456
.125

-.313

«i
.2083
.0157
.0978

P,

-.5141
.1382

-.3506

B,

-32.64
10.19

-23.18

SEBl

10.16
11.56
10.52

ti

-3.214*
0.882

-2.203*

B. Predicted values in groups.

ATA
Catholic
Jewish
Other

Ci
C2

C3

M
sd

ATA

1.000
-.442

.355
-.225

81.69
27.88

r

Ci

-.442
1.000

-.258
-.309

.250

.439

C2

.355
-.258
1.000

-.239

.167

.378

C3

-.225
-.309
-.239
1.000

.222

.422

4

—
.1954
.1260
.0506

ti(df = 34)

-3.214*
0.881

-2.203*

Note: df = 32. *P < .05.
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8.2.2 Pearson Correlations of Dummy Variables With K

Each dummy-code variable C, is a dichotomy that expresses one meaningful aspect of group
membership. For example, when considered alone, Ct represents Catholic versus non-Catholic.
When we calculate the Pearson correlation between C\ and ATA, we get the point-biserial
correlation (see Section 2.3.3) between Catholic versus non-Catholic and ATA in this sample.
These rYl values are given in the first column of Table 8.2.4. Thus, Catholic versus non-Catholic
status in this sample correlates — .442 with ATA or equivalently accounts for (—.442)2 = . 1954
of the variance in ATA (column labeled rfy. Jewish versus non-Jewish status correlates .355
and accounts for (.355)2 = .1260 of the ATA variance. Other versus non-Other (Catholic,
Protestant, and Jewish combined) correlates —.225 with ATA and accounts for (—.225)2 =
.0506 of the ATA variance.

Table 8.2.4 displays the correlations for the code variables corresponding to Catholic,
Jewish, and Other. However, no correlations or proportions of variance accounted for are
given for the reference group, here Protestant. How do we get these values? There are two
ways. First, we can rerun the analysis using any of the other dummy variable coding systems
shown in Table 8.2.1 in which Protestant is not the reference group. For example, if we use the
dummy codes in Part A of the table, we find that Protestant versus non-Protestant correlates
.318 with ATA and the proportion of variance accounted for is (.318)2 = .1011. The rK values
for Jewish and Other in this second analysis will be identical to those reported in Table 8.2.4.
Alternatively, we can calculate rK for the reference group from our knowledge of the propor-
tion of subjects in the total sample in each group and the correlations of each of the dummy
code variables with the dependent variable. When the proportion of subjects in each group is
not equal,

In this equation, rr, represents the correlations of each of the g— 1 dummy codes with the depen-
dent variable (ATA), rYr is the correlation of the reference group with the dependent variable, P,
is the proportion of the total sample in the group coded 1 on each dummy variable, and Pr is the
proportion of the sample in the reference group. Applying this formula to our present example,

When n{ is equal in each of the groups, Eq. (8.2.1) simplifies to rYr = —5>K-
In interpreting the correlations, the sign of rK indicates the direction of the relationship.

If the group coded 1 has a higher mean than the mean of the other groups combined, then
the sign is positive. For example, C2 codes Jewish versus non-Jewish students. Since Jewish
students had a higher mean ATA than non-Jewish students, the sign of ry2 was positive. If the
group coded 1 has a lower mean than the mean of the other groups combined, then the sign is
negative (e.g., ryi for Catholic). The proportion of variance in Y accounted for is as described in
Section 2.6, except that the source of the variance is group membership (for example, Catholic
versus non-Catholic) rather than a continuous IV.

The interpretation of rYl and rYl also requires careful attention to how cases were sampled.
The magnitude of rK will depend in part on the proportion of the sample that is composed of
members of the group that is coded 1. We learned in Chapter 2 that rs increase directly with the
variability of the variables being correlated. As noted, for dichotomies in which each case has a
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score of 0 or 1, the sample sd is ^(P)(\ — P)- Thus, the sd of a dummy variable depends solely
on its proportion hi the total sample. This value reaches its maximum when P, = .50 for the
group and becomes smaller as P, either increases toward 1.0 or decreases toward 0.0. Because
rYl varies with sd., the magnitude of a correlation with a dummy variable will change with
the relative size of the group coded 1 in the total sample, reaching its maximum at P, = .50.
Therefore, the interpretation of any given rYl (or r^) depends on the meaning of P, in the sample.

To illustrate this point, let us revisit our example of religion and attitude toward abortion.
If the 36 cases were randomly sampled from the population of students at a Midwestern
university, then the rK is a reasonable estimate of pK in this population. This occurs because
the proportion of each group in the sample reflects within sampling error the proportion of
each group in this population. For the Catholic group (G3), P, = 9/36 = .25, rK = —.258,
and rYl — .0667 in this Midwestern university sample. On the other hand, other university
populations will have different proportions of Catholic students. If the random sample were
now taken at another university in which the proportion of Catholic students were closer to .50
(i.e., .25 < P, < .75), then rYl would be larger, all other things being equal.

Another circumstance resulting in different rKs is a sampling plan in which equal numbers
of Catholics, Protestants, Jews, and Others are sampled from the population and their attitude
toward abortion scores are measured. The equal Ps (.25) in the resulting data do not reflect
the actual proportions of each group in the population. The resulting data will yield different
rKs from those obtained using random sampling. For our hypothetical Midwestern university
population, we would expect no change in the correlation for Catholics (original P, = .250), a
smaller correlation for Protestants (original P; = .361), a larger correlation for Jews (original
P, = .167), and a slightly larger correlation for Other (original P, = .222) under this equal
number sampling plan. In comparing the original correlations referenced on random sampling
with the correlations referenced on equal sampling, the correlation for any group whose P,
was originally closer to .50 would be expected to decrease, whereas the correlation for any
group whose P, was originally further from .50 would be expected to increase. Once again,
these changes in rK occur with changes in the proportion of the group in the sample because
the associated sds of the dummy variables correspondingly increase or decrease.

These examples illustrate the importance of carefully considering the population and the
sampling method when interpreting correlations and squared correlations involving dummy
variables. Correlations computed from random or other types of representative samples pro-
duce good estimates of the value of the correlation in that particular population. Correlations
computed from samples containing an equal number of cases in each group permit general-
ization to a hypothetical population hi which each group occurs in an equal proportion.2 Such
sampling plans are useful for two different reasons. First, there may be an interest in within-
group effects in groups having a low proportion in the population. For example, researchers
studying ethnic minority groups often oversample such groups in order to have sufficient num-
bers to study within group relationships with reasonable statistical power. Second, it may be
that the theory generalizes not to a particular population but rather to abstract properties of
subjects within a population, and subjects are therefore either selected or manipulated to allow
a comparison of these properties with maximal statistical power (e.g., Pitts & West, 2001).
The interpretation of the proportion of variance accounted for is then appropriate only for
the hypothetical population with those relative group frequencies. In interpreting correlations,

2When the proportions of each group in the population are known and groups have been oversampled or under-
sampled relative to their respective population proportions, weighted regression techniques can be used to provide
good estimates of the population values (Winship & Radbill, 1994). Weighted regression techniques were introduced
in Section 4.5.4 in another context.
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considerable care must be taken because of the effects of the population and the sampling plan
on the obtained values.

Confidence Intervals and Significance Tests for Bivariate r
In Section 2.8.2, we considered the confidence interval for r. The calculation of a confidence

interval (CY) for a correlation between a dichotomous (e.g., dummy-coded) and a continuous
variable follows the identical procedure.

To briefly review, the upper and lower limits of the CI do not fall at equal distances from r.
We use the Fisher z' transformation of r to bypass this problem. Values of the r to z' transform
are given in Appendix Table B. For our Midwestern University example, —.44 (rounded down)
is the correlation between the dummy code corresponding to Catholic and favorable attitude
toward abortion. This r converts to a z' of .472. z' has an approximately normal distribution
and a standard error as applied to Eq. (2.8.3) of

For the 95% confidence interval, we then find the upper and lower limits for z'. Recall that for
the normal distribution, 1.96 is the multiplier for the standard error to construct the confidence
limits (see Appendix Table C). Thus, the confidence interval is .472 ± (1.96)(.174). This
gives the 95% limits for z' as .131 and .813. We then convert these values back to r, again
using Appendix Table B, and restore the original negative sign for the correlation. This results
in a 95% confidence interval for r from —.13 to —.67.

For researchers who prefer significance tests, we can alternatively test the obtained sam-
ple correlation against a population value of p = 0 as discussed in Section 2.8.3. We use
Eq. (2.8.10) reproduced below:

For our Midwestern University example, r = —.442 for the correlation between Catholic and
favorable attitude towards abortion referenced on our 36 cases. Substituting into the formula,
we find

For df = n — 2 = 34, this value of t (ignoring the negative sign) easily exceeds the p < .05
significance criterion of 2.032. We therefore reject H0 and conclude there is a negative corre-
lation in the Midwestern University population between being Catholic and having a favorable
attitude toward abortion.

This is exactly the same t value we would obtain if we used the familiar t test for the means
between two independent groups,

to test the difference between the means of ATA for Catholic and non-Catholic groups. The two
significance tests represented by Eqs. (2.8.10) and (8.2.2) are algebraically identical when two
groups are being compared.3 The chief advantage of the use of the / test of r rather the t test of the

3Eq. (2.3.7), rpb = (MY — MY )*/PQ/sdY, reminds us that the point biserial correlation can be expressed directly
in terms of the mean difference.
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mean difference between the two groups is that it gives us the proportion of variance accounted
for (r2) directly. The correlational context also helps remind us of the critical importance of
the sampling plan in interpreting our results. The population and sampling issues discussed in
the previous section are equally important in interpreting group differences in observational
studies and in experiments, but these issues are often ignored.

8.2.3 Correlations Among Dummy-Coded Variables

The definition of nominal variables requires that each case be classified into one and only
one group. For such mutually exclusive categories, the correlation between pairs of categories
must be negative. If a person who is Protestant is necessarily non-Catholic, and if Catholic,
necessarily non-Protestant. However, this correlation is never —1.00 when there are more
than two categories: a person who is non-Protestant, may be either Catholic or non-Catholic,
because there are other groups (Jewish, Other) as well. Because these correlations are between
dichotomies (e.g., Catholic vs. non-Catholic; Jewish vs. non-Jewish), they are phi coefficients
(see Section 2.3.4) and can be computed by hand or computer using the usual Pearson product-
moment correlation formula. The correlation between two dummy codes (C,, C;) can be
calculated using the following formula:

For example, the correlation between the dummy codes representing Catholic and Jewish in
our running example is

Thus, we conclude that dummy codes, which represent separate aspects of the nominal variable
G, will necessarily be partly redundant (correlated with each other). This conclusion has two
important implications that will be developed more fully in Sections 8.2.5 and 8.2.6. First, the
unstandardized regression coefficients will usually be the focus of interpretation. They compare
the unique effect of the group of interest (e.g., Catholic) with the effects of other groups that
comprise the nominal variable G held constant. Second, we cannot find the proportion of
variance in Y due to G simply by summing the separate r^ for the g — 1 dummy variables. We
must necessarily use the squared multiple correlation which takes into account the redundancy
(correlation) between the set of dummy codes that comprise G. To see this, readers may
compare the sum of the values in the r\ column of Table 8.2.4 with the value of Ry 123. The
value of Ry 123 is less than the sum of the r\ values because of the partial redundancy among
the dummy codes.

8.2.4 Multiple Correlation of the Dummy-Variable Set With K

Returning to our running example of the effects of religion on ATA, we can write a regression
equation that specifies the influence of the set of dummy-coded variables in the usual way,

When we run an MRC analysis using this equation and the religion and attitude toward abortion
data in Table 8.2.3, we find that R\ 123 = .3549. Since the three dummy codes Q, C2, and
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C3 as a set comprise the group (here, religion), this also means that R\ G = .3549. As noted
earlier, any of the dummy-variable coding systems shown in Table 8.2.1 will yield this same
value for R\ G. We thus can state that 35.5% of the variance in ATA scores is associated with
religion in this sample or that the R of ATA and religion is .596. Note that R2 depends on the
distribution of the n, of the four groups; a change in the relative sizes holding the MY. s constant
would in general change R2. This dependence on the Pf is characteristic of R, as it is of any
kind of correlation, and must be kept in mind in interpreting the results.

We can construct a confidence interval for R2 as shown in Section 3.6.2. In the present
example, substituting into Eg. 3.6.2, we find

The square root of this variance, SER2, is the standard error of/?2, which is used in the calculation
of the confidence interval, SER2 = V-0186 = .136. From Appendix Table A, the critical value
of tfordf = 32 and a = .05 is 2.037. The approximate 95% confidence interval is calculated
as R2 ± t(SER2) = .3549 ± (2.037)(.136). Thus, the 95% confidence interval for R2 ranges
from .0773 to .6325. This confidence interval is only approximate and should be interpreted
cautiously given the relatively small n (see Olkin & Finn, 1995).

Alternatively, for researchers who prefer significance tests, we can use Eq. (3.6.5)
(reproduced here) to test the significance of R2 as compared to the null (nil) hypothesis:

Substituting in our present values, we find

For df = 3, 32, the F required for significance at a = .05 is 2.90 (see Appendix Table D.2),
hence our obtained F is statistically significant. We reject the null hypothesis that religion
accounts for no variance in ATA scores in the population that was sampled.

We may also wish to report the adjusted (or shrunken) R2. We saw in Chapter 3 that
R2 provides an accurate value for the sample but overestimates the proportion of variance
accounted for in the population. For a better estimate of the Y variance accounted for by
religion in the population, we use Eq. (3.7.4) to estimate the shrunken R2 as

Our best estimate of the proportion of ATA variance accounted for by religion in the population
is 29.4%. Here again it is important to keep in mind how the sampling was carried out, because
the population to which we may generalize is the one implicit in the sampling procedure.

8.2.5 Regression Coefficients for Dummy Variables

Let us consider the meaning of each of the unstandardized regression coefficients in the equation
predicting Y in more depth. That equation (Eq. 8.2.3) as we have seen will be Y = B\Ci +
B2C2 + B3C3 + B0. In our running example, Y is the predicted value of ATA, BQ is the
intercept, BI is unstandardized regression coefficient for the first dummy code, B2 is the
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unstandardized regression coefficient for the second dummy code, and B3 is the unstandardized
regression coefficient for the third dummy code. If we use the dummy coding system presented
in Table 8.2. IB in which Protestant is the reference group, then Q corresponds to Catholic,
C2 corresponds to Jewish, and C3 corresponds to Other. Substituting the values of the dummy
codes corresponding to each religion into the equation, we find

Thus, in Eq. (8.2.3) when Cl =0, C2 = 0, and C3 = 0 for the reference group (Protestant),
the predicted value of Y equals B0, the regression intercept, which also equals the mean of the
reference group. The same value Y = BQ is predicted for all subjects in the reference group.
A 1-unit change on Q (i.e., a change from Q = 0 to Q = 1) represents the difference in the
value of the Group 1 (Catholic) mean from the reference group (Protestant) mean on the DV.
A 1-unit change on C2 represents the difference in the value of the Group 2 (Jewish) mean from
the reference group mean on the DV. Finally, a 1-unit change in the value on C3 represents the
difference in the value of the Group 3 (Other) mean from the reference group mean on the DV.
Thus, each regression coefficient and its significance test is a comparison of the mean of one
of the groups with the mean of the reference group, here Protestant.

To illustrate these relationships for our numerical example,

Table 8.2.5 shows the results of substituting the dummy codes corresponding to each religious
group into this equation. For each group, Y is identical to the mean for the group shown in
Table 8.2.3.

Graphical Depiction
Figure 8.2.1 depicts the results of the regression analysis graphically. Figure 8.2.1 (A) shows

the scatterplot of the raw data for the four religious groups, which have been numbered 1 =
Catholic, 2 = Protestant, 3 = Jewish, and 4 = Other on the x axis. Over these values
the plot displays the distribution of scores on ATA corresponding to each religious group.4

Figure 8.2.1(B) shows the predicted values (group means) on ATA for each of the religious
groups, again plotted over the numbers identifying each religious group. Figure 8.2.1(C)
shows the residuals Yt—Yt from predicting each case's score on ATA. The values on the x axis are
the predicted values, Y, for each group. The residuals for each group are now displayed above
their respective group means. Thus, the residuals for Catholic are displayed above 60.7 (the
mean for the Catholic group; see Table 8.2.3), the residuals for Other are displayed above 70.1,
the residuals for Protestant are displayed above 93.3, and the residuals for Jewish are displayed
above 103.5. This plot allows us to examine whether the variability around the predicted values
differs greatly across the groups (heteroscedasticity). Finally, Fig. 8.2.1(D) shows a q-q plot of

4In the present example, the simple scatterplot clearly presents the data because each person in a group has a
different value on ATA. In larger data sets more than one person in the group (often many) may have the same value
on the dependent variable. Each of these points will then be plotted on top of each other (overplotting) and cannot be
distinguished. The graphical option of "jittering" points presented in Section 4.2.2 will help. Other graphs that allow
for the comparisons of the distributions across the groups avoid these problems (see Cleveland, 1994).
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(A) Scatterplot of raw data. (B) Scatterplot of predicted ATA vs. group.

Note: In Parts (A) and (B), the values of religion are as follows: 1 = Catholic, 2 = Protestant, 3 = Jewish, 4 =
Other. In Part (B) the predicted ATA values for each group are plotted over the group number. These predicted
values equal the means for each group.

Note: In Part (C) the horizontal line indicates where the residuals = 0. In Part (D) the q-q plot of the residuals
closely follows a straight line, indicating the residuals are normally distributed.

FIGURE 8.2.1 Results of regression analysis for religious groups and ATA.

the residuals against a normal distribution (see Section 4.4.6). The q-q plot indicates that the
residuals approximate a straight line, so the assumption of normality of the residuals is met.

Confidence Intervals and Significance Tests
for Regression Coefficients
Once again, we can directly use the methods for constructing confidence intervals and for

performing significance tests for the unstandardized regression coefficients that were presented
in Chapter 3. Each of the unstandardized regression coefficients has a t distribution with

(C) Scatterplot of residuals vs. fit values. (D) q-q plot of residuals against normal distribution.
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df = n — k — 1, where k is the number of code variables (= g — 1). For our running example
of religion, df = 36 - 3 — 1 = 32. Thus, to construct a confidence interval, we simply take
Bj ± tSEBj. In general, SEB. will differ for each dummy variable's regression coefficient.

To illustrate we construct 95% confidence intervals for each of the regression coefficients
in our running example. For Q, the dummy code for Catholic, Bl = —32.64 and the corre-
sponding SE is 10.15. From Appendix Table A, the critical value of tfordf = 32 and a = .05
is 2.037. Then the confidence interval (C7) is -32.64 ± (2.037)(10.15) which ranges from
-53.31 to -11.96. The CI for each B is

indicating that we are 95% confident that the population difference between Protestants and
Catholics on ATA is between —12 and —53, the difference between Protestants and Jews is
between —13 and 34, the difference between Protestants and Others who are neither Catholics
nor Jews is between —2 and —45, and the population mean for the reference group falls between
80 and 107. Of course, these estimates hold only for the population represented by the study
sample (presumably students at a Midwestern University).

The significance tests of the null hypothesis that unstandardized regression coefficient
Bj = 0 is similarly straightforward, t equaling the coefficient divided by its SE. In our run-
ning example, the null (nil) hypothesis significance test of the BI coefficient for Catholic is
t = -32.64/10.15 = -3.21, which exceeds the magnitude of the critical/ = 2.037 fora = .05
and df = 32, leading us to the conclusion that the mean ATA is higher for Protestants than for
Catholics. Researchers having a null hypothesis that the value of Bt is equal to some specific
value c (e.g., H0: Bl = -10 in the population) can test this hypothesis by t = (Bl — c)/SEB]

with df = n — k — 1. In this equation, c is the constant representing the new "null" hypothesis.
In this case [-32.64 - (-10)]/10.15 = 2.23, which again exceeds the critical t = 2.037.
Thus, the population mean for Protestants exceeds the population mean for Catholics by more
than 10 points (a statement that might also have been based on the CI for this difference).

Finally, researchers may sometimes be interested in comparisons of two groups in which
neither of these groups is the reference group. For example, the researcher may be interested
in comparing the mean of the Catholic with the mean of the Jewish group. The easiest way to
accomplish this is to rerun the analysis after the data have been recoded using another dummy
coding system in which one of the groups being compared is the reference group. Rerunning the
analysis with the dummy coding system from Table 8.2.1 A, in which Catholic is the reference
group, willyield#2 = 42.83, indicating that the mean of ATA in the Jewish group is 42.83 larger
than in the reference Catholic group. The analysis also produces SEB2 = 12.34 and t = 3.47,
df = 32,p< .05. Alternatively, this test may be performed by hand to compare fi, to Bj by

where SEY_^ is the standard error of estimate available from the computer printout. Recall
from Sections 2.6 and 3.6 that the standard error of estimate represents the standard deviation
of the residuals about the regression line. Its square can also be expressed as
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Applying this equation to the comparison of the Jewish (#2) with the Catholic (5t) groups,
we find

which is significant atp < .05. Any other possible comparisons of group means not involving
the reference group may also be carried out using these procedures.

At the same time, caution must be exercised in conducting such comparisons, particularly
when there is not a strong a priori prediction that two specific groups will differ. Although it is
possible to compare all pairs of group means, such procedures are not advisable because they
increase the level of a for the study beyond the stated level, typically a = .05. Kirk (1995,
Chapter 4) and Toothaker (1991) present a full discussion of procedures for controlling the
Type I error rate when multiple groups are compared.

Standardized Regression Coefficients
The standardized regression coefficient (ft) is far less useful for nominal than for continu-

ous variables. Unlike continuous variables, the variability of a dichotomy cannot be changed
without also changing its mean (that is, the proportion of the sample coded 1). In the previous
section we saw that unstandardized regression coefficients for dummy variables represent dif-
ferences between means. These differences do not depend on the relative sizes of the groups. In
general, the standardized p\ for coded nominal scales will vary with changes in the relative n,s,
decreasing their general usefulness. When PS are reported, they must always be carefully inter-
preted in light of the population and sampling procedures, which will affect their magnitude.
We have presented the standardized |3,s in Table 8.2.5 for the sake of completeness.

8.2.6 Partial and Semipartial Correlations for Dummy Variables

Partial Correlation
The partial correlation is the correlation of X, with that part of Y that is independent of the

other IVs in the equation. In the specific context of dummy variables, holding the other IVs
constant means retaining only the distinction between the z'th group and the reference group.
Concretely, pr} (= —.494; see Table 8.2.5) in our example is the correlation between ATA and
Catholic versus non-Catholic, holding Jewish versus non-Jewish and Other versus non-Other
constant. Consequently, prl = —.494 is an expression in correlational terms of the difference
between the Catholic group and Protestant group in ATA scores. Similarly, from Table 8.2.5,
pr2 = .154 relates ATA to Jewish versus Protestant (holding constant Catholic and Other) and
pr3 = -.363 relates ATA to Other versus Protestant (holding constant Catholic and Jewish).
Otherwise stated, the prt can be viewed as a representation of 5, in a correlational rather than
raw score metric. As with other measures of correlation, the interpretation of a given prt must
take into account the population and sampling plan.

Semipartial Correlation

Recall that the squared Semipartial correlation srf is the amount by which R^ 123 k would
be reduced if X, were omitted from the IVs. That is, srf = Ry.i23...k ~ RY i23...(i)...*- Here, the
(0 in the subscript symbolizes the omission of Xt. With dummy-variable coding, the omission
of X( is equivalent to collapsing group i in with the reference group. Consider what happens
in our example if C\ is omitted. Both Catholic and Protestant are coded C2 = 0, C3 = 0 and
are therefore not distinguished. The result is that we have reduced our four original religious
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groups to three: Catholic/Protestant (combined), Jewish, and Other. We see in Table 8.2.5 that
sr2 = .2083. This means that the loss of the Catholic-Protestant distinction would result in the
loss of 20.8% of the ATA variance accounted for by religion. Equivalently, our R2 would drop
from .3549 to .1468. Thus, srf in dummy-variable regression provides a measure in terms
of the proportion of total Y variance of the importance of distinguishing group i from the
reference group. Thus, the Jewish-Protestant distinction (sr|) accounts for only 1.6%, whereas
the Other-Protestant distinction (sr2) accounts for 9.8% of the ATA variance. We note again that
these values, as all correlations involving dummy variables, are dependent on the proportions
of the cases in each group.

In a previous section, we presented a significance test for the null (nil) hypothesis that
Bf = 0 in the population. As noted in Chapter 3, t tests of partial coefficients including
B{, standardized p\, prif and srt for any given IV, including a dummy variable C, will yield
identical results. As we saw in Section 3.6, these equivalent t tests of the null (nil) hypothesis
for partial relationships can be written in several different ways. One simple one in terms of
the semipartial correlation and R2 is given below:

Applying this equation to our example to test sr^ we find

The results of this test are identical to the test of the unstandardized regression coefficient
reported in Table 8.2.5. This value of t = 3.214 exceeds the required value of t = 2.037
for a = .05, so we can reject the null hypothesis. The result of this test may be interpreted
equivalently in terms of/?,-, standardized 0,, prt, or sr2. Interpreting the test for B^ it shows
that Catholics have a lower mean ATA score than Protestants (reference group). In terms of the
partial correlation pr^ if we consider only Catholics and Protestants in the population, there
is a negative point-biserial correlation between this religious dichotomy and ATA. Finally,
in terms of the squared semipartial correlation, sr2, the test shows that if we dropped the
distinction between Catholics and Protestants, R2 would drop from its value obtained when
religion is categorized into four groups.

8.2.7 Dummy-Variable Multiple Regression/Correlation
and One-Way Analysis of Variance

Readers familiar with analysis of variance (ANOVA) may wonder about its relationship to
MRC. Both are applications of the same general linear model, and when the independent vari-
ables are nominal scales they are identical. This equivalence has been obscured by differences
in terminology between MRC and ANOVA, and divergent traditions that have linked observa-
tional designs with MRC and experimental designs with ANOVA (see Chapter 1; also Aiken &
West, 1991, Chapter 9; Tatsuoka, 1975).

Viewed from the perspective of ANOVA, the problem addressed in this chapter is one
way analysis of variance. We have considered g levels of a factor, with n, observations on
Y in each group. For the illustrative data of Table 8.2.3 we would assemble the Y values
into the g-designated groups and proceed to find three sums of squares: total (55TOTAL),
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between groups (55BG), and within groups (55WG). These sums of squares are defined as
follows:

In these equations Y, is the score on Y for subject j, Mi is the mean of the ith group, n, is the
number of subjects in the /th group, MG is the grand mean (the unweighted mean of the group
means), g is the number of groups, and n is the total number of subjects in the entire sample.
As is shown in Table 8.2.6 for our running example of attitude toward abortion, each SS is
divided by its corresponding df, yielding three mean square (MS) values. The mean square
between groups (M5BG) is then divided by the mean square within groups (AfSWG) to yield an
F statistic. This F statistic tests the null (nil) hypothesis that there are no differences among
the means of the groups on Y in the population represented by the sample.

When we examine Table 8.2.6, we note that the F from the ANOVA is identical to the F
computed earlier as a test of R2 (see Table 8.2.4) using these data. This can be understood
conceptually in that the null hypothesis of the ANOVA, equality of the g population means,
is mathematically equivalent to the null hypothesis of the MRC analysis, which is that no
variance in Y is accounted for by group membership. Clearly, if the population means are all
equal, Y variance is not reduced by assigning to the members of the population their respective
identical group means. These group means are necessarily also equal to the grand mean of the
combined populations. Each null hypothesis implies the other; they differ only verbally.

The two F ratios are, in fact, algebraically identical:

TABLE 8.2.6
Analysis of Variance of Attitude Toward Abortion Data

A. Analysis of variance summary table.

Source

Total
Between groups
Within groups

55

27,205.64
9,656.49

17,549.15

df

35
3

32

MS

—
3,218.83

548.41

F

5.869

B. Cell means for attitude toward abortion.

C. Calculations.
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Substituting these in the ANOVA formula for F, we find

The final value is the F ratio for the significance test of/?2 in MRC.
Many modern ANOVA texts also present the formula for the proportion of variance in Y

accounted for by the G factor. This statistic is known as rj2 (eta squared) and is written as
follows:

Note in Table 8.2.6 that the application of this formula to our running example gives r\2 =
.354944, the same value as found for Ry 123. In general, r2 = #y...i23...(g-i)-

Further, just as the shrunken (or adjusted) R2 of Eq. (3.5.5) yields an improved estimate of
the proportion of variance of Y accounted for in the population, the same improved estimate in
ANOVA is known as €2 (epsilon squared), and it is readily proved that €2 = Ry 12s (g_i)• Thus,
we see that the yield of an MRC analysis of coded nominal group membership includes the
information that a one-way ANOVA yields. In addition, we also directly obtain various useful
correlational measures such as simple, partial, semipartial, and multiple correlations. These
measures are typically not reported in standard ANOVA statistical packages. In subsequent
sections of this chapter we will see that other coding systems bring out still other identities
between ANOVA and MRC. Later in this chapter we will see how analysis of covariance can
be duplicated and extended by means of MRC. In Chapter 9, we will consider more complex
fixed effects ANOVA models such as factorial ANOVA.

8.2.8 A Cautionary Note: Dummy-Variable-Like Coding Systems

Researchers sometimes use other dummy-variable-like coding systems in which a number other
than 0 is assigned to the reference group and numbers other than 1 are used to represent group
membership. As one example, some researchers use a coding system in which sex is coded
female = 1 and male = 2 . This coding system will yield the same results for the correlations
and t tests of regression coefficients as were described here. However, recall that the intercept
is the value of Y when C has a value = 0. Thus, the intercept will represent the mean of Y
for the nonexistent case in which gender = 0 in this coding system. As a second example,
a coding system in which female = 2 and male = 0 might be used. Here, the intercept will
correctly equal the MY in the male reference group. However, B for the dummy variable will
have a different meaning than is normally intended. Recall that the unstandardized regression
coefficient represents the value of a 1-unit change in the variable. However, in this coding
scheme there is a 2-unit difference between the male and female coded values. Because B
provides the value of a 1-unit change, it will now equal one-half of the difference between the
male and female means on Y.

These examples illustrate that the use of dummy-variable-like coding systems lead to
complications in the interpretation of the results of the MRC analysis of a single nominal
independent variable. The moral here is "keep it simple": use a standard zero-one dummy
coding system. In more complex models, the use of nonstandard dummy-variable-like coding
systems may not only change the meaning of certain regression coefficients, it may also lead
to inappropriate confidence intervals and significance tests for these coefficients. If a data set
is encountered with such a nonstandard coding scheme, researchers are advised to transform
(recede) the data to permit analysis using conventional dummy codes.



320 8. CATEGORICAL OR NOMINAL INDEPENDENT VARIABLES

8.2.9 Dummy-Variable Coding When Groups
Are Not Mutually Exclusive

As indicated in the beginning of this chapter, dummy coding is intended for the situation in
which each subject may belong to only one group in the set. When this is not the case—for
example, if the nominal scale is intended to measure ethnicity in a circumstance in which
an individual may claim more than one ethnic identity—the interpretation of the coefficients
resulting from the inclusion of the g — 1 variables in the equation predicting Y will necessarily
change. The B coefficients will no longer readily reproduce the original Y means of the groups
as in the analyses we have just reviewed. Instead, each B will represent the mean difference
between the group coded 1 and the reference group from each of which has been partialed the
effects of the overlap in group membership. Other coefficients such as partial and semipartial
correlations will necessarily be similarly partialed for overlap among the groups. Interpre-
tation of the variables in such cases needs to be done with extreme care to avoid erroneous
conclusions.

8.3 UNWEIGHTED EFFECTS CODING

8.3.1 Introduction: Unweighted and Weighted Effects Coding

In Section 8.2 on dummy coding variables, we showed that all measures of the partial effect of
a single code variable—the regression coefficients and the partial and semipartial correlation
coefficients—are interpreted with respect to a reference group. Such interpretations are very
often useful, which contributes to the popularity of dummy codes. However, situations arise in
which such interpretations may not be optimal, as the following example adapted from Suits
(1984) illustrates.

Imagine you have conducted a large study comparing the number of years of schooling
attained by residents in different regions of the United States. Dummy-variable codes are used
to represent residence in the four regions of the United States as shown in Table 8.2.2A, in
which South is designated as the reference group. You are invited to present your findings to
a Senate committee.

If you explain in the usual language that you have "omitted the (code) variable for 'South'," a
distinguished Southern senator might well demand indignantly, "Now just a minute here. Let me get
this straight. You did what?"

To straighten out the natural confusion, you might explain that you haven't really "left out" the
South. On the contrary, you have "established the South as the reference group from which to measure
the educational attainment in other regions as deviations." The resulting confusion and consternation
among the rest of the committee can well be imagined (adapted with small changes from Suits, 1984,
p. 178).

Problems such as those addressed by this educational research project are often better
represented by other coding systems. For many research questions, the central issue is how
the outcomes in each separate group differ from the average (mean) outcome for the entire
sample. To answer such questions, we will use effects coding. In this coding system we again
use g — 1 codes to represent the g groups. However, as we will see, the fi,s now represent the
deviation of the outcome for each separate group from the mean of the groups rather than from
a selected reference group.

When the sample sizes of the groups differ, we need to decide between two possible com-
parisons with the separate group means. One possibility is the unweighted mean, in which each
of the groups count equally. The unweighted mean is represented in the case of four groups



Even if there are 100 cases in group 1, and only 10 cases in group 2, 20 cases in group 3,
and 50 cases in group 4, the means of each separate group contribute equally to the overall
unweighted mean. This unweighted coding system is particularly useful when the groups
represent different experimental treatment groups and differences in sample size are the result
of incidental factors such as the cost or difficulty of mounting each experimental treatment.
For the example noted, this would mean we wished to compare the mean years of each region
of the country to the mean education of the four regions (treated equally).

The second possibility is to use the weighted mean, in which the number of cases in each
group are involved in the computation. In the case of four groups and in general, the weighted
mean is represented as

Of importance, En, = n, the total sample size, so that the weighted mean Mw = ~EY/n, the
usual sample mean when group membership is ignored. Weighted effects coding will be of
particular importance when the relative size of each group in the sample is representative of
its proportion in the population. For example, if we have taken a random sample and wish
to generalize the results to the population, weighted effects coding would be the approach of
choice. In our earlier example, this would imply the total population of the United States as
the reference, complete with its unequal population size in the various regions.

To understand this difference more fully, consider a group of researchers who wish to study
the average income of adult residents of the southwestern United States. If they select a random
sample of adult residents in the four southwestern states of Arizona, California, Nevada, and
New Mexico, the great majority of the people included in the sample would be from the state
with the largest population, California. California residents also have a substantially higher
mean income than the other states. The use of the weighted mean would permit generalization
to the income of residents of the southwestern region, which in fact is dominated in both
population and income by residents of California. In contrast, the use of the unweighted mean
would permit generalization to a hypothetical southwestern population in which each of the
states contributed equally, regardless of its population.

In this Section (8.3), we consider unweighted effects coding in which comparisons are made
with the unweighted mean. As noted earlier, this is often the most useful choice for analyzing
data from experiments. In the next Section (8.4), we consider weighted effects codes, which
are most useful when cases have been sampled from some larger population using random or
representative sampling. When the sample sizes (n,) are equal in each group, weighted effects
codes simplify and become identical to unweighted effects codes.

8.3.2 Constructing Unweighted Effects Codes

Table 8.3.1 presents four examples of unweighted effects codes. In each case, g — 1 code
variables will be needed to represent the g groups that comprise the nominal variable. In the
case of unweighted effects coding, one of the groups must be chosen as the base for the coding
scheme and is assigned a value of — 1 on all of the code variables. We will term this group
the base group. In contrast to dummy-variable coding (Section 8.2.1), the base group is often
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and in general as
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TABLE 8.3.1
Illustration of Unweighted Effects Coding

A. Catholic as base group.

Code variables

Religion

Catholic -1 -1 -1
Protestant 1 0 0
Jewish 0 1 0
Other 0 0 1

C. Unweighted effects coding of exper-
imental treatment groups (g = 3).

Code variables

Experimental group Cl

Treatment 1 1
Treatment 2 0
Control -1

C2

0
1

-1

B. Protestant as base group (used in
chapter).

D. Dummy coding of sex (g = 2).

Code variable

Code variables §ex

Religion

Catholic
Protestant
Jewish
Other

c,
1

-1
0
0

C2

0
-1

1
0

C3 Female
0 Male

-1
0
1

c,
1

-1

selected to be the group for which comparisons with the mean are of least interest. This is
because the MRC analyses do not directly inform us about this group. In unweighted effects
coding the regression coefficients represent comparisons of the mean of each group, except
the base group, with the unweighted mean.

Table 8.3.1 A presents a set of unweighted effects codes using Catholic as the base group,
and Table 8.3.IB presents a second set of unweighted effects codes using Protestant as
the base group for our running example of four religious groups. The unweighted effects
codes presented in Table 8.3.IB will be used throughout this section. Other unweighted
effects coding schemes using Jewish or Other as the omitted group could also be con-
structed. Table 8.3.1C presents a set of unweighted effects codes for comparisons of three
experimental treatment groups, and Table 8.3.ID presents the unweighted effect code for
comparisons on sex.

To construct unweighted effects codes, we designate one group to serve as the "base group."
In Table 8.3. IB, the Protestant group was chosen as the base group to facilitate direct compar-
ison with the results of the dummy-coded analysis presented in Section 8.3. The base group
is assigned a value of — 1 for each code variable. Each of the other groups is assigned a value
of 1 for one code variable and a value of 0 for all other code variables, paralleling the assign-
ment of dummy codes. In Table 8.3.IB, Catholic is assigned [1 0 0], Jewish is assigned
[0 1 0], and Other is assigned [0 0 1]. The critical difference between the dummy cod-
ing scheme of Table 8.2. IB and the present unweighted effects coding scheme is the set of
codes for the Protestant base group [ — 1 — 1 — 1 ].

In this unweighted effects coding system, Cl contrasts Catholic, C2 contrasts Jewish, and
C3 contrasts Other with the unweighted mean of the four religious groups in the regres-
sion equation. The contrast of the base group with the unweighted mean is not given
directly, but can be easily calculated. As with dummy variables, all g — 1 code variables
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TABLE 8.3.2
Illustrative Data for Unweighted Effects Coding for Religion and

Attitude Toward Abortion (g = 4)

Case no.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Group

1
4
2
1
1
4
2
1
4
4
1
4
2
1
2
1
1
3
4
1
2
3
2
2
3
4
2
4
3
2
2
2
3
2
3
2

W

61
78
47
65
45
106
120
49
45
62
79
54
140
52
88
70
56
124
98
69
56
135
64
130
74
58
116
60
84
68
90
112
94
80
110
102

c,
1
0

-1
1
1
0

-1
1
0
0
1
0

-1
1

-1
1
1
0
0
1

-1
0

-1
-1
0
0

-1
0
0

-1
-1
-1
0

-1
0

-1

C2

0
0

-1
0
0
0

-1
0
0
0
0
0

-1
0

-1
0
0
1
0
0

-1
1

-1
-1
1
0

-1
0
1

-1
-1
-1
1

-1
1

-1

C3

0
1

-1
0
0
1

-1
0
1
1
0
1

-1
0

-1
0
0
0
1
0

-1
0

-1
-1
0
1

-1
1
0

-1
-1
-1
0

-1
0

-1
Group means: M, = 60.67; M2 = 93.3 1;M3 = 103.50; M4 = 70.13.

My = (60.67 + 93.31 + 103.50 + 70.13)/4 = 81.90 = BQ.

Note: DV is attitude toward abortion. For religious group, 1 = Catholic, 2 =
Protestant, 3 = Jewish, 4 = Other. M^ is unweighted mean of four groups.

(here, 3) must be included in the regression equation to represent the overall effect of
religion. Each code variable contributes 1 df to the g — 1 df that comprise religion. If
any code variables are omitted, the interpretation of the results can dramatically change.
Table 8.3.2 presents the data file that would be created using the unweighted effects codes from
Table 8.3. IB, for our running example. Tables 8.3.3 and 8.3.4 present the results from the MRC
analysis.
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TABLE 8.3.3
Correlations, Means, and Standard Deviations of the

Illustrative Data for Unweighted Effects Coding

Note: ATA = attitude toward abortion. *p < .05. M is the unweighted mean of
the group means.

8.3.3 The R2 and the /y/s for Unweighted Effects Codes

R2 and ft2

We first note that/?2 = .3549, F = 5.899, and R2 = .2945, the same values as were obtained
by dummy-variable coding. We remind readers that the different coding systems are alterna-
tive ways of rendering the information as to group membership into quantitative form. Each of
these coding systems taken as a set carries all the group information and represents the same
nominal variable. Given the same Y data they must yield the same R2 and hence the same

TABLE 8.3.4
Analysis of Illustrative Data: Attitude Toward Abortion

A. Unweighted effects coding: partial and semipartial correlations and regression coefficients.

Note: df = 32. *p < .05.

B. Predicted values in groups.
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F statistic. In contrast, the results for the individual code variables (C,s) change with changes
in the coding scheme.

Pearson Correlations
The interpretation of the simple Pearson correlations between each of the code variables

with Y is less straightforward for unweighted effects coding than for dummy coding. For each
code variable C, there are now three possible values: +1,0, —1. For example, in Table 8.3. IB,
the code variable Cl has the following values:

For Ci the Pearson correlation with Y, /?K, reflects the contrast between the group coded 1 and
the base group coded -1 with the effect of the other groups minimized.5 If the sample sizes in
the group coded +1 (here, Catholic, «j = 9) differs appreciably in size from the group coded
— 1 in the contrast (here, Protestant, n2 = 13), it is prudent not to interpret the individual rKs
from unweighted effects codes. In the special case in which the n(s of these two groups are
equal, the rK for unweighted effects codes will have the same value and interpretation as sri

from the dummy coding scheme when the reference group is the same as the base group.
As with dummy codes, unweighted effects codes are in general correlated with each other.

This means that R\ 123 will not equal the sum of the three r^s. When all groups are of the same
size, rtj between any two code variables will be .50 regardless of the number of groups. When
the groups have unequal ns, intercorrelations will be larger or smaller than .50 depending on
the relative sizes of the groups. In Table 8.4.3, the r{jS range from .595 to .636.

8.3.4 Regression Coefficients and Other Partial Effects
in Unweighted Code Sets

Once again, we can substitute into our standard regression equation to help understand the
meaning of each of the unstandardized regression coefficients. Substituting values of the
unweighted effects codes from Table 8.3. IB, we find

In unweighted effects coding, B0 is the unweighted mean of the four groups, Mv = (Ml +M2 +
M3 + M4)/4. Each of the unstandardized regression coefficients represents the discrepancy of
the corresponding group mean from the unweighted grand mean associated with a 1-unit
change on C,. Thus, Bl represents the difference between the mean of the group coded 1 on
Ci (Catholic) and the unweighted grand mean of the four religious groups. B2 represents the

5 The word minimized is used to avoid lengthy discussion of a minor mathematical point. The minimum influence
of the 0-coded groups on rYl is literally nil whenever the n of the group coded +1 equals the n of the group coded — 1.

Group

Catholic
Protestant
Jewish
Other

c,
+1
-1

0
0



In this equation, g is the number of groups comprising the nominal variable, k is the number of
code variables, i runs from 1 to g — 1 (i.e., not including the base group), and nb is the number
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difference between the mean of the group coded 1 on C2 (Jewish) and the unweighted grand
mean. And 53 represents the difference between the group coded 1 on C3 (Other) and the
unweighted grand mean. The difference between the mean of the omitted group (Protestant)
and the unweighted grand mean is obtained by subtraction:

To illustrate these relationships, we estimated our standard regression equation (Eq. 8.2.3),
Y = B1Cl + B2C2 + B3C3 + BQ, using the unweighted effects codes shown in Table 8.3.IB
with Protestant as the base group. The result is shown in Eq. (8.3.3):

Table 8.3.4 shows the results of substituting the unweighted effect codes corresponding into
our standard regression equation. For each group, Y is identical to the mean for the religious
group shown in Table 8.3.2. The graphical depiction of the results for unweighted effects codes
is identical to that for dummy codes.

Confidence Intervals and Significance Tests for B,-
Procedures for constructing confidence intervals and conducting significance tests for each

of the unstandardized regression coefficients are identical to those presented in Section 8.2.3
for dummy variables. We simply take 5, ± tSEg where df = n - k — I. As before, df = 32
and t = 2.037. Note that the values of each Bt and SEt have changed (compare Table 8.2.5
with Table 8.3.4) so the actual values of the confidence intervals will change. Substituting in
the current values for B{ and SEB, we find

Significance tests for each of the unstandardized regression coefficients are presented in
Table 8.3.4. Again, these values differ from those presented in Table 8.2.5 for the analysis
of the dummy-coded variables. These changes reflect the change in the meaning and the value
of the unstandardized regression coefficients between dummy coding and unweighted effects
coding.

Two other significance tests may be of interest to researchers. First is the test of the differ-
ence between the mean of the base group and the unweighted grand mean. This test can be
accomplished most simply by using another unweighted effects coding system with a different
base group. For example, if we use the coding system depicted in Table 8.3.1 A, in which
Catholic is the base group, the test ofBl provides a test of the difference between the mean of
the Protestant group and the unweighted grand mean. Alternatively, this test can be performed
using information from the original analysis with Protestant as the base group. The equation
is as follows:



Since the critical value of t with df = 32 and a = .05 is 2.037, we conclude that the mean of
the Protestant base group does not differ from the unweighted mean of the four groups in the
population.

Finally, researchers may be interested in testing the difference between the means of two
groups / and j in the population. Recall that the analysis using dummy codes directly tests
the difference between each group mean and the reference group. Thus, this question can
be directly answered by receding the data so that dummy codes are used as the set of code
variables. The reference group for the dummy codes should be chosen so that it is one of the
two groups involved in the comparison. For example, if the researcher wished to compare the
Protestant and Catholic groups, the test of Cl using the dummy coding system presented in
Table 8.3.1 A provides a test of the hypothesis.

Alternatively, these tests may be computed by hand using the output from the unweighted
effects codes analysis. If neither of the groups being compared is the base group, Eq. (8.2.4)
for comparing two groups i andy (neither of which is the base group) is used. This equation is
reproduced here:

When the base group is included in the comparison, a different formula must be used since there
is no regression coefficient directly available for the base group. This formula is as follows:

Note that the summation is over all of the B coefficients, except B,, the regression coefficient for
the group being compared with the base group. The numerator is a re-expression of M, — Mb.
Applying this formula to our running example for the comparison of Catholic and Protestant
(omitted group),

This t value exceeds the critical value of t = 2.037 for df = 32 and a = .05. Note that this is
exactly the same value as the t for Bl in the regression analysis using dummy codes presented
in Table 8.2.5.

Once again, we encourage readers to exercise caution in conducting such comparisons,
particularly when there is not a strong a priori prediction that two specific groups will dif-
fer. Multiple comparisons of group means increase the level of a for the study beyond the
stated level, typically a = .05, and special procedures described by Kirk (1995, Chapter 4)
and Toothaker (1991) need to be taken.
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of subjects in the base group. Applying this formula to our running example using the results
presented in Table 8.3.4, we find
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Semipartial and Partial Correlations
As noted, the regression coefficients provide a contrast between a given group and the

unweighted mean of all the groups. Because the mean of all the groups includes the group in
question, this is functionally equivalent to contrasting this group with the remaining groups
taken collectively. Thus, srf is the proportion of Y variance accounted for by this contrast.
Concretely, for our running example, sr\ means that 19.4% of the variance in ATA scores is
accounted for by the distinction between Catholic on one hand and equally weighted Protestant-
Jewish-Other on the other hand. Thus, 19.4% of the ATA variance in the sample is accounted
for by the "distinctiveness" of Catholics relative to the other groups.

The partial correlations relate the partialed effects-coded IV (e.g., Xl 23) with that part of Y
left after the other variables have been removed. Thus, pr\ gives

Recall that the denominator of prf is always equal to or smaller than the denominator of srf
(which is 1.0). Hence, prf will typically be larger than srf.

8.4 WEIGHTED EFFECTS CODING

8.4.1 Selection Considerations for Weighted Effects Coding

Weighted effects coding is most appropriate when the proportion of cases in each group in the
sample can be considered to represent the corresponding proportion of cases in the population.
This situation will most commonly occur when random or representative samples have been
selected from a population. In weighted effects coding it is the comparison of each group with
the aggregate population mean that is at issue. As a metaphor, unweighted effects codes may
be thought of as the "Senate" option—since every state in the United States has two Sena-
tors regardless of its population size—whereas weighted effects codes would be the "House"
option, since the 435 U.S. Representatives are divided among the states in proportion to their
population size.

Like the situation with unweighted effects coding, one of the groups must be designated
as the base group in the coding scheme. Once again, the group for which comparisons with
the mean are of least interest will normally be chosen to be the base group because the MRC
information regarding that group will be less accessible than for the other groups.

8.4.2 Constructing Weighted Effects

Table 8.4.1 presents four examples of weighted effects codes. These examples parallel exactly
those in Table 8.3.1, permitting direct comparison of weighted and unweighted effect codes.
Table 8.4.1 A presents a set of weighted effect codes for religion using Catholic as the base
group; Table 8.4. IB presents the set of weighted effect codes for religion using Protestant as
the base group.6 Table 8.4.1C presents a set of weighted effects codes for comparisons of three
experimental treatment groups and Table 8.4. ID presents the weighted effect code for sex. In
Tables 8.4.1 A and B, we have written a general expression and the specific codes given the

6 In practice, the decimal value corresponding to the fraction would be used for each code variable. Thus, in
the Protestant base group in our example, the actual values entered would be —.6923076 (=—9/13),—.4615384
(=-6/13), and -.6153846 (=-8/13) for C1? C2, and C3, respectively.
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TABLE 8.4.1
Illustration of Weighted Effects Coding Systems

A. Religious groups: Catholic as base group.

General case: code variables

Religion

Catholic
Protestant
Jewish
Other

(«i= 9)
("2 = 13)
("3= 6)

("4= 8)

Q
1

-n,/«2

0
0

C2

0
-«3/"2

1
0

Example: code variables

C3

0
~«4/«2

0
1

c, C2

I 0
-9/13 -6/13

0 1
0 0

C3

0
-8/13

0
1

Code variables

Experimental group C\ C2

Treatment 1 1 0
Treatment 2 0 1
Control —n\ln$ ~n

2/
nj

D. Dummy coding of sex (g = 2).

Code variable

Sex

Female
Male

c,
1

-«l/«2

stated sample sizes for the groups in the illustrative example. Whenever the sample size of the
groups changes, the values of the unweighted effects codes for the base group change as well.

Once again, we arbitrarily designate one group to be the base group. Table 8.4.IB, which
presents the coding scheme used in this section, designates Protestant as the base group. For
the other groups, the coding exactly parallels that of unweighted effects codes. The critical
difference between the unweighted effects coding system of Table 8.3.1 and the weighted
effects coding system of Table 8.4.1 is in the set of codes assigned to the base group. The
values of each code are weighted for the base group to reflect the different sample sizes of
each of the groups. For each code variable, the base group receives the value of minus the
ratio of the size of the group coded 1 and the size of the base group. Note that when sample

General case: code variables

Religion

Catholic
Protestant
Jewish
Other

(«i =
("2 =

(«3 =

(n4 =

9)
13)
6)
8)

c,

-«2/»l

1

0
0

C2

-«3/"l

0
1
0

Q
-n4/n{

0
0
1

Example: code variables

Q
-13/9

1
0
0

C2

-6/9
0
1
0

Q
-8/9

0
0
1

B. Religious groups: Protestant as base group (used in chapter).

C. Unweighted effects coding of experimental treatment groups (g = 3).
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sizes are equal across groups, n\ = n2 = n3 = n4 = • • • = ng, the codes for the base group
simplify to [—1 —1 -1 -1 ••• -1]. Under these conditions, weighted effects codes
are identical to unweighted effects codes.

In this coding system, C\ contrasts Catholic, C2 contrasts Jewish, and C3 contrasts Other
with the weighted mean of the four religious groups in the regression equation. Recall that the
weighted mean is EWj-Aff/Sn,- = (E7)/«, where n = En(. This is the mean of the scores of all
of the subjects on the dependent variable, ignoring group membership. Once again, each code
variable contributes 1 df to the g — 1 df that comprise religion. If any of the code variables
are omitted, the interpretation of the results can dramatically change. Unlike the other coding
systems for nominal variables we have considered thus far, weighted effects codes are centered.
In our example (and in general), the means for Q, C2, and C3 are each equal to 0 in the sample.
The correlations between pairs of code variables are also smaller than for unweighted effect
codes, ranging from .347 to .395.

8.4.3 The R2 and R2 for Weighted Effects Codes

Table 8.4.2 presents the results from the MRC analysis. Once again, we note that
R2 = .3549, F = 5.899, and R2 — .2945, values identical to those we obtained using dummy
coding and unweighted effects coding. Each coding system taken as a set is equivalent because
it represents the same nominal variable.

TABLE 8.4.2
Analysis of Illustrative Data: Attitude Toward Abortion

A. Weighted effects coding: regression coefficients.

C, p, B, SEB

c,
C2

c,

-.4975
.3915

-.2522

-21.03
21.81

-11.57

6.76
8.72
7.30

-3.11*
2.50*

-1.58

Note: df = 32. *p < .05.

B. Predicted values in groups.
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8.4.4 Interpretation and Testing of B with Weighted Codes

To understand the meaning of each of the regression coefficients, we can take the usual strategy
of substituting the value of each code variable into our standard regression equation. Although
this procedure leads to the correct answers, the algebra becomes very tedious (see the appendix
of West, Aiken, & Krull, 1996 for the algebraic derivation). Fortunately, the results of the
algebra are not complex; these results are presented here:

In weighted effects coding, BQ is the weighted mean of the groups. Each of the regression
coefficients represents the deviation of the corresponding group mean from the weighted mean
of the entire sample. Thus Bl represents the difference between the mean of the group coded
1 on Cl (Catholic) and the weighted mean, B2 represents the difference between the mean of
the group coded 1 on C2 (Jewish) and the weighted mean, and, B3 represents the difference
between the mean of the group coded 1 on C3 and the weighted mean. The difference between
the mean of the Protestant base group and the weighted mean may be obtained by subtraction:

These interpretations of B^,B2, and B3 using weighted effects codes parallel those of
unweighted effects except that the mean of each group is contrasted with the weighted mean
rather than the unweighted mean of the set of groups.

To illustrate these relationships, we estimated our standard regression equation, Y = ^ Q +
B2C2 + B3C3+B0, using the weighted effects codes shown in Table 8.4.IB with Protestant as
the base group. The result is

Table 8.4.2 shows the results of substituting the weighted effect codes into the standard
regression equation. For each group, Y is again identical to the mean for the group.

Confidence Intervals and Significance Tests for B,-

Procedures for constructing confidence intervals and conducting significance tests for each
of the unstandardized coefficients are identical to those presented in Sections 8.2.3 for dummy
codes and 8.3.3 for unweighted effects codes. To construct confidence intervals, we take
5, ± tSEB., where df = n — k — 1. Substituting in the current values for B{ and SEB, we find

Significance tests divide each Bt by its corresponding SE,t = Bt/SEB. These values are
presented in Table 8.4.2. Note that these values differ from those presented in Table 8.2.5 for
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dummy codes and Table 8.3.4 for unweighted effects codes. These discrepancies reflect the
differences in the meaning and the value of the mean comparisons reflected by the Bs in the
three coding systems. Recall that in dummy coding, the Bs represent the comparison of each
group mean with the reference group mean. In unweighted effects coding, the 5s represent the
comparison of each group mean with the unweighted mean. And in weighted effects coding,
the 5s represent the comparison of each group mean with the weighted mean. Analysts should
decide in advance which coding scheme represents their research question of interest and report
the corresponding results. In the present example, the discrepancy in the results for unweighted
and weighted effects codes is not large because the ns did not differ greatly. Other data sets
can produce larger (or smaller) differences between unweighted and weighted effects coding
depending on the specific values of the n,s and the M,s in the groups.

Determining whether the mean of the base group differs from the weighted mean is most
easily done by reanalyzing the data using a coding system that provides the answer directly.7 In
this case the use of another weighted effects coding system with a different omitted group will
provide the answer. For example, using the coding system in Table 8.4.1 A in which Catholic is
the base group, the significance test of Cl provides a test of the difference between the mean of
the Protestant group and the unweighted mean. The significance of the difference between two
group means can be tested through the use of dummy codes (see Section 8.2). A dummy coding
scheme should be chosen in which the omitted group is one of the two groups of interest.

8.5 CONTRAST CODING

8.5.1 Considerations in the Selection of a Contrast
Coding Scheme

Researchers often have specific research questions or formal hypotheses based on substantive
theory that can be stated in terms of expected mean differences between groups or combinations
of groups. For example, consider a team of drug abuse researchers who wish to evaluate the
effectiveness of two new prevention programs. They have collected data on the amount of
drug use (dependent variable) on three groups of children: (a) children who are exposed to
the drug prevention program in their middle school classrooms (school-based-only program),
(b) children who are exposed to the drug prevention in their middle school classrooms in
addition to a home-based drug prevention program led by their parents (school-based plus
home-based program), and (c) children not exposed to a prevention program (control group).
The researchers have two explicit, a priori hypotheses:

1. Children in the two prevention groups (a + b) will have less drug use than children in
the control group (c);

2. Children in the school-based plus home-based program (b) will have less drug use than
children in the school-based-only program (a).

Contrast codes provide a method of testing such focused hypotheses. They are used when
researchers have specific research questions or hypotheses, particularly those that involve
comparison of means of combined groups. As we will see, the particular contrast codes

Paralleling unweighted effects codes, algebraic expressions may be written for these significance tests for
weighted effects codes. For comparisons involving the base group, the calculations quickly become very tedious
as the number of groups increases. Using recede statements to develop a coding system that directly answers the
questions of interest and then reanalyzing the data is a far simpler alternative. The exception is the test of the differ-
ence between two group means (not involving the base group), which is identical to the same test for dummy and
unweighted effects codes (see Eq. 8.2.4).
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selected depend on the researchers' hypotheses. Many methodologists (Abelson, 1995; Judd,
McClelland, & Culhane, 1995; Rosenthal & Rosnow, 1985) strongly recommend the use of
such contrasts in order to sharpen the interpretation of the results. The method allows the
researcher to test the specific hypotheses of interest rather than some other hypothesis that is
a consequence of simply using a default coding scheme such as dummy variables. The use of
contrasts may increase the power of the statistical test to reject a false null hypotheses relative
to less focused, omnibus tests. For readers familiar with ANOVA, contrast codes are the famil-
iar a priori or planned comparisons discussed in traditional ANOVA texts (e.g., Kirk, 1995;
Winer, Brown, & Michels, 1991). In the next section we initially focus on the mechanics of
constructing contrast codes, returning later to the issue of choosing the set of contrast codes
that best represents the researchers' hypotheses.

8.5.2 Constructing Contrast Codes

Overview and Illustration
To illustrate the use of code variables for contrasts, let us reconsider the three drug abuse

prevention programs in the preceding example. The first hypothesis compares the unweighted
mean of the two prevention groups with the mean of the control group. This hypothesis is
represented in Table 8.5. ID by the Cl code variable [+¥3 +Vs —%]. The second hypothesis
compares the mean of the school-based only program with the mean of the school-based plus
home-based program. This hypothesis is represented in Table 8.5.ID by the C2 code variable
[V2 —Vi 0]. There are g = 3 groups in this example, so g — 1 = 2 code variables are
necessary to represent the categorical IV of treatment group.

We use three rules to construct contrast codes. The first two rules are part of the formal
statistical definition of a contrast. The third rule is not required, but it greatly simplifies the
interpretation of the results.

Rule 1. The sum of the weights across all groups for each code variable must equal zero.
In the prevention program example, Vs + Y* — % = 0 for Cj and Vi — Vi + 0 = 0 for C2.

Rule 2. The sum of the products of each pair of code variables, C^C^ must equal 0. In
the example,

The sum of the products of the code variables = V6 — V6 + 0 = 0. When the group sizes
are equal (nt = «2 =

 ni = '' • = n
g\ this mle guarantees that the contrast codes will be

orthogonal so they will share no overlapping variance.

Rule 3. As will be discussed in detail in our more formal presentation, the difference
between the value of the set of positive weights and the value of the set of negative weights
should equal 1 for each code variable. In our example, V* — (—%) = 1 for Q and V* — (—¥2) =
1 for C2. This rule ensures easy interpretation: Each unstandardized regression coefficient
corresponds exactly to the difference between the unweighted means of the groups involved
in the contrast.8

8If the present set of contrast codes are multiplied by a constant, the new set of codes also meets the formal
definition of a contrast. Multiplying a set of contrast codes by a constant does not affect any standardized measure.
The Pearson, partial, and semipartial correlations as well as the standardized regression coefficient are all unaffected by
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More Formal Presentation
To facilitate a more formal presentation of contrast codes, we need to define each contrast

weight in the table, Chi. Chi is the weight for the /ith group (row) for the ith code variable
(column). In our example (see Table 8.5.ID), C31 = — | for control group, code variable 1;
C32 = 0 for control group, code variable 2; and C21 = +Va for school-based plus home-based
group, code variable 1. This notation allows us to refer to the specific weights corresponding
to the value of the code variable for a specific group.

Let us first consider the construction of a code variable corresponding to a single contrast.
A contrast for g sample means (or other statistics) is defined as any linear combination of them
of the form

This equation represents the contrast produced by the ith code variable. The values correspond-
ing to each group for the code variable must be chosen subject to the restriction stated earlier
as Rule 1. Rule 1 is stated more formally below as Eq. (8.5.1), where h stands for group and i
stands for code variable.

To see how the form of Eq. (8.5.1) expresses a contrast, consider any set of g groups comprising
a nominal variable G. We partition the g groups into three subsets: (1) a subset u, (2) a subset
v that we wish to contrast with subset u, and (3) a subset w containing groups, if any, that we
wish to exclude from the contrast. The contrast compares the unweighted mean of the groups
in subset u with the unweighted mean of the groups in subset v.

As a concrete example, consider the responses to a question about respondent's occupation
in a survey. Respondents are classified into one of nine occupational groups based on their
responses to the survey question. The first 4 (=u) response options represent "white collar"
occupations (e.g., educator; medical professional), the next 3 (=v) response options represent
"blue collar" occupations (e.g., skilled laborer; unskilled laborer), and the final two (=w)
response options represent other occupational categories (e.g., unemployed, did not answer).
The researcher is interested in comparing the responses of white collar and blue collar workers
to other survey items measuring their beliefs about equal pay for women. To accomplish this
comparison, we assign the contrast code for each group in subset u as —v/(u + v) and the
contrast for each group in subset v as +u/(u + v). In the present example comparing white
collar and blue collar workers, —v/(u + v) = — 3/(4 + 3) and +u/(u + v) = +4/(4 + 3), so
that the contrast may be expressed as

Note that the set of Chi coefficients that comprise the contrast satisfy the restriction in
Eq. (8.5.1):

Thus, we can state generally how the values of the code variables for each group are assigned
for a specific contrast represented by code variable C,. The values of Chi for each of the u

such transformation. Rule 3 is emphasized here because it permits straightforward interpretation of the unstandardized
regression coefficients. With other contrast coding schemes, the unstandardized regression coefficient will represent
the mean difference of interest multiplied by a constant.
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groups is -V/M+V; the value of Chi for each of the v groups is u/u + v; and the value of Chi is 0 for
each of the w groups, if any. Once again, the choice of these values for the code variable allow
us to interpret the unstandardized regression coefficient B, corresponding to the code variable
as the difference between the unweighted means of the groups in u and the groups in v. If the
unweighted mean of the groups in u and the unweighted mean of the groups in v are precisely
equal, then the value of Bt for the contrast will be 0.

Throughout this chapter we have seen that the full representation of the information entailed
in membership in one of g groups requires a set of g — 1 code variables. The contrast described
here is only one member of such a set. A total of g — 1 code variables must be specified to
represent the full set of contrasts. For example, 8 code variables will be required to represent
the 9 occupational groups in our example.9

In our overview presentation of contrast codes, we also stated Rule 2. Rule 2 establishes
the part of the definition of contrast codes that each possible pair of code variables must be
linearly independent. Formally, this condition can be written as

where the Chi represent the weights for code variable i of each of the groups and the Chi,
represent the weights for code variable i' for each of the groups, where h identifies the group
number from 1 to 9.

Three different sets of contrast codes for our example of religions and ATA are shown in
Table 8.5.1 A, B, and C. Applying the linear independence (Rule 2) condition to each of the
three possible pairs of contrast codes (CiC2, CtC3, C2C3) in Part A, we find

Rule 2 is met for all possible pairs of contrast codes. Note, however, that the set of contrasts will
not be orthogonal (i.e., share no overlapping variance) unless all groups have equal sample
sizes («! = «2 = '' * = ng)- All of the sets of contrast codes displayed in each panel of
Table 8.5.1 are independent.

Choosing Among Sets of Contrast Codes
A very large number of potential contrasts may be constructed. Indeed, the total number of

different means of group means contrasts among g groups is 1 + [(3g — l)/2] — 28. For g = 4,
this number is 25; for g = 6, it is 301; and for g = 10, it is 28,501. However, relatively few of
these contrasts will test hypotheses that are meaningful to the researcher. The goal in choosing
contrast codes is to select a set of g — 1 codes that map neatly onto the researcher's hypotheses
of interest.

Consider the set of contrast codes displayed in Table 8.5.1 A. Code variable 1 contrasts the
unweighted mean of Protestant and Catholic with the unweighted mean for Jewish and Other.
Code variable 2 contrasts Protestant with Catholic. Code variable 3 contrasts Jewish with
Other. Suppose a researcher hypothesized that members of minority religions (Jewish, Other)

9In the case where the group sizes are precisely equal, the contrasts will be independent and code variables can
be dropped from the regression equation. However, even when there are equal ns, including all of the g — 1 contrasts
provides an important check on model specification (see Sections 4.3.1 and 4.4.1). Abelson and Prentice (1997)
strongly emphasize the importance of checking the fit of the contrast model.
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TABLE 8.5.1

A. Contrast A: minority versus majority
religions.

B. Contrast B: value on women's
rights.

C. Contrast C: religious groupings.

Code variables

Religion

Catholic
Protestant
Jewish
Other

c,
-1/2

1/2
1/2

-1/2

C2

0
-1/2

1/2
0

C3

-1/2
0
0
1/2

Experimental group

Treatment 1
Treatment 2
Control

Code variables

c,
1/3
1/3

-2/3

C2

1/2
-1/2

0

are more opposed to restrictions on religious freedom than members of majority religions
(Catholic, Protestant). If majority versus minority religious status is the only critical difference
among the groups, the contrast associated with code variable 1 should show a large difference.
However, the contrast associated with code variable 2, which compares the two majority
religions, and the contrast associated with code variable 3, which compares the two minority
religions, should not differ appreciably.

Table 8.5.1(B) presents a different set of contrast codes. Here, code variable 1 contrasts the
unweighted mean of Protestant and Jewish with the unweighted mean of Catholic and Other.
Code variable 2 contrasts Protestant with Jewish and code variable 3 contrasts Catholic with
Other. Suppose the researcher has a theory that suggests that the Protestant and Jewish religions
place a particularly high value on women's rights, whereas Catholic and Other religions place
a lower value on women's rights. In this example, the contrast associated with code variable
1 would be expected to show a substantial difference, whereas the contrasts associated with
code variables 2 and 3 should not differ appreciably. Table 8.5.1(C) provides yet another set
of contrasts among the religious groups.

Each of the sets of contrast codes represents a different partitioning of the variance asso-
ciated with the g groups. The strategy of contrast coding is to express the researcher's central
hypotheses of interest in the form of g — 1 independent contrast codes. The MRC analysis then
directly yields functions of the contrast values, confidence intervals, and significance tests.

Contrast codes are centered; however, the corresponding contrast = CUMt + C2,-M2 H h
CgiMg may or may not be centered. The means for the contrasts corresponding to Ct, C2, and
C3 will equal 0 only if the number of subjects in each group is equal. However, when there is
one categorical IV, the correlations among the contrast code variables will typically be low to

Note: C]: Western religions vs. Other
C2: Christian vs. Jewish
C3: Catholic vs. Protestant

D. Contrast coding of experimental
treatment groups (g = 3).

Code variables

Religion

Catholic
Protestant
Jewish
Other

c,
1/2
1/2

-1/2
-1/2

C2

1/2
-1/2

0
0

Q
0
0
1/2

-1/2

Code variables

Religion

Catholic
Protestant
Jewish
Other

Q

1/4
1/4
1/4

-3/4

C2

1/3
1/3

-2/3
0

Q

1/2
-1/2

0
0
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moderate. In our running example of religion and attitudes toward abortion, the correlations
between the contrast variables range from —.12to +.11 for the codes presented in Table 8.5.1A
and from —.26 to +.04 for the codes presented in Table 8.5. IB.

8.5.3 R2 and R2

Tables 8.5.2 and 8.5.3 present the results from the two separate MRC analysis for the sets
of contrast codes presented in Table 8.5.1 A and B, respectively. We again note that R2 =
.3549, F = 5.899, and R2 = .2945 for both analyses. These values are identical to those
obtained for dummy, unweighted effects, and weighted effects coding.

8.5.4 Partial Regression Coefficients

The contrast codes recommended here lead to unstandardized regression coefficients that are
directly interpretable. The unstandardized regression coefficients will equal the difference
between the unweighted mean of the means of the groups contained in u and the unweighted
mean of the means of the groups contained in v. To illustrate, consider the contrast coding
scheme in Table 8.5.1 A: Q represents the difference between majority religions (Catholic,
Protestant) and minority religions (Jewish, Other). We see the value of BI is —9.82. We also
see that the mean ATA are Catholic = 60.67, Protestant = 93.31, Jewish = 103.50, and
Other = 70.13. The difference in the unweighted means between the two sets is

Similarly, the value of B2 = —32.64, which is equal to the difference between the Catholic
(60.67) and Protestant (93.31), means and the value of #3 = 33.38 which is equal to the

TABLE 8.5.2
Analysis of Illustrative Data: Attitude Toward Abortion

A. Contrast coding: majority versus minority religions.

Note: *p < .05.

B. Predicted values in groups.

Note: BQ = 81.90 is unweighted mean of four group means. Decimal value of each
contrast code value is used (e.g. 1/2 = .5).
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TABLE 8.5.3
Analysis of Illustrative Data: Attitude Toward Abortion

A. Contrast coding: pro- versus anti-women's rights religions.

Note: BQ = 81.90 is unweighted mean of four group means. Decimal value of each
contrast code value is used (e.g. ¥2 = .5).

difference between the Jewish (103.50) and Other (70.13) means. Finally, the intercept, BQ =
81.90 equals the unweighted mean of the four group means, just as in unweighted effects coding.

Table 8.5.2 provides further insight into how contrast coding partitions the variance of the
set of groups. When the contrast code values are substituted into the regression equation, the
predicted value Y for each group is once again equal to the unweighted group mean. The contrast
model yields the mean for a group by adding to the unweighted mean of the group means the
effect provided by each group's role in the set of contrasts. For example, the Protestant mean M2

comes about by adding the unweighted mean (81.90), one-half of the majority-minority con-
trast (Q) [V2(-9.82)] = -4.91, and minus one-half the value of the Protestant-Catholic
contrast(C2) [(—Vfc) (—32.64)] = 16.32, but none of the irrelevant Jewish versus Other contrast
(C3) [(0)(33.38)] = 0. Thus, for Protestants, M = 81.90 - 4.91 + 16.32 + 0 = 93.31.

Contrast-coded unstandardized Bf values are not affected by varying sample sizes. Because
they are a function only of unweighted means, the expected value of each contrast is invariant
over changes in relative group size.10 Unfortunately, standardized p, coefficients lack this
property, rendering them of little use in many applications involving categorical IVs. This
same property of invariance of unstandardized 5, regression coefficients and lack of invariance
of standardized (3, coefficients also holds for dummy and unweighted effects codes.

10Contrast coding is most frequently used to test a priori hypotheses in experiments. In observational studies in
which large random samples have been selected from a population, it may be useful to construct weighted contrast
codes that take sample size into account. In weighted contrast codes, the intercept is the weighted mean of the group
means and each contrast represents the weighted mean of the groups in set u versus the weighted mean of the groups
in set v. Serlin and Levin (1985) outline methods of constructing weighted effect codes.

Note: *p < .05.

B. Predicted values in groups.
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Confidence Intervals and Significance Tests for B,
Procedures for constructing confidence intervals and conducting significance tests for each

of the unstandardized regression coefficients are identical to those presented in Section 8.2.5
for dummy variables. Again, we simply take B, ± tSEB.t with df = n — k — 1, where k is the
number of code variables (= g — 1). Substituting in the values for Bt and SEB. for the regression
analysis presented in Table 8.5.2 corresponding to the contrast code variables in Table 8.5.1 A,
we find

Null hypothesis t tests for each Bf are calculated by dividing the coefficient by its SE. These
values are presented in Table 8.5.2A.

Semipartial and Partial Correlations

The squared semipartial correlation, srf, is the proportion of the total Y variance accounted
for by contrast i in the sample. Thus, from Table 8.5.2, .0296 of the total ATA variance is
accounted for by Ct, the majority-minority religion contrast. Each of the groups contributing
to the contrast is unweighted; religions within the majority category count equally and religions
within the minority category count equally. However, the relative sizes of the two categories
being contrasted (e.g., majority vs. minority religion) is influential, with sr being maximal
when the two categories have equal sample sizes. Similarly, sr\ = .2082 is the proportion of
the ATA variance accounted for by C2, the Protestant-Catholic distinction, and sr% = .1404 is
the proportion of the ATA variance accounted for by C3, the Jewish-Other distinction. Note that
the sum of the sr?s does not equal R\ 123 because the n,s are not equal, and, as we saw earlier,
the correlations between the contrasts are not equal to 0,

The squared partial correlation, prf, is the proportion of that part of the Y variance not
accounted for by the other contrasts mat is accounted for by contrast i. Thus, pr\ = .2331
indicates that C2 (the Protestant-Catholic distinction) accounts for 23.3% of the Y variance
remaining after the variance due to contrasts Cl and C3 have been removed. As usual, pr\ =
.2331 is larger than sr\ = .2083. Recall that in MRC, prf > sr?, the equality holding when
the other FVs account for no variance.

The choice between sr and pr depends, as always, on what seems to be more appropriate
interpretive framework, the total Y variance or the residual Y variance after the effects of the
other variables have been removed. With contrast codes, the source of the overlapping variance
between the code variables is unequal sample sizes among groups. When participants have been
randomly or representatively sampled and G represents a set of naturally occurring categories,
the difference hi sample sizes will reflect true differences in the proportion of each group in
the population. But, when G represents a set of experimental manipulations, the difference in
sample size will usually be due to nonmeaningful, incidental sources like difficulty (or cost)
in mounting each of the treatment conditions or simply the randomization process itself.11

Typically, sr, which uses the total variance may be more meaningful for natural categories and
prf which considers only the unique, nonoverlapping variance will be more meaningful for
experiments.

11 One additional source of unequal ns in missing data due to participant nonresponse or dropout. Missing data
may require special analysis procedures (see Chapter 12, Little & Rubin, 1990, and Schafer & Graham, in press).
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8.5.5 Statistical Power and the Choice of Contrast Codes

With one categorical IV, many hypotheses that give rise to contrast analysis are comprised
of two parts. First, researchers propose a central theoretical distinction that they believe will
lead to strong differences between two sets of groups. Second, the researcher proposes that
there are only negligible differences among the groups within each set involved in the central
theoretical distinction.

To illustrate this, let us consider the results of the analyses of two researchers who have
different hypotheses about the critical determinant of religion's influence on ATA. Researcher
A hypothesizes that minority vs. majority status is the critical determinant. The test of Bl

using the coding system in Table 8.5.1 A provides the test of the first part of this hypothesis
(see Table 8.5.2). Using either the confidence interval or significance testing approach, we see
there is little evidence for this hypothesis. The confidence interval overlaps 0; the test of the
null hypothesis is not significant. The second part of the hypothesis is that B2 and #3 should
show negligible effects.12 Otherwise stated, we expect no difference between the means of
the groups involved in each contrast. Examination of the two tests that jointly comprise the
second part of the hypothesis shows that these two confidence intervals do not overlap 0,
contrary to prediction. Failure of either part of the test of the hypothesis suggests that minority
versus majority status is not the critical determinant of religion's influence on ATA. Even if
the first part of the hypothesis were supported, statistically significant effects for the second
(no difference) part of the hypothesis would suggest that the contrast model is misspecified.

Researcher Z proposes that the central determinant of religion's influence on ATA is the
religion's view of the general rights of women. Based on her theorizing, this researcher uses
the contrast coding scheme presented in Table 8.5.IB to test her hypothesis (see Table 8.5.3).
The test of Bl, representing the central theoretical distinction, shows considerable support for
this part of the hypothesis, 95% CI = 26.49 to 49.53, f(32) = 4.07, p < .05. The tests of
B2, CI = -13.36 to 33.74,^(32) = 0.88, ns, and of B3, CI = -13.72 to 32.64, r(32) = 0.83,
ns, show no evidence of differences within the critical distinction of women's general rights.
Such an outcome provides support for researcher Z's hypothesis.

Recall that for both of the coding systems, the overall influence of religion on ATA was
substantial, R2 = .355, F(3,32) = 5.86,/? < .05. The juxtaposition of the results of the two
coding systems in Tables 8.5.2 and 8.5.3 makes clear that the use of contrast codes rather than
an omnibus test can either raise or lower statistical power. To simplify the comparison, we can
report F tests corresponding to the 1 df contrasts since F = t2 for this case. The 1 df contrast
associated with the majority vs. minority religion contrast, F(l,32) = 1.46, ns, explained
8.3% of the overall effect of religion on ATA. This value is calculated as follows:

In comparison, the Idf contrast associated with general attitude toward women's rights,
F(l,32) = I6.56,p < .001, was significantly significant. Since srf for this contrast is .3339,
.3339/.3539 = 94.1% of the variance in ATA accounted for by religion is accounted for by
the 1 df general attitude toward women's rights contrast. When the sample sizes in each of the
groups are equal, this quantity can also be expressed as the squared correlation (r2) between
the contrast code values and the observed means for each of the groups. Otherwise stated, this

12 A joint test of the two parts of the within category equivalence may be performed using techniques discussed
in Chapter 5. The full regression equation includes all three contrast code variables. The reduced regression equation
only includes the central contrast of theoretical interest, here Cj. The gain in prediction (R2) from the reduced to the
full equation is tested. This test corresponds to a joint test of within-category equivalence.
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quantity can be taken as a measure of the degree to which the contrast codes mimic the true
pattern of means.

In conclusion, researchers having hypotheses about the central distinctions between groups
can often use contrast codes to provide sharp tests of the hypotheses. When the observed
pattern of means closely follows the predicted pattern, researchers also gain an extra benefit
in terms of enhanced statistical power to reject the null hypothesis associated with the central
contrasts of interest. However, when hypotheses about the patterning of the means are not
sharp, or when the pattern of observed means does not closely match the pattern of predicted
means, the use of contrast coding is less likely to detect true mean differences among groups.

8.6 NONSENSE CODING

We have repeatedly stated that g — 1 code variables are needed to carry information of mem-
bership in one of the g groups. These code variables must be nonredundant: The R of each
code variable with the remaining g — 2 code variables must not equal 1.00 (see the discussion
of exact collinearity in Section 10.5.1). These conditions characterize dummy, unweighted
effects, weighted effects, and contrast codes. In general, any set of g — 1 code variables that
meets these conditions will yield exactly the same R2,F, and regression equations that solve
for the group means.

We can explore the limits of these conditions by creating a set of g — 1 nonsense codes:
nonredundant code variables created in an arbitrary manner. We selected four random numbers
between —9 and +9 for Cl5 then squared and cubed them to produce nonredundant values for
C2 and C3, respectively. These values are shown in Table 8.6.1 A, along with two other arbitrary
sets of nonredundant code variables in Parts B and C. Applying the values in Part A to our

TABLE 8.6.1
Illustration of Three Nonsense Coding Systems:

Religious Groups

A. Nonsense codes I. B. Nonsense codes n.

Code variables

Religion

Catholic
Protestant
Jewish
Other

Q

5
0

-4
6

C2

25
0

16 i
36

Q

125
0

( -64
\ 256

Religion

Catholic
Protestant
Jewish
Other

Code variables

c,
1

-1
4
1

C2

-7
-1

.5
6

C3

0
0

24
-1

C. Nonsense codes HI. D. Overall results for each nonsense
coding scheme.

Code variables

Religion

Catholic
Protestant
Jewish
Other

Q
0
0
1
2

C2

0
0
4

108

C3

.71

.04
1
2

Note: *p < .05.
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running example of religion and ATA, we find that R2 = .3549 and F = 5.869, the exact values
we have obtained with the previously discussed coding systems. The unstandardized regression
equation is

When the values of the nonsense codes in Table 8.6.1 A are substituted into the equation, it
correctly yields the means for each of the four groups. But, here the results diverge sharply from
those of all of the coding systems we have considered previously. The values for all individual
effects—unstandardized and standardized regression coefficients, simple correlations, partial
and semipartial correlations—are gibberish.

The point is that despite the nonsensical character of the coding, any full set of g — 1
nonredundant codes carries complete information about group membership. Any result that
depends upon the set as a whole will yield correct and meaningful results: R2,R2, F, and the
group means from the regression equation. In contrast, all results from single variables will be
nonsensical.

8.7 CODING SCHEMES IN THE CONTEXT OF OTHER
INDEPENDENT VARIABLES

8.7.1 Combining Nominal and Continuous Independent Variables

Most analyses involving nominal IVs carried out by means of MRC are likely to include
additional nominal or quantitative IVs as well. As one example, a political scientist might
wish to study the effect of ethnic group (black, hispanic, white), sex, and family income level
on political attitudes. As a second example, an educational researcher might wish to compare
the mathematics achievement of public versus private school students, with family income
held constant. In these analyses the other nominal or quantitative IVs may be included because
their influence on Y is also of interest, as in the first example where ethnic group, sex, and
family income are all believed to influence political attitudes. Or, the IV may serve as a control
for the effect of one or more IVs of interest as in the second example. The IVs involved in
these multiple regression equations may be nominal, quantitative, or combinations of the two.

Consider the first example. The researcher would choose a coding scheme for the nominal
variables that best represented her research questions. Suppose the researcher were interested
in comparing the political attitudes of the two minority groups with the white group. One way
to specify the regression equation would be to use two dummy codes for ethnic group, using
white as the reference group, and one dummy code for gender, using male as the reference
group. The regression equation would be

In this coding scheme, Q is a code variable that equals 1 if the participant is hispanic and 0
otherwise. C2 is a code variable that equals 1 if the participant is black and 0 otherwise. Female
is a code variable that equals 1 if the participant is female and 0 otherwise (male). Income
is the participant's yearly income, and Y is the participant's predicted attitude.

Recall from Chapter 3 that the intercept is the predicted value of Y when all IVs are equal
to 0. Thus, BQ represents the predicted attitude of a white, male participant with $0 income.
BI represents the mean difference in attitude between the hispanic and white groups and B2

represents the mean difference in attitude between the black and white groups when sex and
income are held constant. B3 represents the mean difference in attitude between females and
males when ethnic group and income are held constant. And B4 represents the change in
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attitude for each 1-unit ($1) increase in income when ethnic group and sex are held constant.
Each of these effects is a partialed effect. For example, the estimated values of BI and B2 from
the regression equation,

(8.7.2)

would not in general equal those from Eq. (8.7.1). In Eq. (8.7.2), BI is the mean difference in
attitude between hispanics and whites and B2 is the mean difference in attitude between blacks
and whites without controlling for sex or income. Only if income and sex are both unrelated to
ethnic group will the regression coefficients Bl and B2 be equal in the two equations. When the
same proportion of females are in each ethnic group, sex and ethnic group will be unrelated.

The interpretation we have presented holds only for the dummy coding scheme described
here. As we have seen in this chapter, the interpretation of the individual partial regression
coefficients depends on the coding scheme that is chosen. Dummy codes compare each group
with a reference group. Unweighted effects codes compare each group with the unweighted
mean of the groups, weighted effects codes compare each group with the weighted mean of
the groups, and contrast codes compare the unweighted means of the two sets of groups that
are involved in the contrast. The inclusion of additional quantitative or nominal IVs changes
these from unconditional to conditional comparisons. Otherwise stated, in the comparison the
effect of the additional IVs has been partialed out (held constant).

In Chapter 3 we learned about testing partialed effects. The procedures discussed there and
earlier in this chapter can be used to construct confidence intervals and to conduct tests of
significance for each Bf. In addition, the significance of nominal IVs with three or more groups
can be tested using the gain in prediction formula presented in Section 5.5. For example, to test
the effect of ethnic group, we would specify the full model, here represented by Eq. (8.7.1).
We would then specify a reduced model that included all terms except for the nominal IV of
interest (ethnic group), here represented by Eq. (8.7.3):

(8.7.3) Y= B3Female + B4Income + B0 (reduced model).

Applying the significance test for the gain in prediction, Eq. (5.5.1), we would have

where R^} represents the full model (here, Eq. 8.7.1), R^^^ represents the reduced model
(here, Eq. 8.7.3), g is the number of groups comprising the nominal variable (here, g = 3), and
k is the number of terms in the full model, here 4. As we have seen throughout this chapter, the
result of the significance test of the nominal variable will be identical regardless of whether
a dummy, unweighted or weighted effects, or contrast coding scheme is used.

8.7.2 Calculating Adjusted Means for Nominal
Independent Variables

Beyond reporting significance tests or confidence intervals, it is sometimes desired to report
the "adjusted means" that correspond to these comparisons. Adjusted means are the predicted
means for each group involved in the regression equation. To illustrate the calculation of
adjusted means in a regression equation with two nominal IVs, suppose we estimate a simplified
version of Eq. (8.7.1) in which family income is not considered and obtain the following
hypothetical results:
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To calculate the adjusted means, we would simply substitute in the values of the code variables
corresponding to each group. In our example, there are 3 ethnic groups by 2 genders, yielding 6
total adjusted group means. Using the dummy coding scheme described earlier in this section,
we would have:

Group Ci C2 Female Adjusted mean

White Male
Hispanic Male
Black Male
White Female
Hispanic Female
Black Female

0
1
0
0
1
0

0
0
1
0
0
1

0
0
0
1
1
1

50
60
55
47
57
52

The calculation of the adjusted means for two of the groups is:

White Male: adjusted mean = 10(0) + 5(0) - 3(0) + 50 = 50;

Hispanic Female: adjusted mean = 10(1) + 5(0) - 3(1) + 50 = 57.

When there is more than one IV in the regression equation, these adjusted group means
will not in general equal the original group means. The adjusted means are estimated based
on a particular regression equation, here Eq. (8.7.4). If the regression equation is misspecified,
then there may be substantial differences between the adjusted means and the actual means
of the groups. In the present example, if there is a true interaction between ethnic group
and sex in determining political attitudes, the original and the adjusted means will differ
substantially because the interaction is not represented in Eq. (8.7.4). We will return to the
topic of interactions between nominal variables in Chapter 9.

8.7.3 Adjusted Means for Combinations of Nominal
and Quantitative Independent Variables

When quantitative IVs are included in the regression equation, the approach of substituting in
the possible values of the IV to calculate adjusted means is no longer feasible. A simple way
to calculate adjusted means is to use a regression equation in which all quantitative variables
have been centered by subtracting their respective means. Given our focus on mean differences
in this section, we will refer to the other IVs as covariates. If the nominal variable has been
dummy coded, the intercept will now reflect the adjusted mean of the reference group. Each
of the Bfs will reflect the mean difference between the group coded 1 and the reference group,
again adjusted for the group differences in the quantitative IVs.

Let us consider a fictitious investigation of background factors and altruism. The researchers
have hypothesized that there are influences of population density on altruism, and have drawn
samples of residents of a city and the surrounding area outside the city (noncity). As a first
analysis, the researchers compared respondents living in the city (City =1) with those not
living in the city (City = 0), finding that city-dwellers were 18.37 points lower on the DV of
altruism (see Table 8.7.1). However, the researchers are concerned that this difference may
only reflect differences in neuroticism between city and noncity respondents. They therefore
carry out a second regression analysis in which a dummy variable city and Neurotc are used
as IVs, where centered Neuroticism, Neurotc = Neuroticism — mean(Neuroticism). Neurotc

correlates —.247 with altruism and .169 with city residence. The resulting regression equation is
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TABLE 8.7.1
Original and Neuroticism-Partialed Scores

for Altruism and Residence

n Maltruism^) ^neuroticism(^)

Total sample 150
City residents 55
Noncity residents 95

Mean difference (?148(#-)

46.42 (14.48)
34.79 (10.92)
53.16(11.79)

18.37 (6.45) p< .01

56.29 (9.72)
58.44 (10.44)
55.04(9.10)

3.40 (2.09) p<. 05

Partial Data: First 10 Non-City Dwellers and Last 10 City Dwellers

Altruism City Neuroticism Altruism • Neurotc City • Neurotc

1
2
3
4
5
6
7
8
9

10

141
142
143
144
145
146
147
148
149
150

69.13
56.18
65.57
65.85
63.08
50.61
63.47
69.11
69.87
49.05

32.18
40.47
15.21
27.23
48.44
26.52
39.36
54.30
33.77
40.15

0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1

61.01
73.55
41.15
55.93
46.41
58.21
54.57
47.46
58.94
49.05

61.35
34.21
66.48
52.31
34.32
71.87
55.73
35.44
63.78
65.39

70.86
62.53
60.00
65.72
59.44
51.31
62.84
65.86
70.84
46.39

34.04
32.34
18.96
25.76
40.36
32.25
39.15
46.63
36.52
43.50

-0.039
-0.145

0.128
0.003
0.084

-0.016
0.015
0.075

-0.022
0.061

0.958
1.186
0.914
1.034
1.185
0.870
1.005
1.176
0.937
0.924

In this equation the intercept BQ = 52.88 is the adjusted mean level of altruism for those not
living in the city and —17.62 = Bcity is the adjusted mean difference between those living in
the city minus those not living in the city. The adjusted mean level of altruism for city residents
is 52.88 — 17.62 = 35.26. From Table 8.7.1, we see that the original means on altruism were
34.79 for city residents and 53.16 for noncity residents so that the difference is 18.37. The
inclusion of Neurotc in the regression equation has slightly reduced the difference between city
and noncity residents in altruism. The difference in the two results stems from the partialing
process that is so central to MRC analysis.

It is useful here to review briefly the meaning of partialing. Partialing means that we
are removing any variation that is associated with other IVs in the regression equation (see
Sections 3.3 and 3.4). One way to do this is to follow the procedure used to construct added
variable plots, presented in Section 4.4.2. Y is regressed on the other covariates (excluding
the variable of interest, IV,). Then IV, is regressed on the other covariates. In this present
two-variable example, altruism and then city would be regressed on Neurotc. For this sample,

CH08EX02
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the regression equation predicting altruism is

The regression equation predicting City is:

We then save the residuals from each regression equation and add the original means back
in for altruism and city, respectively, to return to the original scaling of each of the variables
(recalling that residuals always have a mean of zero). The new variables Altruism • Neurotc
and City • Neurotc represent the values of Altruism and City, respectively, with the linear effect
of Neurotc partialed out.

In Table 8.7.1 we present data that illustrates the results of this procedure. We include the
first ten of the noncity cases (1-10) and the last ten of the city cases (141-150) from this
sample. Columns 1, 2, and 3 present the original scores on Altruism, City, and Neuroticism
(not centered). Column 4 (Altruisum • Neurotc) presents the Altruism score adjusted for level
of Neurotc ^d Column 5 (City • Neurotc) presents the City score, adjusted for Neurotc • F°r

example, case 1 was a noncity dweller with an Altruism score of 69.13 and a Neuroticism score
of 61.01. Using Eq. 8.7.5, the predicted Altruism score is (-.368)(61.01) + 67.13 = 44.68.
The residual is thus 69.13 — 44.68 = 24.45, indicating that this respondent was more altruistic
than his or her Neurotc score would have led one to expect. Adding the mean back gives
46.42 + 24.45 = 70.87, which is the partialed score (within rounding error).

Carrying out the same operation for the city dichotomy using Eq. (8.7.6), we find this value
to = (.0084)(61.01) - .108 = .406 for case 1. Our "observed" value for this noncity dweller
was, of course, 0, so the residual is -.406. Adding in the mean for city of .367 (the proportion
of the sample coded 1), the partialed score is .367 — .406 = —.039.

The critical point is what happens when partialed Altruism is regressed on partialed City.
Exactly the same estimates for the intercept B0 (the adjusted mean for the noncity dwellers)
and the regression weight Bcity (representing the adjusted mean difference between noncity
and city) are obtained as in the equation in which the unpartialed variables were employed in
combination with Neurotc. Thus, the effect of partialing of Neurotc, or any other covariate(s),
can be seen to be equivalent whether it is accomplished by inclusion in a single prediction
equation with IV, or by prior removal of covariate influence using residuals from the separate
equations for Y and TV,-. In addition, the standard errors in the significance tests will also be
equal. And the adjusted means have exactly this meaning—means on partialed Y corresponding
to scores of 0 and 1 on this partialed dichotomy.

Figure 8.7.1 (A) and (B) presents two scatterplots of these same data. Figure 8.7.1 (A)
presents the original neuroticism covariate on the x axis; Figure 8.7.1 (B) presents the centered
Neurotc covariate on the x axis. Both plots are identical except for the values represented by
the scaling of the x axis. In both panels, non-city residents are indicated by open circles and
city residents are indicated by x. Two parallel lines have been fit to the data, the solid line
for the non-city residents and the dashed line for the city residents. We see that the two lines
are always the same distance apart (17.62, the distance between the adjusted city and noncity
means) regardless of the value of the IV on the x axis. The specific value of the adjusted means
is the value of Y for each group estimated at the mean of value of neuroticism (=56.29) or
equivalently at the 0 value of Neurotc. Substituting into Eq. 8.7.5, the adjusted means are



(B) Centered Neuroticism (Neurotc).

Note: City residents are designated by x; noncity resi-
dents are designated by o. The dashed line is the regression
line for the city group; the solid line is the regression line for
the noncity group. The regression equation including neu-
roticism is Y = -17.62 City - 0.22 Neurotc + 65.24. The
regression equation including Neurotc is Y = — 11.62 City—
0.22 Neurotc + 52.88.

FIGURE 8.7.1 Scatterplot of altruism versus neuroticism.

Figure 8.7.1 (A) presents a plot of the data in which neuroticism has not been centered. When
quantitative IVs have not been centered, the adjusted means in the equations that include them
need to take the means of the other IVs into account by adding the products of their B coefficients
times their means to the estimate. For our running example of altruism, the equation with the
uncentered neuroticism is
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(A) Uncentered Neuroticism.
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for which we see that only the intercept B0 is changed. As is illustrated in Fig. 8.7.1 (A),
the intercept now represents the predicted value of a noncity resident who has a score of 0
on neuroticism, a score that falls far outside the range of observed values of neuroticism in
the sample. Estimating the adjusted mean now requires that the mean value of neuroticism
(= 56.29) be entered into the equation:

8.7.4 Adjusted Means for More Than Two Groups
and Alternative Coding Methods

The two principles just articulated generalize to any number of groups and any of the methods
of coding group membership (the nominal or categorical variable) described in this chapter:

1. When covariates have been centered, their inclusion in the equation will produce adjusted
means by the same methods used to produce unadjusted group means in their absence.

2. When covariates have not been centered one must add (or subtract) the products of
their B coefficients hi the equation times their full sample means—HBCOV.MCOV—to the
intercept in order for the methods described earlier for retrieving Y means to work.

To illustrate these principles, let us develop our running example in more detail. Suppose we
had actually sampled altruism in three subpopulations: city, small town, and rural areas. (The
last two subpopulations were combined into a single noncity group for our previous analysis).
Our theory leads us to hypothesize that those living in small towns are more altruistic than
those living in either rural areas or cities. In addition, previous research has suggested that
neuroticism and socioeconomic status (SES) may also be related to altruism. Consequently,
we are also worried that our findings may be contaminated by these two factors.

Because our theory suggests that the small town residents will be different from both city
and rural respondents, we have used dummy codes in which town is the reference group. Cl

represents city residence and C2 represents rural residence. Table 8.7.2A presents the mean
Altruism, Neuroticism, and SES by residential area. Table 8.7.2B presents the correlation
matrix including the two dummy codes. Of importance, some of the relationships between the
dummy variables, (Rural, City), SES, and Neuroticism are statistically significant, suggesting
the possibility that any differences between residence areas may be contaminated (in part) by
the effects of Neuroticism and SES.

For pedagogical purposes, we estimate two regression equations. Equation (8.7.8) does not
include the covariates:

Equation (8.7.9) now includes the two centered covariates, Neurotc and SESC, to partial out
any effects of these two variables.

Comparing the results of Eq. (8.7.8) with Eq. (8.7.9), we note that the difference in mean
Altruism between the City dwellers and those from small towns shows hardly any net effect
of the partialing of the covariate (ficity — 24.94 versus —24.97). However, the magnitude of
the difference in mean Altruism between rural and small towns decreases by about 1 unit
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TABLE 8.7.2
Altruism and Three Types of Residential Area

A. Mean scores by area.

Rural (n = 56)
Small town (n = 39)
City (n = 55)

Total (n = 150)

Altruism

48.58
59.73
34.79

46.42 (sd = 14.48)

Neuroticism

56.11
53.51
58.44

56.29 (sd = 9.72)

SES

44.06
46.31
51.21

47.27 (sd = 10.72)

B. Correlation matrix including dummy-variable coded area.

Altruism
City
Rural
Neuroticism
SES

Altruism

1.0
-.613

.115
-.247

-0.25

City

1.0
-.587

.169

.281

Rural Neuroticism SES

1.0
-.014
-.231

1.0
.118 1.0

C. Regression equation without covariates.
Predicted Altruism = -29.94City - U.lSRural + 59.73

D. Regression equation with centered covariates.
Predicted Altruism = -24.91City - 10.21/?wra/ - Q.19QNeurotc + 0.196SESC + 59.39

E. Regression equation with uncentered covariates.
Predicted Altrusim = -24.91 City - \Q.2\Rural - Q.l9QNeurotism + 0.196SES + 60.83

Note: City residents are coded Cl = 1, C2 = 0. Small town residents are coded Q = 0, C2 = 0
(reference group). Rural residents are coded Q = 0, C2 = 1. Cj is referred to as City and C2 is referred
to as Rural in the text.

(/?rurai: — 11.15 versus —10.21). This change is attributable to the influence of the Neuroticism
and SES covariates. In general, the effect of including covariates on the group difference is
indeterminate. The group difference may be the same, larger, smaller, or even reversed in sign,
depending on the structure of the data.

To calculate the adjusted mean Altruism for the three groups in our example, we substitute
the appropriate values into Eq. (8.7.9):

If we had not centered the covariates, we would need to add in the product of their regression
weights times their respective means, so



as before.
The analyst may use dummy codes, unweighted effect codes, weighted effect codes, or

contrast codes to calculate adjusted means. When the covariates have been centered, the code
values for the particular coding system are simply substituted into the corresponding regression
equation. When the covariates have not been centered, the sum of the products of the covariates
regression weights times their full sample means is added to the intercept term.13

Once again, we caution the reader that the adjusted means are estimated based on a specific
regression equation, here Eq. (8.7.9). If the regression equation has been misspecified, then
there may be substantial differences between the adjusted means and the true means in the
population. Of particular importance, Eq. (8.7.9) assumes that possible interactions between
the code variables representing the group and the covariates are 0. Methods of investigating
interactions between nominal and quantitative variables are presented in Chapter 9.

8.7.5 Multiple Regression/Correlation with Nominal Independent
Variables and the Analysis of Covariance

Analysis of Covariance (ANCOVA) is an analysis strategy typically applied to assess the impact
of one (or more) group factors (e.g., treatment groups; gender) while statistically controlling
for other IVs (called the covariates). ANCOVA is often treated as an extension of ANOVA that
includes additional variables to be controlled. ANCOVA is treated in statistical packages (SAS,
SPSS, SYSTAT) within the ANOVA framework. Readers familiar with ANCOVA may wonder
about its relationship to MRC. Paralleling our observations in Section 8.2.7 about one-way
ANOVA, they are identical. The F test for the Group effect in ANCOVA will be identical to
the gain in prediction tests associated with the Group in MRC. The gain in R2 associated with
the Group (/?jrull — Deduced)wiN eclual ^ fr°m me ANCOVA. MRC analysis has the advantage
relative to standard ANCOVA of allowing for the choice of a coding scheme that optimally
represents the researchers' questions of interest.

The juxtaposition of MRC and ANCOVA also highlights several important issues in the
interpretation of group differences in these analyses. As we have repeatedly emphasized, the
use of the MRC approach assumes that the regression model has been properly specified. In
Chapter 4, we considered five assumptions that we can apply in the present context.

1. The form of the relationship between each of the IVs and the DV is properly specified.
In this chapter we have focused only on linear relationships. If there is a nonlinear relationship
between one or more of the covariates and the DV, the model will be misspecified. Or, if there
is a group x covariate interaction such that the regression of the DV on the covariate differs in
each of the groups, the model will be misspecified. Regression models that include interactions
between nominal IVs and between nominal and continuous TVs are considered in Chapter 9.

2. All relevant IVs are included in the model. MRC only adjusts for those covariates
that are included in the regression equation.14 Any other unmeasured covariates that (a) are

13The reader may wish to practice obtaining the desired contrasts with these data.
14In experiments, covariates are measured prior to treatment and mediators are measured following treatment.
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associated with group status and (b) affect the DV lead to bias in the estimates of the group
effect (see Section 4.5.2). One special exception occurs in the case of mediational analysis
(see Section 12.2.1; Baron & Kenny, 1986) in which the group variable is presumed to cause
changes in the mediator, which, in turn, causes changes in the DV (indirect effect).

3. All IVs are measured with perfect reliability. In the present context, group status (e.g.,
treatment versus control; city versus rural) is likely to be measured with near perfect reliability.
With a single covariate, the effect of unreliability is to lead to too little adjustment of the
mean difference for the covariate. With multiple unreliable covariates, the direction of bias is
uncertain, although it will typically be toward underadjustment of mean differences.

4. The variance of the residuals within each group is equal (homoscedasticity). When large
differences in the residual variances are obtained, the actual alpha level of significance tests may
be too high or too low relative to the stated alpha level (typically, a = .05, see Section 4.4.6).

5. The residuals from the regression equation should follow a normal distribution. Although
this assumption is not critical in moderate or large n studies, non-normally distributed residuals
may be a symptom of model misspecification.

In the context of MRC, these five are standard assumptions that should always be checked.
In the context of ANCOVA, only some of these assumptions have received emphasis. In large
part, this difference in emphasis stems from the application of ANCOVA to randomized exper-
imental designs. In the context of randomized experiments, assumption 2 is automatically
met because the treatment group will on average not be correlated with any of the covariates.
Violation of assumption 3 (reliable covariates) can lead only to underestimation of the mag-
nitude of the treatment effect (low power statistical test) but not to spurious results indicating
a treatment effect exists when in fact it does not. Finally, violation of assumption 4 (equality
of residual variances in each treatment group) does not typically occur—in practice relatively
few treatments have large effects on the variance of the DV. Consequently, the emphasis in
the traditional ANCOVA literature has been on the issues of possible nonlinear covariate-DV
relationships and possible treatment x covariate interactions (assumption 1).

However, when MRC or ANCOVA is used to compare groups in nonexperimental contexts,
it is important that each of the five assumptions be examined. Assumptions 1-4 are critical to
inferring a treatment effect, and violation of assumption 5 can provide clues about model mis-
specification. Whether the groups are naturally existing groups (males and females; city, small
town, rural residents) or are treatment groups in a quasi-experimental design (e.g., community
1 receives treatment; community 2 receives control), it cannot be definitely presumed that the
groups are initially equivalent. Reichardt (1979); Shadish, Cook, and Campbell (2002); and
West, Biesanz, and Pitts (2000) present full discussions of the conceptual and statistical issues
associated with randomized and nonrandomized designs.

8.8 SUMMARY

A nominal independent variable G that partitions observations into g groups can be repre-
sented as g — 1 independent variables by various coding systems. All coding systems yield
identical /?2, adjusted R2, F for R2, and, via the regression equations, group means on Y. All
of these results are identical with those of analysis of variance. In contrast, the coding systems
differ sharply in the meaning of the results for the individual code variables, Ct. Researchers
should choose the coding system that provides the best answers to the specific research ques-
tions they are posing. Remaining questions that are not addressed by the coding system can
typically be answered by using a second coding system that provides a direct answer to those
questions. The various alternative coding methods facilitate the interpretation of the results for a



TABLE 8.8.1
Comparison of Coding Systems

Coding

Dummy

Unweighted
effects

Weighted
effects

Contrast

Nonsensec

4

PVa due to i vs.
non-i dichotomy

Ambiguous5

Ambiguous

Ambiguous

—

BQ

Mb (mean of
reference group)

Mv (unweighted
mean)

Mw (weighted
mean)

Mfj (unweighted
mean)

—

B, st

Mf — Mb (difference PV due to i vs.
between means of non-i dichotomy
reference and ith
groups)

MI — Mu (difference PV due to i's effect
between mean of
ith group and
unweighted mean)

Mi -Mw —
(difference
between mean of
ith group and
weighted mean)

varies PV due to the i
contrast

— —

Prf

PV due to i vs. non-i
dichotomy,
excluding other
effects

PV due to i's effect,
excluding other
effects

—

PV due to the i
contrast, excluding
other contrasts

—

Note: "Proportion of variance. bAmbiguous interpretation unless sample sizes are equal in all groups. CA11 individual results are meaningless.
For ease of presentation, we have assumed that the ith code variables also refers to the ith group.
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single C, for different frames of reference or desired comparisons. Table 8.8.1 provides a
concise summary of the meaning of regression coefficients and simple, semipartial, and partial
correlation coefficients for the different coding methods.

1. Dummy-variable coding. One group is selected as the reference group. The inter-
cept is the mean of the reference group, and each of the unstandardized regression coefficients
is the difference between the mean of one of the groups and the mean of the reference group.
This coding system is particularly appropriate for research in which one group is a control
group and the others are to be compared with it (Section 8.2).

2. Unweighted effects coding. The reference point here is the unweighted mean of
all of the group means; this value is the intercept. The unstandardized regression coefficients
represent the difference between each group's mean and the unweighted mean. This coding
system is useful with experimental designs (Section 8.3).

3. Weighted effects coding. The intercept is the weighted mean of the individual
group means. The unstandardized regression coefficients represent the difference between
each group's mean and the weighted mean. This coding system is particularly useful when
the groups represent natural categories and a large random sample has been taken from the
population (Section 8.4).

4. Contrast coding. The g — 1 variables are constructed so as to provide a set of inde-
pendent comparisons between means or unweighted means of means, selected in accordance
with the researchers' specific research hypotheses. The intercept is the unweighted mean of
the individual group means. The unstandardized regression coefficient provides the difference
between the unweighted mean of the means of the groups in set u and the unweighted mean of
the groups in set v, where u and v and the two sets of groups involved in the contrast. Contrast
codes are particularly important when researchers have a priori hypotheses about the specific
pattern of differences about the group means (Section 8.5).

5. Nonsense coding. Here the coding values are arbitrary and individual results are
meaningless, although those for the set as a whole are identical to those of the other coding sys-
tems. Nonsense codes were included because they illustrate how any set of g — 1 nonredundant
code variables fully captures the information in a nominal IV (Section 8.6).

Finally, we noted that coding systems for nominal independent variables provide the foun-
dation for understanding the meaning of more complex regression models including both
categorical and continuous scale variables. Group means on the dependent variables adjusted
for covariates are easily determined, especially when covariates have been centered. Any of the
coding methods may be employed in these models combining groups and covariates. However,
as always, the researcher is cautioned about the consequences of inadequate reliability in the
covariates (Section 8.7).



9
Interactions With
Categorical Variables

9.1 NOMINAL SCALE BY NOMINAL SCALE INTERACTIONS

In the last chapter we introduced four coding systems—dummy codes, unweighted effect
codes, weighted effect codes, and contrast codes—that may be used to represent nominal
(categorical) TVs. We also saw that regression equations could easily be specified that contain
a mixture of nominal and quantitative IVs. However, the presentation in Chapter 8 was limited
in two important ways. First, we did not consider any models that contained interactions
between IVs. And second, we did not consider models in which the effect of the quantitative
IV was nonlinear.

The purpose of this chapter is to address these more complex regression models that contain
nominal IVs. We begin by considering a series of regression models that contain interactions
between nominal variables. The progression of these models starts with the simplest case of
the 2 by 2 design and then considers regression models of increasing complexity up to one that
includes the interaction between three nominal variables. We then turn to regression models
involving the interaction of quantitative and nominal IVs. Finally, we consider regression
models that specify nonlinear interactions between nominal and quantitative variables. The
material in this chapter builds not only on the foundation for the treatment of nominal IVs
presented in Chapter 8, but also on the presentations in earlier chapters on the treatment of
nonlinear effects (Chapter 6) and interactions (Chapter 7) of quantitative IVs in MRC.

9.1.1 The 2 by 2 Design

To provide a concrete illustration for our discussion of the 2 by 2 design, we present an example
that we will use in the first part of this chapter. Imagine an experiment in which Y is the number
of performance errors on a standard task made by each of a sample of rats. One factor in the
design is surgery condition, in which the rats are divided into those receiving surgery that
destroys a portion of the frontal lobes of their brains (the frontal group); and those whose
surgery results in no brain destruction (the sham group). The second factor is drug condition:
Within each of the two surgery groups, some rats receive an active drug (the active group),
which is expected to minimize the effect of the frontal lobe destruction, and the remainder are
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A. No interaction

Mean

B. Crossed interaction C. Ordinal interaction

Mean
of

Active
Placebo

Frontal

6
10

Mean of means 8

MA - MP = BD

MF-MS = BS

MAF - MAS = B(S)A

Mpp — MPS = B(S)P

B(S)A — B(S)P — BS*D
B0

Sham means

4
8

6

5
9

7

5-9 =-4
8-6 = 2

6 -4-= 2
10-8 =2
2-2 =0

7

of
Frontal Sham means Frontal

14 4
10 12

12 8

9 8
11 12

10 10

9-11 =-2
12-8 =4

14-4 =10
10-12 =-2
10 - (-2)= 12

10

Sham

2
10

6

Mean
of

means

5
11

8

5 -11= -6
10-6 =4

8-2 =6
12 - 10= 2
6-2 =4

8
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given a placebo (the placebo group). Combining the two experimental factors, there are four
treatment conditions:

Condition 1: Frontal, active
Condition 2: Sham, active
Condition 3: Frontal, placebo
Condition 4: Sham, placebo

The researcher is interested in answering three questions. First, is there an overall effect of the
surgery condition: Do the rats receiving frontal lobe damage (frontal) make more errors on
average than those without brain damage (sham)? Second, is there an overall effect of the active
drug: Do the rats on active drug make fewer errors on average than rats receiving the placebo?
Third, is the magnitude of the effect of frontal damage conditional on the drug condition?
This third question asks whether there is a statistical interaction between the surgery and drug
effects.

As we saw in Chapter 7, two variables are said to interact in their accounting for variance
in Y when over and above any additive combination of their separate effects, they have a joint
effect. In the case of two nominal IVs, novices often confuse the simple linear combination of
two main effects with their joint effect, which is something quite different. Table 9.1.1 gives
three 2 by 2 tables of means designed to illustrate this distinction. These data are hypothetical
and are used to illustrate three different potential outcomes.

In each of the panels of Fig. 9.1.1 and as shown in Table 9.1.1, there is a nonzero "main"
effect of both drug and surgery. A main effect is more properly referred to as an average effect,
that is, it is the effect of a factor averaged over the levels of the other factor. In Table 9.1.1 A,
for example, rats in the active drug group have made an average effect of four fewer errors
than those in the placebo group (5 — 9 = —4), and those with frontal lesion had an average
of two more errors than those with the sham lesion (8 — 6 = 2). However, in the special case
considered in Table 9.1.1A each of these average effects is constant over the levels of the other,
for example, the effect of surgery under the active condition, 6 — 4 = 2, is exactly the same as

TABLE 9.1.1
Y Means Illustrating No Interaction, Crossed Interaction, and Ordinal Interaction3

°For simplicity, means are rounded to the nearest integer. For generality, the numbers in the cells all differ.

CH09EX01
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FIGURE 9.1.1 Types of interactions with nominal variables.

its effect under the placebo condition, 10 — 8 = 2. Similarly, and necessarily, because there
is only one df for the interaction in a 2 by 2 table, the average (main) effect for active versus
placebo of —4 holds for both the frontal (6 — 10 = —4) and the sham groups (4 - 8 = —4). No
interaction exists—each effect, whatever it may be, operates quite independently of the other
or, equivalently, quite uniformly for each level of the other.

Consider, by way of contrast, Table 9. LIB which presents a crossed (or disordinal) interac-
tion. Here, the average mean for the frontal groups is 4 more errors than for sham, 12 — 8 = 4.
However, this is not uniform: for the animals given the active drug, the frontal cases average 10
more errors than sham (14 — 4 = 10), whereas for those receiving a placebo the frontal cases
average 2 fewer errors (10 —12 = —2). These two separate effects average out to the surgery
main effect (10 — 2)/2 = 4, but are obviously quite different, and the fact of their differences
constitutes the interaction. The interaction is said to be crossed or disordinal because the effects
are of opposite sign (+10 and —2). Necessarily it is also crossed if one examines the separate
drug effects for frontal (14 — 10 = 4) and for control (4 — 12 = —8) lesions.

The oppositeness of the signs of the differences is what makes the interaction crossed, but
what reveals the interaction is the fact that the effects are different in magnitude. Table 9.1.1C
illustrates an ordinal interaction where lines joining the means do not cross within the observed

(C) Ordinal interaction

(A) No interaction (B) Disordinal interaction
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range of the data.1 The difference between the means of the frontal and sham conditions for
animals in the active condition is 8 — 2 = 6, and for placebo 12 — 10 = 2. These differences
are of the same sign, hence ordinal. Although for both active and placebo groups the frontal
lesion results in more errors, this occurs to different degrees, hence an interaction is present.
Again, of course, the interaction is also apparent if one takes differences in means vertically
instead of horizontally.

Table 9.1.1 should make clear what is meant by a joint effect. Only in Part A can one account
for the means in terms of one constant effect for active drug versus placebo and a second
constant effect for frontal versus control. In Parts B and C the two factors have an additional
joint effect—the combination active drug-frontal and the combination placebo-control have a
larger mean number of errors and the active drug-control and frontal-placebo combinations
have a smaller mean number of errors than are accounted for by the average effect of drug and
the average effect of surgery.

How would the researcher analyze the data corresponding to these 2 by 2 tables using
MRC? As we saw in Chapter 8, g — 1 = 3 code variables are required to represent the four
treatment conditions (cells). The central issue faced by the researcher would be to choose the
best coding system to represent his research questions. As we saw in Chapter 8, there are a
number of different choices—dummy codes, unweighted effect codes, weighted effect codes,
and contrast codes. Recall that dummy codes contrast the mean of each of the other groups with
the mean of a selected reference group, unweighted effect codes make comparisons with the
unweighted mean of the groups, weighted effect codes make comparisons with the weighted
mean of the groups, and contrast codes make a specific set of planned comparisons.

Earlier in this chapter, we noted that the researcher had three research questions correspond-
ing to the average effect of drug, the average effect of surgery, and the conditionally of the
surgery effect on the drug condition, the drug by surgery interaction. This set of hypotheses is
best represented by a set of contrast codes. The researcher would code rats in the active drug
condition +.5 and —.5 for those in the placebo condition for the first IV, CD. The researcher
would use +.5 for rats in the frontal lesion condition and —.5 for those in the sham condition
for Q, the surgery variable. Finally, the interaction is a function of the product of these codes
on CD and Q, that is, (CD x Cs = CSxD)2 When we analyze these data by MRC using these
codes, we obtain the regression coefficients given below each 2 by 2 table. In full accord with
what has been noted, the interaction BSxD is 0 for Table 9.1.1, Part A, but takes on nonzero
values for Parts B and C. This outcome reflects the requirement that over and above whatever
average effects the two research factors have (reflected in BD and Bs respectively), a third
source of Y variation, namely their joint or interaction effect is operating in the latter two data
sets. Note also that with contrast coding BQ is the mean of all the cell means.

Providing that all of the g— 1 df are represented as code variables, any of the coding schemes
presented in Chapter 8 will produce the same R2 and significance test for the contribution of
the set as a whole to the prediction of Y. Here there are four treatment groups, and any coding
scheme that produces three less than perfectly correlated IVs will do. However, when the two
dichotomous average effects of the 2 by 2 design and their product are coded by the method
of contrast coding, not only R2 and its F ratio are produced, but also meaningful values of
Bit sritprt, the t test they share, and B0 will also be produced. Here BQ is the unweighted mean
of means.

'Of course, all lines that are not parallel will cross at some point. In a disordinal crossed interaction they cross
within the observed data.

2Note that these contrast codes satisfy the three criteria described in Section 8.5. Also note that these codes are
perfectly correlated with unweighted effects codes for the two-group case—a desirability that will be discussed in the
next section.
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Contrast codes are particularly useful for interactions involving nominal scales because
they are designed to be orthogonal and to represent meaningful differences between means of
particular groups or combinations of groups. They allow the analyst to test the focal questions
of interest whether there are two (or more) levels of each factor. These characteristics greatly
facilitate the interpretation of interactions. However, other coding schemes may also be used,
provided that the investigator keeps firmly in mind the meaning of both zero and a 1-unit
change in each Bf in such sets.

To illustrate, suppose that the two research factors in Table 9.1.1 had been dummy-variable
coded, with 0 assigned to the placebo and control conditions. In such a case X3 the interaction,
created as the product of the two main effects, would be coded 1 for the drug-frontal group
(X! = 1 times X2 = 1) and 0 for the other three groups. This results in the following set of
code variables:

As was shown for the interaction terms involving uncentered quantitative variables in Chapter 7,
the results of this analysis may be interpreted. The significance test of the interaction term (XSxD)
and its partial correlation is not affected by the use of this dummy coding scheme. However,
the absence of centering makes the average (first-order) effects awkward to interpret. The three
data sets from Table 9.1.1 are shown analyzed using this dummy variable coding scheme in
Table 9.1.2.

We can recreate the cell means by noting their representation in the three IVs and the inter-
cept. The active drug-frontal group is coded 1 on all three variables—the dummy variable
representing active drug, the dummy variable representing frontal lesion, and the product
of these two variables—and we will need to add in the intercept in order to recreate its
mean. Therefore MDF = Bl + B2 + B3 + B0. The active drug-sham group is coded 1 on
the drug dummy variable but 0 on the other IVs, so that its mean will = B2 + B0. The placebo-
frontal group is coded 1 on the lesion dummy variable but 0 on the other IVs so that its mean

TABLE 9.1.2
Examples With No Interaction, Crossed Interaction, and Ordinal Interaction

A. No
interaction

B. Crossed
interaction

C. Ordinal
interaction

Dummy-variable analyses omitting the interaction:

Frontal-sham
difference = Bl

Active-placebo
difference = B2

B0

8-6 = 2

5-9=-4

8

Analyses including the dummy variable product:

MPF — MPS = .B!

MAS ~ MPS = B2

MAF ~ MAS - MPF+
MPS=B3

BQ = MpS

10-8 = 2
4-8=-4

6-4-10 + 8 = 0

8

12-8 = 4

9- l l= -2

10

10-12=-2
4-12=-8

14-4-10+12=12

12

10-6 = 4

5- l l=-6

9

12-10 = 2
2-10=-8

8-2-12 + 10 = 4

10

Treatment condition XD Xs XSxD

Active drug, frontal 1 1 1
Active drug, sham 1 0 0
Placebo, frontal 0 1 0
Placebo, sham 0 0 0
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will = Bl + B0. And finally, the placebo-sham group is coded 0 on all IVs so that its mean
will = BQ. Thus, the regression coefficients will have the interpretation given in Table 9.1.2B.3

From this exercise we see that using dummy codes and taking the product to represent the
interaction leads to regression estimates that, on the whole, are unlikely to represent the actual
hypotheses for which the analyses were carried out. The proper interaction effect is preserved,
but all average effects and the intercept differ from the researcher's hypotheses. For exam-
ple, BI is now the difference between the means of the placebo-frontal and the placebo-sham
(reference) groups rather than the average difference between the means of the active drug
and placebo conditions. This example illustrates the importance of choosing the appropriate
coding system to represent one's research hypotheses.

The Relationship of Coding Method to Cl and Significance Tests
for Nominal Scale Interactions
To carry our fictitious example yet further, we test the significance of the estimated coef-

ficients in models using the two alternative coding schemes in Table 9.1.3. The first table of
each pair tests the average effects and interaction using contrast codes, and the second tests
the same data using dummy-variable codes.4 As we have noted, the variables in the two mod-
els do not, in general, test the same effects. Nevertheless, two comparisons are particularly
relevant to a full understanding of the differences. The first is the overall R for the equation
estimating Y from the three predictors, which is precisely the same in the two representations
of these nominal variables, as we saw in Chapter 8 for the general case of coding g groups
with g — 1 variables.

The second thing to note in these comparisons of dummy-variable and contrast coding of
nominal scales and their interaction is that the significance test (and thus, necessarily, the
statistical significance of sr andpr, not shown) for the interaction term has precisely the same
t value, and therefore our confidence in its departure from zero in the population is precisely
equal in the two cases. It happens in this example that B3 also takes on the same value,
although this equivalence will not hold in general. This is, of course, another special case of
the principle presented in Section 7.2.6, that the significance of interactions is invariant over
linear transformations of the variables. When not provided by output from computer programs,
sr may be determined by

A third thing to note in the comparison of the dummy variables and contrast-coded variables
is the change in the tolerance of the variables depending on the coding scheme. The tolerance
(= 1 — R2

iu (/) k) is the proportion of an FV's variance that is independent of the other IVs and
thus a measure of collinearity, which we will consider in more detail in Section 10.5.3. When
the tolerance is equal to 1.0 the variable is uncorrelated with the other IVs. As the tolerance
decreases, there is increasing overlap between X, and the other IVs, and thus increasing diffi-
culty in interpreting the meaning of the coefficients. In this case, as usual, the dummy-variable
codes are substantially intercorrelated, as shown by the tolerance. The contrast codes, however,
are nearly independent, all nonessential collinearity having been eliminated. Only essential
collinearity that is due to the unequal numbers of cases in the different cells of our example
keeps this value from being equal to 1.0.

3The reader may carry out the calculations to see that these equations do in fact recreate the means given in
Table 9.1.1.

4For these tables we have not rounded the estimates to integers, as we had done in the earlier tables.
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TABLE 9.1.3
Statistical Tests of 2 by 2 Data With and Without Interactions

by Two Coding Methods

Effect Value SEB CIB Tolerance t p

(A) No interaction data: Contrast codes, R = .913
B0 7.01
Bl 2.01
B2 -4.00
53 .03

.08 6.85-7.17 —
0.16 1.69-2.33 .99
0.16 -3.68-(-4.32) .95
0.33 -.30-(+.34) .96

86.08
12.34

-24.55
0.10

<.01
<.01
<.01

.92

No interaction data: Dummy- variable codes, R = .913
B0 8.01
Bl 1.99
B2 -4.01
B3 .03

0.138 7.74-8.28 —
0.23 1.54-2.45 .50
0.21 -3.61-(-4.42) .60
0.33 -.61-C+.68) .36

58.05
8.65

-19.52
0.10

<.01
<.01
<.01

.92

(B) Crossed interaction data: Contrast codes, R = .970
B0 10.01
BI 4.01
B2 -2.00
B3 12.03

0.08 9.85-10.17 —
0.16 3.69-4.33 .99
0.16 -2.32-C-1.68) .95
-.33 5.70-6.34 .96

Crossed interaction data: Dummy-variable codes, R =
B0 12.01
B! -2.01
B2 -8.01
B3 12.03

0.14 11.74-12.28 —
0.23 1.55-2.46 .50
0.21 -8.42-C-7.61) .60
0.33 11.39-12.68 .36

122.94
24.62

-12.27
36.96

.970
87.03
-8.72

-38.98
36.96

<.01
<.01
<.01
<.01

<.01
<.01
<.01
<.01

(C) Ordinal interaction data: Contrast codes, R = .969
BQ 8.00
B} 4.02
B2 -5.99
B3 4.01

0.08 7.84-8.16 —
0.16 3.70-4.34 .99
0.16 -6.39-C-5.67) .95
0.32 1.69-2.32 .96

Ordinal interaction data: Dummy-variable codes, R =
BO 9.99
#! 2.01
B2 -7.99
53 4.01

0.14 9.72-10.26 —
0.23 1.56-2.46 .50
0.20 -8.39-C-7.59) .60
0.32 3.38 .̂65 .36

99.85
25.07

-37.35
12.52

.969
73.53

8.87
-39.49

12.52

<.01
<.01
<.01
<.01

<.01
<.01
<.01
<.01

Lessons Learned from the 2 by 2 Example
From this simple example we may draw several conclusions that may be applied to more

complex interactions involving nominal scales. They are:

1. Analysts should choose a coding scheme that most adequately represents their research
questions. In experimental designs, this will typically be unweighted effects or contrast coding.

2. The significance tests on the total interaction effect for nominal scales,5 as for continuous
scales, will be invariant. In exploratory analyses, a hierarchical entering of IV sets into the
regression equation can be used to test the contribution of the interaction set. This is likely to
be an especially attractive option if one is merely checking the interactions to make sure that

5 Taken collectively, as we shall see later. In this example there was only one interaction term.
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they are not needed in the model, as in the ANCOVA model presented in Section 8.7. That is, if
we have not expected or theorized an interaction, we may code the main effects in any way that
makes most sense for the investigative purposes. We then use the products of these main effects
collectively to test the significance of the interaction, expecting that the interaction terms will
not add significantly to prediction and therefore can be omitted from the final equations to be
reported. Note that the regression coefficients from the initial steps of the hierarchical analysis
will differ from those in the final model. If the interaction term turns out to be significant, then
the regression coefficients from the full model including the interaction should be reported.
The analyst should also revisit whether the coding scheme continues to represent the research
questions of interest in light of the changes in the interpretation of the lower order regression
coefficients in the presence of an interaction.

3. Regardless of the coding scheme for nominal variable main effects and interactions,
providing that they include g — 1 FVs, where g equals the number of groups (cells) in the
design, and none of these g — 1 IVs is perfectly predictable from the others, the multiple R and
R2 will be invariant. In a two-factor design, g will equal the product of the number of levels of the
first factor times the number of levels of the second factor. Such an invariance, in combination
with the invariance of the interaction contribution to R2, means that the contribution of the
combined main effects is also invariant over alternative methods of coding.

4. The values of the regression coefficients for lower order terms that are part of higher
order interactions may change dramatically when the coding scheme changes, and must be
interpreted as the effect of each factor only at zero on the other factor(s).

9.1.2 Regression Analyses of Multiple Sets of Nominal Variables
With More Than Two Categories

There are two distinct aspects of the analysis of k groups by k groups designs. The first
is the determination of which research factors, including interactions, should be included
in the full model. This decision is often made on the basis of the significant contribution
of sets of variables to the overall prediction, as discussed in Chapter 5. Thus this analysis
may determine whether certain sets of variables or interactions may be dropped from further
consideration.

With equal ns in each condition of the design, the various main effect and interaction
sets of independent variables are uncorrelated or orthogonal. When cell ns are proportional
these sets are also orthogonal. By proportional, we mean that the number of cases in any
cell can be exactly determined by multiplying the proportion of cases in that cell for each
research factor by the proportion in that cell for every other research factor. Thus, if half the
cases were in category 1 for research factor B and one fourth of the cases are in category 2
for research factor C, then the proportion of the full sample that is in cell B^ should be
.50 x .25 = .125. In this case a x2 on the table of sample ns will equal 0. Such a design is said
to be balanced.

When the study design is fully balanced, with equal or proportional ns in all cells so that
research factors are uncorrelated, the analysis may proceed by hierarchically examining sets
representing research factors and interactions coded by whatever system best reflects the major
research hypotheses. When the cell ns are unequal, however, it will matter how these codes
are assigned to groups: Significance tests will vary as a function of these codes.

Often this first step will be considered essential before proceeding with the second task
that is selecting the optimal code system for the categorical variables to represent the major
research questions in the analytic output.
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Significance Tests of Research Factors and Interaction Sets:
Type I, II, and III Regression Sums of Squares
We will present the three approaches to testing the significance of group differences by

considering the situation in which research factor A (with, e.g., four groups) is represented by
a set of three variables A, research factor B (with, e.g., three groups) is represented by a set
of two variables B, and the interaction between these sets is represented in this case by six
variables, set A x B. Type I sum of squares uses a hierarchical build up approach to estimate
the overall significance of each effect, as presented in Section 5.4. Assume that A is the effect
of most interest. Then three hierarchical regression equations are estimated, using A in the
first, A and B in the second, and A,B and A x B in the third. The test of A is taken from the
first equation, the test of B uses the gain in R2 (increase in regression SS) from the second
equation, and the test of A x B uses the gain in prediction from the third over the second
equation. Recall that the gain in prediction in a hierarchical regression model is tested using
either Model 1 error [Eq. (5.5.1)] in which each effect is tested for significance when it is first
entered, or Model 2 error, in which the MS for the error is taken from the final equation. With
this method the test of A ignores any possible overlap of A with B or the interaction, and the
test of B controls for the effect of A, but ignores the effect of the interaction. The decision
about the sequence of A and B is made on the substantive grounds of most interest or presumed
causal priority. The methods of coding A and B do not affect these tests. Even if the interaction
were the effect of most interest, it would be tested at step 3: Interactions are partialed effects
(see Chapter 7; J. Cohen, 1978).

Type n sum of squares uses a modified hierarchical approach. In addition to the hierarchical
sequence used in Type I sum of squares we also estimate Y from an equation using only B.
The effect of B is determined as before, by the gain in prediction from the equation using only
A to the equation using both A and B. The effect of A is determined in a parallel manner, by
the gain in prediction from the equation using only B to the equation using both A and B. The
test of the interaction is as before, its contribution to R2 above the main effects. Again, the
Model 1 or Model 2 error term may be employed, usually depending on whether there is an a
priori reason for expecting an interaction effect.

The Type IE sum of squares approach compares the prediction of the full model to submodels
in which only the effect of interest is eliminated. This model is that used by current ANOVA
programs applied to unequal n designs, and it depends critically on using unweighted effects
codes (Section 8.3) to represent research factors A and B and their products to represent their
interaction. One begins by estimating the "full model" equation for Y from A, B and A x B.
Then an equation employing B and A x B is used to determine the difference in the regression
SS between the full model and the model omitting A, and the resulting MS (dividing that
difference by the df for A) is tested using the full equation residual MS, as in Eq. (5.5.2). A
parallel set of procedures, starting with an equation employing A and A x B is used to test the
independent contribution of /?. Finally, the A x B effect is tested by determining the difference
in regression SS between the combined A and B effects and the full model equation. This test
is necessarily equivalent to the tests using either Type I or Type II SS approaches. The Type III
sum of squares approach provides a test of the unique effect of each research factor with any
contribution due to unequal cell ns partialed out. For this reason, it is viewed as the most
conservative approach. It is the same approach used when we test the significance of each
predictor in the full equation, providing that we have used unweighted effects codes.

As we saw in Chapter 5, researchers should choose the approach that best represents their
central questions of interest. A critical prerequisite in making this choice is to consider whether
a random or representative sample has been selected from a population. The Type I sum of
squares approach implies the strong assumption that the differences in sample sizes represent
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differences in the proportion of cases in each of the conditions in the population. Thus, it is
not appropriate for experimental studies in which investigators (and perhaps chance factors)
determine cell sizes that the Type ISS be used. Differences in sample sizes across conditions
almost always represent either procedural decisions by the experimenter (e.g., using fewer
participants in a particularly difficult to implement or costly treatment condition), a failure
of the randomization procedure to achieve equal allocation of the participants to treatment
conditions, or missing data in one or more of the treatment conditions (see Chapter 11 for
a discussion of missing data issues). For this reason, sources emphasizing the analysis of
experiments discourage the use of the Type I sum of squares approach (e.g., Kirk, 1995).

Given a random or representative sample, there are a number of research contexts in which
the Type I sum of squares approach provides the optimal approach. For example, imagine a
sociologist is studying the effects of family socioeconomic status (low versus middle versus
upper) and high school graduation (no versus yes) on lifetime income. The researcher may
theorize that family socioeconomic status (SES) is a cause of successful high school graduation
so that any overlapping variance between these two IVs should be assigned to SES. Howell
and McConaughty (1982) offer several illustrations of contexts in which both theoretical and
applied policy questions may be optimally answered using the Type I sum of squares approach.

The choice between the Type n and Type in sum of squares approaches is normally based on
the researcher's assumption about the existence of the interaction term in the population. If the
effect of the interaction set is assumed to be 0, then the Type n sum of squares approach provides
a more powerful test of the main effects of A and B. However, if the A x B interaction is not 0
in the population, then the model is not correctly specified and the estimates of A and B will be
biased. We previously considered this general issue of bias versus efficiency in model specifica-
tion in Chapter 4. A reasonable approach in the absence of an expected interaction effect is to test
the significance of the interaction effect and, if it is not significant, to delete it from the model.
The usefulness of this approach will also depend on the power of the test of interaction—the
interaction may exist in the population, but may not be detected in a small sample.

Designs involving more than two factors will involve straightforward extensions of these
procedures. Maxwell and Delaney (1990, Chapters 7 and 8) present a full and balanced
discussion of issues in the analysis of factorial designs with unequal sample sizes.

Selection of Group Coding Method and Significance Tests
of Individual Variable Effects
Having determined the significance of the overall effect of each research factor and inter-

actions among research factors, the next task is determination of the best coding system to
represent the substantive issues in the full equation model. In a sense this is the payoff of
analyzing the data using an MRC rather than an ANOVA approach, in addition to the flexibil-
ity of including other, noncategorical, variables as appropriate to the substantive issues. For
these decisions we refer back to the options presented in Chapter 8. We also note that one may
employ an unweighted effects code system in order to assess the unique contribution of a set,
using Model HI SS as above and yet switch to some other method of coding to provide the
best possible answers to the substantive questions motivating the research.

Illustrative Example
Consider a study comparing the efficacy (Y) of three different treatment procedures (T),

two experimental and one control. The researchers succeed in getting each of the four medical
school hospitals in a large metropolitan area to participate. The three different procedures are
employed on randomly assigned samples of suitably selected patients at each of the four medical
school hospitals (H: H1,H2,H3,H4), thus making possible an appraisal of the uniformity of
the treatment effects across the medical school hospitals. Since the four hospitals constitute the

CH09EX02
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TABLE 9.1.4
Effects of Research Factors and Interaction

in an Experimental Study

entire population of hospitals of interest, this is a 4 by 3 factorial design, with the interaction
(H by T) directly addressing the issue of uniformity of effects.6 Each of the 12 cells contains
efficacy scores for the patients treated by one of the three procedures at one of the four hospitals,
and in the interest of generality, there are a different number of cases in each of the 12 subgroups.
The n for the entire study is 108.

Given the unequal ns in this example, and the fact that it includes an experimental com-
ponent, our first task will be to test the overall contribution of between hospital differences,
treatments, and their interaction by means of the Type in SS method. Thus we will code the
three variables representing the four hospitals H and the two variables representing the three
treatment conditions T by unweighted effects codes. For this purpose it is immaterial which
group is selected as the contrast group, the estimated SS will remain the same. The regression
SS for the full equation including H, T and H x T is 75209.071, and the residual MS from
that equation = 321.79. To test each of the individual factor sets H, T and H x T we take the
difference between the full equation regression SS and the regression SS for all other sets, as
shown in Table 9.1.4. In this example all three sets are statistically significant (p < .01).

Having determined the importance of all three sets, we now turn to the task of optimal
coding of the individual variables to represent our major research questions in the full equation.
Presuming that we have no special interest in any single one of the hospitals our coding method
should treat them all on an equal footing, so that any H involves comparisons among the four
hospitals all on equal footing, and any comparison conveniently proceeds as being between
the Y mean of any given hospital and the unweighted mean of means of all four hospitals.
Because there are four hospitals and only three df, one hospital must be selected as the base
group and coded consistently — 1. Table 9.1.5 provides the effects codes for the four hospitals
asXi toX3.

technically, hospitals is a fixed effect in the present design because our conclusions are intended to apply only
to these three treatments and these four hospitals. In cases in which many hospitals are randomly selected from a
population of hospitals, multilevel modeling techniques described in Chapter 14 should be employed.

IV sets
H,T,HxT

Residual^ r>;ffx7.
H,HxT
T,HxT
H,T

Unique contribution
H

T

HxT

SS

75,209.071
30,891.422
52,193.908
71,077.543
30,820.806

75,209.071
-71,077.543

4,131.528
75,209.071

-53,193.908

22,015.163
75,209.071

-30,820.806

44, 388.265

df

11
96

3

2

6

MS

321.79

1377.18

11,007.58

7,398.04

F

4.28

34.21

22.99



9.1 NOMINAL SCALE BY NOMINAL SCALE INTERACTIONS 365

For the T factor, on the other hand, the presence of a control group to which each of the
experimental groups is to be compared suggests the possible use of dummy-variable coding
(Section 8.2). The three treatments are thus represented by two IVs (X4 andX5) with the control
condition consistently assigned 0, as shown in Table 9.1.5. Thus, each patient is characterized
on hospital of origin by three IVs and for treatment group by two IVs, which together produce
the coding of Xl through X5 in Table 9.1.4.

The interaction set H x T is again created by multiplying each of the H set variables by
each of the T set variables, creating 2x3 = 6 new IVs. The 11 IVs in the three sets exactly
identify the #,7} cell of each patient. We emphasized hi Chapter 8 that to fully represent G,
made up of g groups, g — 1 IVs are necessary, whatever the form of coding. This 4 by 3
design results in 12 groups, hence full representation requires 11 IVs. From the many optional
methods of coding membership in one of 12 groups, the coding given in Table 9.1.5 represents
these 12 groups as three effects-coded IVs for H, two dummy-coded IVs for 7\ and the six
interaction-bearing IVs that result from their set by set multiplication. As we will see, designs
in which two different coding systems are employed require special care to assure proper
interpretation of the individual regression coefficients.

TABLE 9.1.5
Codes for the H by T (4 by 3) Factorial Design

(A) H (unweighted-effects codes) (B) T coding (dummy codes)

HI
H2

H3
H4

*i

1
0
0

-1

X2

0
1
0

-1

X,

0
0
1
1

T!
T2
Control

X4

1
0
0

xs

0
1
0

(C) Joint coding of the 12 cells of the H by T factorial design

Hospitals by treatment

Hospitals

Cell

HjT,
H,T2

H^
H2T,
H2T2

H2C
H3T,
H3T2

H3C
H4Tt

H4T2

H4C

Xi

1
1
1
0
0
0
0
0
0

-1
-1
-1

X2

0
0
0
1
1
1
0
0
0

_ J

_ J

-1

X3

0
0
0
0
0
0
1
1
1

-1
-1
-1

Treatments

X4

1
0
0
1
0
0
1
0
0
1
0
0

X5

0
1
0
0
1
0
0
1
0
0
1
0

X\X4

X6

1
0
0
0
0
0
0
0
0

-1
0
0

X}X5

Xi

0
1
0
0
0
0
0
0
0
0

-1
0

X2X4

xs

0
0
0
1
0
0
0
0
0

-1
0
0

X2X5

X9

0
0
0
0
1
0
0
0
0
0

-1
0

X3X4

XIQ

0
0
0
0
0
0
1
0
0

-1
0
0

X,X5

Xn

0
0
0
0
0
0
0
1
0
0

-1
0



366 9. INTERACTIONS WITH CATEGORICAL VARIABLES

TABLE 9.1.6
My and /?/ in the 4 by 3 Nominal Scale Example

H!
H2

H3
H4

MT

MmH

T,

47.8 (9)
71.2(10)
54.7 (12)
93.9 (9)
66.1 (40)
66.7

T2

123.9 (9)
134.5 (8)
95.5 (9)
53.9 (6)

105.4 (32)
102.0

T3 = control

86.6 (6)
59.5 (9)
97.9 (9)
68.0 (12)
76.4 (36)
78.0

MH

86.0 (24)
86.1 (27)
79.9 (30)
73.5 (27)
81.2(108)

MmT

86.1
88.4
82.7
71.7

82.2

Given the efficacy scores (Y) for the 108 patients, together with the representation of each
patient as to hospital H and treatment group T membership using the 11 IVs of Table 9.1.5,
the data matrix is completely defined.

The full equation with IV sets H, T and H x T is

and the t tests for these effects are provided beneath each term. With 96 error df a t > 2.63 is
significant with a = .05. Each of these unstandardized coefficients represents a specific effect.
BI represents the difference between the mean of hospital 1 and the unweighted mean of the
four hospitals in the control condition. Table 9.1.6 provides the full means and ns for each
cell in these data where it can be seen that this coefficient, 8.60, does in fact = 86.6 — 78.0.
B2 and B3 represent similar comparisons for hospitals 2 and 3, respectively. B4 represents the
comparison of the mean for T± with the mean of the control group. The mean for 7\ is the
unweighted mean of the TI groups across the four hospitals and the mean for the control is
the unweighted mean of the control groups across the four hospitals. B5 represents a similar
comparison of the mean of T2 with the mean of the control group. Each of the six interaction
terms represents a specific facet of the nonuniformity of effects. Each of these IVs represents a
specific effect aspect of H by dummy aspect of T, its B gives the size of this discrete interaction
effect, and the accompanying t provides its significance test. Five of these six are significant in
this fictitious example. The first is X6, the interaction between the effect of hospital 1 (relative
to the unweighted mean of the hospitals) and the treatment 1 comparison with the control.
The Tj versus control comparison in H! is 47.8 - 86.6 = —38.8. The Tj versus control at
the unweighted mean of hospitals is 66.7 — 78.0 = —11.3. The difference between these (the
interaction) is -38.8 - (—11.3) = -27.5, the B for the first interaction term, X6. The second
interaction term tests the (nonsignificant) difference between T2 and control in Ht (again as
compared to the mean of the hospital mean differences), and the third term X8 compares the
H2T! versus control mean difference (71.2 — 59.5 = 11.7) with the same Tt versus control
difference at the unweighted mean of the hospitals = 11.7 — (—11.3) = 23. The remaining
three terms can be similarly interpreted.

9.2 INTERACTIONS INVOLVING MORE THAN TWO
NOMINAL SCALES

In Chapter 7 we saw that when the interaction among more than two continuous variables is
being examined it is necessary to include in the equation all of the lower order interactions for
the model to be hierarchically well specified (see Section 7.8; Peixoto, 1987). Otherwise, the
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interpretation of the terms in the regression equation will be confounded by any absence of
lower order terms. Similarly, when nominal scales are each represented as a set of k — 1 code
variables, where k is the number of categories (groups) that comprise the nominal variable,
interactions involving more than two such nominal variables will require inclusion of the
full set of code variables representing each possible lower order interaction and the original
nominal variables. Thus, examination of the triple interaction between three categories of
ethnicity E, three religious affiliations R, and three school grades S (e.g., 6th, 8th, and 10th)
in predicting Y would require, in addition to El, E2,RI,R2, S\, S2, and the triple interaction set
of eight variables £t x^ x S^F^ xR2xSl,El x R{ xS2,Ei xR2x S2,E2 xRlx Si,E2x
R2 x Sl, E2 x Rl x S2, E2 x R2 x S2, the three sets of two-way interactions collectively having
another 12 variables, for a total of 6+12 + 8 = 26 variables representing the 27 cells of
this 3 by 3 by 3 design.7 Necessarily such an investigation would require either a very large
sample or very large expected effect sizes to detect such differences with reasonable power and
confidence limits on estimates. Thus it is most frequent that researchers will investigate such
interactions only when there is both a strong theoretical reason for interest and a large sample
to assure adequate statistical power. The fact that several nominal variables exist in a data set
and can be used to create a large number of different potential two-way, three-way, four-way,
or higher way interactions does not necessarily mean that they are all to be investigated in the
absence of compelling research questions.

As we have noted, when cell sizes are unequal the different group factors will be correlated.
Thus, the first step will be to use an appropriate method of testing the contribution of group and
interaction sets. In experimental studies this will most readily be accomplished by employing a
standard ANOVA program, which will use unweighted effects codes to estimate these effects.
Alternatively, effects codes can be created by the investigator and the Type m Regression SS
method described earlier carried out. In other research designs the investigator may choose a
Type I Regression SS method, using hierarchical sequences of main effect and interaction sets,
or a Type n Regression SS method, using multiple hierarchical sequences of main effect and
interaction sets.

Once the determination of the significance of sets and the level of interaction to be retained
in the final model is made, the investigator proceeds to the decision regarding coding methods
to employ in the full equation model.

9.2.1 An Example of Three Nominal Scales Coded
by Alternative Methods

We present here a fictitious data set based in part on the theorizing and experimental findings of
Carol Dweck (1999). The dependent variable of interest is the amount of effort the individual
exerts in solving a set of problems in the second part of an experimental session. The manipula-
tions take place in association with the participant's work on an experimental task given during
the first part of the experimental session. The first factor is task difficulty (D)—the experimen-
tal task is either hard or easy. The second factor is feedback (F)—participants are told that
they have either succeeded or failed on the experimental task. The final factor is attribution
(A) with three levels. Participants are led to believe that the outcome of their performance was
due to their effort (A^ their ability (A3), or they are given no basis for making an attribution
about the cause of their performance (control group, A2). Thus, we have a 2 (£>) by 2 (F) by 3
(A) design in which each of the 2 x 2 x 3 = 12 possible treatment conditions are represented.

7This exposition assumes no empty or nearly empty cells in the design. If there are empty cells some appropriate
simplification is required. Typically, researchers consider collapsing categories within a nominal category that they
do not expect to differ or dropping consideration of the three-way and possibly some of the two-way interactions from
the model.
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TABLE 9.2.1
Hierarchical Analysis of Effects-Coded Variables in a Three Factor Example

Predictor sets SS df MS R2 F p

Main effects
Main effects + two-way interactions
Full model
Residual

612.17
890.60
909.50
840.41

4
9

11
108

153.04

82.68
7.78

.350

.509

.520

15.47

10.62

<.01

<.01

A central tenet of Dweck's theorizing is that important consequences follow from viewing
task successes and failures as resulting from a relatively fixed ability ("trait" attribution) or a
function of the degree and kind of effort put into the task ("effort" attribution). The theory states
that the effect of this attribution variable on effort (7) will depend on the previous success or
failure experience with a comparable task, with the "trait" group more likely to give up and put
less effort into a task that is similar to a previously failed task, whereas the "effort" group is
more likely to put more effort into such a task. Furthermore, this interaction may also depend
on the difficulty of the task. Our fictitious example has unequal ns in the various cells, which
makes it as general as possible.

We first determine the significance of main effects and interaction sets in the full model.
Given the unequal ns and the experimental nature of this study, for this analysis we may either
use an ANOVA computer program or, equivalently, code all sets by unweighted effects codes
and their products and carry out a Type in Regression SS analysis.

Carrying out these analyses by a "step-down" procedure, starting from the full model
CH09EX03 including attribution = A with k = 2, difficulty = D with k = 1, and failure = F with k = 1;

A x D,A x F,D x F two-way interactions with k = 5, and 2 three-way interaction variables,
Alx D x F andA2x D x F. Table 9.2.1 provides these analyses.

In the first analysis comparing the prediction for all 11 variables with the prediction omitting
the three-way interaction terms, we see that these two variables added only 909.50 — 890.60 =
18.90 to the regression SS above the two-way interactions. This contribution of only about
1% to the prediction was not statistically significant. We decide to omit the triple interaction
from further consideration, and proceed to investigate the two-way interaction contribution.
For that model we see that the addition of the five two-way interaction terms added 278.45
to the regression SS over the main effects. Dividing by the 5 df = MS = 55.69, and testing
this by the new residual MS = 849.31/110 = 7.72 yields F = 7.21, which with 5 and IWdf
indicates p < .01. Of course the existence of two-way interactions indicates the necessity of
including the main effects, and this model is accepted for the analysis of the study.

Variable Coding for Analysis of the Full Model
A second consequence of the potentially large number of total variables when more than

two-way interactions among sets representing nominal scales are investigated is the critical
importance of the selection of the method of coding the variables. As we saw in the previous
example, when interactions among nominal scales are being examined, as elsewhere, it is
important that the meaning of the specific statistical tests being made is pertinent to the purposes
of the investigation; otherwise the individual t tests may refer to comparisons that are not of any
interest. Such a consideration is at least equally important when one is considering interactions
among more than two nominal scales or, as we shall see subsequently, interactions between
nominal and continuous scales. For pedagogical purposes, we will use each of the four major
coding systems to code all three factors in the analyses presented here. However, as we saw in
the earlier example investigating treatments at different hospitals, the investigator's hypotheses
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should determine which coding scheme is used for each of the nominal IVs. Such hypotheses
may indicate different coding approaches to the different nominal scales in a single analysis.

Table 9.2.2 presents the details of the four coding schemes. The particular coding system
that is employed is indicated by the addition of (D), (U), (W), or (C) to the subscript for each
of the code variables. For example, X1(D) represents the first dummy code which involves the
comparison of the effort attribution group with the control group. As an overview, the first
system is dummy-variable coding, where we must select one of the groups for each nominal
scale as the reference group against which the other groups will be compared. In this case
we have selected A2, the control group for attribution, as well as the difficult task condition
(D2), and the failure outcome condition (F2). The second set of codes represent the unweighted
effects codes, where we have chosen for the base group for each factor the same groups that
were used as the reference groups for the dummy codes. Following the practice in unweighted
effects codes, each base group is coded — 1. The third coding scheme is unweighted effects
coding which is included here only for illustrative purposes. As noted in Section 8.4, this
coding scheme is almost never appropriate for experimental work because it looks upon the
actual cell sizes as being representative of their proportion in some population. It uses the
number of cases in the group that makes up each nominal category to determine to the values
of the code variables for the base group. Dweck's theory would predict a specific pattern of
means as a function of the attribution condition in the amount of effort the individual exerts in
solving the problems in the second part of the experiment (MA1 > M^ > MA3). The difference
in the means of the attribution groups would be expected to be greater in the failure than in
the success group, yielding an attribution x outcome interaction. The strong form of this
hypothesis suggests that the MA1 — MA2 difference is equal to the MA3 — MA2 difference within
each of the outcome conditions. This hypothesis is represented by code variable X1(C) that has
values of —0.5,0, and +0.5 for the ability, no attribution, and effort conditions, respectively.
The second code variable X2(C) for A has values of —0.5,1, and —0.5, and represents the
nonlinear (quadratic) component of the differences among the groups. In the context of the
strong version of the hypothesis, it is expected to be nonsignificant and serves as a check that
the linear effect of attribution adequately represents the pattern of means in this data set. Given
the GA — 1 = 2df for A these two contrasts fully represent the nominal variable. The contrast

TABLE 9.2.2
Alternative Codes for Main Effects in a Three-Nominal-Scale Example

Method

Attribution set
Group Aj
Group A2

Group A3

Difficulty set

Group Dj
Group D2

Failure set

Group Fj
Group F2

Dummy codes

XKD) %2(D)

1 0
0 0
0 1

X3(D)

1
0

•^4(D)

1

0

Unweighted effects

Xl(U) %2(U)

I 0
-1 -1

0 1

X3(U)

1

-1

•̂ 4(17)

1

-1

Weighted effects

•^l(W) %2(W)

I 0
~nAl/nA2 ~nA3/nA2

0 1

%3(W)

1

-HDl/nD2

X4(W)

1

-nFl/nF2

Contrast

XKQ

.5
0
-.5

•^3(C)

.5
-.5

X4(C)

.5
_ 5

X2(C)

-.5
1

-.5
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codes for the three nominal variables all meet the three rules for contrast codes (see Section 8.5).
Values on each code variable sum to zero, the code variables are linearly independent across
variables [equivalently, the products of the coefficients across each possible pair of the four
code variables C^i(C)»^2(C)'^3(C)>^4(C))sum to zero], and the difference between the values of
the codes for the two groups or combinations of groups on each variable equals 1.

For each of the coding schemes, there are three first-order (average) effects for the fac-
tors represented by the four code variables Xl,X2,X3, and X4. Interactions between nominal
variables are represented as products of the code variables representing the factors. There
are three two-way interactions, which are represented by five code variables: the products of
the two variables in A with the single code variables in D and F and the product of the D
and F code variables. These five two-way interations are represented by five code variables
X5, X6, X7, X8, X9, and XIQ in our example.

Table 9.2.3 provides the means and sample sizes for each of the cells in the design, as well
as certain means of means. The coefficients produced by the alternative coding methods in
this model are shown in Table 9.2.4. The first thing to notice is that the values, meaning, and
significance tests for variables within sets are not equivalent across methods.

Taking these analyses in sequence, we note that the intercept BQ for the full dummy-variable
model must equal the mean of the group consistently coded 0 on all IVs, here the middle A
group in the high difficulty and failure condition. In the model omitting the nonsignificant triple
interactions, the intercept is only an approximation of that value. The meaning of other coeffi-
cients in the dummy-variable model is quite difficult to interpret because the high collinearity
between the IVs thus coded requires consideration of most other coefficients in the interpreta-
tion of any one of them. In the full model tolerances for both main effects and interactions are
less than 25%, and mostly less than 20%. Thus this method of coding is difficult to interpret,
and the more so when sample sizes are unequal.8

The unweighted effects solution is the solution employed by ANOVA programs for unequal
cell n, and is straightforward to interpret. B0 in the full model equals the mean of all the
cell means, and in the reduced model we have chosen is an approximation of this value.9

The tolerances are much higher in this model, going little below 70%, indicating the greater
simplicity of the model. As in ANOVA, the two-way interaction effects are tests of differences
between differences. For example, the X3(U) by X4(U) interaction of .3 estimates the difference
between the mean difference between easy and difficult conditions for the succeed condition
(11.9 — 11.2 = .7) and the mean difference between easy and difficult conditions for the fail
condition [10.9 — ( — )11.0 = .1] be .3 times 2 (because the effects codes are 1 and —1) = .6.

TABLE 9.2.3
Cell Means and Numbers in the Three-Nominal-Scale Example

8We have included on the disk a data file using approximately the same cell means but with equal cell sample
sizes for the reader's examination. The dummy-variable solution is not really easier in this case, and tolerances are
still less than .25.

9In the equal cell n condition, the estimated effects for main effects and interaction models do not change for the
unweighted (or equivalent weighted) means solution because collinearity is only between IVs within sets.

Succeed = F]

Attribution] = Effort
Attribution2 = None
Attribution^ = Trait
MM

Easy = D!

13.04(9)
11.23(11)
11.49(11)
11.92

Difficult = D2

12.57 (9)
10.43(11)
9.60 (10)

10.87

Fail = F2

Easy = Dj

14.80 (9)
12.28 (8)
6.54 (8)

11.21

Difficult = D2

16.70 (10)
10.14(16)
6.07 (8)

10.97

MM

14.28
11.01
8.43

11.24

My

14.34
10.84
8.74

11.27
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TABLE 9.2.4
Table of B, (SE), and t Values in Curtailed Model With Alternative

Coding Methods

Bi(SE), t Dummy variable Unweighted effects Weighted effects Contrast

B0

BAI
t
BA2
t

BD

t

BF

t

BAI*D
t

BA2xD
t
BA1*F
t

BA2xF
t

BDXF
t

10.5 (0.7)

5.8 (1.0)
5.8**

-4.6(1.1)
4.3**

1.1 (1.0)
1.1

-0.6 (0.9)
0.6

-2.2 (1.3)
1.7

-0.2(1.3)
0.2*

-2.8(1.2)
2.2**

4.4(1.3)
3.5**

0.7 (1.0)
0.7

11.2(0.3)

3.1 (0.4)
8.3**

-2.8 (0.4)
7.5**

0.3 (0.3)
1.2

0.2 (0.3)
0.7

-0.7 (0.4)
1.9

0.3 (0.4)
0.8

-1.7(0.4)
4.5**

1.9(0.4)
5.2**

0.2 (0.3)
0.7

11.2(0.3)

3.2 (0.4)
8.3**

-2.9 (0.4)
7.4**

0.3 (0.3)
1.3

0.2 (0.3)
0.6

-0.7 (0.4)
1.9

0.3 (0.4)
0.7

-1.8(0.4)
4.3**

2.1 (0.4)
5.1**

0.2 (0.3)
0.7

11.2(0.3)

5.9 (0.7)
9.0**

-0.3 (0.4)
0.8

0.6 (0.5)
1.3

0.4 (0.5)
0.7

-2.0 (1.3)
1.5

0.8 (0.7)
1.1

-7.2 (1.3)
5.5**

-0.6 (0.7)
0.8

0.7 (1.0)
0.7

*The .05 a criteria has been met.
**The .Ola criteria has been met.

The weighted effects solution is intended to generalize to a population in which cell fre-
quencies are not equal. The estimates are similar to the unweighted estimates to the extent
that cell ns do not differ very substantially and, of course, are equivalent when they are equal.
Because the cell ns within factors are not necessarily proportionate, it is generally not advis-
able to attempt to interpret a reduced model with this model, but the interpretation of the 5(s
is otherwise essentially comparable to those for the unweighted effects model, the difference
lying in the population to which the generalization is desired.

The TVs in the contrast model are nearly orthogonal (exactly orthogonal in the equal cell n
case), and thus both easier to interpret and more stable between the full and reduced models.
We have designed them to emphasize the investigator's hypotheses. Once again, the intercept
equals the mean of means. X1(C) gives us the mean difference in effort between the trait (At)
and effort (A3) groups across conditions (—5.8), X2(C) gives us the less interesting difference
between the middle group (A2) and the mean of the trait and effort groups. The interaction
term B5 contrasts the A^Dj + A3,D2 means = 13.9 + 7.8 = 21.7 (averaged across F) with
the At,D2 + A3, DI means = 14.6 + 9.0 = 23.6 (averaged across F) = 1.9 (in the full model,
approximated by 2.0 in the model without triple interactions). Other effects can be similarly
interpreted on the basis of the cell mean contrasts selected by the investigator.

The full set of cell means (or adjusted means if there are other variables in the model) can
always be reproduced by summing across the B and code value products. For example, with
dummy variables the means for the 12 cells estimated from the model without interactions are
as shown in Table 9.2.5. The reproduced means omitting the triple interaction terms, as we have
done here, are not exactly equal to the original means, although they clearly show the overall
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TABLE 9.2.5
Recreating Adjusted Cell Means From the Regression Coefficients

Using Dummy Variables

Cell

AAFi
A1D2F1

A1D1F2

A!D2F2

A2D,F1

A2D2F!
A2DtF2

A2D2F2

AaD.F,
A3D2F!
A3D,F2

A3D2F2

5̂.8
Code

1
1
1
1
0
0
0
0
0
0
0
0

BA2
-4.6
Code

0
0
0
0
0
0
0
0
1
1
1
1

BD

1.1
Code

1
0
1
0
1
0
1
0
1
0
1
0

BF

-0.6
Code

1
1
0
0
1
1
0
0
1
1
0
0

BA1xD
-2.2
Code

1
0
1
0
0
0
0
0
0
0
0
0

BA2xD

-0.2
Code

0
0
0
0
0
0
0
0
1
0
1
0

BA 1xF
-2.8
Code

1
1
0
0
0
0
0
0
0
0
0
0

BA2«F

4.4
Code

0
0
0
0
0
0
0
0
1
1
0
0

BDXF
0.7

Code

1
0
0
0
1
0
0
0
1
0
0
0

B0

10.5
Code

1
1
1
1
1
1
1
1
1
1
1
1

£5, x Code

12.5
12.9
15.2
16.3
11.8
9.9

11.6
10.5
11.3
9.7
6.8
5.9

pattern. The reader may use the accompanying file to determine that if all 11 terms had been
included the original means will be reproduced by summing the regression coefficient-code
value products.

9.2.2 Interactions Among Nominal Scales in Which Not All
Combinations Are Considered

Of course, if one is simply trying to reproduce the ANOVA with unequal cell numbers
unweighted effects coding is mathematically equivalent to the method employed by most
computer packages. And, as noted, one can reproduce the original cell means from any of the
other coding systems. But there are much easier ways to reproduce the original cell means,
and ANOVA and multiple comparison methods are tailored to test mean differences and dif-
ferences between differences for statistical significance. When sets of variables representing
nominal scales are used in MRC analyses, they are generally used in quite different ways than
in ANOVA and ANCOVA. One purpose of nominal scale variable sets is serving as control
variables in regression equations in which the effects of one or more quantitative variables are
of major interest. Under these conditions and in many other situations the investigator may
not be interested in or may not expect many of the potential interactions between the nominal
and quantitative variables to contribute significantly to the prediction of Y. Although our focus
was on the nominal variable, Section 8.7 considered these models. Yet another situation, to be
reviewed in Section 9.3, is when there may be interactions between quantitative and nominal
IVs so that the effects of some continuous variables may vary as a function of the categories
that comprise the nominal IV.

There are many cases in which it is reasonable to examine certain interactions among
nominal variables, but not all of them, either for reasons of parsimony, or in the effort to
conserve degrees of freedom where hypotheses are not compelling. Most frequently such
circumstances will arise in observational research, where potential interactions may be very
many and clear a priori hypotheses may not exist. Occasionally, such circumstances may also
arise in experimental studies. For example, an additional treatment factor or nominal individual
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difference variable (e.g., sex, ethnic group) may be included in the design to explore the
generality of the hypothesized treatment effects.

To illustrate this issue, consider an observational study in which male and female (5)
participants from three ethnic groups (£) are included in the study of a DV. The design is a 2 by
3 factorial design, and the investigator has clear hypotheses about that there will be overall sex
differences and a 5 by E interaction. He anticipates that ethnic groups 1 and 2 will show clear sex
differences in their mean scores on Y, but ethnic group 3 will show no sex differences. He uses
two contrast codes for ethnic group with E^ = +1/3, +1/3, and —2/3, and E2 = —0.5, +0.5,
and 0. In principle, the 5 x E2 interaction term may be omitted as not hypothesized or of
interest. However, in general the first reasonable check will be to make certain that this variable
does not contribute significantly to the prediction. The candidate term is tested and if it is not
statistically significant, it is dropped from the model. It is prudent in such tests of possible model
respecification to use a higher than usual value of the Type I error, say a = .20, to help minimize
the possibility that effects that in fact exist in the population (but which are not detected because
of low statistical power) are inappropriately dropped from the regression equation. A complex
regression equation must be "trimmed" from the highest order term down; one would not
retain a three-way interaction term such as A x B x C but eliminate a two-way interaction
term between included factors such as A x B because all lower order terms must be included in
equations containing higher order terms. Aiken and West (1991, Chapter 6) discuss procedures
for identifying the order in which terms may be trimmed in complex regression equations.10

In fact, many tests of interaction sets of all kinds are designed more as assumption checks
or tests of the generality of one's findings of interest than as hypothesis tests. As considered in
the previous example of treatments in medical school hospitals, it may be that the test of the
hospital by treatment interaction was appropriately carried out only as a test of the assumption
that such interactions were not needed. If the results had turned out that the interaction set as
a whole did not contribute significantly to the prediction of Y, and the investigator had no a
priori reason for thinking that it would, the terms representing the H by T interaction could
be dropped from the regression model, although doing so would depart from the ANOVA
model. Such tests of assumptions and of the generality of findings are typically briefly noted
in research reports but are not fully presented.

If the investigator decides to leave out one or more of the highest order interactions between
two or more nominal IVs, the choice of an appropriate coding system for the remaining variables
will be quite critical. As we have noted throughout our presentation of nominal scale codes, it is
not always intuitively obvious what the contrast will be when the regression model is modified.
It follows, then, that it may also not be obvious what the consequences may be of omitting or
adding one or more of a set of interaction variables. Because this will depend highly on the cod-
ing system, the most general advice is to beware of mistaken inferences drawn from incomplete
sets. Each time the regression model is changed by adding or deleting interactions (or other
higher order effects), the proper interpretation of each effect in the model needs to be revisited.

9.2.3 What If the Categories for One or More Nominal "Scales"
Are Not Mutually Exclusive?

As noted briefly in Chapter 8, some categorical variables include some overlap among certain
categories. Under such circumstances, the simplest alternative is to create additional categories
that consist of combinations of overlapping categories to maintain the mutually exclusive

10Researchers should be cautious in their conclusions and clearly label any results as exploratory when post hoc
model modifications have been made. Section 4.5.2 discusses this issue in another context (see also Diaconis, 1985,
for full discussion of inference in exploratory data analysis).
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nature of the categories comprising the nominal scale. In some cases there may be a basis
in the substantive area for assigning the invidividuals with overlapping categories to a single
category involved in the overlap.

An illustration of this problem arose in the 2000 U.S. census data. For the first time par-
ticipants could identify themselves as a member of more than one ethnic or racial group.
Investigators of population-based associations using the census data need to decide how to
treat these data. Depending on their purposes and the size and location of the sample they
are investigating they may try to treat each group as if it were distinct, so that each effect
will be estimated with partialing for the overlap of other group membership from the variable
in question. Of course, under these conditions the coding schemes for interactions cannot
be employed in a straightforward manner. Alternatively, if main effects or interactions with
specific combinations of ethnicity or race are anticipated, separate variables will need to be
created.

No general solution to this problem can be proposed; indeed, we believe that considerable
development of statistical models that address overlapping categories is likely to take place
during the coming decade. The purpose of the current discussion is to remind the researcher
that such issues deserve thoughtful attention. The method of coping with this fairly common
problem may make a substantive difference, and should be considered carefully in the context
of the purpose of the analyses.

9.2.4 Consideration of pr, p, and Variance Proportions
for Nominal Scale Interaction Variables

In this chapter we have emphasized the cell means and differences between mean differences as
represented in the study's B(. As always, it is also possible to examine the various standardized
coefficients and the proportions of Y variance that are represented by their squared values.
As we first saw in Chapter 8, these coefficients are as much affected by the proportion of the
sample that is in the cell as by the mean differences compared in the coefficients. Consequently,
such coefficients will not generally be of as central an interest as they often are for continuous
scales.

PS are usually not a focus of attention for nominal scales because the standardization (cre-
ation of a unit variance) for variables created by any of the coding methods usually makes no
particular sense. If the investigator wishes to determine the unique contribution of an individual
variable, it will be convenient to do so by squaring the value computed from (Eq. 9.1.1), based
on p, whenever such information is not part of the computer output.

9.2.5 Summary of Issues and Recommendations for Interactions
Among Nominal Scales

Many of the details of interactions among nominal scales involve careful attention to alternative
coding choices, cell sizes, and study purposes. These issues will necessarily need careful
consideration once the context and purposes of the analysis are clearly before the investigator.
However, it may be useful to recap some of the major points made in this presentation of
interactions among nominal scales.

1. All methods of coding nominal scales will yield the same aggregate significance test
values for interaction sets (and, necessarily, R2 and increments to /?2), when a full model is
compared to a reduced model.
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2. The coding method that is equivalent to the method used for ANOVA or ANCOVA is
unweighted effects coding that treats group means as equally important, regardless of cell n.
Such programs also use the residual MS from the full model to test all effects.

3. Specific Bi in different coding systems, however, will not in general have the same
values, test the same mean differences or differences between differences, or have equivalent
statistical significance tests. The interpretation of the unstandardized regression coefficients
depends on the coding system that is used for each nominal IV and the specific interaction (or
other higher order) terms, if any, that are included in the model.

4. When interaction terms are created as products of nominal scale codes for certain coding
methods, these products will produce fi,s corresponding to each code variable with fairly
straightforward interpretations. Dummy codes, unweighted effects codes, and contrast codes
produce 5(s that are not affected by the sample size in each group. In contrast, weighted effect
codes produce 5,s that are direct functions of the relative proportion of cases in each group.
Interactions in weighted effects code models can become more difficult to interpret in studies
in which cell ns are not proportional (see Section 9.1.2).

5. Once again, we caution that the dummy coding option that is so often considered the
"default" will frequently not be the optimal coding scheme. The coding scheme selected for
each nominal IV should be the one that most directly reflects the study's hypotheses. Indeed,
this is the main advantage of using a regression analysis rather than an ANOVA approach
when all study factors are categorical. These are often, but not always, created as contrast
codes, which have two other advantages: They are typically easy to interpret and uncorrelated
in the variables except for correlations due to unequal sample sizes in the cells.

9.3 NOMINAL SCALE BY CONTINUOUS
VARIABLE INTERACTIONS

9.3.1 A Reminder on Centering

As noted in all previous presentations of interactions, we will generally find that the interpreta-
tion of equations involving product terms will be more readily accompli shed if the continuous
variables have been centered. In the sections that follow we will assume that this centering has
been done but will also note the consequences of not having done so. There is still complexity
of interpretation when the continuous variable is centered, but the categorical variable(s) are
not. See Section 7.2.8 for an example of a regression with interactions in which some of the
IVs are centered but others are not.

9.3.2 Interactions of a Continuous Variable With Dummy-Variable
Coded Groups

As is the case with equations with interactions between continuous scales, interactions between
continuous and nominal scales generally employ variables that are products of the original
"main effect" variables. When the nominal scale has been coded with dummy variables, these
product variables will constitute a set of g — I variables that are each equal to the continuous
scale for one group and zero for the other groups. When entered simultaneously with the
original variables these interaction variables each reflect and test the difference between the
slope for the group with a nonzero value and the reference group. Thus, the interaction between
a continuous variable Z and a nominal scale W consisting of five groups coded as four dummy
variables will be fully represented by an interaction set Z x W consisting of the products of
each of the four dummy variables with Z.
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TABLE 9.3.1
Characteristics of Separate and Combined Departments

in the Academic Salary Example

Department n MPublications AfSalary BSP SEB

Psychology
Sociology
History
Mean of means
Combined

60
44
46

150

19
15.2
11.2
15.1
15.5

$61,719
66,523
64,937
64,393
64,115

$1,373
258
412
681
926

$222
481
400
211
179

CH09EX04

As an illustration let us return to our fictitious example of academic salary. In the data
presented in Table 9.3.1 we have drawn a new sample from three departments in our uni-
versity: psychology, sociology, and history. The primary purpose of this investigation is to
see whether publications have an equivalent influence on salary in these departments. We
have decided that psychology will be the reference department and have created dummy vari-
ables accordingly. Our original investigation of the main effects of the study variables is
given in Table 9.3.2. In this equation the intercept is the estimated mean for a faculty mem-
ber in psychology with an average number of publications (where the average is computed
across the entire sample = 15.5 publications). We note that across the three departments the
average return per publication is $926. Although the observed mean salaries were not signifi-
cantly different (psychology — sociology = -$4,805 and psychology — history = —$3,219,
/ = —1.42 and —.90 respectively) the department salaries adjusted for the number of publi-
cations were substantially and statistically significantly different. The estimated salary for a

TABLE 9.3.2
Dummy-Variable Interactions for the Academic Salary Example

B SEn Tolerance t p

Main effects
B0

BP
BO,
B

D2

Regression MS

$58,485
926

8,282
10,447

= 215,311,000;

$2,168
193

3,249
3,472

F = 8.46; p<.01;

.81

.78

.66

R2 = .148.

4.78
2.55
3.01

<.01
<.02
<.01

Residual MS = 25,453,100.

Full model
B0 $56,922 $2,207
BP 1,373 252 .46 5.44 <.01
BDl 9,669 3,235 .76 2.99 <.01
BD2 9,793 3,616 .59 2.71 <.01
BPDl -1,115 495 .74 2.25 <.05
BPD2 -961 466 .52 2.06 <.05

Regression MS = 1,650,940,000; F = 6.72; p < .01; R2 = .189.
Residual MS = 24,559,800.

Increment to regression MS = 89,768,000; F = 3.662il44; Increment to R2 = .041; p < .05.
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psychologist with 15.5 publications is $58,485, the intercept. Sociologists earned $8,282 more
than psychologists, considering the number of publications, and historians earned $10,447
more, after a comparable adjustment (that is, estimated at 15.5 publications). This increase in
the mean differences should not surprise us, because we saw already in Table 9.3.1 that the
psychologists published more than the other disciplines. This adjustment, however, presumes
a comparable "reward" per publication in the three departments, and it is this presumption that
our test of the publication by department interactions is designed to test.

In the next equation we have added the two interaction terms. Once again, our intercept is
the estimated effect for a psychology faculty member with an average number of publications.
However, in this case the interaction terms provide for the possibility of a different effect
of publications in each department. Therefore, the intercept is now the estimated salary in
the psychology department for a member with 15.5 publications, taking into consideration
the reward per publication in the psychology department. The regression coefficient for the
"main effect" of publications is the B for publications in the psychology department ($1,373,
compare with Table 9.3.1). The B,s for the two dummy variables are the differences in salary
between the psychology department and the other departments ($66,592 — $56,922 = $9,669,
and $66,715 - $56,922 = $9,793). The regression coefficients for the two interaction terms
are the differences between the publication slope (the increase in salary per publication) for
each department and that for the psychology department ($258 — $1,373 = —$1,115 and
$412 - $1,373 = -$961). Each of these differences is significant in the full model, as is
the effect of publications in the psychology department. The slopes predicting salary from
publications in each of the three departments are shown in Fig. 9.3.1.

Thus we see that the interaction effects for dummy variables contrast the other groups with
the selected reference group with regard to both the means on the dependent variable and the
slopes—the regression effects—of the continuous variable, and that the resulting coefficients
are equivalent to those of the original separate groups. If other variables (£/) are added to
the equation without including their potential interaction effects with the nominal scale, the

FIGURE 9.3.1 Slopes of salary on publications for three departments.
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resulting fi(s will vary somewhat from those that would have been obtained had the groups
been analyzed separately. This is because the regression estimates treat the effects (slopes) of
these other variables in every group as equivalent to those in the total group.11

If the continuous variable had not been centered prior to entrance into these equations, the
intercept BQ would no longer have represented the salary mean for the reference group, but
rather the estimated salary for a member of that department with zero publications (which
in this example is outside the range of the scores). The effects of the two dummy variables
representing the other departments would similarly have represented the difference between
the estimated difference between a member of each department with zero publications and
a member of the psychology department also with zero publications. The interaction terms
would have remained the same.

9.3.3 Interactions Using Weighted or Unweighted Effects Codes

Suppose we used effects codes to represent a nominal scale and its interaction with a continuous
measure. As is equally true of the selection of the reference group in dummy variable coding,
it can make a great deal of difference which group is selected to be the base group in effects
codes. In this case our selection of this method of coding and of the psychology department
as the base group suggests that our real interest lies in the comparison of the sociology and
history departments with the "average" department. [The comparison of psychology with the
average department is measured by the value — (B£] + BE2).]

The interpretation of B0 in equations with effects codes is the unweighted mean of means
when the continuous scales have been centered. Table 9.3.3 provides the regression analyses

TABLE 9.3.3
Effects-Coded Variable Interactions for the Academic Salary Example

B SER Tolerance t p

Main effects
B0

BP

**,
BE,

$64,728
926

2,038
4,204

$1,316
193

1,912
2,039

.81

.68

.58

4.78
1.07
2.06

<.01
NS

<.05

Regression MS = 215,311,000; F = 8.46; R2 = .148.
Residual MS = 25,453,100.

Full model with interaction
B0 $63,410 $1,440
BP 681 210 .66 3.23 <.01
BEi 3,182 1,985 .61 1.60 NS
BE2 3,306 2,193 .49 1.51 NS
BPEi 423 324 .42 1.31 NS
BPE2 269 309 .43 .87 NS

Regression MS = 1,650,940,000; F = 6.72; R2 = .189; p < .01.
Residual MS = 24,559,800.

Increment to regression MS = 89,768,000; F = 3.663,144; Increment to R2 = .041; p < .05.

11 The reader may explore the consequences for this fictitious example by including in equations the variable time
since Ph.D., which is included in the data file.
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for the main effects and full model for the academic salary example. Once again, the inter-
cept provides our estimated adjusted mean of mean salaries. In the first equation this value
is slightly higher than the observed mean of means ($64,393, see Table 9.3.1) because we
have used a single combined estimate of the influence of publications, $926 per publication,
as estimated in the dummy variable equation as well. We note also that the adjusted mean
difference between the sociology department and the adjusted mean of department means is
not statistically significant, but the history department is significantly different than the average
department (p < .05). Nevertheless, as is always true of alternative methods of coding nominal
scales (Section 6.1.2), the multiple R2 and its significance test is precisely the same as for the
equation employing the dummy variable coded set.

In the full model using the effects coded scale, the adjusted mean of means is now estimated
at $63,410. The B for publication is the (unweighted) mean of the department Bs for the effects
of publications. The Bs for the individual effects are the adjusted mean differences between
the sociology and history departments, respectively, and the adjusted mean of mean salary.
And the interaction variable effects reflect the differences between the effect of publications
in each of these two departments and the mean of the department mean effect of publications;
that is, $258 - $681 = -$423, and $412 - $681 = $269, respectively.

Perhaps one of the most important things to note in this table is that none of the effects in
the full model are statistically significant except the intercept and the mean of the mean effect
of publications. Nevertheless, these variables fully represent the model, as can be seen by the
fact that the R2 and its significance test are identical with that of the dummy variable model
for which the two interaction terms and their joint contribution added significantly. The reason
for this apparent paradox may be viewed from either of two perspectives. First, we may note
substantively that we decided to use the psychology department as the base department, and
that this department was the most discrepant from the mean of means. Indeed, if we had used
one of the other departments as the reference in the dummy-variable equation we would also
have found some variables to predict less than required for statistical significance. Second, we
may note that our terms in the effects coded model were less independent, that is, had lower
tolerances. This lack of independence in the terms also reflects overlaps among the tests and
is another way of understanding the lack of statistical significance for the individual tests in
the full model.

Perhaps the most important lesson to be learned is that it is quite possible to have a set of
variables add significantly to the prediction of a DV although none of the individual variables
adds a significant unique effect. Thus, an investigator must beware of dismissing a set as of
trivial importance and nonsignificant on the basis of the significance of the individual variables
alone. Attention to the tolerance values usually included in the output will alert the investigator
to potential problems with IV collinearity that may produce the problem we see here.12

9.3.4 Interactions With a Contrast-Coded Nominal Scale

Another method that is often useful for coding nominal scales is contrast coding. In this case
the investigator selects orthogonal group contrasts that are of particular interest and codes
them in accordance with the rules previously noted (Sections 8.5 and 9.1). Suppose our real
interest was in whether the psychology department was different from the other departments
either in its (adjusted) mean salary or in the influence of publications on salary. We therefore
code the first nominal scale to reflect this interest (% or .667 for the psychology department
and — Vi or .333 for each of the other two departments). We code the second nominal scale
variable with orthogonal codes of 0 for the psychology department and .5 and —.5 for the other

12See further discussion of this issue in Chapter 10.
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TABLE 9.3.4
Contrast-Coded Variable Interactions With a Continuous Scale

for the Academic Salary Example

Full model with interaction
B0 $63,410
BP 681
BCi -6,487
Bc2 124
BPC} 1,038

BPC, 154

Regression MS = 1,650,940,000; F = 6.72;
Residual MS = 24,559,800.

Increment to regression MS = 89,768,000; F =

$1,440
211

1,923
3,714

256
579

R2 =

.66

.82

.79

.77

.82

189; p < .01.

3.662,144; Increment to R2

3.23
3.37
.03

2.70
.27

= .041; p

<.01
<.01

NS
<.01

NS

<.05.

two departments, respectively. The interaction terms are products of these two terms and the
centered publication variable.

In Table 9.3.4 we see that in the main effects equation the intercept and BP are the same
as in the previous two models, and the effects for the contrast are the differences between the
psychology department and the mean of the other two department means (t = 3.2,/? < .01),
and the difference in adjusted mean between the sociology and history departments (which
also equals the difference between the two nominal scale Bs in each of the two previous main
effects models using dummy or effects codes), not statistically significant. Of course, the full
main effects model is precisely as large and statistically significant as it was with the previous
two methods of coding.

When we move to the interaction of publications with the contrast-coded nominal scale
we again find that the first contrast, comparing the psychology department with the mean of
the other two departments, is statistically significant. Its value, $1,038, reflects the difference
between the effect of publications in the psychology department, $1,373, and that of the
mean of the other two [($258 + $412)/2 = 335]. The second contrast, between the effects
of publications on salary in the sociology department as compared to the history department,
is small (as we saw in the subgroup analyses reflected in Table 9.3.1) and not significant. In
aggregate, again, the interaction set adds precisely the same contribution to R2 for this coding
as for any other.

9.3.5 Interactions Coded to Estimate Simple Slopes of Groups

It is not unusual for an investigator to be as interested in whether a particular variable is or is not
a significant predictor of Y in each and every group. The answer to this question can be obtained
in a number of ways, but perhaps the simplest one takes advantage of the fact that there are g

Main effects
B0

BP

*c,
BC>
Regression MS
Residual MS =

B

$64,728
926

-6,243
2,165

= 215,311,000; F = 8.46;
25,453,100.

SEB

$1,317
193

1,923
3,455

R2 = .148;

Tolerance

.81

.85

.95

p < .01.

t

4.78
3.25

.63

P

<.01
<.01

NS



9.3 NOMINAL SCALE BY CONTINUOUS VARIABLE INTERACTIONS 381

variables involved in the interactions: the continuous scale and the g — I variables representing
the nominal scale.13 In the previous coding methods we included the scaled variable Z and
g — 1 main effect variables for the nominal scale and g — 1 interaction products. To obtain
separate group slopes (simple slopes for groups) we now instead create g variables in which
each group's Z values (preferably but not necessarily centered) are coded on a variable for
which all other groups are coded 0. These variables are then entered simultaneously with any
of the other methods of coding the g — 1 nominal scale variables (but with the "main effect"
Z omitted). The B coefficients in this equation will be the slopes of Y on the continuous scale
for each of the g groups with their appropriate standard errors and statistical significance tests.

For example, let us return to our academic department model. In Table 9.3.5 we reproduce
the original dummy-variable main effects model. In the full model, however, we have removed
the publications variable, and instead have included three variables representing the publi-
cations effect for each of the three departments. As noted, the first variable consists of the
publications for each member of the psychology department and zero for each member of
the other departments. The second variable consists of the publications for each member of
the sociology department and zero for each member of the other departments. The third variable
consists of the publications of each member of the history department, etc. When considered
simultaneously these variables reflect precisely the slopes of the individual groups. Figure 9.3.1
presents the slopes of salary on publications for each of the three departments. The significance
tests suggest that although publications have a powerful influence on salary in the psychology
department, they have little or no impact on salary in the sociology or history departments.

TABLE 9.3.5
Interactions Coded for Individual Department Simple Slopes

of Salary on Publications CH09EX05

B SER Tolerance t p

Main effects
BQ

BP
B».
Bo2

Regression MS

$58,485 $2,168
926

8,282
10,447

= 215,311,000; F = 8.46;

193
3,249
3,472

R2 = .148.

.81

.78

.66

4.78
2.55
3.01

<.01
<.02
<.01

Residual MS = 25,453,100.

Full model with interaction
B0

*«,
BD2

BSDO

BSD{
BSD2

$56,922 $2,207
9,669
9,793
1,373

258
412

Regression MS = 1,650,940,000; F = 6.72
Residual MS = 24,559,800.

Increment to regression MS = 89,768,000; F

3,235
3,616

252
426
392

; R2--

= 3.66

.76

.59

.90
1.00
.73

= .189; p < .01.

2^44; Increment to R2

2.99
2.71
5.4

.60
1.05

= .04;

<.01
<.01
<.01

NS
NS

p < .05.

13Aiken and West (1991) provide a method for hand calculation of individual slopes, and note that one can also
alternate the reference group in a dummy variable model, since the coefficient for the continuous variable in that
model and its significance test represent the simple slope for the reference group.
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(The reader is reminded that any resemblance of these data to actual departments is purely
coincidental.) These analyses may be repeated using contrast or effects codes to confirm that
the slope estimates are not affected by the method of coding the main effects of the nominal
scale.

Perhaps the most crucial thing for the reader to note is that all of these methods share
precisely the same significance test values for the total contribution of the interaction set to
the prediction of Y. However, as noted, depending on the coding selected, the individual
variables may all be statistically significant or none of them may be individually statistically
significant. Thus it is important to check on the contribution of the set as a whole, especially
if one is concerned about the possible significance of the set as a check on the assumption
of equal slopes. And it is also important to select a coding method that is consistent with
the investigator's need to detect and estimate the most theoretically or practically important
interactions.

We also note that although the equations we have examined here using any of the coding
methods produced coefficients that were relatively simple functions of the raw coefficients
in subgroups, that is by no means necessarily the case in practice. This is because typically
the researcher will include one or more other variables in the equation for which interaction
terms are not hypothesized and, often, not investigated. The slopes for these variables are thus
assumed to be equivalent for subgroups, although they are hardly ever precisely so. The effects
of these covariates on the adjusted estimates of group by continuous scale interactions will
be based on the covariates' full sample average effects, and may well influence the Bs and
significance tests of the interaction variables (West, Aiken, and Krull, 1996).

Exam/nation of Group Differences at a Point Other
Than the Mean of the Continuous Scale
It is sometimes of particular interest whether the group means are significantly different at

a particular point on the continuous scale. For example, in our academic example a member
of the sociology department counters the findings by saying that any departmental differences
in rewards for publications do not have effects on the more accomplished (that is, published)
members of the department. He defines this group as those with 20 publications.

To test this hypothesis we begin by noting that the comparison of Y means of the groups
in the full model is at a score of zero on the continuous variable. This point equals the full
sample continuous variable mean when the continuous scale has been centered. Thus, by
simple extension we may subtract from our continuous scale scores any other constant in
order to make zero the point of interest and proceed with the analysis, as before. Regression
coefficients reflecting mean differences among cells will now reflect those Y differences at the
selected point.

Therefore, we rescore publications by subtracting from the original scores 20 rather than
the mean. Running the full equation with dummy variables representing the comparison of

CH09EX06 tjje socioiogy and history departments with psychology, including interactions, we find the
estimated effects as shown in Table 9.3.6.

In the first model we reproduce the equation estimates from the dummy-variable model
using the centered publication variable. As noted earlier, the Dl and D2 variables show sig-
nificant t values, indicating that both the sociology and history departments have a higher
estimated salary for those members with the mean (aggregated across department) number
of publications, taking into account the differences in the publication effects in the different
departments.

The next column shows the equation estimates when the publications variable has been
"re-centered" by subtracting 20 from each value, rather than the 15.49 publications subtracted
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TABLE 9.3.6
Estimation of Department Salary Differences at Alternative

Levels of Publications

Predictor:
Publications Predictor: Predictor:

centered at mean Publications - 20 Publications - 10

IV

Intercept

A

D2

Publications

DjX
Publications
D2x
Publications

B(SE)

$56,922
($2,207)
$9,669

($3,235)
$9,793

($3,616)
$1,373
($252)

-$1,115
($495)

-$961
($466)

t

2.99

2.71

5.44

2.26

2.06

B(SE)

$63,114
($2,039)
$4,640

($3,726)
$5,458

($4,633)
$1,373
($252)

-$1,115
($495)

-$961
($466)

t

1.25

1.18

5.44

2.26

2.06

B(SE)

$49,385
($3,030)
$15,790
($4,448)
$15,069
($3,846)
$1,373
($252)

-$1,115
($495)

-$961
($466)

t

3.55

3.92

5.44

2.26

2.06

when we centered in the usual way. It turns out that our sociologist was right (in this fictitious
example), and the estimated differences between department salaries for members with 20
publications is not statistically significant. We note, however, that the interactive effects,
reflecting the differences in the effect of publications on salary in the different departments
remain unaltered.

"Aha!" counters a junior member of the psychology department. "That's all very well for
senior members, but the situation is even worse for those of us who have not yet had time to
publish. Look at members with 10 publications in each department."

In the final set of columns in Table 9.3.6 we present the same equation in which 10 is
now subtracted from each person's publications. As suspected by our junior colleague, the
estimated mean difference in department salary for those with 10 publications is over $15,000
(taking into account the differences in the effects of publications). Necessarily, in all of these
equations the different linear transform of publications has not altered the estimates of the
main effects or interactions of publications, since the slopes cannot be affected by subtracting
a constant from a variable. Nor can there be any influence of this transform on the overall R2

or its statistical significance.

9.3.6 Categorical Variable Interactions With Nonlinear Effects
of Scaled Independent Variables

Just as nominal scale interactions with a continuous scale are readily accomplished, nominal
scale interactions with additional functions or powers of a continuous scale are also entirely
feasible. The constraints against routine inclusion of such interaction terms are more likely to
come from an inadequacy of theory to predict their presence and meaning than any difficulties
in computing their effects. And, as we noted in Chapter 6, any problems of unreliability will
tend to diminish our power to detect curvilinearity in relationships even more than it does for
linear relationships. When the effective sample size is cut by examination of the subgroups
represented by a nominal scale, such statistical power considerations are even more restricting.
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Thus, although we present these methods here, the investigator should reflect carefully on the
theory that predicts such effects, on the expected size of the difference, and on the statistical
power considerations that may restrict one's ability to detect differences in curve shapes in
subgroups.

The method is a straightforward extension of the previously presented treatment of inter-
actions with nominal scales. One may use any of the methods of coding the nominal scale,
as appropriate to the researcher's purpose and hypotheses. Interaction terms with continuous
scales, including power functions, are created as simple products of the main effect sets. Thus,
with 4 groups and z (centered, of course) and z2, there will be six interaction terms created by
the product of the g — 1 = 3 nominal scale variables and the two z variables.

For example, suppose that in our academic department salary investigation we had a further
hypothesis. This hypothesis posits that these departments had different policies with regard to
the influence of seniority on salary. It is believed that the history department is inclined to value
the perspective and prestige associated with long familiarity with and by the professional field,
and thus salary increases may be enhanced by seniority, perhaps even more than linearly. In
psychology, it is hypothesized, academics tend to forget research and theoretical contributions
that are more than a few years old, and thus the influence of seniority on salary diminishes over
time. No specific hypothesis is made about the effects of seniority in the sociology department.

The analyses of these effects in our fictitious example are presented in Table 9.3.7 for each
of the individual departments.14 As can be seen, the linear effect of seniority is largest in the

CH09EX07 psychology department, but there is also a significant negative curvilinear effect, indicating an
overall "frown" effect—a downturn from the linear trend at the upper end (as hypothesized).

TABLE 9.3.7
Differential Curvilinear Effects of Seniority in the Academic

Department Example: Individual Department Effects

Coefficient value SE t (or F)

Psychology department

BQ
Timec = BI
(Timec)

2 = B2

Total R2

Sociology department

B0

Timec = Bl

(Timec)
2 = B2

TotalJ?2

History department

BO
Timec = B1

(Timec)
2 = B2

Total fl2

$65,670
$2,424
-$143
.404

$63,319
$930
$109

.112

$64,535
$1,606
-$61

.210

$2,548
$390
$49

$3,677
$539
$105

$2,820
$492
$78

25.8
6.2; df = 57
2.9; df = 57

F = 19.3; df = 2, 57

17.2; df = 41
1.7; df = 41
1.0; df = 4\

F = 2.58; df = 2, 41

22.9; df = 43
3.3; df = 43
.8; df = 43

F = 5.72; df = 2, 43

14In these analyses we have centered years at the combined department mean, which makes the intercepts somewhat
different than they would be if each department's years were centered separately but also makes the findings more
directly comparable with the combined analysis. Also note that the dependent variable salary is not the same one used
in the previous section.
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Neither the linear nor the quadratic trend is statistically significant in the sociology department.
In the history department there is a statistically significant linear trend of $1,606 per additional
year, but no significant quadratic trend.

Analyzing these three departments simultaneously in order to test the significance of the
curvilinear component, we will use dummy-variable coding with the psychology department
as the reference group. There will be eight IVs in these analyses, two variables representing
the main effects for groups, centered years and centered years squared, the two products
of the group variables with years, and the two products of the group variables with years
squared. The hierarchical regression analyses are presented in Table 9.3.8, where we can see
that there was a generally significant quadratic effect, and that the quadratic effect differed
among the departments, although not precisely as anticipated. The quadratic term was $252
less negative in the sociology department than in the psychology department (noting that the
first dummy variable compares the sociology department to the psychology department), and
only $83 less negative (and not significantly so) in the history department. Note that these are
precisely the differences that we noted in the analyses of the individual departments where the
sociology = psychology difference = $109 — (—$143) = $252 and the history psychology
difference = —$61 — (—$143) = $83 (within rounding error). Now we also know that the
psychology department is more likely to show a decline in seniority effects on salary among
its most senior members to a greater extent than is the sociology department (which in fact is
hardly influenced by seniority at all).

Once again, we can usefully reconstruct the slopes of each department in our combined
analyses by using our group slope coding method in which we omit the continuous variable(s)
and include a set of variables in which each group's (centered) continuous variable is coded on

TABLE 9.3.8
Hierarchical Multiple Regression Analysis of Seniority Effects

Model

Main effects
Intercept
Department dummy 1
Department dummy 2
Timec

Main effects + Time;:
Time;:

Main effects, Time;: + T x D
T x Dep^
T x Dept2

Main effects, T x D, T2 x D
Intercept
Dept,
Dept2

Timec

Timec
Dept, x Timec

Dept2 x Timec

Dept! x Time;;
Dept2 x Time^

B(SE)

$60,370
$5,487
$2,653
$1,548

-$69

-$1,050
-$545

$65,670
$ 2,424
-$2,351
-$1,135
-$143
-$1,494
-$818
$252
$83

($2,058)
($3,153)
($3,152)
($251)

($40)

($612)
($599)

($2,689)
($412)
($4,239)
($4,022)
($52)
($633)
($665)
($107)
($97)

Tolerance t

.81

.79

.96

.84

.60

.58

.34

.43

.46

.49

.54

.46

.43

.37

29.3
1.7
0.8
6.2

1.7

1.7
0.9

24.4
5.9

.6

.3
2.8
2.4
1.2
2.4

.4

Increment to/?2,
F, numerator df

.236; 15.0; 3 df

.016; 3.0; Id/

.015; 3.0; 2 df

.028; 7.6; 2 df
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TABLE 9.3.9
Quadratic Interaction Example Coded for Simple Quadratic Slopes

a variable on which the other groups are coded zero. When we wish to examine the quadratic
effects of the individual groups in the simultaneous analysis, we simply square the group slope
variables. As was true in the example presented in the previous section, the increments to
R2 will be the same as in the previous hierarchical analysis (except the quadratic term of the
continuous variable will be included with the final step rather than earlier).

In Table 9.3.9 the final equation is presented for the academic salary example in which we
have used contrast codes (contrasting psychology with the other two departments and sociology
with history) for the group main effects.15 These linear and quadratic slope components for the
individual departments are precisely what we obtained in their separate analyses in Table 9.3.6,
and the R2 for the full equation is precisely what it was for the previous analysis using dummy
codes in the interactions.

The standard errors of the Bs are not the same as in the individual department analyses,
since they are based on the full combined sample n. We note that neither the linear nor the
quadratic effect was statistically significant in the sociology department. As is always the
case, these slopes should be graphed in order to make sure that the interpretation is correct.
Figure 9.3.2 presents the quadratic slopes for the three departments. Here we see clearly that
in the psychology department the linear effect of seniority is steepest, but also the "fall off" in
salary at the upper end is greatest.

Of course, if one only needed to know the shape of the quadratic slopes for each of these
groups one could just as well run the equations separately for the departments, as we did in
Table 9.3.7. However, when there are other predictors in the model, for which one is either
ready to assume that the effects are roughly equivalent across groups, the adjusted group linear
and quadratic slopes can most readily be obtained in the combined sample.

9.3.7 Interactions of a Scale With Two
or More Categorical Variables

Just as easily as one can accomplish an examination of possible group differences in the
effects of a continuous variable with one nominal scale, one may include interactions with two
or more such scales in one's equations. In fact, it is not at all unusual to do so when a scale
has only two categories; e.g., sex, handedness, treatment, residence type, zygosity, and many
demographic variables often appear as dichotomies in studies. Interactions with more than one

15The reader is reminded that it doesn't matter for any of the simple slope variables whether we use dummy,
effects, or contrast codes for the main effects of groups.

Predictor

Intercept (= AfM)

Psychology^. <***•)
Sodo/0£y(vs.history)

1 ^W^c(psychology)

7i'mec(sociology)

rjmec(history)

•*lmec(psychology)

*'mec(sociology)

^'mec(history)

B(SE) Tolerance

$64,507
$1,743
-$1,216
$2,424
$930
$1,606
-$143
$109
-$61

($1,730)
($3,486)
($4,437)
($412)
($481)
($522)
($52)
($94)
($83)

.54

.54

.80

.94

.74

.63

.56

.52

t

37.3
.5
.3

5.9
1.9
3.1
2.8
1.2
.7

Cumulative R2;F;df

.014; F=l . l ; 2,147 df

.189; F = 6.7; 5,144 #

.295; F = 7.4; 8, 14 Idf
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FIGURE 9.3.2 Quadratic slopes of salary on seniority.

such two-group variable are often plausible and of interest. When the sample is divided into
more groups, however, the statistical power to detect multiple interactions is likely to quickly
dissipate. Thus investigators are likely to need to exert considerable substantive and statistical
judgment in the decisions as to which interactions to include.

Interactions involving continuous scales with multiple nominal scales also require consid-
eration of whether the interaction terms among the nominal scales need to be included in the
interactions with the continuous scales. As we noted in Section 9.2.1, with three nominal scales,
even when two of these were dichotomies and the other only 3 groups, there are, in addition
to four main effects, seven interaction terms. Thus, the full representation of the interactions
of these groups with a continuous scale would require 11 interaction products of the nominal
scale codes with the continuous scale. Unless the sample is huge, or the expected differences
very large indeed, the power of the aggregate contribution to R2 is likely to be small. As we
have noted in Chapter 5, it is often a useful strategy to protect oneself against an excessive
number of Type I errors ("findings" that are not characteristic of the population and thus will
not replicate) by testing the contribution of a set of variables to R2 for statistical significance
before proceeding to examine the effects of individual variables. As always, such protection
comes at a price, in terms of the risk of Type n errors (failure to detect effects that are actually
present in the population). The investigator's goal must always be to balance these risks in
ways that will further the scientific contribution of the study.

One possibility to be considered when the potential number of interaction terms in the
equation mushrooms, is to examine only some of the potential group differences. For example,
in the contrast-coded example of the effect of publication on salary presented in Section 9.3.4
our hypothesis and interest was in the comparison of the psychology department with the other
two departments. The second contrast, that between the other two departments, was present
only for completeness. This second term could have been omitted altogether (and its interaction
term as well).

As we have noted repeatedly, beginning in Section 8.1.1, when a nominal scale is represented
by g - 1 variables, these variables considered together may reflect different differences than
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they do when each is considered separately. In particular, although each variable in a dummy-
coded set reflects a dichotomy between one group and all other groups, when considered
simultaneously in a regression equation these individual effects are comparisons between that
group and the group consistently coded zero, the reference group. This means that consideration
of omitting some of the variables in a nominal scale set, whether in the main effects or in
interaction terms involving the variable, needs to be done with great care to make sure that the
remaining variables accurately reflect the comparison of interest. The easiest way to ensure
selection appropriateness is by contrast coding for the desired effect.

For example, in the previous section we determined the difference in curvilinearity of the
seniority effect on salary by interactions with the dummy-variable coded academic depart-
ments. However, as stated, our hypothesis had only to do with a difference in curvilinearity
between the psychology and history departments, with no prediction made for the sociology
department. For the dummy variable interaction we used four variables, the product of the two
dummy variables reflecting the comparison of the sociology and history departments, respec-
tively, with the linear and quadratic aspects of seniority (time since Ph.D.). However we might
instead have contrast coded for the term that was actually of interest (1 for psychology, — 1 for
history, 0 for sociology). In computing the interaction effect then we could have omitted two
of the interaction terms and thus increased our power to detect the remaining two, considered
as a set.16

As noted at many points in the book, such strategic considerations are the hallmark of
thoughtful research, and must be justified by the "principled argument" (Abelson, 1995) of the
investigator.

9.4 SUMMARY

The chapter begins with a summary of how the interactions among nominal scales reflect
differences between differences in cell means on Y. The 2 by 2 design is revisited, and cases
with no interaction, crossed interaction, and uncrossed interaction are illustrated to reveal the
meaning of a joint effect reflected in an interaction term. Alternative methods of coding nominal
scales are reviewed. It is noted that when scales are coded by methods that produce correlations
between main effects and interactions, it will generally be necessary to carry out hierarchical
analyses to test the effects of the interaction set (Section 9.1.1). Analysis of k by k designs
using different coding methods for the nominal scales is discussed (Section 9.1.2). Such an
analysis begins by testing unequal n experimental studies using ANOVA-equivalent methods.
Other research designs may employ variations of hierarchical MRC analyses to determine
overall group effects and interactions. An illustrative example is presented.

In Section 9.2 interactions involving more than two nominal scales are discussed and illus-
trated with a 3 by 2 by 2 example. Subsections also discuss the possibilities of omitting some
interaction terms and of having some overlap in the categories of one or more nominal scales.
The utility of the various coefficients resulting from a regression analysis including interactions
among nominal scales is reviewed (Section 9.2.4). Finally, a summary of strategic issues and
recommendations for interactions among nominal scales is offered (Section 9.2.5).

Section 9.3 considers the interaction between continuous and nominal scales. After a
reminder on the general utility of centering the continuous variable, an example is carried
through the following section illustrating the consequences of coding with dummy variables,

16As it turned out, the significant difference was found with the sociology department, or with the combined
sociology and history departments, rather than with the history department. If only the latter had been tested, this
"finding" would not have emerged.
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effects codes, and contrast codes. It is emphasized that the selection of the coding method
should be closely linked to the investigator's hypotheses, and that the coefficients and sig-
nificance tests of the individual variables are not at all equivalent across coding schemes.
However, as is necessarily the case with alternative coding methods for nominal scale main
effects (Chapter 8), all methods produce in aggregate the same contributions to R2 of both main
effects and interactions when analyzed hierarchically (Sections 9.3.2 to 9.3.4). Section 9.3.5
describes and illustrates an easy method of obtaining simple slopes, that is, the increase in
Y per unit of the continuous variable, for the individual categories in a nominal scale. It also
reviews a method for determining whether the Y means of subgroups are significantly different
at a point on the continuous variable other than its mean.

Section 9.3.6 reviews the considerations that should operate when planning an analysis of
the difference in curvilinearity of effect of a continuous variable for subgroups on a nominal
scale. An illustration of such an analysis is provided. Finally, Section 9.3.7 discusses the
interactions of a scaled variable with two or more nominal scales and reviews the considerations
in determining whether and which such interactions should be included, and how codes should
be selected when not all interaction terms are represented.



10
Outliers and Multicollinearity
Diagnosing and Solving
Regression Problems II

10.1 INTRODUCTION

In Chapters 2, 3, and 5 through 9 we focused on presenting multiple regression/correlation
analysis as a general data analytic system. We have illuminated the flexibility and power of
this analytical tool to answer a wide variety of research questions of interest to behavioral
scientists. Our presentation has progressed from simple to complex models, from linear to
nonlinear and interactive relationships, and from quantitative to qualitative to combinations
of quantitative and qualitative IVs. The sole exception to this progression was in Chapter 4.
There we considered problems that arise from the violation of the assumptions underlying
multiple regression analysis. We considered graphical and statistical methods of detecting such
violations and methods of solving these problems when they are detected. These procedures
help researchers gain a fuller understanding of their data so that they do not report misleading
results. The present chapter continues this theme, considering two problems in regression
analysis that were not considered in Chapter 4.

First is the problem of outliers—one or more atypical data points that do not fit with
the rest of the data. Outliers may represent data that are contaminated in some way (e.g., a
recording error; an error in the experimental procedure). Or, they may represent an accurate
observation of a rare case (e.g., a 12-year-old college student). Whatever the source of the
outliers, they can in some cases have a profound impact on the estimates of the regression
coefficients and their standard errors, as well as on the estimate of the overall prediction, R2.
We present graphical and statistical methods of detecting outliers and remedial approaches
that may be taken when outliers are discovered. These methods become particularly important
as the number of variables in the data set increases. They help researchers avoid reporting
misleading results when outliers are present in the data.

Second is the problem ofmulticollinearity. This problem occurs in data sets in which one (or
more) of the IVs is highly correlated with the other IVs in the regression equation. The estimate
of the regression coefficient Bf for this correlated predictor will be very unreliable because little
unique information is available from which to estimate its value—the regression coefficient
will have a very large standard error. Although the estimate of the value of the regression
coefficient Bt will on average be equal to the value in the population, its confidence interval
will be so large as to make the estimate of little or no value. The regression coefficient will also

390
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often become more difficult to interpret. We present methods of detecting multicollinearity
and methods for addressing this problem when i( does occur.

10.2 OUTLIERS: INTRODUCTION AND ILLUSTRATION

We turn first to the problem of outliers, one or more atypical data points that do not fit with the
rest of the data. We begin with the presumption that the data being analyzed have been carefully
entered. Ideally, the full data set has been entered a second \time using a data entry program
that cross checks the two sets of entries and identifies errors. Checks have been performed for
out of range values (e.g., a score of 8 on a 1 to 5 scale) and logical inconsistencies (e.g., a
person who reports no lifetime alcohol consumption who also reports he consumed five drinks
during the past week). Yet, even under conditions in which the data set has been thoroughly
cleaned and checked, errors, unusual cases, or both may be present. For example, Cleveland
(1993) presents evidence indicating that there were serious undetected errors even in a classic
data set that had been repeatedly analyzed (Immer, Hayes, & Powers, 1934; presented as
an illustrative example, for example, by R. A. Fisher in his classic Design of Experiments,
1971). Hoaglin and Velleman (1995) present a case study showing that analytic teams that
did not perform adequate checks for outliers overlooked errors in a large data set, produced
incorrect regression results, and reached seriously flawed conclusions. On a more successful
note, climatologists checking for outliers discovered an anomalous observation of too low a
reading for ozone levels in the upper atmosphere over Antarctica. Further study of this outlier
led to the discovery of the Antarctic ozone hole, which has raised world concerns about loss

TABLE 10.2.1
Years Since Ph.D. and Number of Publications: Data

CH10EX01

A. Original data set

Case

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

X
Years

since Ph.D.

3
6
3
8
9
6

16
10
2
5
5
6
7

11
18

Y
Number of

publications

18
3
2

17
11
6

38
48
9

22
30
21
10
27
37

B. Data set containing outlier for case 6

X
Years

since Ph.D.

3
6
3
8
9

60
16
10
2
5
5
6
7

11
18

Y
Number of

publications

18
3
2

17
11
6

38
48
9

22
30
21
10
27
37

Note: The data in A are from Table 2.2.2. The data in B are identical to those in A except that the
observation on X for case 6 has been replaced by an outlier. The outlier in B is highlighted in boldface
type.

Data
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Note: Years since Ph.D. is shown on the abscissa (x axis). Number of publications is shown on the ordinate (y axis).
Case 6 is denoted by a • in each plot. The best fitting linear regression line is superimposed in each plot. The results
of the regression analysis are presented below each part.

FIGURE 10.2.1 Plot of years since Ph.D. vs. number of publications.

of ozone in the upper atmosphere.
To provide a basis for consideration of outliers, let us reconsider the faculty salary example

originally presented in Chapter 2. Suppose we had found an observation that indicated that
a faculty member received his Ph.D. 60 years ago! This observation may represent an error
in the data (e.g., a transcription error in which 6 is mistakenly recorded as 60). Alternatively,
such a data point might represent an accurate observation of a rare case—a faculty member
in his 80s who is still holding a full-time position.1 When outliers are present, regression
analyses may produce results that strongly reflect a small number of atypical cases rather than
the general relationship observed in the rest of the data. Even one outlier in a data set can
produce a dramatic result (e.g., an interaction that disappears when the outlier is removed).
Thus, a researcher may report exciting and unexpected "new results" only to discover later
that they cannot be replicated because they were produced by an outlier. On the other hand,
important predicted results may not be detected because they are masked by outliers. If the
outliers are detected and appropriate remedial actions are taken, then the important predicted
effect will emerge. The impact of outliers will typically decrease as sample size increases.
However, under conditions in which there is substantial multicollmearity or the regression
equation contains interactions or power polynomials, outliers may have dramatic effects even
in moderate or large samples.

JIn 2000, at least one major university had an active professor who was still teaching full time at the age of 100.

Estimate SE t p

B0

BI

MS

4.73
1.98

residual

R2 =

5.59 0.85 ns
0.63 3.14 <.01

117.04
.43.

Estimate SE t

B0

Bl

MSresidual
R2

20.61 4.78 4.31
-0.06 0.27 -0.22

= 204.97
= .004.

P

<.001
ns
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MSresidual = 116.60.
R2 = .43.

Note: Years since Ph.D. is shown on the abscissa (x axis). Number of
publications is shown on the ordinate (y axis). Case 6 is deleted. The best
fitting linear regression line is superimposed. The results of the regression
analysis are presented for each part.

FIGURE 10.2.1 Continued.

Table 10.2.1 A reproduces the original 15 cases of the faculty salary data set originally
presented in Chapter 2. Corresponding to these data is Fig. 10.2.1 (A), which depicts the
regression line and the results of the regression analyses based on these 15 cases. The regression
estimate is Y = 1.9SX + 4.73, where Y is the predicted number of publications and X is years
since Ph.D. For simplicity in our initial presentation, we will presume that the original data set
is correct and study what happens to the results of our regression analysis if one data point is
replaced by an outlier.

Let us start with the case just presented. The original case with X = 6 is replaced by a single
outlying case with X = 60 years. Table 10.2. IB illustrates this situation. All of the entries in
the right panel are identical except that for subject 6, the number of years since the Ph.D. is
60 instead of 6 (in boldface type). How would this affect our results? Figure 10.2.1(B) shows
the regression line and the results of the regression analysis based on this altered data set. The
results change dramatically: The relationship between years and publications has disappeared,
the R2 dropping from .43 in the original data set to .00 in the data set containing the single
outlier. For comparison purposes, Fig. 10.2.1(C) shows the results of another analysis, which
we consider in Section 10.3. In this third analysis, outlying case 6 is dropped from the data
set and the regression analysis is recomputed. The results are similar but not identical to
the analysis presented in Fig. 10.2.1 (A) with the original data. As this example dramatically
illustrates, a single outlier can potentially have a major impact on the results of a regression
analysis, especially with a small sample.

BQ

B,

Estimate

6.00
1.92

SE

5.71
0.63

t

1.05
3.03

P

ns
.01
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10.3 DETECTING OUTLIERS: REGRESSION DIAGNOSTICS

In the example presented in Fig. 10.2.1(B), the outlier (case 6) was easy to detect. The errant
data point was far from the rest and could be detected by visual inspection of the raw data or the
scatterplot of X (years) by Y (publications). Scatterplot matrices, presented in Section 4.2, can
also be very useful in identifying outliers when there is more than one independent variable. In
cases when there are more than one or two IVs, some outliers may be difficult to identify by such
visual inspection. We encourage analysts to supplement such visual inspection with the use of
specialized statistics known as regression diagnostics which can greatly aid in the detection
of outliers. Regression diagnostics are case statistics, meaning there will be one value of each
diagnostic statistic for each of the n cases in the data set. A sample of 150 cases will produce
150 values of each diagnostic statistic, one representing each case in the data set. Regression
diagnostic statistics are used to examine three characteristics of potentially errant data points.
The first is leverage: How unusual is the case in terms of its values on the IVs? The second
is the discrepancy (or distance2) between the predicted and observed values on the outcome
variable (Y). The third is influence, which reflects the amount that the regression coefficients
would change if the outlier were removed from the data set. Conceptually, influence represents
the product of leverage and discrepancy. Each of these characteristics should be examined, as
they identify different aspects of errant data points.

In this section, we present definitions and simple worked examples to convey a conceptual
understanding of the meaning of each major diagnostic statistic. We illustrate with the two data
sets introduced in Section 10.2: (1) The original 15-case data set from Chapter 2 and (2) the
same data set, in which 60 is used as the value for years since Ph.D. for case 6. The comparison
of the results for the two data sets highlights how relatively extreme values of the diagnostic
statistics may be obtained when there is an outlier in the data set, here case 6. For convenience
in our initial presentation, the value of the outlier in data set (2) was chosen to produce extreme
values on each of the measures of leverage, discrepancy, and influence. This need not be the
case: Outliers may produce high values on leverage, but not discrepancy—or high values on
discrepancy, but not leverage. We return to this issue and consider these possibilities at this
end of this section. Each of the diagnostic statistics provides somewhat different information
that is useful in identifying and understanding the effects of potentially errant points in the
data. Remedial actions that may be taken when outliers are detected follow in Section 10.4.

10.3.1 Extremity on the Independent Variables: Leverage

Leverage reflects only the case's standing on the set of IVs. For each case, leverage tells us
how far the observed values for the case are from the mean values on the set of IVs. When
there is only one IV, leverage can be determined as

2To avoid confusion, we use the term discrepancy to represent the difference between the observed and predicted
value of Y for specified values on each of the predictors. The term distance is associated with indices of leverage,
discrepancy, and influence in the regression diagnostics literature.

where hu is the leverage for case /, n is the number of cases, X{ is the score for case / on the
predictor variable, Mx is the mean of X, and E*2 is the sum over the n cases of the squared
deviations of Xt from the mean. If case / has a score at the value of Mx, then the second term
of equation 1 will be 0 and hu will have the minimum possible value of l/n. As case fs score
on X gets further and further from Mx, hu increases in size. The maximum value of hti is 1.0.
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The mean value of leverage for the n cases in the sample is Mh.. = (k + l)/n, where k is the
number of IVs.

To illustrate, let us return to the original 15 cases from Table 10.2.1 A. Consider first case 4,
with 8 years since Ph.D., a value very close to the mean of 7.67. The value of E*2 is 293.33.
Substituting into Eq. (10.3.1), we find

which is very close to the minimum value of l/n for hu, here 1/15 = .0667. In contrast,
consider case 15, with 18 years since Ph.D., the most extreme value of X in the original data
set. Substituting case 15's value of 18 into Eq. (10.3.1) yields

a considerably larger value. Not surprisingly, this value of leverage is larger than the mean
leverage value for our sample, Mh.. = (! + !)/15 = .13.

Figure 10.3.1 is an index plot that displays the values of leverage for each of the cases
in the original data set. Index plots provide a convenient method of displaying the value of
regression diagnostic statistics in small and moderate sized data sets by displaying the value of
the diagnostic statistic on the ordinate (vertical or y axis) and the case number on the abscissa
(horizontal or x axis). Index plots make it easy to identify those cases that have particularly
extreme values of the diagnostic statistic. Figure 10.3.1 (A) displays the leverage values for the
original data set in which X = 6 for case 6. Figure 10.3.1(B) displays the leverage values for
the data set that includes the outlier (X = 60 for case 6). The highest values of leverage for
each data set are highlighted (•) in the figure.

Note: The case number for each participant is shown on the abscissa (x axis). The value of leverage (A,-,-) is
shown on the ordinate (y axis). Cases with relatively high values of leverage are indicated by • in each panel. In
Fig. 10.3.1(A), which contains the original data, cases 7 (fy, = .30) and 15 (hti = .43) have somewhat higher
leverage values than the other points since their years since Ph.D. are the most extreme in the data set (case 7,
X = 16; case 15, X = 18). In Fig. 10.3.1(B), which contains the outlier, case 6 (X = 60; fy, = .90) has an
extremely high value for leverage that differs dramatically from the values for leverage of the other cases.

FIGURE 10.3.1 Index plot of leverage vs. case number.
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Cases further from the mean of the single IV have a greater potential to influence the results
of the regression equation. The leverage values identify these cases. Whether a particular case
actually influences the regression coefficients or R2 also depends on the discrepancy between
the observed and predicted values of Y for that case, F, — F(.

The basic idea of leverage generalizes directly to regression models in which there is
more than one IV. We are now interested in how far case i's score on each of the k inde-
pendent variables, X{l,Xi2,Xi3,... ,Xik, is from the centroid of the independent variables.
Recall that the centroid is the point corresponding to the mean of the independent variables,
M!, M2, A/3,... ,Mk. Conceptually, the sum of each case's squared deviations from the sam-
ple's means across the IVs is "adjusted" by the correlation between each pair of IVs. Because
the algebraic expressions become complex,3 statistical packages are used to compute the value
of hti for each case in the sample.

As an illustration, consider the two-predictor regression equation presented in Section 3.2.
Years since Ph.D. (X^) and number of publications (X2) are the independent variables, and
salary (F) is the dependent variable. The data for the 15 cases are presented in Chapter 3
in Table 3.2.1. Figure 10.3.2 presents a scatterplot of the two independent variables. In this
scatterplot the centroid of the X\X2 space, MX} = 7.67, MX2 — 19.93, is indicated by the
symbol x. We have identified four of the cases in the scatterplot by case number. Note that
case 4 (Xv = 8,X2 = 17,fy( = .08) and case 12 (X, = 6,X2 - 21,hu = .09) are located
close to the centroid and have values of hu that are only slightly higher than the minimum
leverage value l/n = .07. In contrast, case 8 (X{ = 10, X2 — 48, hu = .45) and case 15
(Xl = 18, X2 — 37, hu = .44) are located at a greater distance from the centroid as is indicated
by the substantially higher leverage values. The standard statistical packages include options
that compute hit for all cases in the data set. Note that leverage is based only on the IVs in the
regression model. Changing only the DV in a regression equation will not affect the leverage
values.

Centered Leverage Values

Caution must be employed in interpreting leverage values because some statistical packages4

calculate a centered index of leverage which we will term h*r The centered index h*u may be
expressed in terms of the unstandardized index, hit, as

3 For readers familiar with matrix algebra, a simple matrix algebra expression is available to calculate leverage.
The hat matrix is defined as H = X(X'X)~1X'. H is an n x n matrix and X is the n x (k + 1) augmented matrix of
the predictor scores. This matrix has a 1 in the first column of the matrix for each case. The next k columns of the
matrix contain each case's (participant's) scores on the k IVs (see Appendix 1 for an overview of matrix algebra). The
main diagonal of H contains the leverage values. Thus, the leverage for case i, hit, is the value for the «th row and ith
column of H. It is this diagonal value that gives the leverage its identification as hti.

4SAS and SYSTAT programs report hit whereas SPSS reports the corresponding centered value ih*t. hu is labeled in
SAS output as "Hat Diag H" and SYSTAT output as "leverage." AJ is labeled in SPSS output as "lever." Conceptually,
hif has a value of l/n for a case at the centroid of the IVs because the case can still potentially affect the value of the
intercept. h*f excludes consideration of the cases potential effect on the intercept as would occur if both the IVs and
DV were centered.

The minimum possible value of h*f is 0, and the maximum value is 1 — l/n. To illustrate, we
calculated that hu = .43 for case 15 in Table 10.2.1 A, so ht = .43 - 1/15 = .43 - .07 = .36.
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Note: Data set is from Table 3.2.1. Values of years
since Ph.D. (Xj) are shown on the abscissa. Values
of number of publications (X2) are shown on the
ordinate. The open and filled in circles depict the
valuesofX] andX2 forthe 15cases, x isthecentroid
(MX{ = 7.67; MYl = 19.93) of the X^X2 space. The
four filled circles (with their case numbers) are the
four cases presented in the text.

FIGURE 10.3.2 Scatterplot of time since Ph.D. vs. number of publications.

Guidelines for Identifying Cases With High Leverage Values
Two general approaches have been suggested for identifying cases with high leverage. The

first approach is to plot the distribution of the hu values and to identify a very small number
of cases with leverage values that are substantially higher than those of the other cases. Index
plots are typically used in small or moderate sized samples; histograms with a large number
of bins or stem and leaf displays are often used in large samples. Figure 10.3.1(B) presents an
index plot of leverage by case number for the data set with the outlying case 6 (X = 60). The
leverage of case 6 sharply stands out from the other cases.

The second approach is to examine leverage values that fall above rough rule of thumb
cutoff values. Different authors have proposed different rule of thumb cutoff values. So that
the cutoff values we present are consistent across the various regression diagnostic measures,
we will present the guidelines of Belsley, Kuh, and Welsch (1980) that identify approximately
the most extreme 5% of the cases when all of the predictors are normally distributed. For
leverage, they proposed that values of hti greater than 2Mh = 2(k + l)/n be considered to have
high leverage when both the number of predictors and the number of cases are large. For small
samples, a more stringent cutoff of about 3Mh = 3(k + l)/n is sometimes recommended to
avoid identifying too many points for examination. In the present small sample (n = 15) case,
values greater than (3)(. 13) = .39 might be selected for possible examination. For the centered
measure of leverage, h*it the cutoffs will be lower. Since h*t = hfi — (l/ri), the corresponding
cutoffs for the centered measure h*t will be 2k/n in large samples and 3k/n in small samples.

Belsley, Kuh, and Welsch's guidelines identify a minimum threshold at which it may be
worthwhile to identify cases for examination. In large samples, the use of the Belsley, Kuh, and
Welsch guidelines will nearly always identify far too many cases. In practice, we encourage
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analysts to identify for examination only a very small number of cases that have the highest
leverage values. In particular, those cases for which there is a large gap in the value of leverage
from the remainder (i.e., unusual values) should be carefully checked for accuracy. When no
cases exceed Belsley, Kuh, and Welsch's rule of thumb cutoffs, special checking of cases with
relatively high leverage values is not indicated.5 Chatterjee and Hadi (1988, Chapter 4) present
a full discussion of possible cutoff values for leverage.

Mahalanobis Distance
A measure that is closely related to leverage is reported by some statistical packages (e.g.,

SPSS). This measure, known as Mahalanobis distance, is a measure of the distance between
the specific case's values on the predictor variables and the centroid of the TVs. Weisberg
(1985) points out that Mahalanobis distance can be expressed as (n — l)/i(*. Thus, Mahalanobis
distance provides the same information as leverage, but will have different rule of thumb cutoffs.
J. P. Stevens (1984) presents more information on Mahalanobis distance and conventional cutoff
scores for the interpretation of this measure.

10.3.2 Extremity on Y: Discrepancy

A second set of statistics measures the discrepancy or distance between the predicted
and observed values on 7. In Chapters 2 and 3, we saw that the raw residual for case i,
e{ = YI — Yj, typically provides an excellent measure of this discrepancy. However, reconsider
the regression lines and the data presented in Fig. 10.2.1 (A) and (B). Figure 10.3.3(A) displays
the raw residuals for the original data and Fig. 10.3.3(B) displays the residuals from the data
containing the outlier. As can be seen, the discrepancy between case 6 (marked by •) and the
regression line in Fig. 10.3.3(B) is smaller than the discrepancy for several of the other cases.
In essence, the outlying point has pulled the regression line toward it to improve the overall
fit. Other diagnostic statistics are needed that are less influenced by this problem. Two are
commonly calculated by statistical packages, internally studentized residuals and externally
studentized residuals. Externally studentized residuals will nearly always be the preferred
measure of discrepancy.

Internally Studentized Residuals
Internally studentized residuals address one of two problems associated with raw residuals.

As a case's scores on the predictor get further from the centroid, the estimate of the value of
the residual for that case gets more precise (Behnken & Draper, 1972). The expected variance
of the residual for case / can be expressed as:

5 Whenever humans transcribe and key data into the computer, errors leading to incorrect values should be presumed
to occur in a small proportion of the cases. As noted in Section 10.2, a variety of checks on the accuracy should always
be performed on the data prior to any analysis. Examination of leverage values provides an important additional check
because other procedures do not identify multivariate outliers.
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Note: Values of the raw residuals are presented on the ordinate. Case number is presented on the abscissa. The
horizontal line in each panel represents a value of 0 for the raw residual. The highlighted point (•) is case 6. Note
that the magnitude of this residual is not particularly large in either part because the outlying point in (B) pulls
the regression line toward itself. In contrast, case 15 (years since Ph.D. = 18; number of publications = 37) is
marked by x in each panel. In (A), this case has a small negative residual (—3.42). In (B), the regression line
has been pulled away from this point by the outlier, so the residual is now positive and much larger in magnitude
(+17.47).

FIGURE 10.3.3 Index plot of residuals vs. case number.

Recall from Section 3.6 that MSresidua] is the estimate of overall variance of the residuals around
the regression line = (1 — /?2)(£;y2)/(n — k — 1). hu is the leverage of case /. The standard
deviation of the residual for case i is then

s

The internally studentized residual takes the precision of the estimate of the residual into
account. The internally studentized residual is the ratio of the size of the residual for case i to
the standard deviation of the residual for case i,

The magnitude of the internally studentized residual ranges between 0 and V« — k — I
(Gray and Woodall, 1994). Unfortunately, internally studentized residuals do not follow a stan-
dard statistical distribution (the numerator and denominator in Eq. 10.3.3 are not independent),
so they can not be interpreted using normal curve or t tables.

Externally Studentized Residuals
Externally studentized residuals directly address a second issue associated with outliers.

Recall that the outlier can pull the regression line toward itself as we saw in Fig. 10.2.1(B).
Externally studentized residuals address this issue by considering what would happen if the
outlying case were deleted from the data set.
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In Fig. 10.2.1(B) we saw that case 6 was an outlier. Suppose that we deleted case 6 from
the data set and recalculated the regression equation based only on the other n — 1 = 14
cases. The results of this analysis are presented in Fig. 10.2.1(C). With case 6 deleted, the
new regression equation is Y^ = 1.92X, + 6.00. The notation Y^ indicates that we are
calculating the predicted value for case i, but with case i deleted from the data set. The outlier
contributes substantially to the estimate of the variance of the residuals around the regression
line, MSresidua]. MSresidual(() for the new regression equation with case 6 deleted is 116.6, whereas
MSresidual for the full 15 cases (including the outlier, case 6) is 204.0.

Using the new regression equation with case 6 deleted, we calculate the predicted value for
case 6 based on this new regression equation with case 6 deleted: Y^ = 1.92(60) + 6.00 ==
121.05. We define the deleted residual dt as the difference between the original Y observation
for case i and the predicted value for case i based on the data set with case i deleted:

In our present example, d( = 6—121.05 = —115.05. For purposes of comparison, we
calculated the raw residual based on all 15 cases in the data set, e{ = Y{ — Yl• = 6 — 17.00 =
— 11.00. The greater magnitude of the deleted residual than of the raw residual helps highlight
case 6 as an outlier. Case 6 can no longer hide itself by drawing the regression line toward
itself.

The externally studentized residual draws on this idea of deletion of case i to remove its
influence. The externally studentized residual for case i, th is calculated as follows:

Paralleling the general form of Eq. (10.3.3) for the internally studentized residual, the numerator
is now the deleted residual for case i, and the denominator is the standard error of the deleted
residual for case i. Most sources attempt to simplify Eq. (10.3.4). The deleted residual d{ can
also be computed from the raw residual et:

If these values are substituted into Eq. (10.3.4) and the resulting expression is simplified, the
internally studentized residual tt can be expressed in terms of the following equation:

Here, e( is the raw residual, MSresidual(/) is the mean square residual with case i deleted from
the data, and hu is the leverage for case i. When years has a value of 60 for case 6:

Standard statistical packages will compute the externally studentized residual for all cases
in the data set. In Fig. 10.3.4, we present index plots of the externally studentized residuals.

The standard error of the deleted residual for case i can also be expressed as



10.3 DETECTING OUTLIERS: REGRESSION DIAGNOSTICS 401

Note: Case numbers are shown on the abscissa. Values of the externally studentized residual (f,) are shown on
the ordinate. The horizontal line represents a value of 0 for tf. In (A), the value of f, for case 8 is larger in magnitude
(2.80) than any of the other points. In (B) the value of f, for case 6, the outlier, is larger in magnitude (—3.29) than
any of the other points. The case with largest magnitude of /, is identified with the symbol • in each panel.

FIGURE 10.3.4 Index plot of externally studentized residuals (r,) vs. case number.

In Fig. 10.3.4(A) we present the plot of tf for the original 15 cases in which X = 6 for case 6;
in Fig. 10.3.4(B) we present the plot of f, for the 15 cases including the outlier—case 6 has a
value of X = 60. In Fig. 10.3.4(B), the magnitude of r( for case 6 (denoted by ., tt = -3.29)
is the most extreme value for the cases in the data set.

Guidelines for Identifying Cases with High Discrepancy Values
The externally studentized residual is the preferred statistic to use to identify cases whose

Y values are highly discrepant from their predicted values. As with hif, one good strategy is to
use an index plot like that in Fig. 10.3.4 to identify a very small number of cases that have the
most extreme values of ti in the data set for examination. Outliers for which there are large
gaps in the value of f, (ignoring sign) from the remainder of the cases merit particular attention.

Alternatively, recommendations have been made for cutoff values for tt. If the regression
model fits the data, the externally studentized residuals will follow a t distribution with df =
n — k — 1. About 5% of the cases are expected to be greater than about 2.0 in magnitude
for moderate to large sample sizes. Therefore some authors recommend that a value of ±2.0
should be chosen as a cutoff for selecting cases to examine. However, once again the use of this
cutoff can result in far too many cases that would need to be examined in large samples, even
if there are no real outliers in the data. For example, if n = 1000, about 50 cases (5%) would
be selected, a very large number for individual attention. Consequently, many data analysts
use a higher cutoff score (e.g., ±3.0, ±3.5, ±4.0) in larger samples. Once again, both large
positive and large negative values of externally studentized residuals indicate a point that is
discrepant from the rest.

Beckman and Cook (1983) have suggested a procedure for testing the significance of the
largest studentized residual. They propose that the Bonferroni procedure be used to adjust
the level of a based on the number of cases in the sample (i.e., the number of cases that can
potentially be tested). The value chosen should be a/n. For example, in the present sample of
15 cases with a = .05, two tailed, a/n = .05/15 = .0033. For df = n - k - 1 = 13, the
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critical two tailed value of t for a = .0033 can be found using extensive statistical tables or
computed using standard statistical packages. Here, the exact critical value of 3.23 is less than
the magnitude of the t{ — -3.29 for the largest outlier, case 6, so we would conclude that the
observed Y value for case 6 showed a statistically significant discrepancy from its predicted
value. Note that the case with the highest discrepancy in the original data set is case 8 (see
Fig. 10.3.4A). Its value of t{ = 2.80 does not exceed the Bonferroni adjusted critical value of
3.23.

A note on terminology. Our terminology for the internally studentized and exter-
nally studentized residuals follows that of Cook and Weisberg (1982). However, considerable
confusion is created in this area because authors have failed to use consistent terminology
in referring to these statistics. The internally studentized residual has been given terms such
as the standardized residual and studentized residual; the externally studentized residual has
been given terms such as the studentized residual and the studentized deleted residual. The
internally studentized residual is labeled "SRESID" in SPSS and "Student Residual" in SAS.
The externally studentized residual is labeled "SDRESID" in SPSS, "RStudent" in SAS, and
"Student" in S YSTAT output. When consulting other sources or referring to the output of other
computer programs, researchers should take care to be sure they understand which statistic is
being reported.

10.3.3 Influence on the Regression Estimates

Measures of influence combine information from measures of leverage and discrepancy to
inform us about how the regression equation would change if case i were removed from
the data set. Two types of measures of influence are commonly considered. First, global
measures of influence (DFFITS, Cook's D) provide information about how case i affects overall
characteristics of the regression equation. Second, specific measures of influence (DFBETAS)
provide information about how case i affects each individual B. Generally, both global and
specific measures of influence should be examined.

Global Measures of Influence
Standard statistical packages report one or both of two global measures of influence,

DFFITSf (Belsley, Kuh, and Welsch, 1980) or Cook's D, (Cook, 1977). Like the externally
studentized residual, both are deletion statistics that compare aspects of the regression equa-
tions when case i is included versus is not included in the data set. The two global measures
of influence are very closely related; analysts may use the measure they prefer as the two
measures provide redundant information.

OFF ITS i. The first global measure of influence is DFFITS',-, which is defined as

where 7t(0 is the predicted value of Y if case i were deleted from the data set. The numerator of
Eq. (10.3.6), sometimes termed DFFIT, tells us how much the predicted value for case i would
change in the raw score units of Y if case i were deleted from the data set. The denominator
serves to standardize this value so that DFFITSj estimates the number of standard deviations
by which Y{, the predicted value for case i, would change if case i were deleted from the data
set. DFFITS stands for "difference in fit, standardized."

To illustrate conceptually how DFFITSi is calculated, consider once again the data set with
the outlier presented in Table 10.2.1B. As shown in Fig. 10.2.1(B), the regression equation
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with all 15 cases (including case 6) included is Yj = — 0.06X, + 20.61. For case 6, the predicted
value is Yt = -(0.06)(60) + 20.61 = 17.00. As we saw in Section 10.2.2, when case 6 is
dropped from the data set and the regression equation is computed based on the remaining
14 cases, the new regression equation is Y^ = 1.92X + 6.00, so Y^ = 121.05. Thus,
the change in the predicted value of Y that results from deleting case i from the data set is
Yj — Yi(i) = —104.05—an enormous difference in the predicted number of publications for
this faculty member! Recall from Section 10.3.2 that with case 6 deleted MSresidual(() = 116.60
and from Fig. 10.3.1(B) that hti for case 6 is .90. Substituting into Eq. (10.3.7), we find that
for case 6,

The first term in this equation is tit the externally studentized residual for case i. The second
term is a function of the leverage for case i, hti. As values of tt and hit both increase in magnitude,
the magnitude of DFFITSj will also increase indicating the case has a larger influence on the
results of the regression analysis. DFFITSj has its minimum magnitude of 0 when the deletion
of case i has no effect on the predicted value of Y, Yt. DFFITSj = 0 when case / falls exactly
on the regression line so that 7, will not change when case i is deleted. Cases at the centroid

Note: Values of DFFITSj are presented on the ordinate. Case number is presented on the abscissa. The
highlighted point in (B) corresponds to case 6, the outlier. The horizontal line in each panel represents a value
ofOforDFF/TS,.

FIGURE 10.3.5 Index plot of DFF/T5, vs. case number.

a change of over 10 standard deviations. In Fig. 10.3.5, we present an index plot of the values
of DFFITSj for (a) the original data set and (b) the data set containing the outlying value for
case 6. As can be seen, in Fig. 10.3.5(B), in which case 6 is an outlier, the value of DFFITSj
for this case differs greatly from the values for the other cases.

Earlier we noted that measures of influence can be thought of as reflecting the product of
leverage and discrepancy. Another expression for DFFITSj that is algebraically equivalent to
Eq. (10.3.6) clearly shows this relationship:
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of the sample can still have some influence6 because the minimum value of hu is l/n. The
sign ofDFFITSi will be positive when F, > Y^ and negative when F( < Y^. Most standard
statistical packages will compute DFFITSi for all cases in the data set.

Cook's DJ . An alternative measure of the global influence of case i on the results of the
regression equation known as Cook's D, is also reported by statistical packages. Cook's Df can
be expressed as

Thus, Cook's D{ compares the predicted value of Y with case i included and deleted for all
cases in the data set. These differences are squared and then summed. The denominator serves
to standardize the value. Cook's D, ranges upward from its potential minimum value of 0
with higher numbers indicating the case has a larger influence on the results of the regression
analysis. Unlike DFFITSi, Cook's Di will always be >0; it cannot be negative.

DFFITSj and Cook's Z), are closely related measures. Cook and Weisberg (1982) have
shown that Cook's Z), and DFFITSi have the following mathematical relationship

6 When cases fall at the centroid, they can still affect the regression intercept.

Since the values of MSresidual(j) and MSresidual will be very similar except in those small data
sets in which case i has an extreme discrepancy relative to the other cases, this relationship
can typically be approximated as

Guidelines for identifying Cases with High Global Influence
DFFITSi and Cook's Df can be viewed as interchangeable statistics. Either measure can be

used to provide information about the global influence of case i. Once again, one good strategy
in small to moderate sized samples is to use an index plot—either DFFITSi or Cook's Z), is
plotted against case number. The analyst identifies a very small number of cases that have the
most extreme values as being potentially influential. Those cases that have large gaps in the
value ofDFFITSi or Cook's D{ relative to other cases deserve particular scrutiny.

Alternatively, rule of thumb cutoffs may be used. For DFFITSi a conventional cutoff is that
cases with magnitudes (ignoring sign) of DFFITSi > 1 in small or medium sized data sets or
>2^/(k + l)/n in large data sets be flagged as potentially influential observations. For Cook's
Dt a value of 1.0 or the critical value of the F distribution at a = .50 with df = (k+l,n—k— 1)
is used. For example, in the present case with 1IV, if Cook's D, exceeded F(2,13) = 0.73, the
50th percentile of the F distribution, the case would be flagged as influential. We will provide
further discussion of guidelines following the next section.

A Measure of Influence on a Specific Regression Coefficient
DFBETASij is a second type of influence statistic that is very important when the researcher's

interest focuses on specific regression coefficients within the equation. Once again, it is a
deletion statistic that compares regression coefficients when case i is included versus not
included in the sample.
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To provide a simple illustration of when DFBETASy would provide a useful measure,
suppose a researcher is interested in the relationship between IQ and children's school per-
formance. This researcher might also include parent's income in the regression equation,
performance = B\lncome + B2IQ + B0. Here the researcher's interest is not in parents'
income per se, but to control for the effects of parents' income in understanding the relation-
ship between IQ and performance. DFBETASy provides information about the effect of case i
on the specific regression coefficient(s) of interest, here B2, that is, DFBETASi2.

DFBETASij for case i is defined for regression coefficient Bj as follows:

7The standard error does not have a simple algebraic expression, when there is more than one IV. The matrix

formula is SEB = JMSresidualm(X'X)j71. For #., the term in thej'th row andjth column (on the diagonal) of the
j\t) V ' JJ •*

inverse of the (X'X) matrix is used as the value of (X'XV^1.

We see in this equation that the numerator is the difference between the Bj calculated with
all cases in the data set and the B^ calculated after case i is deleted. The denominator is the
SE ofBjfl, calculated after case i is deleted. The calculation of the standard error is complex
when there is more than one predictor,7 but this calculation is performed by standard statistical
packages. The division serves to standardize DFBETASy, facilitating a common interpretation
of the influence of case i across each of the regression coefficients. Each case will have
(k +1) DFBETASij associated with it, one corresponding to each of the regression coefficients
in the equation including the intercept.

To illustrate the interpretation of DFBETASy, consider once again the data set containing
the outlier presented in Table 10.2.IB. For case 6, which is the outlier, DFBETAStj = 4.05 for
the intercept J50, and DFBETAS^ = -9.75 for the slope B^ The sign ofDFBETAStj indicates
whether the inclusion of case i leads to an increase or decrease in the corresponding regression
coefficient. For case 6, we see that its inclusion leads to an increase in B0, but a decrease in
BI . The magnitude of DFBETASij describes the magnitude of the change with higher values
indicating greater change. Figure 10.3.6(A) and (B) provide an index plot of DFBETASij for
the intercept, B0. Figure 10.3.6(A) displays these values based on the original data for case 6
(X = 6); Fig. 10.3.6(B) displays the values for the data including the outlier for case 6 (X = 60).
Figure 10.3.6(C) and (D) present index plots of DFBETASy for the slope. Figure 10.3.6(C)
displays the values based on the original data; Fig. 10.3.6(D) displays the values for the data
including the outlier for case 6. Case 6 is highlighted in each panel. As can be seen, no extreme
values of DFBETASij are observed for the original data in either Fig. 10.3.6(A) for the intercept
or Fig. 10.3.6(C) for the slope. In contrast, in Fig. 10.3.6(B) and Fig. 10.3.6(D) case 6 is far
from the values of the other cases for both the intercept and the slope.

Guidelines for Identifying Cases With High Influence
on Specific Regression Coefficients
For small to moderate sized samples, it is useful to construct a separate index plot for each

regression coefficient of DFBETASij against the case number. Any cases that have large values
of DFBETASij relative to the remaining cases have high influence on the regression coefficient
Bj. Only those few cases with the most extreme values are studied. Histograms with a large
number of bins or stem and leaf displays can be used with large samples.

For researchers who prefer rule of thumb guidelines, cases having DFBETAS^ > ±1 for
small or moderate sized data sets or DFBETASij > ±2/^/n for large data sets are considered
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Note: In each panel, values of DFBETASjj are presented on the ordinate. Case numbers are presented on the
abscissa. The values of DFBETASjj presented in Figs. 10.3.6(A) and (B) are for the intercept, fi0. The values
of DFBETASjj presented in Figs. 10.3.6(C) and (D) are for the slope, B{. The highlighted points correspond to
case 6, the outlier. The horizontal line represents a value of 0 for DFBETASjj in each panel.

FIGURE 10.3.6 (A), (B): Index plot of DFBETASy vs. case number: intercept.
(C), (D): Index plot of DFBETASjj vs. case number: slope.

to be influential. In the present illustration involving a small sample (n — 15), the value of
DFBETASfj for the intercept B0 and the slope Bl both far exceed the rule of thumb cutoff of 1
for our outlying case 6.

10.3.4 Location of Outlying Points and Diagnostic Statistics

In the example using case 6 (with X = 60) and the outlying point that we have used throughout
this section, the measures of leverage, discrepancy, and influence for case 6 were all extreme
in value. However, leverage and discrepancy measure two distinct properties of outliers; they
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FIGURE 10.3.7 Effect of adding a single data point at various locations.

are not necessarily related. Recall also that influence can be conceptually thought of as the
product of leverage and discrepancy (see Eq. 10.3.7). Cases with high values of influence will
typically have at least moderately high values of both leverage and discrepancy.

To illustrate these ideas, we will use the 14 cases presented in Fig. 10.2.1(C). These are
the 14 cases included in the original data set with case 6 deleted. In Fig. 10.3.7 we try adding
different values of a single case to this data set and observe what happens to the regression
equation and the diagnostic statistics. For the 14 original cases, the regression equation is
Y = 1.92X + 6.00, R2 = A3, Mx = 7.79, MY = 20.93.

Figure W.3.7(A)
In Fig. 10.3.7(A), the new point has been added at the mean of X and mean of Y (case

6, X = 7.79,7 = 20.93). The new regression equation is identical to the original regression
equation based on the 14 cases. For the new case (case 6) in the regression equation based on
15 cases, hti = 0.0667, which is equal to the minimum leverage value of 1/n; t{ (the externally
studentized residual, the measure of discrepancy) = 0; and Cook's D, (the measure of overall
influence) = 0.

Figure 10.3.7(8)
Figure 10.3.7(B) adds the new point at an extreme value of X and the corresponding value of

Y that falls exactly on the original regression line. The point is added at X = 60, Y = 121.07.
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Note: Years since Ph.D. is shown on the abscissa. Number of publications is shown on the ordinate. The added case
(case 6) in each Part is denoted by x. The best fitting linear regression line is superimposed in each plot. The data
presented in Fig. 10.3.7(D) were previously displayed in Fig. 10.2.1(B). The results of the regression analysis and
diagnostic statistics are also presented for each panel.

FIGURE 10.3.7 Continued.

To calculate the value of Y, we substituted X = 60 into the original regression equation: Y =
1.92(60)+ 6.00 = 121.07. The new regression equation is Y = 1.92X + 6.00,/?2 = .88, Mx =
11.27, My = 27.61. Note that the new regression equation is identical to the original. The new
R2 has doubled—from .43 based on the original 14 cases to .88 in the new data set. This result
indicates how selecting cases with extreme values on X can potentially increase the R2 and
the power of significance tests of the regression coefficients.8 Extreme cases located on the
regression line stabilize the regression line and decrease the SEs of both the slope and intercept.
For the new case (case 6) in the regression equation based on 15 cases, hu = .90, tf = 0, and
DFFITSi = 0. Only the measure of leverage reflects this outlying case.

Figure 10.3.7(0)
Figure 10.3.7(C) illustrates what happens when the new point is added at an extreme value

of Y, but the value of X is at the mean (Mx = 7.79) of the original cases. For purposes of

8It may be useful to refer back to Section 2.11, where the discussion of the impact of the range of values on r is
discussed.
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comparison, we add the point at the same Y value (Y = 121.07) as in Fig. 10.3.7(B). As shown
in Fig. 10.3.7(C), the slope of the new BI is identical to that of the original data set, but BQ has
increased from 6.00 to 12.66. The addition of a point far from the original regression line leads
to a large decrease in R2—from .43 for the original sample of 14 cases to .09 with the case
added. For case 6 in this new regression equation based on 15 cases, hu = .0667, f, = 8.96, and
DFFITSi = 2.39. Leverage is at the minimum possible value, but the externally studentized
residual is very large, and the measure of global influence, DFFITSi, has a large value. To
understand the effect of case 6 on the global measure of influence, it is useful to consider the
measures of specific influence, the values ofDFBETASij for the slope and intercept. For case 6,
the value ofDFBETAStj for S0 is high, 1.18. In contrast, the value ofDFBETASy for B1 is 0.
These values of DFBETASy indicate that all of the change was in the intercept; the slope has
not changed.

Figure W.3.7(D)

Finally, Fig. 10.3.7(D) reprises the example used throughout this section—an outlier is
added that is extreme on both X and Y (X = 60; Y = 6). As we saw earlier, the regres-
sion equation changes dramatically from Y = 1.92X + 6.00 to Y = -0.06X + 20.61 with
the addition of the outlier, case 6. Case 6 has high leverage (hti = 0.90), high discrepancy
0, = -3.29), and high measures of both global (DFFITSi = -10.13) and specific influence
(DFBETASy = 4.05 for intercept; DFBETASy = -9.75 for slope).

10.3.5 Summary and Suggestions

In summary, each of the diagnostic statistics provides different information about the effect
of an outlier on the regression equation. Leverage (hu) informs us about how far the point is
from the centroid of the predictor space, and discrepancy (tt = externally studentized residual)
informs us about how far the point is from the regression line with case i deleted. The two
measures of global influence, DFFITSi an^ Cook's D,, provide interchangeable information
about the overall influence of the single case on the regression equation, whereas DFBETASy
informs us about how the single case i affects each regression coefficient. Each of these
sources of information is useful in studying the effects of outliers. Table 10.3.1 summarizes
the diagnostic statistics and provides rule of thumb cutoff values.

We present here some suggestions for looking at diagnostic statistics, deferring our
consideration of possible remedial actions until the next section.

1. When the data are initially received, it is very useful to examine histograms with a large
number of bins (or boxplots) of each variable to look for univariate outliers. Plots of leverage
values can help identify multivariate outliers in initial data screening. For example, calculating
leverage values for each participant based on the responses to each item of a 20-item scale can
help identify any participants with unusual response patterns that may be problematic. Recall
that leverage is based only on the IVs.9 These statistics can be useful as a final step in the initial
data checking and cleaning.

2. For any data analysis that may be reported, it is useful to examine diagnostic statistics.
The extent of scrutiny of these statistics depends on the nature of the study. If the study is one
of a series of replications, inspection of graphical displays for any obvious outliers is normally
sufficient. Consistency of the findings across replications provides assurance that the presence

9 Standard regression programs require that a regression equation be specified to calculate leverage. We recommend
that a regression analysis be specified that includes all IVs of potential interest and an arbitrary numeric variable that
is complete for all cases (e.g., case number) as the DV. Leverage is not affected by the DV that is chosen.
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TABLE 10.3.1
Summary of Regression Diagnostics for Individual Cases

Diagnostic
index

Leverage (/i,,)

Centered
leverage (/i*.)

Externally
studentized
residuals (f,-)

DFFITS

Cook's D

DFBETAS

Measures

Extremity on IVs

Extremity on IVs

Discrepancy of Y{

from regression line
excluding the case

Influence: change in
predicted Y if case
omitted from estimate

Influence measured as
aggregate change in
set of 5,sif case
omitted from estimate

Influence measured as
change in a specific
Bt if case omitted
from estimate

Proposed cutoff

2(fc +l)/n for large n
3(k+ l)/n for small n

2k/n for large n
3k/n for small n

±3.0 or ±4.0 for large n
±2.0 for small n

±2J^±± for large n
±1.0 for small n

1.0 or F distribution
value for a = .50

±2/v/n for large n
±1.0 for small n

Expected cases
identified

5%

5%

0.3%, 0.01%
5%

5%

5%

Note: Some proposed minimum cutoffs for diagnostic statistics. Only a few of the most extreme
cases that exceed minimum cutoffs merit examination.

of an outlier is not responsible for the results. On the other hand, if the data set is unique and
unlikely to be replicated (e.g., a study of 40 individuals with a rare medical disorder), very
careful scrutiny of the data is in order.

3. In large samples, visual inspection of index plots becomes difficult. Analysts may use
boxplots or histograms with a large number of bins to identify outlying values, and then identify
these cases in the data set. Alternatively, analysts may save the values of the diagnostic statistics,
order them from lowest to highest, and plot only the highest values (e.g., top 50) on an index
plot. Ideally, the most extreme values relative to the remainder should be apparent.

4. If the researchers' interest is in overall prediction or they have not made any prediction
about specific regression coefficients, we encourage examination of influence statistics focused
on DFFITS i or Cook's Z),. If the researchers have made a priori predictions about specific
regression coefficients, then we encourage examination of the associated DFBETAStj regardless
of whether the measure of global influence is extreme. If the researchers find an unpredicted new
result, we also encourage examination of the associated DFBETASy (and ideally replication
in a new sample10) prior to reporting the result. This helps assure that "exciting new results"
are indeed potentially exciting and not merely produced by an outlier. Note that measures
of influence are associated with a specific regression equation; the values of these diagnostic
statistics will change if the regression equation is modified.

10Maxwell (2000) provides a striking demonstration of the importance of replication in the interpretation of
unpredicted findings in multiple regression.
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5. In regression equations including power polynomial (e.g., X2) or interaction (e.g., XZ)
terms, outlying points can have profound effects on measures of both global and specific
influence even in moderate and large samples. For example, Pillow, West, and Reich (1991)
found that a single extreme outlier in a sample of over 300 cases produced an inexplicable
three-way interaction and that the originally predicted results were obtained when this case
was deleted. Even though a case may be only moderately extreme on X and on Z separately, the
product of these values may yield an extreme point that has a substantial influence on the results
of the regression analysis. Such outliers can create spurious effects or mask a priori predicted
effects. Very careful screening for outliers is encouraged in such regression equations.

6. Cases that do not have high values of influence but that are extreme in terms of the
externally standardized residual do not greatly alter the estimates of the regression coefficients
(except for fi0). Nonetheless, they do affect the standard errors and hence the power of the
statistical tests. Measures of discrepancy are associated with a specific regression equation;
these diagnostic statistics will change if the regression equation is modified.

7. The values of the diagnostic statistics change whenever a case is removed. If a serious
outlier is detected and removed, the effects of its removal should be studied. The diagnostic
statistics for the new data set should be recomputed before any additional cases are considered
for removal. If the removal of outlying cases continues to produce new outlying cases after a
few repetitions of this process, other strategies of addressing the outlier (e.g., transformation)
should be sought.

Other sources (Bollen & Jackman, 1990; Chatterjee & Hadi, 1988) present a fuller dis-
cussion of cutoff values for the diagnostic statistics and illustrations of the use of diagnostic
statistics with real data sets.

10.4 SOURCES OF OUTLIERS AND POSSIBLE
REMEDIAL ACTIONS

When outliers are discovered in data, the researcher needs to decide what remedial actions, if
any, should be undertaken. This decision needs to be based on careful detective work using clues
provided by the regression diagnostic statistics to try to understand the source of the outliers
and their influence on the results of the regression analysis. However, good detective work also
depends on a clear understanding of the substantive problem that is being studied, the methods
through which the data were collected, the nature of the sample, and the population to which
generalization is sought. In some cases, a clear understanding of the source of the outliers may
not emerge even with the best detective work. In such cases, the choice of the optimal remedial
action will be associated with considerable uncertainty. More than one remedial action may be
investigated, or researchers may choose to employ the remedial action that is most commonly
used in their substantive area.

10.4.1 Sources of Outliers

Outliers can arise from many sources. To help readers in thinking about this problem, we have
grouped sources of outliers into two general classes: contaminated observations and rare cases.

Contaminated Observations
Outliers may occur because the data have been contaminated in some way. Here we present

several of the possible sources of contamination in the behavioral sciences together with exam-
ples. Contaminated observations can and should be minimized by careful research procedure
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and data preparation. Nonetheless, contaminated observations will occur even for the most
careful researchers.

1. Error of execution of the research procedure. An interviewer may misread
some of the questions; an experimenter may deliver the wrong or an incomplete treatment.

2. Inaccurate measurement of the dependent measure. Equipment may fail so
that measurement of the DV (e.g., response time) is not accurately recorded.

3. Errors in recording or keying the data. An interviewer may write down the
participant's response incorrectly, or the data may not be keyed into the computer properly.

4. Errors in calculation of the measures. The researcher may incorrectly count up
the number of responses or make a mistake in the calculation of a measure (e.g., percentage
of correct responses).

5. Nonattentive participants. In certain cases, participants may be fatigued, ill, or
drunk, and be unable to respond in their typical manner to the experimental materials.

Each of the diagnostic statistics (leverage, discrepancy, and influence) can potentially aid
in detecting contaminated data. Whenever researchers detect outliers, they should first attempt
to rule out the possibility that the outliers represent contaminated data. Data and calculations
should be checked for accuracy; research notes should be checked for procedural anomalies
that may explain the outlier.11 If it can be verified that the outliers represent contaminated data,
these data points should not be included in the data analysis. The researcher should replace
the contaminated data with the correct data for the case if possible or delete the contaminated
case from the data set. In other situations, it may be possible to make a second observation
on the case and to replace the outlying value in the data set. To illustrate, in our example of
faculty publications, it may be possible to check personnel records or to reinterview the faculty
member in question (case 6) to determine the correct value for time since Ph.D. The corrected
value should always be used in the data set.

Rare Cases
For other cases, the outlying observations may be correct (or alternatively, not show any

detectable evidence of contamination). The outlying case may represent a valid, but extremely
rare observation in the population. For example, imagine researchers are conducting a study
of the relationship between year in college (freshman = 1; senior = 4) and sexual attitudes.
Suppose that the sample contains a single 12-year-old freshman male. Although very rare,
such individuals do exist in the U.S. college population. The results of the regression analysis
could potentially be affected by this one outlying case if his sexual attitudes differed greatly
from those of his classmates.

When outliers having high influence are detected that are not contaminants, how they should
be treated in the data analysis can often be a serious issue that can be difficult to resolve. In
general, there is a tension between two scientific goals. On one side, eliminating or minimizing
the effect of the rare case can often lead to a regression equation that provides a more accurate
description of the X-Y relationship in the population of interest. On the other side, the outlier
may represent a subtle signal of an important phenomenon or the inadequacy of the specific
regression model that was tested. Research attempting to understand rare cases has sometimes

11 In complex experiments or interviews, many observations (including apparently valid observations) may be
associated with anomalies in the procedure. The researcher should examine outliers as well as a random sample of
other observations to be sure the two classes of observations can be distinguished on the basis of procedural problems.
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led to important lines of scientific research. The discovery of the Antarctic ozone hole and the
discovery of penicillin both depended on understanding the source of rare cases.

In some research situations, the decision may be relatively straightforward. The rare case
may be thought of as a different kind of contaminant—the participant is from a different
population than the one of interest. In such cases, researchers may conclude that they wish
to restrict their generalization to a specific population and exclude the rare case(s) from the
analysis. Returning to our example on college sexual attitudes, the researcher may decide to
exclude all students from the analysis who began college at less than a minimum age (e.g., 16
years old). The result is that the regression equation will better characterize a population of
normatively aged college students. The high potential for a small number of young (prepuberty)
students to influence the results of the regression analysis if they have different sexual attitudes
is eliminated. Now, however, generalization of the results is limited to students who were at
least 16 years old when they began college.

Unfortunately, in practice the source of any rare cases will be difficult (or impossible) to
determine. Rare cases can arise from many sources.

1. There may be an undetected (and perhaps unknowable) contaminant in the data. For
example, an experimenter may fail to observe and record a procedural error in an experiment.

2. One or more of the predictor variables may have an unusual distribution that produces
extreme values. For example, even though intelligence is usually thought of as having a normal
distribution, there are a substantially larger than expected number of cases in the population
with very low intelligence because of specific constitutional insults or anomalies. In some
samples such cases may cause potential distortions of the relationship between variables.

3. The dependent variable may have properties that lead to a potential for occasional large
residuals. For example, the distribution of the number of absences from work during a month
in a group of typically very healthy workers may include rare high outliers associated with
workers who experienced major illnesses such as a heart attack.

4. The regression model being studied may be incorrect. This issue is illustrated in
Fig. 10.4.1 through a series of scatterplots based on a small artificial data set developed by
Huber (1981). Note that in Fig. 10.4.1(A) and (B) there is one point marked by x which is
an outlier. Figure 10.4.1 (A) depicts the poor fit of a linear regression to the full set of 6 data
points. Figure 10.4.1(B) illustrates that a regression equation including a quadratic term may
fit the data extremely well and the case marked by an x is no longer an outlier.

Figure 10.4.1 nicely illustrates the dilemma created by outliers. In reality, researchers often
do not know for sure that the point marked x has not in fact been contaminated by unknown
influences. Nor will they always have prior theory or empirical work that would lead them
to expect this form of curvilinear relationship between X and Y. Figure 10.4.1(C) illustrates
what happens if we delete the outlier: The linear regression fits well, indicating a strong
negative relationship between X and Y, Bl — —0.98, f(3) = —5.57,p = .01. The proposal of
a curvilinear relationship is based only on a single outlying data point; this is generally a very
risky practice, as the odds of being able to replicate this unexpected curvilinear relationship
in another sample are low. Indeed, DFBETAS^ for case 6 for the nonlinear (quadratic) term in
the regression equation is —14.74, indicating the extraordinary degree to which the nonlinear
function is dependent on the inclusion of this one case. At the same time, a decision to exclude
the outlier in Fig. 10.4.1(C) may mean the researcher has discarded the basis for an important
potential insight. Collecting a larger sample in which there are a sizeable number of cases at
the higher values of X would enable the researcher to resolve this dilemma.

Consider yet again our earlier example, in which very young students were excluded from
the analysis to provide a better characterization of the relationship between year in college
and sexual attitudes in "typical" college students. The distinctly different college experience
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FIGURE 10.4.1 Scatterplot of Huber's (1981) example.
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of very young students, especially with regard to their social and sexual attitudes and relation-
ships, may be a very interesting focus of study in its own right. The outlying cases may be
providing an important signal about differences between young and normatively aged college
students. Other researchers might note the information about such outliers in published reports,
perceive this possibility, and design a study in which a large number of very young students
were included in the sample. More precise estimates of the effects of number of years of col-
lege attendance on sexual attitudes for both the older, normative population and this younger
population could be obtained.

Given this tension between accurately characterizing relationships for the nonoutlying
participants versus missing important information provided by the rare case(s), it is impor-
tant to provide information about outliers in published research reports. Kruskal (1960) has
emphatically argued that no matter the reason, apparent outliers should be reported.12

I suggest that it is of great importance to preach the doctrine that apparent outliers should always be
reported, even when one feels that their causes are known or rejects them for whatever good rule or
reason. The immediate pressures of practical statistical analysis are almost uniformly in the direction
of suppressing announcements that do not fit the pattern; we must maintain a strong sea-wall against
these pressures (p. 158, italics in original).

10.4.2 Remedial Actions

As we have discussed, addressing data that are known to be contaminated is easy. The contami-
nated data point(s) are simply corrected, deleted, or replaced as is appropriate. In contrast, three
different general approaches may be taken with outliers that represent rare cases. First, the data
may be analyzed with the outliers deleted. Second, the regression model may be revised, adding
terms that may account for outliers, or the data may be transformed so that the outliers are no
longer present. Or third, alternative robust regression methods (to be described later) may be
used that attempt to minimize the influence of outliers on the results of the regression equation.

Deletion of Outliers
The classic method of addressing outliers is to delete them and to reanalyze the remaining

data (e.g., Chatterjee & Wiseman, 1983; Stevens, 1984). This is the simplest method and in
many (but certainly not all) cases, it will provide estimates of the regression coefficients that
are very similar to those produced by more complex robust regression procedures. Researchers
will typically base their conclusions on the regression equation with outlying cases deleted.
However, the nature of the outliers and the results of the original regression analysis with all
cases included should normally be reported, at least in footnotes.

There are several potential problems with this approach. First, as noted in Section 10.3.5,
analysis of the diagnostic statistics for the new data set (now with the original outliers deleted)
may yield still other cases with extreme values on the diagnostic statistics. Second, the specific
cases chosen for deletion will often depend on the subjective judgment of a particular researcher.
Other researchers analyzing the same data set may come to different conclusions. Third,
although diagnostic statistics do a good job of detecting single outliers, the presence of several
outliers in close proximity (known as a "clump") can sometimes mask the problem.

Figure 10.4.2 illustrates this third problem with a scatterplot of years since Ph.D. versus
publications. The 62 cases we considered in Chapter 3 are plotted as circles (one case to be
discussed later is plotted as a solid circle). We add to this data set a clump of three outliers CH10EX3

12Journal space limitations preclude the provision of extensive information about outliers. Succinct information
about the number and type of outliers and their effects on the regression analysis can typically be reported.
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Note: The 62 data points denoted by circles (o)
are the original 62 cases presented in Table 3.5.1.
Three outliers denoted by x have been added to form
a clump at the lower right of the plot. One data point
with high discrepancy from the original data set has
been darkened (•). The longer line that touches the
y axis is the regression line for the original 62 cases.
The shorter line is the regression line for all 65 cases
including the clump of 3 outliers.

FIGURE 10.4.2 Illustration of a clump of outliers: Scatterplot of years since Ph.D.
vs number of publications.

having 15-16 years since the Ph.D. and few publications; these cases are denoted with an x.
The first regression equation for the 62 original cases is Y = 2.13X + 3.72, R2 = .42.
The second regression equation for the 65 cases (including the clump of 3 outliers) is Y =
1A6X + 6.88, R2 = .23. These regression lines are illustrated in Fig. 10.4.2.

The values of the diagnostic statistics corresponding to these three cases (case numbers
63, 64, 65 in data file) for the second regression equation would not be considered to be
unusually extreme by most guidelines. Leverage values for the three cases are moderate
(ha = .06, .07, .07, respectively, compared to arule of thumb minimum cutoff value of hfi = .09
for small samples (see Table 10.3.1).DFF/T5( = -.58,-.71,-.66;DFfl£TASy = .27, .36, .33
for the intercept and DFBETASfj = -.50, -.63, -.59 for the slope, respectively. These val-
ues are not large relative to rule of thumb cutoffs of ±1.0 that have been proposed for
small samples. The values of the externally studentized residuals for the clump of outliers,
tt = —2.29, —2.54, —2.34, respectively, might draw some attention, but would likely be over-
shadowed by another data point from the original sample (X = 13, Y = 69; marked by.) that
has a much higher externally studentized residual, t{ = 3.89. What makes the three outliers
stand out is that they form a visually distinct clump with similar values on X and Y. In situa-
tions with multiple predictors, clumps of outliers can not always be easily detected by visual
inspection of scatterplots.

Because the standard diagnostic statistics perform poorly in finding clumps of outliers,
other methods need to be used. Promising methods of detecting clumps of outliers in complex
data sets have recently been developed (e.g., Hadi, 1994; Hadi & Simonoff, 1993), but to
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date they have not yet become available in common statistical packages. Alternatively, robust
regression approaches (to be discussed later) minimize the weight given to outlying cases in
the calculation of regression coefficients. These approaches will produce improved estimates
of the regression coefficients and the standard errors, even when there are clumps of outliers.

Respecification and Transformation
There is a second and often overlooked consideration when outliers are discovered. Outliers

may result from misspecification of the regression model rather than any problems with the data.
If the appropriate regression model is specified, the originally outlying cases may be well fit by
the new model. The data set presented in Fig. 10.4.1 illustrated this idea: The original equation
illustrated in Fig. 10.4.1 (A) does not fit the data well and produces an extreme outlier with high
influence. However, the nonlinear model illustrated in Fig. 10.4.1 fits all of the data very well—
there is a high R2 and all of the residuals are small. Consequently, it is very important to use
the approaches presented in Section 4.4 to look for evidence of model misspecification before
outliers are deleted. Models that specify curvilinear effects (see Chapter 6) or interactions
between TVs (see Chapter 7) can sometimes address the problem of outliers.

Alternatively, a linear regression model may be used, but the individual variables may be
transformed so that the data are more appropriate for a linear regression equation. Recall from
Chapter 6 that transformation uses a mathematical expression to change the value of the IV, DV,
or both for each case. For example, an outcome variable with a few cases with high values (i.e.,
a long upper tail) is sometimes more appropriately analyzed when the value of Y for each case
replaced by a new value equal to the logarithm of the original value, i.e., 7*ew = log(yoriginai)-
Chapter 6 presented a thorough discussion of transformations.

Robust Approaches
Robust approaches refer to a family of techniques that use alternatives to the ordinary

least squares (OLS) method to estimate the regression coefficients. Robust approaches can
be thought of as a kind of insurance policy (Anscombe, 1960). Ideally, robust approaches
should perform better than OLS when there are outliers or the residuals have a non-normal
distribution with many extreme residuals in the tails. And when the data are well behaved,
robust approaches should perform almost as well as OLS. We should only pay a small cost
in terms of lower statistical power when there are no outliers and the assumptions of OLS
regression are fully met.

In Section 10.3 we showed that in OLS estimation the values of B0, BI , . . . , Bk are chosen so
as to minimize the sum of the squared residuals. When an observed Y{ is far from the regression
line of the other cases, it can strongly affect the values of the Bs that are chosen. As we have
shown, cases that have both high leverage and high discrepancy (high influence) can greatly
alter the values of the regression coefficients that are chosen. Under these circumstances, robust
alternatives to OLS may be considered. Examples of four approaches to robust estimation are
briefly presented next.

One alternative estimator is least absolute deviation (LAD; also called L1). This method
chooses values of the regression coefficients B0,..., Bk so as to minimize the value of E | Y—Y \,
where \Y — Y\ refers to the magnitude of the difference, ignoring its sign (absolute value).
Because the difference between Yt and Yt is not squared, this estimator may provide better
results than OLS when there are cases with high discrepancy (externally studentized residuals).
However, the LAD estimator is potentially very sensitive to cases that are also extreme on
X(high leverage). A single outlying case with high influence can have a greater impact on the
regression results when LAD is used rather than OLS.
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A second approach is the least trimmed squares (LTS) estimator. In LTS the squared resid-
uals for each of the n cases e\,e\,...,e^ are ordered from lowest to highest. The analyst
chooses a proportion of the cases (e.g., proportion = .25) with the highest value of e1 to be
"trimmed", that is, removed from the analysis producing the regression estimates. LTS chooses
values of the regression coefficients B0,..., Bk so as to minimize the value of S"=1(F — Y)2

where n is the number of squared residuals remaining after the largest residuals are trimmed.
Rousseeuw, Van Aelst, and Hubert (1999) note that LTS generally performs well, but that it can
on rare occasions mislead by providing highly inaccurate estimates when there is a clump of
outliers.

A third approach is known as M-estimation (Huber, 1981). This approach uses a variant of
weighted least squares regression (see Section 4.5.4) in which the function to be minimized
is Sw(e?, where wf is the weight that is given to the ith case. In M-estimation the weight for
each case is chosen by how far the residual is from the regression line. Huber suggested that
residuals that fall on or near the regression line be given full weight so that wt = 1 and that
residuals that fall beyond a threshold be given weights that decrease as | Y — Y\ becomes larger.
Like the LAD estimator, M-estimation will provide better results than OLS when cases with
high discrepancy, but it also shares the major liability of LAD—it can produce poor results
relative to OLS when cases are also extreme on X, that is, that have high leverage as well as
discrepancy (i.e., high influence).

Bounded influence estimators (also called generalized M-estimators or GM estimators)
follow the same general logic as M-estimation, except that the weights are chosen based on
consideration of both leverage and discrepancy. For example, Welsch (1980) proposed that
cases having high values of the DFFITSi statistic be given less weight. The bounded influence
estimators give very good performance in many situations but can provide poor estimates in
some cases when there are clumps of outliers or when outliers on Y have low leverage.

In summary, the four estimators considered—LAD, LTS, M-estimates, and bounded influ-
ence estimates—represent examples of four of the general approaches to robust estimation that
have been proposed. Each of these robust statistics can potentially produce greatly improved
estimates relative to OLS when certain patterns of outliers are present in the data; however,
rare conditions do exist under which each of the robust estimators can be badly misleading
and produce very poor estimates relative to OLS. In addition, OLS will always produce accu-
rate estimates of regression coefficients with the smallest possible standard errors when its
assumptions are met.

There are currently few published applications of robust statistics in the behavioral sci-
ences. Perhaps the primary reason for the lack of use to date is that many of the common
statistical packages have been slow to incorporate robust regression procedures. Currently,
many statistical packages do not include robust estimators, include them in another special-
ized module (e.g., SAS NLIN), or include only the earlier developed procedures such as LAD
and M-estimation. Some of the procedures (e.g., LTS) are computer intensive and may require
considerable computer time when applied to large data sets. Alternative procedures described
in Staudte and Sheather (1990) should be used for significance testing and construction of con-
fidence intervals for regression coefficients. And robust techniques must be used cautiously
because they can hide problems associated with the use of a misspecifed regression model
(Cook, Hawkins, & Weisberg, 1992).

Despite some limitations, robust approaches are a very valuable addition to our available
tools for multiple regression when there are outliers present in the data. Researchers may
usefully compare the results obtained using (a) OLS regression and (b) two robust approaches
that are believed to have different strengths and weakness (e.g., LTS; M-estimation). When the
different approaches lead to similar conclusions, we gain increased confidence in our results.
When the results do not agree, information from these analyses, diagnostic statistics, and
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careful examination of scatterplot matrices can often be very helpful in understanding the
source of the differences.

We have provided only a brief introduction to the complex topic of robust regression.
Readers wishing to use robust regression techniques in their own research should consult
recent chapters and texts (e.g., Draper & Smith, 1998, Chapter 25; Ryan, 1997, Chapter 11;
and Wilcox, 1997, Chapter 8, for introductions; Rousseeuw, 1998; Rousseeuw & Leroy, 1987;
Staudte & Sheather, 1990 for more advanced treatments).

10.5 MULTICOLLINEARITY

We now shift our attention from problems that may arise from specific cases in the data set to
problems that may arise from specific IVs. In multiple regression, we assume that each IV can
potentially add to the prediction of the dependent variable Y. However, as one of the indepen-
dent variables, X,, becomes increasingly correlated with the set of other IVs in the regression
equation, Xt will have less and less unique information that it can potentially contribute to the
prediction of Y. This causes a variety of problems when the multiple correlation of X, with the
set of other predictors, ^x,.XiX2...(x,)..Jtt' becomes very high. The individual regression coeffi-
cients can change appreciably in magnitude and even in sign, making such coefficients difficult
to interpret. As the predictors become increasingly correlated, the estimate of the individual
regression coefficients also becomes more and more unreliable, a problem that is reflected in
large standard errors. In the limiting case of exact collinearity, in which X, is perfectly corre-
lated with the other predictor variables (that is, when X, can be perfectly predicted from the
remaining IVs), the individual regression coefficients cannot even be properly computed. Short
of exact collinearity, small changes in the data such as adding or deleting a few observations
can lead to large changes in the results of the regression analysis. This set of problems that
result from high correlations between some of the IVs is known as multicollinearity. Multi-
collinearity depends only on the set of IVs—regardless of the Y that is chosen, the degree of
multicollinearity will be the same.

10.5.1 Exact Collinearity

Exact collinearity occurs when one IV has a correlation or multiple correlation of 1.0 with the
other IVs. Exact collinearity indicates that a mistake was made in setting up the regression
analysis. Consider the regression equation Y = BlXl + B2X2 + BQ. If Xj and X2 are the
same or if one is a linear transformation of the other as when Xl and X2 represent the same
variable expressed in different units (e.g., Xl = person's weight in pounds; X2 = person's
weight in kilograms), neither variable conveys any unique information to the prediction of F.
Exact collinearity can also occur for more subtle reasons. For example, consider the regression
equation Y = B^Xi + B2X2 + B$D + B0, in which Xl is the person's score at time 1, X2 is
the person's score at time 2, and D is the difference between the time 1 and time 2 scores,
D = Xi —X2. Note that D contains no unique information that is not contained in Xl and X2

so that the multiple correlation of D with Xl and X2, RDfXl Xl, will be 1.0. As another example,
suppose a researcher asks students to explain their performance on their first statistics exam by
dividing 100 points among four potential explanations. These explanations are Xl = ability in
statistics, X2 = difficulty of the test, X3 = amount of effort studying the material, and X4 =
luck. The researcher wishes to predict F, the student's performance on the final exam. But, note
that for each student Xt + X2 + X3 + X4 must equal a constant, here 100 points. This means
that if for a particular student we know that the value of X\ = 20, X2 = 10, X3 = 20, then we
know that the value of X4 must be 50, i.e., 100 — Xi — X2 — X3. Once again, X4 adds no unique
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information that is not contained in Xl, X2, and X3, and the multiple correlation between any one
of the IVs and the other three must be 1.0. These more subtle forms of exact collinearity typically
occur when the sum of the predictors must equal a constant value or when composite scores and
the original scores from which they are derived are included in the same regression equation.

When exact collinearity occurs, there is no mathematically unique solution for the regression
coefficients. Major statistical packages perform an initial check to determine if one (or more)
of the IVs is highly redundant with the other IVs in the regression equation.13 When they detect
this problem, some regression programs will not run. Other programs will attempt to "fix" the
problem by arbitrarily dropping one (or more) IVs with exact collinearity from the regression
model, perhaps even an IV in which the researcher has particular interest.

10.5.2 Multicollinearity: A Numerical Illustration

Multicollinearity occurs when highly related IVs are included in the same regression model.
In cross-sectional research, serious multicollinearity most commonly occurs when multiple
measures of the same or similar constructs (e.g., depression, anxiety) are used as the IVs
in a regression equation. In longitudinal research, serious multicollinearity most commonly
occurs when similar measures collected at several previous time points are used to predict the
participants' score at a later time point (e.g., all four test scores in a statistics class are used
as IVs in a regression equation predicting the final exam score). As with exact collinearity,
highly related IVs can occur in more subtle ways as well. Some measures which purport to
measure different constructs are based on overlapping sets of similar items so that they will be
highly related. For example, some MMPI-based scales used in clinical psychology are based
on partially overlapping sets of items.

As was introduced in Section 3.8, multicollinearity may lead to unstable regression coef-
ficients that are associated with large standard errors. Multicollinearity can also lead to
complexities in interpreting regression coefficients. We illustrate these ideas with two exam-
ples. In our first example we examine data with two IVs to explore what happens to the
regression estimates as r12 takes on increasingly large values. In this example rY\ = .30 and
rY2 = .40 are kept constant. These values represent a moderate and a moderate to large effect
size, respectively, according to the normative values presented in Chapter 2. The variances are
sdy = 5, sd£j = 3, sd^ = 4; Xi and x2 are centered, MY is set equal to 20, and n = 100.

Table 10.5.1 presents the results of several regression analyses based on this data set. First,
cmoEX4 consider Table 10.5.1 A, which presents the results when r12 = 0. The intercept B0 = 20 (the

mean value of 7), Bl = 39,SEBi = .11, B2 = A5,SEB2 = .10 (to two decimals). We can
construct the 95 % confidence interval for each Bl, CI = Bt; ± t SEBi. Thus, the 95 % confidence
interval for B^ = .16 to .61 and the 95% confidence interval for B2 = .25 to .64. Examining
null hypothesis significance tests, for Blt t = 3.41, df = 97,p < .001 and for B2,t = 4.55,
and again, p < .001. These results indicate that both xl and x2 make independent contributions
to the prediction of Y.

Now, let us consider what happens as we increase the value of r12. Comparing the values of
Bl across Parts A-E of Table 10.5.1, we see that Bl decreases in value and ultimately becomes
negative at the highest values of r12 (e.g., Bl = —1.03 for r12 = .949). In contrast, B2 initially
decreases in value, but reaches a minimum following which it rapidly increases14 at very high
levels of r12. The standard errors of BI and B2 initially increase slowly in magnitude as r12

13Statistical packages typically compare one of the indices of multicollinearity (to be presented later) with a very
extreme cutoff value (e.g., tolerance = .0001). This procedure detects cases in which exact collinearity is obscured
by computer rounding errors.

14The rapid increase of B2 at high levels of r]2 is an example of statistical suppression discussed in Section 3.4.
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increases in value, but then rise rapidly as r12 becomes close to 1. Indeed, when r12 = .949,
the standard errors of Bl and B2 are more than 3 times larger than when r12 = 0. Necessarily,
this increase in both SEBi and SEg2 leads to corresponding increases in the associated C/s:
-.95 to +.13 for Bl and +.30 to 1.23 for B2. Thus, Table 10.5.1 illustrates both the increased
difficulty that can arise in interpreting the regression coefficients and the increase in SEs that
occurs as two predictors become highly correlated.

Table 10.5.2A provides a second illustration of the effects of multicollinearity, this time
with four centered IVs, xl, jc2, *3, and x4. This example compares the results of two regression
analyses. In the first analysis, presented in Table 10.5.2A, the IVs are uncorrelated. In the
second analysis, presented in Table 10.5.2B, xl,x2 and jc3 are highly intercorrelated (ru =
ris — r23 — -933). Note in the second analysis that x4 is uncorrelated with x1,x2, or *3. As
in our first example presented in Table 10.5.1, the correlations of the IVs with Y were kept at

TABLE 10.5.1
Effects of Multicollinearity:

Two-Independent-Variable Example

A. r12 = 0.00;

Variable

Intercept

*i
*2

B. r12 = 0.10;

Variable

Intercept

x\
X2

C. rn = 0.50;

Variable

Intercept
Xl

X2

D. r12 = 0.90;

Variable

Intercept
Xl

X2

ryi = .30; rn =

B SE

20.000 0.196
0.387 0.114
0.447 0.098

/Vi = .30; rY2 =

B SE

20.000 0.198
0.339 0.116
0.418 0.100

ryi = .30; ry2 =

B SE

20.000 0.205
0.172 0.138
0.373 0.119

rn = .30; rY2 =

B SE

20.000 0.205
-0.407 0.272

0.765 0.236

.40; R2 =

pr2

0.107
0.176

.40; R2 =

pr2

0.081
0.152

.40; R2 --

pr2

0.016
0.092

.40; R2 •-

pr2

0.023
0.098

E. r,2 = 0.949; rri = .30; rn = .40; R2

Variable

Intercept
Xl

X2

Note: sdy

B SE

20.000 0.199
-1.034 0.366

1.297 0.317

pr2

0.076
0.147

= .250.

Tolerance

1.000
1.000

= .228.

Tolerance

0.990
0.990

= .173.

Tolerance

0.750
0.750

= .179.

Tolerance

0.190
0.190

= .224.

Tolerance

0.099
0.099

VIF

1.000
1.000

VIF

1.010
1.010

VIF

1.333
1.333

VIF

5.263
5.263

VIF

10.060
10.060

= 5.00; sd\ = 3.00; sd2 = 4.00; MY = 20.
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TABLE 10.5.2
Effects of Multicollinearity: Four-Independent-Variable

Example

A. r12 = r,3 =

Variable

Intercept

*i
X2

*3

X4

B- rn = rn =

Variable

Intercept
*i
X2

*3

X4

r23 = 0.00;

B

20.000
0.387
0.391
0.400
0.391

r23 = 0.933

B

20.000
-0.806

0.137
0.868
0.391

r,4 = 0; R2 = .495.

SE

0.162
0.094
0.082
0.073
0.082

:ri4 =

SE

0.187
0.345
0.299
0.267
0.094

pr2

0.151
0.195
0.240
0.195

Tolerance

1.000
1.000
1.000
1.000

VIF

1.000
1.000
1.000
1.000

0; R2 = .325.

pr2

0.054
0.002
0.100
0.154

Tolerance

0.099
0.099
0.099
1.000

VIF

10.067
10.067
10.067
1.000

Note: rn = .30; rY2 = .40; rY3 = .30; rY4 = .40; sd\ = 5.00; sd\ =
3.00; sd\ = 4.00; sd] = 3.00; u% = 4.00; MY = 20.

constant values within the range .30 to .40 and the variances of all variables were also kept
constant, within the range 3 to 5.

Table 10.5.2A displays the results of the first analysis when the IVs are uncorrelated. Under
these circumstances, the Bl to B4 regression coefficients range from .39 to .40 and the SEs
range from .07 to .09 (to two decimals). In contrast, Table 10.5.2B shows the results when xl

to ;t3 are highly intercorrelated, but JC4 is uncorrelated with xl, x2, or x3. The same pattern that
we observed in the first example emerges for x1 to jc3. The regression coefficients now range
from —.0.81 to +0.86 and their SEs now range from 0.27 to 0.35, over a three fold increase in
SEs relative to the uncorrelated case. In contrast, note that the value of B4 = 0.39, is exactly
the same value obtained in Table 10.5.2A when all IVs were uncorrelated. The SE of B4 does
increase from .082 to .094, but this increase is very modest relative to the increase in the SEs
of the regression coefficients.

Both examples illustrate the increased complexity in interpreting the meaning of the Bs and
the increase in SE when there are high correlations among the IVs. However, the Bs of IVs that
are unrelated to the other predictors (here, ;c4) are not affected and their SEs are only minimally
affected, even when there is a high degree of multicollinearity among the other predictors in
the regression equation.

10.5.3 Measures of the Degree of Multicollinearity

The squared correlation between each of the pairs of predictor variables provides an index
of bivariate multicollinearity. As its value increases toward 1.0, the magnitude of potential
problems associated with multicollinearity increases correspondingly. With two IVs, this index
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is sufficient. As the number of IVs in the regression model increases, this index becomes
increasingly likely to miss substantial multicollinearity.

The Variance Inflation Factor
The variance inflation factor (VIF) provides an index of the amount that the variance of each

regression coefficient is increased relative to a situation in which all of the predictor variables
are uncorrelated. To understand the VIF, recall from Section 3.6 that the standard error of 5, is

where /??12...(,-). .* is the squared multiple correlation between^, and the other predictor variables
in the regression equation. Squaring this equation, we get the variance of Bh V(Bt):

A VIF is calculated for each term in the regression equation, excluding the intercept. A
commonly used rule of thumb is that any VIF of 10 or more provides evidence of serious
multicollinearity involving the corresponding IV. Given the relationships between Eq. (3.6.1)
and (10.5.1), VV7F will represent the amount that the SE of Bi will increase relative to the
situation in which all of the predictor variables are uncorrelated. Thus, a VIF of 10 means
that there is a >/10 = 3.16 or slightly more than a threefold increase in SEB. relative to the
situation of no correlation between any of the IVs. Table 10.5.IE and Table 10.5.2B include
values of intercorrelations among IVs that produce V7Fs of about 10. Note that the SEs show
slightly more than a threefold increase relative to their values when rx.x = 0. As illustrated
in Table 10.5.1, in the two-predictor case, the VIFs for Xi and X2 will always be equal. In the
three or more predictor case, the VIFs will, in general, not be equal. The V7Fs for Xv to X3 in
Table 10.5.2 are equal only because the correlations between predictors are precisely equal,
r!2 = r!3 = r23-

We remind readers that extremely high intercorrelations between predictors were necessary
to produce V7Fs = 10 in Tables 10.5.1 and 10.5.2. We believe that this common rule of thumb
guideline is too high (lenient) for most behavioral science applications. We discuss issues in
measuring multicollinearity later in this section.

Tolerance
Some statistical packages present the tolerance in addition to or instead of the VIF. The

tolerance is the reciprocal of the VIF,

The V7F is simply the third term in Eq. (10.5.1), so

and therefore tells us how much of the variance in X, is independent of other IVs. This rela-
tionship can be verified in Tables 10.5.1 and 10.5.2. A commonly used rule of thumb is that
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tolerance values of. 10 or less indicate that there may be serious problems of multicollinearity in
the regression equation (and, of course, are equivalent to a VIFof 10). Some statistical packages
use very low values of tolerance (e.g., .0001) as a means of detecting exact collinearity.

Condition Number
The correlation matrix of the IVs may be decomposed into a set of orthogonal dimensions.

Orthogonal dimensions are completely nonoverlapping and share no variance in common.
Major statistical programs will perform this decomposition, which is known as principal com-
ponents analysis. When this analysis is performed on the correlation matrix of the k IVs, a
set of k eigenvalues or characteristic roots of the matrix is produced. The proportion of the
variance in the IVs accounted for by each orthogonal dimension i is X/fc, where X is the eigen-
value. The eigenvalues are ordered from largest to smallest so that each orthogonal dimension
in turn accounts for a smaller proportion of the variance of the IVs. With two independent
variables, if the two IVs are uncorrelated, each eigenvalue will equal 1.0, so that each inde-
pendent dimension will account for X,-/2, or .50 of the variance in the set of IVs. As the IVs
become increasingly correlated, more and more of the variance in the IVs is associated with
the first dimension, so that the value of the first eigenvalue will become larger and the value of
the second eigenvalue will become correspondingly smaller. When r12 reaches its maximum,
r12 = 1.0, Xt =2 and X2 = 0, so that the first dimension will account for 1.0 of the variance
in the IVs, whereas the second dimension will account for no additional variance in the IVs.

The condition number15 K (kappa) is defined as the square root of the ratio of the largest
eigenvalue (Xmax) to the smallest eigenvalue (X^).

15The condition number may be computed from matrices involving uncentered scores on the IVs, centered scores
on the IVs, or the correlation matrix of the IVs. This choice can lead to differences in the eigenvalues that are obtained.
Consequently the value of the condition number may depend on the specific matrix which the statistical package uses
to compute eigenvalues. Typically, the eigenvalues are based on the (X^XC) matrix, where Xc is the (n x k) matrix of
the centered predictor values. Belsley (1984, 1991) and R. D. Cook (1984) discuss this issue and indicate cases under
which computations based on each matrix may be preferred.

16For example, some authors have proposed values of 6 or 7 as a threshold value for the VIF or 15 or 20 as a
threshold value for the condition index.

Traditionally, a rule of thumb has been suggested that values of K (kappa) that are 30 or
larger indicate highly severe problems of multicollinearity. However, no strong statistical
rationale exists for this choice of 30 as a threshold value above which serious problems of
multicollinearity are indicated.

Some Issues in Measuring Multicollinearity
In discussing the measures of multicollinearity, we noted rule of thumb cutoff values that

have been offered above which multicollinearity appear to be problematic in most behavioral
science applications. Note that the problems associated with multicollinearity differ in degree;
they do not differ in kind. Thus, there is no good statistical rationale for the choice of any of the
traditional rule of thumb threshold values for separating acceptable from unacceptable levels
of multicollinearity16. A review of Table 10.5.1 indicates that the magnitude and direction of
the regression coefficients may change appreciably at values of the VIF that are substantially
less than the typically suggested threshold value of 10. As presented in Section 3.4.1, when B
increases or changes its sign when one or more other IVs are added to the equation, we have
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a situation of statistical suppression. Although such findings may sometimes be theoretically
anticipated, they are often indicative of a serious problem of multicollinearity. Thus, the
values of the multicollinearity indices at which the interpretation of regression coefficients
may become problematic will often be considerably smaller than traditional rule of thumb
guidelines such as VIF =10.

Multicollinearity indices provide useful information but do not substitute for more basic
checks on the data. First, researchers should carefully examine the scatterplot matrix of the
predictor variables and the leverages for each case, looking for outlying observations that may
affect the relationship between each pair of IVs. As we saw earlier in this chapter, outliers can
greatly increase or decrease the magnitude of the relationship between variables, leading to
values of multicollinearity indices that may be too high or too low. Second, researchers should
compare the results of simple univariate regression analyses in which the outcome is regressed
separately on each predictor variable with the results of the full multiple regression analysis in
which the outcome is regressed on all of the predictor variables of interest. Probably the easiest
way to accomplish this is by comparison of ryx for each IV with its corresponding standardized
P in the regression equation. Large, unexpected changes in direction and magnitude of these
coefficients suggest a substantial influence of multicollinearity.

Relatively high values of the standard multicollinearity indices may occur in some of the
more complex regression analyses we considered in earlier chapters of this book. In these
analyses a single substantive IV was represented by more than one term in the regression
equation. In Chapter 6 we used several polynomial terms (e.g., X,X2) to represent a variable's
nonlinear relationship with Y. In Chapter 7 we used terms that are products of IVs (e.g.,
XZ) to represent interactions. In Chapter 8 we introduced coding schemes (e.g., dummy codes
Ci, C2, C3) that used multiple terms to represent qualitative variables such as religious affiliation
or experimental treatment groups. In these circumstances, high values on standard measures
of multicollinearity are not necessarily problematic—the degree of multicollinearity depends
on the particular scaling of the IVs. For example, we showed in Chapter 7 that in a regression
model with an interaction term the correlation between X and XZ can be reduced by centering
each of the IVs. Fox and Monette (1992) present a general index of multicollinearity that is
not affected by the scaling of the IVs that is appropriate in such applications.

VIF, tolerance, and the condition number implemented in most statistical packages do not
take multicollinearity involving the intercept into account. This characteristic is fully appropri-
ate in most applications in the behavioral sciences. However, in some areas of economics and
the physical and biological sciences, IVs such as interest rates and body size are measured on
ratio level measurement scales (see Chapter 1). With a ratio level of measurement, the value of
the intercept estimated when each of the IVs takes on a true value of 0 can be a parameter that
is of considerable theoretical interest. In such cases, alternative versions of the VIF, tolerance,
or condition number discussed by Belsley (1991) should be calculated.17

10.6 REMEDIES FOR MULTICOLLINEARITY

When a researcher is interested solely in the prediction of Y or in the value of R2, multi-
collinearity has little effect and no remedial action is needed. However, in research testing a
substantive theory in which the researcher is interested in the value of each Bt, high values

17Belsley (1991, Chapter 5) has also developed a useful extension of the condition number that more precisely
pinpoints the sources of multicollinearity. This approach to detecting multicollinearity is of particular value in time
series analysis and complex econometric models that include large numbers of IVs.
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of multicollinearity present a potentially serious problem. Four general approaches to solving
problems of multicollinearity have been proposed.

10.6.1 Model Respecification

In some cases, it may be possible to revise the regression model so that the degree of multi-
collinearity is reduced. This remedy is particularly applicable when the analyst has included
several highly correlated variables that can be thought of as measuring the same underlying
construct. For example, suppose a researcher were interested in the effects of socioeconomic
status (SES) and IQ on undergraduate GPA (7). Suppose the researcher has collected several
measures of SES—mother's income (X^, father's income (X2), mother's education (Y3), and
father's education (X4), father's occupational status (X5), and mother's occupational status
(X6)—as well as IQ (X7)—and has included all seven predictors in a regression equation,

The FVs Xl to X6 are all measures of SES and are likely to be moderately to very highly
correlated, leading to high levels of multicollinearity. In such cases, it is often useful to combine
the variables measuring the underlying construct, here SES, into a single index. The simplest
way to do this is to convert each of the measures to z scores. The z scores are then averaged
to produce an overall index of SES for each person in the sample. In cases where theory or
prior empirical work point to differential importance of each of the variables assessing the
construct, more complex weighting schemes can be used to form the overall index. In either
case, a different regression model is now estimated,

Note that in this equation, BI represents the unique contribution of the index of SES over and
above IQ to the prediction of GPA, whereas in the previous equation Bl represented the unique
contribution of mother's income over and above the five other measures of socioeconomic
status and IQ to the prediction of GPA. Thus, we have respecified the model so that it answers
a different question than the one posed by the original analysis, but a question that in many
cases may more adequately represent the researcher's question of interest.

An alternative approach to model respecification is to drop one (or more) IVs from the
regression equation. Multicollinearity measures provide information about sources of multi-
collinearity, but they do not tell the researcher which IVs should be retained in the regression
equation. When either theory or prior empirical work exists, it should be used as a strong guide.
For example, if a variable has been thrown into the regression equation "to see what happens,"
it is a prime candidate for deletion. In other situations, choosing a variable or variables to
delete among several variables that are contributing to high multicollinearity may be largely
an arbitrary decision. Deletion of IVs on the basis of correlation with other IVs always carries
a risk. If the IV in question is truly relevant to the theory, the estimates of all other IVs will be
biased in its absence.

This caution about dropping variables from the regression equation takes on particular
importance in complex regression equations in which multiple terms are used to represent a
curvilinear effect (Chapter 6), an interaction (Chapters 7 and 9), or a categorical IV (Chapter 8).
Deletion of lower order terms that are included in higher order terms leads to poorly structured
regression models with 5s that are not readily interpretable (Peixoto, 1987). For example,
in Chapter 7 we presented the interpretation of regression equation specifying a linear XZ
interaction, Y = B\X + B2Z + B3XZ + BQ. If the X term were now dropped from the equation,



10.6 REMEDIES FOR MULTICOLLINEARITY 427

Y = B2Z + B3XZ + BQ, the B3 coefficient for the XZ term no longer represents purely the
interaction between X and Z, but confounds the interaction with the first order effect of X.
Lower order terms should not be dropped (see Chapter 7 and Aiken & West, 1991, Chapter 3).

10.6.2 Collection of Additional Data

The collection of additional data reduces some but not all of the problems associated with
multicollinearity. Larger sample sizes will always improve the precision of the estimate of B
With small samples, the degree of multicollinearity will typically be overestimated if there
are a large number of IVs in the regression model. Large samples will reduce this problem.
However, the pattern of correlations among the IVs would not be expected to change as sample
size increases. Thus, the use of large samples alone cannot eliminate difficulties that arise in
interpreting regression coefficients when IVs are highly multicollinear.

An alternative approach is to try to reduce the correlations among the IVs. In some cases,
it may be possible to manipulate one or more of the predictors in an experimental setting. For
example, suppose a researcher is studying stress (Xt) and coping skills (X2) as predictors of
well being. Xl and X2 are very highly correlated in the population. To minimize this correlation,
study participants could be randomly assigned in a laboratory experiment to a highly or mildly
stressful experience so that rXlx2 would on average be expected to be 0. Alternatively, if the
scores of potential participants on the IVs (but not the DV) were known in the population (e.g., a
large school district), the researcher could devise a sampling plan so that the correlation between
Xi and X2 would be substantially reduced in magnitude (see McClelland & Judd, 1993; Pitts &
West, 2001). Such procedures can permit a greater understanding of the independent effects of
each of the predictor variables as reflected in the unstandardized regression coefficients (5s). At
the same time, they change the estimates of standardized effect sizes for each predictor variable
and R2 so that these statistics no longer estimate the values in the original population. Pitts
and West (2001) discuss these procedures, then- strengths, their limitations, and appropriate
methods of estimating population effect sizes.

10.6.3 Ridge Regression

As was the case with outliers, alternative estimation techniques exist that can provide
"improved" estimates of each regression coefficient and its associated standard error when
multicollinearity is present. Ridge regression is an alternative estimation method that may be
used when there is an extremely high degree of multicollinearity in a data set (Darlington,
1978). In ridge regression a constant is added to the variance of each IV. This procedure leads
to a biased estimate of each regression coefficient 5,—the estimate is slightly attenuated (too
close to 0) so that it is no longer on average equal to the value of 0* in the population. However,
the estimate of SEB may be substantially reduced. When multicollinearity is extremely high,
it may be advantageous to trade off a small increase in bias for a substantial increase in the
precision of the estimate of the regression coefficient. The regression coefficients will be far
less sensitive to small changes in the data set such as adding or deleting a case.

The details of implementing ridge regression are presented in Ryan (1997, Chapter 12).
Draper and Smith (1998, Chapter 17) provide a discussion of the strengths and weaknesses
of ridge regression and note that ridge regression estimates are not always superior to OLS
estimates. Unlike OLS estimates, ridge regression estimates of the regression coefficients
are biased; consequently, alternative methods presented in Neter, Kutner, Nachtsheim, and
Wasserman (1996, Chapter 10) must be used to construct confidence intervals and conduct
significance tests. Although the SAS, SPSS, and SYSTAT regression modules do not presently
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include ridge regression, software is available in other statistical packages (see Ryan, 1997,
for an overview). Box 10.6.1 presents an illustration of ridge regression.

BOX 10.6.1
Illustration of Ridge Regression

To illustrate how ridge regression works, consider a case with two predictors Xl and X2.
Multicollinearity between two predictor variables can be assessed by r2

2, which can be
calculated using Eq. (2.3.5). We have squared and rewritten original Eq. (2.3.5) below
for ease of presentation:

The numerator [Sjc^/Cw — 1)] , is the squared covariance between x\ and jc2, and
the denominator terms are the variances of the two IVs. Suppose the covariance of xl

and x2 = 141, sd\ = 100, and sd\ = 200. Substituting these values into Eq. (2.3.5)
gives r?2 = .994. From Eq. (10.5.2), the V/Fis 1/(1 - .994) = 168.1, an extremely
high value. Now what happens to r\2 and the VIF if we add a constant value of 10
to each variance? rJ2 now equals (141)2/((110)(210)) = .861 so that the VIF will be
1/(1 — .861) = 7.19. Thus, the addition of a relatively small constant to the variance
of each predictor decreases the correlation between the IVs and the value of the VIF,
and hence greatly reduces the standard errors of the tests of the regression coefficients.
The central problem in ridge regression is to choose the value of the constant that will
provide the maximum benefit in terms of improvement of the precision of the estimate at
the minimum cost in terms of bias in the estimates of the regression coefficient. Several
methods exist for making this choice; they are discussed in Draper and Smith (1998)
and Ryan (1997).

10.6.4 Principal Components Regression

In Section 10.5.3, we briefly noted that a set of independent dimensions can be created that
are combinations of the predictor variables. In principal components regression, we regress
the dependent variable on these independent dimensions rather than on the original set of
predictor variables. To create these independent dimensions, a procedure known as principal
components analysis is used (see e.g., Harris, 2001; Tabachnick & Fidell, 2001). These dimen-
sions are termed components. Principal components analysis produces a set of k eigenvalues
(\i, X 2 , . . . , >*), each of which has a corresponding eigenvector. The elements of the eigen-
vectors are weights, with a different set of weights being produced for each component. These
weights allow the researcher to transform the participant's original score on the set of IVs into
a score on each component, C,. The raw scores for each IV are first standardized and then the
weights are applied. Thus, with four IVs the participant's score on component i would be

where z\ to 24 are \he participant's z-scores that correspond to scores on the original IVs, Xl

to X4, and wfl to wi4 are the weights for component i determined by the principal components
analysis.
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Each principal component represents an orthogonal dimension. The components are ordered
from largest to smallest in terms of the variance of the original IVs that is reproduced in the
component. Thus, each principal component, in turn, accounts for a smaller and smaller
proportion of the variance in the IVs. The last component (or last few components) will often
account for little variance in the IVs; small components are sources of multicollinearity in
the original data. Thus, we have created a new set of orthogonal variables Cl9 C2,..., Q that
collectively represent all of the information that is contained in the k original IVs, but that
reorganize the information into orthogonal sources. Indeed, if we regressed Y on Cj to Q, we
will obtain the identical R2 as we would if we regressed Y on Xl to Xk.

To illustrate principal components regression, suppose we had a regression equation with 4
IVs and that the four components accounted for 61%, 28%, 10.5%, and 0.5% of the variance
in the IVs. The unique feature of this procedure is that we may be able to discard the last
orthogonal component (which accounts for very little variance) with little loss of information.
We then regress Y on the three remaining orthogonal component scores,

10.6.5 Summary of Multicollinearity Considerations

In most areas of the behavioral sciences, severe multicollinearity according to traditional statis-
tical standards does not occur. Cases only rarely occur in which conventional statistical rules of
thumb such as a VIF = 10 or a condition index = 30 are exceeded. Instead, multicollinearity
occurs to a lesser degree, but enough to produce regression coefficients that may be difficult
to interpret. In these cases of "moderate" multicollinearity, alternative estimation procedures
such as ridge regression or principal components regression cannot be counted on to produce

where Bt represents the regression coefficient for the /th component. Since the components are
orthogonal, the discarding of small components has no impact on statistical inference about the
Bj terms. We simply use the standard significance testing and confidence interval procedures
discussed in Chapter 3.

Unfortunately, however, these fi, are only rarely interpretable. The component scores are
linear combinations of the original IVs (see Eq. 10.6.1) and will not typically have a clear
meaning. Consequently, most sources recommend that researchers transform the regression
coefficients for the components back to the regression coefficients for the original scores,
B{. The procedure of discarding small components means that this transformation will not
reproduce the results of the regression analysis on the original IVs. On the positive side,
dropping components that account for small proportions of variance eliminates major sources
of multicollinearity. The result is that the back transformed regression coefficients, #,, for
the original IVs will be biased, but will be more robust to small changes in the data set than
are original OLS estimates. Once again, constructing confidence intervals and performing
significance tests on the fi,s becomes more complex because these estimates are biased and do
not follow a t distribution (see Chatterjee & Price, 1991).

Chatterjee and Price (1991) present a good introduction and Jackson (1991), Jolliffe (1986)
and Hadi and Ling (1998) present a thorough discussion of the strengths and weaknesses of
regression on principal components. In some data sets the small rather than the large compo-
nents may account for most of the predictable variance in Y so that the small components cannot
be discarded without substantially affecting the results of the regression analysis. Regression
on principal components is limited to regression equations that are linear in the variables
(e.g., no interactions or polynomial terms; see Cronbach, 1987). Software to conduct principal
components analysis is available in the SAS PROC Factor, SPSS Factor, and SYSTAT.
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better estimates than OLS regression. Instead, the researcher's focus should be on attempting
to understand the nature and the source of the multicollinearity problem. In some cases, the
regression model may be modified by combining IVs that are measures of the same underlying
construct or by dropping variables from the equation. The primary risk here is that impor-
tant IVs may be inadvertently dropped from the model.18 In other cases, it may be possible
to experimentally manipulate one of the IVs or to systematically sample participants so that
the IVs are less correlated. Careful selection of the IVs with regard to their relationship to
theoretical constructs will also often help reduce the problem of multicollinearity.

10.7 SUMMARY

We begin this chapter with a consideration of outliers, atypical data points that can affect the
results in multiple regression analysis. After an illustration of the potential effects of outliers
particularly in small samples (Section 10.2), we consider measures of extremity of a single
case on the IVs (leverage, /ii(), on the DV (discrepancy, ?,-), and on the overall results of the
regression equation (global influence, DPFITSf and Cook's Z),) as well as the individual regres-
sion coefficients (specific influence, DFBETASy). A small number of cases may be identified
as outliers if they are extreme relative to the other cases in the data set and exceed minimum
rule of thumb cutoff values (Section 10.3). Outliers may be produced by contaminated obser-
vations or rare cases. Contaminated observations may be corrected or the case may be removed
from the data set; in contrast, the proper procedures to take with rare cases are more difficult,
involving both statistical and substantive considerations. Potential remedial actions include
deleting the case(s) from the data set (possibly changing to population to which the results
may be generalized), respecification of the regression equation, transformation of the variables
to account for the case(s), and robust regression approaches that downweight the influence of
the outliers in the regression analysis (Section 10.4).

We then consider the problem of multicollinearity in regression analysis which occurs when
the IVs become highly correlated. Several measures of the degree of multicollinearity including
r%x, the variance inflation factor, tolerance, and the condition number are presented. Standard
cutoff values for these measures are presented, but they appear to be far too high for many
behavioral science applications (Section 10.5). The advantages and disadvantages of several
remedies for multicollinearity including model respecification, collection of additional data,
ridge regression, and principal components regression are presented. Careful design of studies,
selection of conceptually relevant measures, and specification of regression models can often
help avoid problems of multicollinearity (Section 10.6).

18 See our presentation of sensitivity analysis in Chapter 5.



11
Missing Data

An all too frequent characteristic of research data is that some of the values called for by
the substantive issues being addressed are missing for some subjects. This can occur for
many reasons, to varying degrees, and in various patterns. It can be so serious that different
investigators analyzing the same data files may come to different conclusions just because they
have chosen different methods of coping with missing data. In this chapter we list some of the
considerations that enter into decisions about handling missing data and review contemporary
methods.

11.1 BASIC ISSUES IN HANDLING MISSING DATA

11.1.1 Minimize Missing Data

It is almost always possible to keep the amount of missing data down by thorough preparation
for data collection, careful monitoring of the collection process, and rigorous attention to the
data preparation process. It is no exaggeration to say that more than two-thirds of all the time
spent analyzing data is spent in data preparation, and much of this time is occupied in managing
missing data, so time spent in prevention is likely to pay off handsomely at later stages, as
well as improving the quality of the inferences from the data. A few basic rules for keeping
missing data rates down are:

1. Know exactly what information you will need for each variable you will use in your data
analysis before you begin data collection.

2. Don't ask subjects questions that they will frequently not be able to answer. (Sounds
obvious, but this rule is violated all too often.)

3. Time your review of the collected data so that it won't be too late to go back and obtain
missing information when it is first detected.

Many other rules apply to special circumstances, such as maximizing retrieval rates in sur-
veys and retaining subjects in longitudinal studies. Although these cannot be reviewed here
(but see Stouthammer-Loeber & van Kammens, 1995), they define a critical set of skills and
characteristics that need to be acquired by any investigator using these methods. There are,

431
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however, circumstances in which an investigator can and should plan to have missing data. The
most common is when the data collection for a study is so demanding that it cannot feasibly be
completed on any single study participant. Under these circumstances the protocol may be split
into units and a scheme for randomly assigning subjects to overlapping sets of units devised.
This procedure is feasible only when the sample size is very large, but when appropriate may
permit investigation of a substantive area (or a set of substantive areas) with a thoroughness
that is not otherwise possible.

11.1.2 Types of Missing Data

There are a host of circumstances that result in missing data. In survey research, for example,
some subjects may refuse or simply fail to respond to some items while responding to others.
In laboratory experiments, equipment failure, animal mortality, a dropped tray of test tubes, or
dropped-out subjects may create some blanks in some columns of the data sheets. In research
in school settings, absences or transfer of pupils or teachers may result in incomplete data,
and so on. It is only a slight exaggeration to paraphrase Murphy's law for behavior science
research to read, "If there are any ways in which data can be missing, they will be." As noted in
the previous section, in addition, there are research situations in which it is desirable to design
the data collection with planned missing data.

In selecting one's method of coping with missing data there are several factors that need to
be taken into consideration:

How much data are missing? Obviously, if the missing data account for only a tiny
fraction (say, 3% or less) of the data it will make much less difference how the problem is
handled than if 10, 20, or 30% are missing.

How large is the samp lei Some of the current methods are suitable only for large
samples (preferably n > 200).

Why are data missing? Although the investigator may not be able to answer this
question definitively, it is important to make every effort to discriminate the following
circumstances:

Data on X may be missing because respondents with particular values of X did not wish
to reveal some information, or were not able to provide some information, or were not even
asked. Formally this may be identified as a case in which missingness on X is (usually partially)
dependent on the (unknown) value of X. An example may be when individuals who engage in
illicit activities decline to respond to inquiries about whether they do so. Another example may
be the absence of a score on a test for a subject whose responses are out of the test's range. Yet
a third example is the circumstance in which some questions are contingent on the response to
other questions. These circumstances include both some of the easiest and some of the most
difficult missing data problems. In the first case, when a refusal to respond may depend on the
value of X, the investigator may have to guess at the extent of bias or use proxy variables that
may not entirely correct the bias. The other examples, in contrast, may be managed by some
of the simplest of techniques.

Data onX may be missing for some kinds of respondents who may be identified by distinctive
values on other variables in the data set. For example, less educated respondents may not
respond to some questions, or individuals who have somewhat atypical attitudes on one variable
may be less likely to respond on some other variable. In longitudinal or multiple informant
studies, variables missing at one time point or from one informant may be approximated by
other available data. In the very common circumstance in which other measured variables are
related to missing X, an important consideration is the magnitude of the relationship of these
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proxy or predictor variables to X. Another issue to consider is whether the variables that may be
used to estimate X are to be included in the theoretical model predicting Y. When consideration
of the available variables allows one to remove all bias in X associated with missingness from
the analysis the situation is frequently referred to as "missing at random." This means that no
cases of missing X are due to unmeasurable influence reflected in the value of X.

Data on X may be "missing completely at random," as when a laboratory assistant drops a
tray of test tubes or a power failure causes data on the computer to be lost (although in both
of these cases if the observations differ systematically over time, such a "random" event will
produce systematic biases in the data). Obviously this implies that missingness on X is not
correlated either with X or with any other variable in the data set. One circumstance in which
this occurs is that noted earlier, in which the study design and random selection of subjects
determine the presence or absence of data on X.

Who Will Be Using the Data Sefi Often, multiple researchers will be employing
variables in overlapping analyses, or the data set may be made available to other investigators
for secondary analyses. Under these circumstances, there are obvious advantages to having
made a consistent approach to the problem of missing information for variable X. In some
cases, there may be information that should be incorporated into this solution that will not be
commonly available to all investigators.

A traditional consideration, the availability of computer programs and data-analytic
resources, is generally no longer a realistic concern for anyone with access to the major statis-
tical programs. These programs are gradually incorporating the most sophisticated statistical
methods of handling missing data and doing so in increasingly user-friendly ways.

11.1.3 Traditional Approaches to Missing Data

Prior to relatively recently developed methods for imputing (estimating or modeling) scores
that are missing, three approaches predominated:

Dropping Variables
When, for one or a few variables, a substantial proportion of cases lack data, the analyst

may simply opt to drop the variables. This is obviously no loss when the variable(s) in question
do not contribute materially to accounting for Y and they are not essential to the theory being
tested. When, however, these conditions are not met (the usual case, else why were they
included?), the loss of information through dropping variables is hardly a satisfactory solution
to the missing data problem.

Dropping Subjects
When the pattern of missing data is such that they occur exclusively for a proportion of sub-

jects (Pa), the analyst may opt to drop these subjects and perform the analysis on the remainder
of the sample, a practice called listwise deletion in computer programs. If Pa is small enough
and n is large enough there can hardly be a material difference between the results obtained with
these subjects dropped and those which would have been obtained from all cases. However,
even with small proportions of data missing (say 2 or 3%) on each variable, it is easy for cases
with missing data on one or more of several variables used in the analysis to mount up to 10
or 15% of the full sample. Under these circumstances the question of whether the remaining
sample is unbiased (still representative of the population from which it was drawn), or in the
case of experimental studies whether the sample is still equivalent to a randomly assigned one,
becomes important. Even when the investigator shows that the residual sample (the "complete
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cases") are very similar to the dropped cases on certain variables, (for example, on demo-
graphic variables), the question of whether they are also equivalent on other unexamined but
relevant variables arises. In addition, such comparisons of the missing proportion of the sample
with the remainder may often be useless because the confidence interval on the estimates for
missing cases is large because of the small n (and the negative result of a test of "statistical
significance" is a foregone conclusion because of the minimal resulting statistical power). Of
course, the loss of this fraction of the sample and the accompanying df will also affect the
precision of the estimated effects of variables on which there is no missing information.

Use of a Missing-Data Correlation Matrix, or Pair-Wise Deletion
Such a matrix is computed by using for each pair of variables (X,, X,) as many cases as have

values for both variables. Thus, when data are missing for either (or both) variables for a case,
it is excluded from the computation of r^. As a result different correlation coefficients are not
necessarily based on the same subjects or the same number of subjects. This correlation matrix
yields R2 and the other correlation results, and when combined with the mean and sd computed
from all available observations for each Xt, produces the Z?,s and BQ of the regression equation.

This procedure is fully justified if (and only if) the data are missing completely at random.
In this case, each statistic is an unbiased estimate of its population parameter for full data,
and therefore the analyses are similarly unbiased. This method leaves some awkwardness in
inference and confidence limits due to the varying n on which the results are based. They are
clearly not as sturdy as if the maximum n had obtained throughout, nor as frail as the minimum
n would suggest.

Table 11.1.1 presents a small data set with missing values that may clarify the complexity of
the makeup of the statistics that go into the MRC analyses when a pair-wise deleted correlation
matrix is used. The correlations with Y (rK) are based on nonidentical subsets of subjects
(nYi = 7, nY2 = 6, ny3 = 7). The IV intercorrelations (r,y), too, are based on nonidentical
subsets of subjects («12 = 5, n13 = 5, and n2a = 4). The Ms and sds of X, entering the r^ differ
with the Xj variables being correlated, because whether a given subject's Xf value is included
depends on whether it has a value for the given Xj under consideration. Thus, Subject 4's Xl

value of 63 is included in the M and sd ofXl which enters r12, but not in the M and sd of Xi
which enters r13. Finally, in rYl and in the raw score regression equation, all available values on
each IV are used for the M and sd. Thus, Subject 9's X3 value of 130 enters into this "official"
M and sd of X3, even though it was not included in the computation of the M and sd entering

TABLE 11.1.1
Illustrative Missing-Data

Score Matrix

Subject

1
2
3
4
5
6
7
8
9
10

Y

72
84
63
81
47
62
39
61
71
46

Xi

38
52
47
63

31
56

44

X2

6
12

8

7
9

10

*3

92
114
108

110

93
130
86
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either r13 or r23. For example, for X3, the M and sd based on all available values and entering
ry3 are 104.7 and 14.2, but those entering r13 are 98.6 and 10.6, and those entering r23 are
100.5 and 11.8. A veritable mishmash!

Now, if data are missing for reasons related to Y or to other IVs, the pieces put together for
the MRC refer to systematically different subsets of the population. Clearly, the MRC results
cannot be coherently interpreted with regard to the entire population or to any specifiable
subpopulation.

Indeed, under the circumstances of nonrandomly missing data, one can obtain a correlation
matrix from pair-wise deletion whose values are mutually inconsistent, that is, a matrix that
would be mathematically impossible to obtain were the data complete. For complete data, the
correlation between any two variables is constrained by their correlations with a third. Thus,
r12 may take on any value within the full limits of — 1 to +1 if and only if Xi and X2 correlate
0 with all other variables under the sun. If this condition is not met, then the range of possible
values for r12 is constrained. Specifically, for complete data, the mathematically possible upper
and lower limits for r12 that take into account one other possible correlate are given by

(11.1.D r13r23±V(l-r12)(l-r23).

Values for r12 outside these limits are inconsistent with the other correlations.
To illustrate, if r13 = .8 and r23 = .4, substitution gives .32 ± .55: r12 cannot take on a

value less than —.23 or more than +.87. If r13 = 8 and r23 = .6, r12 is constrained to fall
with the limits .48 ± .48, that is, .00 and .96—a negative value for r12 is inconsistent, that is,
mathematically impossible. These constraints have been illustrated for three variables for the
sake of simplicity; they obviously obtain for more than three variables.

Now, although inconsistent rs may occur in a pair-wise deleted correlation matrix where
the data are randomly missing, this possibility is small, at least for reasonably large n with
relatively small proportions of missing data. But when the absence of data is nonrandom, that
is, related to the other variables in the system, the possibility of inconsistent rs is obviously
larger, because the sample values are no longer estimating necessarily consistent population
rs. This is not to say that nonrandomly missing data will probably result in inconsistent rs
and an error message from the computer program. Unfortunately, nonrandomly missing data
will more often than not yield consistent missing-data correlation matrices, but that does not
make them right, given the absence of a coherent population about which conclusions may be
drawn.

11.2 MISSING DATA IN NOMINAL SCALES

Because the consequences of certain options for treating missing data are more readily
illustrated for missing data in nominal scales, we will begin with this problem.

11.2.1 Coding Nominal Scale X for Missing Data

Consider a g-level nominal scale to which we can assign np of our n subjects but do not know to
which of the g levels the remaining na (= n — np) subjects belong. Then, in fact we have a total
of g + 1 groups or a g-level nominal scale, the additional level representing no information or
absent data in regard to membership in one of the other g groups, plus the information about
which subjects have missing data.

Concretely, imagine a survey about attitude toward abortion (ATA) in which religious
affiliation (G) is to be used as one of several IVs, with provision for Gl = Protestant,



436 11. MISSING DATA

G2 = Catholic, G3 = Jewish, and G4 = Other or no religious affiliation. Assume that a
subset of the sample declines to respond to this item. We need not drop the item, nor drop these
nonresponding subjects completely, nor drop them from correlations involving the set of IVs
carrying religious affiliation (pair-wise deletion method). We merely categorize them on this
nominal scale as G5 = absent data or "no response." To an objection that G5 is not a religious
affiliation and is of a different character from GI through G4, we offer the counterargument that
there is no structure in a nominal scale other than that we impose by our coding. All information
about the subjects' responses to this item is included in our categorization into five groups.
The meaning of the categorization is expressed in the coding and in the interpretation of the
results of the analysis.

Employing this simple device, one proceeds to code the groups of this nominal scale into
a set of g IVs, namely Xl, X2 ... Xj, each an aspect or function of group membership. Any of
the coding methods described in Chapter 8 may be used, because all we are doing is treating
Ga, the group with absent data, as just another group.

Dummy-Variable Coding
All the formulas and interpretations of Section 8.3 obtain. Ga (the absent-data group) may

be used as the reference group if its comparison with each of the others is of particular interest.
Suppose that data are missing because the question was contingent on the response to a previous
question. For example in a study looking at family composition the first question is whether the
respondent has siblings and the follow-up question inquires about the particular constellation of
siblings (e.g., by birth order, gender match, or spacing) that is hypothesized to be an influence
on Y in the particular study. In this case it is entirely possible that the "missing" group is the
most appropriate reference group (here, the group with no siblings). Or, some other group
may serve as the reference group, in which case the partial coefficients reflect the difference
between cases with missing data and this reference group. In addition, the correlation of the
missing-data dummy variable with the other independent variables as well as Y will inform
the investigator about potential bias and meaning that may be attributed to missingness. The
investigator should be wary, however, of implicitly assuming that the missing-data group is
the appropriate reference by failing to provide it with a variable on which it is coded 1.

Effects Coding
If the substance of our research suggests treating all g groups including the missing data

Ga on the same footing, the methods and interpretation of Section 8.4 on effects coding can be
used. If another group is selected as the group that is coded by a string of —Is, then Xa will,
in the partialed results, carry the distinction in Y between Ga and the unweighted aggregate
of all g groups. This differs from the dummy-variable coding in that it compares those with
missing data with an average of equally weighted groups, whereas the dummy variable rYa

contrasts missingness with all other responders pooled. Of course, if only a small proportion
of the cases are missing the variable, it may be useful to keep in mind that unweighted effects
coding will treat this group's mean as equal in importance to the means of the other groups in
determining the mean of group means. This will, of course, be true even if the missing-data
group is coded as the omitted group with —1.0 throughout.

Contrast Coding
To whatever contrast IVs one may wish to examine among the g groups whose membership

is known, one can readily add a missing-data contrast whose coefficients are orthogonal to
those of the other contrasts.
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Mean Substitution
Another method of coding missing cases is to substitute the mean value for each of the

variables reflecting group membership. This method may be used in combination with any of
the above methods of coding the missing data and other groups. The consequence of mean
substitution is to render missingness orthogonal to, and hence uninvolved in, the contrasts
among the groups of known membership.

Because certain properties will be more easily apparent, we will examine the case in which
the dependent variable is a dichotomy. Suppose we have the raw data presented as variables X
and Y in Table 11.2.1, where: indicates a series of cases with the same response pattern. Of the
90 cases originally included in the investigation, 10 (cases 81 through 90) did not respond to
the question we have identified as the independent variable X. We have created a new variable
^miss on which cases without data on X are coded 1 and cases with data == 0. Let us examine
some of the alternative methods of filling in the blanks on X. CH 11 EXOI

Coding by dummy variables, we recode X^ = 1 for the cases for whom X = 1 and 0 for
the remaining cases (including the cases missing X). Now we use XKro and X^^ in the equation
predicting Y. Note that the ryzero ( = .104) is smaller than ryx ( = -244), in this example. This
is because the missing cases have an exceptionally high mean on Y. The bivariate regression
of Y on XKTO is similarly smaller than that of the complete cases. However, when Xzero and
•^miss ( me missing data dichotomy) are entered into the simultaneous equation predicting F,
the resulting coefficients are Y = .167 + .233 (XKro) + .533 (X^). These values are readily
interpreted: The estimated score for those cases coded 0 on both XKro and X^ss is .167, the
mean for the zero cases on the original X. The Byzero.miss for-Xj is .233, the difference between
the Ys of the original cases coded 0 and of those coded 1. Note that this is identically the
value for the complete cases. The B for X^^, the absent data dichotomy, is the difference
between the mean of the X = 0 cases (.167) and that of the missing X cases (.70), or .533. The
multiple correlation for this example = .338 and the standard error of Xl = .106. (Of course,
in this case, given the dichotomous Y, the usual extrapolations from these values cannot be
made.)

Suppose that instead of XKm we use Xmean where the missing cases are coded at the mean (=
50/80 = .625) to represent X. Note that Xmean correlates less than the complete data sample
with Y ( = .222). This lower correlation is a necessary consequence of the fact that we have
not increased the covariance or numerator of the correlation (since each deviation score on X
for the missing cases = 0 and therefore cannot contribute to the covariance) whereas we have
increased the denominator (since the full variance of Y now enters the equation). We have also
reduced the correlation between Xmean and X^ss to zero so that when these are combined to
predict Y, the resulting estimates are

with identical multiple R and standard error forXmean. Note that Byxmean is me same as &YX f°r

the complete cases, whether or not the missing data dichotomy is included. It can be shown
that no matter what single value of X is given to the missing cases (even 3,209!), simultaneous
consideration of X and the absent data dichotomy will produce the same multiple R,Byx, and
SEBX. Furthermore, even the use of 1-0 coding for X^s is a convention. It can also be shown
that any two values for absent and present X will produce the same partialed Byx value, .233,
with the same SE and R.

Another way of "filling in" the absent data on X is to use the information about other
variables, in this case, Y. We note that of the 20 cases where Y = 1, 15 or .75 had X scores
of 1. Of the 60 cases where Y = 0, 35 or .583 had X scores of 1. In Xe we have substituted
these estimated scores for the absent data on X. This way of estimating the missing values on
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TABLE 11.2.1
Data for 90 Cases With Some Missing Data on X

Case number

1
2
3
4

25
26
27
28
29
30
31
32

58
59
60
61
62
63

78
79
80
81
82
83
84
85
86
87
88
89
90

M
sd
rY

By
BY (partialing XJ

X

0
0
0
0

0
0
0
0
0
0
1
1

1
1
1
1
1
1

1
1
1

.625

.487

.244

.233

Y

0
0
0
0

0
1
1
1
1
1
0
0

0
0
0
1
1
1

1
1
1
0
0
0
1
1
1
1
1
1
1

.30

.356

y
•^miss

0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
1
1
1
1
1
1
1
1
1
1

.11

.316

.254

.450

V
•"•zero

0
0
0
0

0
0
0
0
0
0
1
1

1
1
1
1
1
1

1
1
1
0
0
0
0
0
0
0
0
0
0

.556

.500

.104

.100

.233

y
-"•mean

0
0
0
0

0
0
0
0
0
0
1
1

1
1
1
1
1
1

1
1
1

.625

.625

.625

.625

.625

.625

.625

.625

.625

.625

.625

.459

.222

.233

.233

-^est

0
0
0
0

0
0
0
0
0
0
1
1

1
1
1
1
1
1

1
1
1

.583

.583

.583

.75

.75

.75

.75

.75

.75

.75

.633

.460

.253

.264

.251

X gives us a BYe of .264, which reduces to .251 if the missing data dichotomy is included. We
will discuss this method further below.

Suppose that we had more than one predictor variable? In this case the necessary identity
between the complete-data sample regression coefficient Byx and the estimated effect when the
missing-data dichotomy is included in the equation would no longer hold. If the correlations
among the other variables in the equation were at all different between the cases missing X and
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those with data on X there would be likely differences on Byx as well. Since even when data
are missing completely at random some minor differences would be expected on the basis of
sampling variation, at least minor changes in Byx are to be expected. The correlation between
the missing-data dichotomy and other independent variables and potential conditionality of
relationships among other variables on the missing-data dichotomy may also be used to examine
hypotheses about the reasons for missingness and the nature of the population for whom data
are not available. In the cases illustrated here it is clear that cases missing data on X are not
likely to be a random sample from the same population as the remaining cases. Perhaps they
are similar to the X = 1 cases, although their mean on Y is even higher.

11.2.2 Missing Data on Two Dichotomies

Thus far we have considered only the case of one variable on which data are missing. What
if data are missing for two variables? If both are IVs one may simply include two missing-
data dichotomies. However, if one of the variables is Y, the method of coding that includes a
missing-data dichotomy is no longer available (given a model with a single dependent variable).
Therefore the study conclusions will be limited to those cases that have data on the dependent
variable. We may be concerned that this sample may not represent the same population as the
full sample, and we may also regret the loss in sample n. What can be done?

Under these circumstances we may turn to a different set of procedures in which we estimate
the statistics for the full sample by making certain assumptions about the model. For example,
let us assume that in the problem examined in the last section we also had data on X for 10
cases for whom we had no data on F. Two (20%) of these cases were X — 1 and 8 were
X = 0. We will change the format of presentation to express the data as a 2 by 2 table, with
missing data. These are presented in Table 11.2.2, where we have also multiplied the ns by 10
to emphasize that the method to be illustrated is appropriate for large samples only.

As noted earlier when we considered missing data on X only, one way to estimate values
is to assume that the missing data on X are distributed on X the same way as those cases who
have data, and that the missing data on Y are distributed on Y the same way as those who have
data. This, then, represents our model of the data. Our goal is to reduce this table to a 2 by 2
with a total sample of 1000. To estimate the frequency in each cell we use the proportionate
distribution for the missing cases. Thus the estimate for the 0, 0 cell is:

250 (the complete cases) +
250/300 (the proportion of the observed cases for this value of X that had this
value of y) x 80 (the number of missing Y cases for this value of X = 66.67,
+ 250/600 (the proportion of those missing X attributable to this cell) x 30

= 12.5.

TABLE 11.2.2
Raw Data: 1000 Cases Missing Some Values

of Both X and Y

x = o
X = l

Missing X

Total

7 = 0

250

350

30

630

F = l

50

150

70

270

Missing Y

80

20

100

Total n

380

520

100

1000
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TABLE 11.2.3
Two Dichotomies, Estimation of Cell Frequencies

Complete cases: Cell and marginal proportions

x = o
X=l

Total

y = o
250/800 = .3125

350/800 = .4375

.75

7= 1

50/800 = .0625

150/800 = .1875

.25

Total

.375

.625

1.00

Estimated cell frequencies assuming complete case distributions

x = o

X = l

Total

y = o

250 + 80(250/300) + 30(250/600)
= 329.17

350 + 20(350/500) + 30(350/600)
= 381.50

710.67

Y= I

50 + 80(50/300) + 70(50/200)
= 80.83

150 + 20(150/500) + 70(150/200)
= 208.5

289.33

Total

410

590

1000

These values sum to 250 + 66.67 + 12.5 = 329.17. Other cells are estimated by the same
procedure, as shown in Table 11.2.3. The resulting table has allotted the missing cases to cells
in conformity with our "model," with a change in the fraction of total cases that are in each
cell. For example, we can see easily by dividing by 1000 (= ri) that the proportion of cases
estimated to be in the 0,0 cell is now .3293 instead of the original .3125, and that the proportion
of cases in the second column is .2892 instead of the original .25.

But if these new estimates of cell proportions are better than the original ones, would it
not be better to have used them instead of the complete case data in the determination of cell
frequencies? In Table 11.2.4 we do just that. As we see, the first re-estimation (iteration) uses
the cell proportions from the previous estimate, and the resulting proportions of cases in the
cells and marginals are, on the average, a little more discrepant from those of the complete
cases than were the previous estimates. Again we argue that if this is the best estimate, then it
is the estimate that we should have used for the missing cases. So again we iterate (2) and yet
again (3). By the time we have completed the third iteration we see that frequencies are hardly
changing, so we accept these as the final frequencies.

What has happened to the means of these two variables and to the relationship (phi coeffi-
cient) between them? The estimated final means are .585 on X and .294 on Y, in comparison
to .625 on X and .25 on Y for the complete data. The correlation of the final estimates is .153,
in comparison to .149 on the complete data. The regression coefficients are .171 and .133
respectively.

11.2.3 Estimation Using the EM Algorithm

The procedure just carried out on the above example is mathematically equivalent to a maximum
likelihood (ML) estimation, using the EM algorithm, where one alternately estimates and
maximizes (Little and Rubin, 1987). Computer programs that employ these procedures are also
designed to provide appropriate standard errors for the estimates for studies using appropriately
large samples (n > 200). In the example we have created large mean differences between the



TABLE 11.2.4
Iterations of Estimated Cell Frequencies for Two Dichotomies

Iteration 1

x = o
X = l

Total

r = o

250 + 80(329.17/410) + 30(329.17/710.67) = 328.04

350 + 20(381.5/590) + 30(381.5/710.67) = 379.03

707.07

y = i

50 + 80(80.83/410) + 70(80.83/289.33) = 85.32

150 + 20(208.5/59) + 70(208.5/289.33) = 207.51

292.83

Total

413.36

586.54

1000

Iteration 2

x = o

x = \
Total

y = o
250 + 80(328.04/413.36) + 30(328.04/707.07) = 327.41

350 + 20(379.03/586.54) + 30(379.03/707.07) = 379

706.41

7=1

50 + 80(85.32/413.36) + 70(85.32/292.83) = 86.91

150 + 20(207.51/586.54) + 70(85.32/292.83) = 206.68

293.59

Total

414.32

585.68

1000

Iteration 3

x = o
X = l

Total

y = o
250 + 80(327.41/414.32) + 30(327.41/706.41) = 327.12

350 + 20(379/585.68) + 30(379/706.41) = 379.04

706.16

Y = l

50 + 80(86.91/414.32) + 70(86.91/293.59) = 87.50

150 + 20(206.68/585.68) + 70(206.68/293.59) = 206.34

293.84

Total

414.62

585.38

1000
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missing values and the original frequencies so as to maximize the differences between the final
estimates and the complete data. The model we employed, however, assumes that missing
cases are not biased representatives from the same population. Were this assumption true we
would expect the final estimates to be much closer to the complete data estimates, unless, of
course, the samples were small and a large proportion missing.

How does this procedure differ from the previously discussed method of "plugging" some
value for missing values and employing a missing-data dichotomy to adjust for information
conveyed by the "missingness"? The model-estimating procedure assumes that the missing
information does not convey any new information—that the data are missing at random. When
that assumption is true, it will provide the best possible estimates of the population values (the
maximum likelihood estimates). As we will see, even if that assumption is not true, providing
that relevant missingness is completely accounted for by variables in the model, the estimates
are the best possible.

A second relevant difference is that the model-estimating ML procedure "doesn't care"
whether the data are missing on X or on Y. As was clear in the preceding example, the
procedure estimates cell frequencies (in the dichotomous variable case), which are equivalent
to means, variances (or sds), and covariances (or correlations) without regard to IV or DV
status. This means that when the assumptions are valid, one is not limited in generalization of
one's findings to the sample with complete data on Y.

A third relevant difference is that this model-estimating procedure did not estimate values
of individual cases in the data set. As we saw, the missing-plug plus dichotomy solution does
not actually estimate individual observations either, but it does provide a unique score for
each. Lest there be some confusion at this point between the estimated values (Xe) used in the
previous section to predict Y, there is a critical difference between this modeling procedure and
any method of estimating values for individual cases.1 When we used estimated X values in
Table 11.2.1 we literally gave each case where Y = 1 the score of .75. The EM-ML procedure,
in effect, assumes that 75% of the missing X cases who have 7=1 have X = 1, and that the
other 25% have X = 0. This difference has consequences for the sd of X, and thus for the
consequent rra and Byx- Of course, any new user of the data set who uses this EM-ML method
of estimation for missing values may find and report different values of, for example, the mean
and variance of Y, depending on what FV(s) are used. And this can happen even when Y cases
are exactly the same in the old and new analyses if there are new IVs employed.

11.3 MISSING DATA IN QUANTITATIVE SCALES

11.3.1 Available Alternatives

When data are missing in quantitative scales, we have a similar array of options and issues
to be considered. The simplest and historically most frequently used is to code cases with

CH11EX02 absent data at me mean To examine this and other options, let us return to our ongoing
academic example. Let us assume that the analyses we have done thus far with this fictitious
data set (Section 3.5.1) have been based only on the cases with complete data. However, there
are another seven cases on whom we have all the information except citations (Table 11.3.1).
Suppose we begin by inserting 40.23 (the mean years for cases with data) for each case missing
citations, creating the variable we call citm. (Ignore for the present the variable labeled citj.)
Note that although plugging the mean does not change our estimate of the population mean

1 Some computer programs that use this general procedure do, however, permit the imputation of values to individual
cases.
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TABLE 11.3.1
Academic Salary Example With Cases Missing Citation Data

Time
U) since
no. Ph.D.

01 3
02 6
03 3
04 8
05 9
06 6
07 16
08 10
09 2
10 5
11 5
12 6
13 7
14 11
15 18
16 6
17 9
18 7
19 7
20 3
21 7
22 5
23 7
24 13
25 5
26 8
27 8
28 7
29 2
30 13
31 5
32 3
33 1
34 3
35 9

No. of
Sex publications

0
0
0
1
0
1
1
1
1
1
0
1
0
1
1
1
0
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1

Complete data (62)
All cases (69)

18
3
2
17
11
6
38
48
9
22
30
21
10
27
37
8
13
6
12
29
29
7
6
69
11
9
20
41
3
27
14
23
1
7
19

Mc,,bar

40.23
40.23

citm Cit^ Salary

50
26
50
34
41
37
48
56
19
29
28
31
25
40
61
32
36
69
47
29
35
35
18
90
60
30
27
35
14
56
50
25
35
1
69

13 $51,876
0 54,511
10 53,425
12 61,863
9 52,926
22 47,034
23 66,432
10 61,100
7 41,934
1 47,454
6 49,832
0 47,047
0 39,115
11 59,677
28 61,458
3 54,528
14 60,327
19 56,600
4 52,542
6 50,455
1 51,647
1 62,895
2 53,740
16 75,822
19 56,596
0 55,682
0 62,091
10 42,162
0 52,646
20 74,199
22 50,729
11 70,011
14 37,939
0 39,652
31 68,987

ID
no.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Sdcit Beit SEB.cit

17.17 310.75 60.95
16.26 310.75 59.56

Time
since No. of
Ph.D. Sex publications citm

3
9
3
4
10
1

11
5
1

21
7
5
16
5
4
5
11
16
3
4
4
5
6
4
8
3
4
4
5
12
8
9
3
8

D
"cit.tjif

201.93
202.32

1
1
1
0
1
1
1
1
1
1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0

11
31
9
12
32
26
12
9
6
39
16
12
50
18
16
5
20
50
6
19
11
13
3
8
11
25
4
10
10
18
7
15
17
36

"E'Bcitjjf

57.51
56.13

69
27
50
32
33
45
54
47
29
69
47
43
55
33
28
42
24
31
27
83
49
14
36
34
70
27
28
—
—
—
—
—
—
—

rsal,cit

.550

.538

Citl

18
0
0
3
5
15
9
15
0
19
12
15
14
19
2
9
1
8
7
23
5
0
14
11
23
0
0
9
0
7
0
11
9
22

Salary

$55,579
54,671
57,704
44,045
51,122
47,082
60,009
58,632
38,340
71,219
53,712
54,782
83,503
47,212
52,840
53,650
50,931
66,784
49,751
74,343
57,710
52,676
41,195
45,662
47,606
44,301
58,582
53,725
63,501
60,422
61,600
55,622
56,780
67,133

of citm, it lowers the estimated sd, and necessarily also the estimated correlation with salary.
These are the same effects that we saw when we considered mean plugging for a dichotomous
variable (Section 11.3.1) and can be understood by considering the deviation score equations
for sd [Eq. (2.2.1)] and r [Eq. (2.3.5)]. In both we have added cases that cannot contribute to
the numerator because their deviation from the mean is zero.

When, however, we examine Bci(, the regression of salary on citm, we find that the new
estimate 310.45 is identical to the value for cases without missing data, as we showed previously
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for dichotomous variables. On the other hand, the SEBci[ is smaller, reflecting the new n = 69 as
contrasted with the previous n = 62. Obviously we have not really added any new information
on citations, and so this smaller value may seem to be cheating and is a source of concern
whenever the difference between these two SEs is material. This method is not favored by
experts in the area partly because of this deflation of the error estimate and partly for other
reasons. First, the cases with missing data may differ systematically from the cases with
data present, and thus representing them at the mean distorts the mean as well as its sd and
correlation with other variables. Second, although the bivariate B equals that of complete cases,
other relationships in the matrix are influenced in part by the "complete cases" and in part by
the cases with some missing values.

These problems are improved but not entirely solved if one treats missingness as information
by including a missing-data dummy variable. The correlation between this dichotomy and other
variables will enable one to identify variables with which missingness is correlated. Including
it in the regression equation then provides appropriate adjustments so that differences between
the average value of X and the estimated value given the other variables are taken into account.
For example, in our running academic salary study, if we include the missing-data dichotomy
in the equation with the mean-plugged citations we get B^ss = 4514 (SE — 2733), indicating
that the cases who are missing data on citations are paid, on average $4514 more than we
would expect if they did in fact have an average number of citations. As noted before, the Bcit

remains 310.75. When the missing-data dichotomy is included in the full equation with the
four other predictors, we find that this discrepancy shrinks slightly to $4438. In this case the
Bcit.t,s,Pjn is 201.97 (SE = 55.39), a value very close to that of the complete data.

Thus, despite its disrepute, mean plugging for modest proportions of missing data in IVs,
especially when used with a missing data dichotomy, has several advantages. It is simple, it
does not "make up" data (because plugging the mean is a convenience rather than an estimated
score), and it is informative about why cases may be missing data. It also has the same meaning
and consequences for each of the multiple users of the data set.

There are also disadvantages of employing the missing-data dichotomy. In the common
case of a small percentage of data missing on each of a number of variables, it is not likely
that the correlations of these dichotomies with other variables will be very informative because
their confidence limits will be so large. When each of the variables in a problem has some
missing data, it is cumbersome to carry around so many nonsubstantive variables (although not
necessarily more cumbersome than alternative analytic solutions to the problem). Under some
circumstances these missing-data variables may be multicollinear (again, not an overwhelming
problem, as they may be used selectively or consolidated into a general index). In general,
missing-data dichotomies have not been widely used.

11.3.2 Imputation of Values for Missing Cases

It is frequently the case that it is possible to estimate missing cases from other data at hand.
This is referred to as imputing values and can be done in several different ways.

Hot Deck Imputation
In very large data sets like the U.S. census a method called hot deck has been used effectively.

In this procedure, for each case (e.g., census tract of residence or member of an age-gender
group) with missing data, a "substitute" case is randomly selected from those cases that are
the same or very similar on one or several variables that are relevant to the missing variable.
This case is then used as a proxy for the missing data (essentially appearing twice or more
in the final data set). The advantage of this method is that it will not only provide a "match"
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on the variables of selection but that it also allows the influence of unmeasured variables
to operate appropriately. Thus, for example, if there is a "neighborhood" effect on certain
unmatched variables, or on the relationship between measured or unmeasured variables, it will
be appropriately represented. Because this is a method suitable only for very large data sets, it
will not be further described here.

A related method that has been used on moderate sample sizes is called the "twin" method.
In this method a set of variables that relate to the missing variable are selected and standardized.
Then another case in the data set is identified for which the average of the squared differences
on these variables is a minimum (and less than .5). The value of the missing variable for that
case is then imputed to the case with missing data.

Multiple Imputation and the Representation of Uncertainty
When an imputation method such as the hot deck has been used, Rubin (1987) has pointed

out that the uncertainty of the imputed value is unrepresented, and thus the estimated SEs
are too small. One way to correct this is to examine multiple imputations for each missing
value. When one includes both the mean and the variance of these values in the determination
of statistics, including the mean and variance of the entire sample and the covariance matrix
with other variables, this source of uncertainty is appropriately represented. This option is
gradually being incorporated into standard statistical packages, and, in principal, it represents
an additional improvement to other methods of imputation. It can remove bias in missing values
of both dependent and independent variables, providing other variables are available that are
nontrivially related to that bias. Because certain study designs may intrinsically produce such
bias in Y (see, for example, P. Cohen & J. Cohen, 1984), this can be a critical issue. It can
substantially improve the statistical power when variables related to Y for missing cases are
available. It will produce appropriate standard errors. And, unlike most current ML methods,
it does not require that the variables related to missingness or to the variables on which missing
data occurs are part of a structural model (Collins, Shafer, & Kam, 2001).

Imputation by Ordinary Least Squares (OLS)
There are two general approaches to using the information about the relationship among the

variables to estimate the value of X for cases missing this datum. The first is a straightforward
prediction of X using OLS procedures as described in this text, and the second involves the
modeling methods described hi the next section. In the OLS technique, variables that are known
to be strongly related to X are selected and employed in a prediction equation for cases with
complete data. Then this empirical regression equation is used to estimate the value for cases
missing X. For example, let us return to our problem of missing citations for seven faculty
members. Upon further inquiry we find that the reason data are missing for these cases is that
they are all foreign scholars who have been recruited into the department. Although other data
are available, the citation service that is available does not cover citations in foreign national
journals. However, because all of these scholars have been on the faculty for at least three
years, we may examine their citations in the past year. If we can show that this variable has
a reasonable relationship to lifetime citations (elf), we may use the past year as a substitute
variable. These data are shown as ci^ in Table 11.3.1.

The correlation between cit and citj is .73, and the regression equation predicting cit is
25.92 +1.5 citi, based of course on the 62 complete data cases. For each of the seven cases
without lifetime citation data we estimate cit, as 25.92 + 1.5(ciY1). Once generated, these
individual scores may be used as if they were actual responses to the citation question, regard-
less of whether variables used to estimate the scores (e.g., in this case cit^ are or are not
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also included in the model. When these estimated scores are used for these cases the bivari-
ate B predicting salary is 305.93 (SEB = 58.18), and r = .54 (in comparison to .55 for
the complete cases. When the other variables are added to the regression equation predict-
ing salary, the Bcinps = 199.48 (SE = 55.12), whereas the 62 complete case value was
BCU.YW = 201.93 (SE = 57.51).

It should be noted that when prediction of the missing values by these "substitute variables"
is poor, this solution or any other method of imputation will be only marginally different from
mean substitution because all estimated values will be very near the mean. It is, however, also
quite possible that estimated scores will have a mean quite different from the complete data
sample, if these cases are atypical on the variables used in the estimation; thus all statistics may
be biased. One may employ a missing-data dichotomy to identify atypicality of missing cases
on estimators or on estimated scores. To the extent that the missing-data dichotomy correlates
with the variable that includes the imputed scores, we can identify the kind of cases that are
more likely to be missing. If there is any reason to suspect that these cases may be different
from those with data, we may also examine interactions between the imputed variable and the
missing-data dichotomy in their relationship with any other variable.

In this example, for simplicity, we have used only a single variable in this imputation.
However, one may use as many variables as usefully add to the relationship between the
estimated and observed scores, that is, that add materially to the multiple R. One simply
determines the prediction equation on the basis of complete cases and applies it to the cases
with missing data. Some newer statistical package options (e.g., SYSTAT) do provide imputed
values for individual cases based on the other variables in the model.

It is useful to remind oneself that there is nothing in this (or any other) method that will
take care of the possibility of bias in these estimations not represented by other variables
in the analysis. For example, suppose faculty members who were recruited from foreign
countries actually had many fewer lifetime citations than would have been expected, because
the publication outlets in those countries were fewer. That is, the estimated citations for this
sample may be greater than the actual citations, if one could have obtained them.2

When the prediction of X is excellent, this appears to be a sound solution. When the pre-
diction is poor, it has the disadvantages of mean substitution, although it retains the advantage
of being a "permanent" solution to the problem in any given data set.

In this example we have used an outside variable, annual citations, that we do not intend
to use in the prediction model because it may be less stable and thus deemed less appropriate
for this analysis than lifetime citations. This method of imputation is particularly attractive
when the variables to be used for imputation are not generally or typically expected to be used
in the same prediction equations as are the imputed variables. However, it is also possible
to use the method when the variables to be used in the imputation are also to be used in the
substantive testing of hypotheses. In this case, an alternative ML procedure (discussed later)
is also available.

In general this method is not used when the data missing are on the dependent variable,
although of course it is equally feasible in this case. Most investigators are less comfortable
with the underlying assumption of a consistent model across subpopulations on Y, perhaps
because it is the central focus of the investigation and thus misrepresentations of relationships
are likely to be more theoretically consequential.

In sum, the imputation of missing scores from other variables in the data set has several
advantages. Since it generates a single imputed X score for each case, each user of the data
set will be analyzing the same variable. The variables used in the imputation do not need to be

2 Of course that suggests that some variable should also be in the model to indicate that for these individuals
citations may have a different meaning, in which case the estimated values may be more "valid" than the actual values.
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included (and often or even typically would not be included) in models employing X. In this
way both sample sizes and variables will tend to be consistent across users of the data files.

11.3.3 Modeling Solutions to Missing Data in Scaled Variables

As in the illustration of the case of two dichotomies shown earlier, it is possible to obtain analytic
ML solutions by starting with a model of the data. The model that is typically assumed is that
the data are missing at random. This means that although cases missing data may have atypical
values on one or more of the other variables included in the same model, they are not atypical
on any other variables (not included in the model) that are (nontrivially) related to Y. Nor are
the correlations among the various variables different for these cases (or actually, for cases like
these) than for the remainder of the population. Multivariate normality is also assumed (as it is
for the OLS and ML prediction models). This means that the variables that would be predictors
of missing data (and thus the identifiers of any nonrandomness that can be corrected) must be
in the same matrix (model). In practice, this computerized technique begins with the pair-wise
deletion matrix and "adjusts" it to resolve inconsistencies. (See the earlier EM illustration of
adjustment of the relationship between two dichotomies.)

11.3.4 An Illustrative Comparison of Alternative Methods

Let us return one more time to the ongoing academic salary example. In addition to the 7 cases
missing data on citations, suppose we also had another 18 cases missing data on time since
Ph.D. or on both number of publications and citations. Table 11.3.2 provides the data set for CH11EX03

all 87 individuals in the department. Table 11.3.3 provides the solutions for each of several
approaches to the problem. We previously showed the prediction equation for salary based on
the 62 faculty members with complete data (given here as the listwise deletion solution). Now
let us estimate the solutions for the full set of 87 cases.

The first full-sample solution provides coefficients for the mean-plugged variables, and
the next solution uses the same variables plus missing data dichotomies for each of the three
predictors that had missing data. Note that for at least two of the predictors the missing cases
had salaries quite discrepant from those that would have been expected if they had been typical
(average) on the variable that they were missing. Those who were missing time since Ph.D. had
salaries that were quite high in comparison with other cases, given their publications, citations,
and gender. The explanation of this could come from either of several sources. Either this group
was paid more (presumably because of some unmeasured variable), or they actually had higher
than average time since Ph.D. (so the higher salaries were "justified"), or the model in some
way was different for these individuals (e.g., some unassessed interaction or a difference in
the relationships among the variables, may be present).

Similarly, those missing citations also appear to be getting unusually high salaries. As we
noted earlier, this discrepancy was present even when we imputed scores, and it may just be
that some additional salary was offered these foreign scholars in order to entice them to this
academic department.

Moving on to the next regression equation, we examine the EM algorithm solution. In this
problem with several scaled variables, the variance-covariance matrix underlying the regression
solution is "filled in" with estimates of the effects of the missing values. Although the actual
mathematical operations are too complex to demonstrate here, they may be intuited by analogy
to the operations examined in the section on the relationship between two dichotomies with
missing data on each. This algorithm operates under the assumption that the data model is the
same for both present and absent data. By saying that the model is the same we mean that the



TABLE 11.3.2
Academic Salary Example for 87 Faculty Members

ID
no.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Time
since
Ph.D.

3
6
3
8
9
6

16
10
2
5
5
6
7

11
18
6
9
7
7
3
7
5
7

13
5
8
8
7
2

13
5
3
1
3
9
3
9
3
4

10
1

11
5
1

No. of
Sex publications Citations Salary

0
0
0
1
0
1
1
1
1
1
0
1
0
1
1
1
0
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1

18
3
2

17
11
6

38
48
9

22
30
21
10
27
37
8

13
6

12
29
29
7
6

69
11
9

20
41
3

27
14
23
1
7

19
11
31
9

12
32
26
12
9
6

50
26
50
34
41
37
48
56
19
29
28
31
25
40
61
32
36
69
47
29
35
35
18
90
60
30
27
35
14
56
50
25
35
1

69
69
27
50
32
33
45
54
47
29

$51,876
54,511
53,425
61,863
52,926
47,034
66,432
61,100
41,934
47,454
49,832
47,047
39,115
59,677
61,458
54,528
60,327
56,600
52,542
50,455
51,647
62,895
53,740
75,822
56,596
55,682
62,091
42,162
52,646
74,199
50,729
70,011
37,939
39,652
68,987
55,579
54,671
57,704
44,045
51,122
47,082
60,009
58,632
38,340

Time
ID since No. of
no. Ph.D. Sex publications Citations

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

21
7
5

16
5
4
5

11
16
3
4
4
5
6
4
8
3
4
4
5

12
8
9
3
8

—
—
—
—
—
—
—
—
5
8
9
6

12
3
4
1

14
3

1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0

39
16
12
50
18
16
5

20
50
6

19
11
13
3
8

11
25
4

10
10
18
7

15
17
36
7

11
15
22
21
25
10
16
—
—
—
—
—
—
—
—
—
—

69
47
43
55
33
28
42
24
31
27
83
49
14
36
34
70
27
28

12
24
15
33
39
30
14
42
—
—
—
—
—
—
—
—
—
—

Salary

$71,219
53,712
54,782
83,503
47,212
52,840
53,650
50,931
66,784
49,751
74,343
57,710
52,676
41,195
45,662
47,606
44,301
58,582
53,725
63,501
60,422
61,600
55,622
56,780
67,133
54,832
53,981
63,111
61,891
60,989
60,154
57,370
58,647
47,855
50,080
63,602
61,220
84,071
48,879
58,521
47,222
62,290
49,705

Variables means for cases with and without data:

Time Sex Publications

Cases with complete data (n = 62) 6.79 .56
Cases missing citations only (n = 7) 7.00 .57
Cases missing time only (n = 8) .75
Cases missing publications and citations (n = 10) 6.50 .80

18.18
16.14
15.87

Citations

40.23

26.12

Salary

$54,816
59,255
58,872
57,344
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TABLE 11.3.3
Academic Salary Example: Estimated Full Data Effects

Method
(») (R2)

Listwise deletion
(62) (.50)
Plugged means
(87) (.38)
Plugged means/MD

(87) (.44)
EM Algorithm
(87) (.46)
Pair-wise deletion
(72-87) (.47)
Filled in/imputation
(87) (.58)

B0

38,670

41,403

39,232

38,387

#time
(SE)

857
(288)
769

(256)
736

(250)
869

(241)
1,055
(257)
743

(154)

#sex
(SE)

918
(1,860)
1,145

(1,682)
502

(1,663)
1,515

(1,548)
1,247

(1,604)
1,143

(1,375)

D
•"publications

(SE)

93
(86)
128
(83)
134
(80)
118
(74)
51

(80)
131
(57)

D
"citations

(SE)

202
(58)
161
(56)
196
(57)
154
(47)
144
(50)
214
(38)

Missing Missing Missing
time publications citations

7,032 -1708 4,552
(2,858) (3,614) (2,889)

regressions among the variables in the matrix, including the dependent variable, are the same for
cases with all data and those with missing data. In estimating the variance-covariance matrix we
note again that we are not obtaining estimates for each of the individual observations (although
increasingly this option is available on computer programs, which use the same assumptions).
The program does not assume that the variable means are the same for the missing cases as
for those with data present. As with the case of the dichotomies, depending on values of other
variables, estimated means may change. We also note that the program doesn't care whether
the data are missing on the independent or dependent variables.

The next solution to the regression equation employs the pair-wise deletion matrix, in which
each bivariate relationship is determined by the number of cases on which data are present.
As you would expect by the fact that the EM algorithm "starts" with the pair-wise deletion
matrix, these solutions tend to be a little more similar to each other, although the coefficients
for publications are quite discrepant.

The next solution returns to basics. As indicated in the first section of the chapter, it is
always critically important to try to discern the reasons why data may be missing. In this case,
we first ask why it may be that we don't know the time since Ph.D., since this would seem
to be readily determined from files typically in the personnel record. As it happens in this
fictitious department, these eight faculty are "old-timers"—faculty who never completed their
Ph.D.s who were incorporated into the department when the department was first created, some
15 years earlier. One possibility that we may decide to act on is substitution of years since first
academic appointment for time since Ph.D., since those with Ph.D.s typically obtained their
first appointments around the same time as their degrees.

What about those missing both citations and publications? Well, these faculty members
are just laggards—those who had failed to respond to the Dean's request for information on
publications and citations. Other information on these faculty has been gathered from the
Dean's office. We might suspect that at least some of these faculty will be among the poorer
"producers" on staff, with somewhat fewer publications and citations than average. Obviously
the first thing we should do has nothing to do with analytic solutions: We should go out and
get the missing data on these 10 faculty members! Having done this, the filled in solution is
the resulting equation.
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Finally, we decide to add the imputed citations (Section 11.3.1) to allow analysis of the
complete set of 87 faculty members. Just in case we have residual undetected problems with
these subgroups we include the three missing data dichotomies. We are reassured that none of
these dichotomies shows a large effect relative to its standard error, and note in addition that they
are in the expected direction. That is, the old-timers are a little underpaid ceteris paribus, either
because of their absent degrees or because there may be a curvilinear relationship between
age and salary. Those missing publications and citations are paid a little more than expected;
perhaps that is why they were reluctant to turn in their data on publications and citations!
And those foreign scholars who were missing citations may apparently have been given a very
slight salary incentive.

11.3.5 Rules of Thumb

Which, then, of these estimates is best? Obviously in this fictitious example there is no true
answer. It is, however, reassuring that most substantive conclusions would not change very
much regardless of which solution we used (that the most important influences were seniority
and citations), although the pair-wise deletion solution tends to be most discrepant. In this
example we had a large proportion of cases with missing data, 25 of 87 or nearly 30%. Thus
these are circumstances in which the differences between the various solutions are likely to be
relatively large.

The real bottom line is that the best scientific solution is to keep the missing data to a
minimum and to get as much information about the reasons that data are missing as possible.
When the missing data are a small proportion of any variable and not attributable to a few
cases on whom hardly any data are available, the determination of the solution may depend
on the context. When a number of scientists will employ the variables, it may be optimal to
find a best estimate for missing data by imputation. If good indicators of the missing values
are not available, it will probably do no harm to use plugged means. If there is the slightest
reason to suspect that the cases with absent data may be different from other cases, use the
missing data dichotomy. When data are missing in small and apparently random fashion, in a
study in which the number of uses and users of the variables will be limited, the EM solution
is probably best. When the sample is very, very large, go and study methods developed for
census data. When the sampling and data-analytic designs are complex, examine the recent
literature addressing these problems (e.g., Graham & Hofer, 2000).

11.4 SUMMARY

The chapter begins with an exhortation to minimize missing data and some suggestions for
increasing the likelihood of doing so (Section 11.1.1). The best means of handling missing
data depends on the extent of the problem, sample size, reasons why data are missing, and
the number of users of the data set (Section 11.1.2). The major ways of handling missing
data in the past were to drop variables or subjects with missing data, or to employ statistics
based on those with complete data for each computed coefficient. Each of these procedures has
serious potential drawbacks (Section 11.1.3). When data are missing completely at random
(missingness is not correlated with any relevant variable), all methods will yield unbiased esti-
mates, although some will be statistically more powerful than others. When data are missing
on a categorical variable, coding options can be adapted from any of the methods for coding
described in Chapter 8, without distortion of coefficients for cases with data (Section 11.2.1).
The case in which data are missing on more than one categorical variable can also be handled
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with estimation methods. These methods can be improved by iteration (Section 11.2.2), which
is illustrated for a simple case that is one application of the EM algorithm maximum likeli-
hood procedure. Advantages of this method are discussed, including its potential application
to the DV.

Methods of coping with missing data in quantitative scales are reviewed and illustrated in
Section 11.3, beginning with a review of alternatives such as mean substitution with or without
a missing-data dummy variable. Imputation of missing values for individual cases is discussed
in Section 11.3.2, including OLS, "hot deck," and EM procedures. Solutions that are based on
a model of the data using EM-ML methods are often optimal if data are missing "at random,"
meaning that data on any variable W are not missing because of the true value of W, or in a
way that is not predictable from other available variables (Section 11.3.3). Finally, all of the
alternative methods are illustrated and compared for a worked extension of the faculty salary
example. Some general rules of thumb are offered, depending on the circumstances discussed
at the beginning of the chapter.



12
Multiple Regression/
Correlation and Causal Models

12.1 INTRODUCTION

12.1.1 Limits on the Current Discussion and the Relationship
Between Causal Analysis and Analysis of Covariance

Necessarily, a chapter-length presentation of causal analysis cannot begin to do justice to the
subject matter in its entirety. Therefore, this chapter will be limited to these three relatively
modest goals: to introduce readers to the concepts and terminology used in causal analyses, to
provide some techniques and illustrations for the simpler procedures, and to present a glimpse
of the variety of options available to the data analyst whose goal is illumination of a theory
by the full extraction of the information contained in an appropriate data set. We begin by
examining the models that are implicit in the special case of MRC that is represented by the
analysis of covariance.

As originally devised, ANCOVA was a device for increasing the efficiency (statistical power)
of randomized experiments by reducing the size of the error term in ANOVA. Figure 12.1.1 (A)
gives the implicit causal diagram of this classical form. Randomization assures that there is no
relationship between the set A covariates and set B treatment groups in the population (i.e., no
group mean differences in the covariates), and Y is the criterion by which one assesses whether
the treatments represented by B have different effects. Because the covariates are selected so
that they do relate causally to Y, one can remove (by partialing) their variance in Y and produce
a smaller error term for the significance test (1 — R^^) than would be the case without them
(1 — Ry B) and thus increase power. Because much of experimental design is devoted to the
reduction of error, ANCOVA, so used, is obviously a valuable tool. Note that the inclusion of
set A has no bearing on the size of the treatment effects of set B, only on our ability to detect
them. Put differently, effects of B -A do not differ from B, because A and B are not correlated.

As noted earlier, researchers also employ ANCOVA where randomization did not deter-
mine set B group membership. In quasi-experimentation, the purpose remains the evaluation
of differential treatment, but for practical or sometimes ethical reasons, pre-existing nonran-
domized groups are used. The threats to the validity of conclusions about treatment effects
in such circumstances have been thoroughly described by Campbell and his collaborators
(Campbell & Stanley, 1966; T. D. Cook & Campbell, 1979; Shadish, Cook, & Campbell,

452
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FIGURE 12.1.1 Causal diagrams for four types of application of the analysis of
covariance.

2002). The problem is made plain by the causal diagram in Fig. 12.1.1(B): Membership in
these pre-existing groups may be caused, in part, by other variables (set A) that, in turn, also
have causal influences on Y. Ignoring the causes in A common to set B group membership
and Y results in spurious B-Y relationships and inevitably biases our estimates of the effects
of treatments per se. In quasi-experimental ANCOVA these common causes are represented in
the covariates that make up set A, and the partialing of A from B is the crucial feature: B • A is
intended to remove the common causes and leave authentic treatment effects. For this maneu-
ver to be successful, however, there are two basic conditions that set A must satisfy. First,
and obviously, the set A covariates must contain all nontrivial common causes of set B and Y.
Second, the covariates must be measured reliably, because measurement error in a partialed
variable will also bias the group effects. When these conditions are satisfied, ANCOVA is a
powerful device for the statistical control of antecedent common causes.

Not infrequently in quasi-experimental research, the nature of the causal relationship
between some or all of the set A variables and membership in the groups may be unclear
or debatable in that the causal arrow of Fig. 12.1.1(B) may be reversed, or there may be recip-
rocal causality so that the model may be said to have been misspecified. The complexity of field
research is rich in such ambiguities. If we nevertheless partial the effects of A from those of B
we may be denying the treatments some of the variance hi Y for which they are responsible,
this usually conservative analysis being made in the interest of avoiding a false claim of group
differences due to the treatments.

Yet another use to which ANCOVA has been put is in research on the effects of some property
or properties that define group membership (set B). No experimenter-induced treatment is
involved; rather, what is under study is the effect on Y of some "organismic" variable such as
sex, diagnosis, age, or ethnicity. The role of the covariates in such cases (if it is clear that set
A cannot have caused set B) is to limit our investigation of the effects of set B on Y to direct
effects, which we will discuss later in this chapter.

Finally, we consider a design popular in epidemiological and clinical research that is typi-
cally analyzed by ANCOVA. The case-control study, diagramed in Fig. 12.1.1 (D), is employed
in the search for causes of some existing state, usually a pathological condition. A group of
cases having this condition, usually constrained by other relevant variables (e.g., age, sex,
race, treatment-seeking), is gathered, and one or more comparison (control) groups, similarly
constrained, are also constituted. Because the condition is relatively rare in the population, the
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cases may be gathered over a period of time or in various places in order to have a sufficiently
large number for adequate power.1 The case and control groups constitute set B. Set A is
made up of organismic or other antecedent variables that would otherwise provide competing
hypotheses. The putative cause (or "risk factor") for the condition, Y, is then related to B • A
in the ANCOVA. Note that whereas in the ANCOVA Y is nominally the dependent variable,
it appears as a cause in this model. In practice, what is being assessed is the magnitude and
significance of the difference in means of the cases and controls when they are adjusted for
whatever differences exist in the covariates.

These causal models are the most frequently involved when ANCOVA is applied; they are
not exhaustive. For these models B is always group membership but the variables making up
set A are unconstrained. They may include variables that code groups, or they may include
main effects, interactions, and curvilinearity of scaled variables, or any combination of these
variables that makes sense in the particular investigation. As we shall see, when one moves
from ANCOVA to MRC, set B (the set of primary investigative interest) may also include data
of any of the forms discussed in the earlier chapters.

12.1.2 Theories and Multiple Regression/Correlation Models
That Estimate and Test Them

Back in Chapter 2, we noted that the simplest regression equation, Y = BQ + BX, may be a
prototypical causal model with X the causal variable and B the size of its effect. Regression
invites causal thinking because, unlike correlation, it is asymmetrical, just as are a cause and
its effect, at least in simple cases.

Both bivariate and multivariate regressions may be used to represent a specific theory.
Theories in the behavioral sciences specify what variables need to be in the model to pro-
vide adequate tests of causal relationships. A fully adequate theory should also indicate the
mechanisms by which an antecedent condition or variable intensity exerts its influence on a
change in Y. Ideally the theory also tells us not only the direction but the magnitude of the
effects that would be consistent with the theory, as they sometimes do in the physical and
biological sciences. Unfortunately most frequently, at present, most behavioral science the-
ories predict only which effects should be nonzero in the population and the hypothesized
direction of effect. Thus, when empirical estimates are employed to test a theory, only the
consistency of the estimated directions of effects with the theory can be tested. Because of the
absence of more specific quantitative predictions, the data that are consistent with one theory
are very often consistent with a range of other theories as well. Nevertheless, these theories
provide a starting place for building a science. Later in the chapter we will discuss some meth-
ods that include tests for differential consistency of the data with (certain) alternative causal
models.

Empirical Conditions for Inferring Causalitylityy   
As introduced in Chapter 3, empirical demonstration that a variable X may be a cause

of another variable Y depends on showing that three conditions hold (Bollen, 1989; Kenny,
1979):

1. Relationship: X is correlated with Y;
2. Temporal precedence: X precedes Y in time;

!We ignore here issues of nonindependence of data as discussed in Section 14.6.
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3. Nonspuriousness: The X- Yrelationship holds even when the influences of other possible
variables on this relationship are eliminated so that the effect can be said to have been
isolated.

In addition, there needs to be a theoretically plausible mechanism by which X may exert its
influence on Y.

Relationship is established by showing there is a nonzero association between X and
Y. Temporal precedence can be established empirically through longitudinal research or
on the basis of theory or logic. For example, the finding of a correlation between
mother's IQ and child's IQ in a cross-sectional study could not be easily attributed to
influences of the child on the mother. Priority of stable IQ in the mother, in addition
to research on genetic and environmental factors in IQ, shows clearly that influence pro-
ceeds (primarily or overwhelmingly) from the parent to the child. Nonspuriousness is
established by removing the influence of variance in other possible extraneous factors that
may influence the outcome variable (e.g., level of educational opportunities shared by
parent and child). Both genetic and environmental influences make such a relationship
plausible.

Alternative Methods of Establishing Isolation of Effects
There are three distinct methods of isolating the effect of a target independent variable:

(1) one may examine its effect within constant values of other potential causes, (2) one may
create the variable and apply it differentially to groups who are randomly assigned to conditions,
or (3) one may measure and statistically control (partial) the effects of potential alternative
explanatory variables (Higginbotham, West, & Forsyth, 1988).

First, extraneous factors may be removed or held constant. For example, "nonsense sylla-
bles" (e.g., VOLVAP) have been used in verbal learning experiments to minimize extraneous
influence on the outcomes due to differential familiarity with the words. Researchers in human
evolution study primitive cultures to minimize the influences of modern civilization. A given
study may be confined to a single age or ethnic group.

Second, subjects may be randomly assigned to different groups in which the variable of
interest is varied by experimental manipulation. In randomization, a chance process (e.g.,
flipping a coin) is used to assure that each subject has an equal (or proportional) chance of
being in a given experimental treatment condition. The random assignment process removes
many forms of extraneous influences by assuring that the subjects in all experimental treatment
conditions will be equivalent, on average, at the beginning of the experiment.2

Finally, extraneous factors representing alternative explanations for the relationship between
the putative cause and Y may be statistically controlled, which generally means including
them in the statistical equations that estimate the model. This procedure of measurement of
and statistical adjustment for (partialing of) known extraneous factors permits isolation of the
relationship of interest from any influence of the extraneous variables and is, of course, a
central topic of this text.

The three methods of controlling for extraneous variables vary in their strengths and weak-
nesses and in their areas of application. Philosophers of science and research methodologists
also differ in their beliefs about the extent to which the three methods of control can be success-
ful in ruling out extraneous factors (Berk, 1988; Pearl, 2000). Nearly all commentators prefer
randomization and experimental manipulation when possible: Random assignment is usually,
but not inevitably, better at ruling out the influence of most types of extraneous variables than

2 Given sufficiently large samples and no bias due to participation or drop-out rates.
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the other approaches. For this reason, randomized experiments are widely used in such areas
as experimental psychology, social psychology, experimental economics, and clinical trials in
physical and mental health. Many of these areas have enjoyed rapid scientific progress from
the power of randomization and experimental manipulation3 to rule out extraneous factors.
However, randomization has practical limits, particularly when experiments are extended over
time or treatments involve nontrivial changes in ongoing behavior or compliance to a strict
protocol. Subject attrition may occur; different experimental conditions may be contaminated
by communications among subjects or staff, or by access to alternative sources of treatment.
Volunteer subjects may be so atypical as to preclude sensible generalization of the results to
any population of interest4 (Shadish, Cook, & Campbell, 2002; West, Biesanz, & Pitts, 2000;
West & Sagarin, 2000).

In other areas of the behavioral sciences, the demands of experimental manipulation and
random assignment are less feasible, for practical or ethical reasons. In these areas, putative
social, cultural, economic, contextual, or organismic causes cannot be manipulated by the
investigator. Even when the putative cause can be manipulated, random assignment to treatment
conditions may be prohibited by important ethical or legal concerns (e.g., subjects cannot
be infected with serious diseases or deprived of efficacious treatment). Potentially possible
randomized experiments in natural settings may require financial or administrative support of
a magnitude that is not likely to be forthcoming.

As noted earlier, when manipulation of the independent variable is possible but random
assignment is not, quasi-experiments can be utilized. Quasi-experiments incorporate features in
their design that attempt to eliminate specific classes of extraneous factors, thereby minimizing
the number of plausible alternative explanations of the results (e.g., by examining treatments
within particular demographic groups). More commonly hi the behavioral sciences, control
takes the form of measuring these alternatives and partialing their effects. Difficulties arise
because potential causes are often many; effects may be subtle, interactive, and delayed;
and strong measurement is difficult. Consequently, the process of ruling out the influence of
extraneous variables is often lengthy, involving the testing of multiple statistical models in
multiple studies.

Drawing on precedents in other sciences (e.g., geology, astronomy) in which randomization
and manipulation are not possible, two tacks may be particularly useful in limiting the range
of extraneous variables that can explain observed relationships of interest (Shadish, Cook, &
Campbell, 2002). The first is to make precise predictions about the direction, form, and strength
of relationships, an approach that is widely used in the natural sciences such as astronomy and
geology, but to date has been rarely attempted in the behavioral sciences (Meehl, 1967). One
example is provided by behavioral genetic theory, which makes precise predictions about
heritability differences between fraternal and identical twins for traits determined by single
genes.5

An approach that reflects the complexity of relationships typically observed in the behavioral
sciences is to propose a causal network of relationships among a set of variables (Cochran,
1965). To the degree that the entire hypothesized network of relationships is supported, it may
be more difficult to think of parsimonious alternative explanations for the results.

3 We ignore here any issues of problems of external validity in matching experimental manipulations of variables
to their "naturally occurring" presumed equivalents (Rosnow & Rosenthal, 1999).

4Indeed, specification of the (limitations of the) population for which a given causal system is presumed to
operate, although of critical theoretical importance, is probably one of the weakest areas of current causal modeling
and analysis.

5 Although to date these predictions have been used primarily to estimate heritable relationships rather than to test
theoretically derived estimates.
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12.1.3 Kinds of Variables in Causal Models

The basic strategy of causal analysis is to represent a theory in terms of the network of variables
that are involved, explicitly stating the causal direction, sign (+ vs. —), and nature of the
relationship, if any, between all pairs of variables that are considered. Path diagrams6 are
typically used to graphically depict the network of relationships. Observational data are then
employed to determine whether the model is consistent with them and to estimate the strength
of the hypothesized causal relationships. Failure of the model to fit the data results in model
falsification, whereas a good fit supports the theoretical arguments that the model is, at least,
one of the (potentially many) models that provide adequate goodness-of-fit to the sample data.
Repeated failures to falsify the hypothesized model in different studies, particularly when other
competing theories are also tested and disproved, adds strength to the investigator's belief in
the model. Although no model can be definitively confirmed, the status of a model as "not yet
discontinued" is often a powerful one in science.

There are a number of distinguishable roles that variables may play in theories. To review, a
cause X of some variable (Y) presumably precedes Y in time and has a generative mechanism
that accounts for its impact on Y. These mechanisms are often implicit in our theories, residing
in some vague if common understanding that such a force may be plausible. Thus, if gender is
thought to be a cause of some characteristic, we assume that biological or social mechanisms
are present and implicit in the concept of gender (in the given setting or population) that can
explain how gender-associated differences arise. Some theories provide, at least partially, for
explicit inclusion of some of these mechanisms, they are called mediators of the effect of
X on Y. Figure 12.1.2(A) provides examples of a mediator Z that totally accounts for the
relationship between X and Y, and a mediator W that partially accounts for the relationship
between X and Y. Yet another model that is frequently tested is one in which competing
variables in the model are alternative potential mediators of an unmeasured cause of Y.

Critical additional variables in a causal model include other variables that may obscure or
confound the relationship between X and Y, as illustrated by V and W in Fig. 12.1.2(B). In these
drawings V is a variable needed in order to correctly estimate the effect of X on Y, and W is a
variable that completely accounts for the correlation of X with Y. Thus potential confounders
are variables that may have a causal impact on both X and Y, They include common sources of
measurement error as well as other influences shared by X and Y. In experimental studies there
is a special concern about aspects of the experimental manipulation or setting that may account
for the study effects, rather than the motivating theoretical factor (Brewer, 2000). Any of these
problems may produce spurious relationships between X and Y as measured and estimated in
their absence; that is, ignoring them will bias empirical estimates of the causal effect of X,
usually, but not always, making them too big.

There is a special class of variables, related to both a cause and an effect, that suppress
the relationship between the cause and the effect [Fig. 12.1.2(C)]. Suppressor variables such
as Z are fairly uncommon in most behavioral science theory, but are extremely common in
both biological and economic models. In these models a feedback mechanism exists that
tends to promote homeostasis (biological) or equilibrium (economics). Thus, despite a general
tendency for an increase in X to cause an increase in Y (e.g., for an increase in income to cause
increases in spending) increases in X also cause a change in some other variable Z that causes
a decrease In Y (e.g., increases in savings). Suppression variables may be either confounders

6Path analysis originated independently in genetics (Wright, 1921) and econometrics during the first half of the
twentieth century and offers a coherent method for the quantitative analysis and testing of theories based on the natural
observation of phenomena. Beginning in the 1960s, these methods grew in sociology, economics, and related fields
(Blalock, 1971; O. D. Duncan, 1975; Goldberger & Duncan, 1973), and in the 1970s in education and psychology
(Bentler, 1980; Kenny, 1979).
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FIGURE 12.1.2 Types of variables in causal models relating X to Y.

or mediators of the effect of X on Y as shown in Fig. 12.1.2(C), and in general their omission
will lead to an underestimate of the effect of X on Y.

Although we will deal with these only slightly in this chapter, other important variables
in some causal theories are the moderators, variables that modify relationships among other
variables [Fig. 12.1.2(D)]. The arrow from Z to another arrow indicates that the estimate of a
causal effect of X on Y is conditional on the value of Z, a moderator in the model, as discussed
in Chapters 7 and 9.

Three other ways of classifying variables that were introduced in Chapter 3 are useful in
discussing empirical causal models [Fig. 12.1.2(E)]. Exogenous variables are those that are
the starting point for the model because they are assumed not to be effects of other variables in
the model, except, potentially, other exogenous variables. A convenient characteristic of these
variables is that it is not necessary to specify what the reasons may be for correlations among
them. Any correlations among them are expressed as curved double-headed arrows, and left
uninterpreted. Endogenous variables are those for which at least one causal variable is included
in the model, and thus are all variables that are not exogenous. Another set of variables are
the residual causes, usually labeled eY (for error variance) or UY (for unmeasured causes),
representing the miscellaneous unknown or unmeasured ("random") causes of variables, about
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which our data, and perhaps our theory as well, are silent [Fig. 12.1.2(E)]. An important set of
residual causes of our variables as measured in the behavioral sciences are those collectively
referred to as measurement error, and including such things as day to day or moment to moment
fluctuation in response probability, unclean test tubes or imperfectly standardized reagents, the
impact of temporary illness or fatigue, or that miscellany of item content that is irrelevant to
the main thrust of the measures included in the model.

The major analytic tool underlying the structural or path portion of structural equation
modeling is MRC, and particularly regression analysis. As the number of variables causing Y
increases, we enter the realm of multiple regression analysis. As the complexity of the model
increases further, we develop systems of interlocking multiple regression analyses in which a
variable may be a cause in one regression equation and an effect in another. Further complexity
in the form of bidirectional causality (X -> Y and Y —> X simultaneously) may require that
we change our methods of estimating causal relationships, but our basic tool remains the
regression equation.

12.1.4 Regression Models as Causal Models

As noted, excepting models that are strictly designed for predictive purposes, many regression
analyses carried out by behavioral scientists are explicitly or implicitly motivated by a causal
model. However, to say that a regression equation reflects a causal model is quite different from
saying that it reflects a correct causal model. For regression coefficients to correctly reflect the
causal relationship between X and Y, any sources of spurious relationship between them must
be included in the model. For a simple but clear example of the importance of this assumption
we may conveniently return yet again to our fictitious academic salary example.

In the Chapter 3 example of 15 faculty members, the correlation of number of publications
with salary was .588 and the regression of salary on publications was $336 per publication
(see Table 3.2.1). If this value were to be accepted as an estimate of the causal effect of
publications on salary (i.e., that each publication resulted on average in an increase in salary
of $336), we would be making an invalid assumption, namely, that the two variables had no
important causes in common. However, we saw (hardly to our surprise) that time (years) since
Ph.D. was substantially correlated with both the number of publications and salary (.657 and
.710 respectively). Because there is no mechanism by which either publications or salary can
have caused time since Ph.D., whereas there is a plausible mechanism by which time since
Ph.D. caused publications (via the academician's cumulative work) and salary (by virtue of
seniority, among other mechanisms) we conclude that the causal flow must be in the opposite
direction—from time since Ph.D. to publications and salary (but note the later discussion).
Therefore, time since Ph.D. is likely to be a source of spurious relationship between salary
and publications. Indeed when time was included in the model, the publications effect was
reduced to only $122 per publication.7

Given the complex subject matter of the behavioral sciences and the fertile imaginations
of their practitioners, nonexperimental research for which one can convince one's colleagues
that there are no unmeasured common causes, and no alternative mediators of unmeasured
causes of the independent variable of interest, may hardly exist. However, the relevant point

7 Actually there is a possible mechanism for a causal effect of publications on years. A faculty member who
publishes very little is very unlikely to get tenure. Thus, except for recent graduates, such persons will not appear
in the sample, so that only very recent (as yet untenured) faculty members will have few or no publications. This
mechanism illustrates how careful it is necessary to be when making generalizations from effects that appear to be
chronologically later that may nevertheless have an impact on an earlier variable, especially sample composition. This
problem can be eliminated if we assume that the sample, and thus the population to which we wish to generalize, is
limited to tenured faculty.
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is not whether there are omitted common causes, but whether their probable effect would
be sufficiently large to seriously bias the estimated effects of observed variables. Does this
representation of our causal models mean that there are no other variables that influence salary?
Of course not. We know that politicking with the Dean, communicating offers of employment
from other universities, and past and present other services to the university will have influenced
the current salary. All this model is saying is that if we had measured them, these variables
might be mediators of some of the effects of variables we have explicitly included in the model,
or even moderators, but they would not be confounders. Some possibilities for estimating the
effects that potential confounders may have on a model are given later (Section 12.4).

The problem of confounders is often referred to as the problem of correlated residuals
(correlated disturbances for economists). To understand the reason for this label we return
to Fig. 12.1.2(E). Here we have explicitly included causes, Uw and UY, that consist of all
unmeasured causes of W and Y, respectively. These residual causes are included in complete
causal diagrams for each endogenous variable. The effect of the residual or unmeasured causes
of Y is estimated as

12.2 MODELS WITHOUT RECIPROCAL CAUSATION

Thus far, the only kinds of causal models we have attempted to estimate have been those in
which the variables can be fully sequenced such that no variable that is a cause of a prior
variable is an effect of a subsequent variable. These models, often referred to as recursive, can
be estimated by ordinary regression equations. In contrast, nonrecursive models are charac-
terized by reciprocal causation or causal feedback loops and require more complex estimation
techniques. Because models without reciprocal causation are simpler to understand and to
estimate we will begin with these.

12.2.1 Direct and Indirect Effects

In Fig. 12.2.1(A) we have a model in which: V is an exogenous variable; W is caused, in part,
by V; X is caused by V and W by means of direct paths, but also by V indirectly by means of
its effect on W and W's effect on X. Z is caused by X, W, and V, with potential direct effects
of each but also indirect effects of V by way of W, of V by way of Ws effect on X, and of W
by way of X. Y is caused by X, W, V, and Z. For each of the four endogenous variables we
have included an arrow from all unmeasured causes. The direct effect of V on W is estimated
by BWV and the effect of unmeasured causes on W is estimated as the standard deviation of the
residuals from W predicted from V( = sdw*J\ — r^y). The direct effects of V and W on X are
estimated by Bxv,w and Bxw,v, respectively, and the effect of Ux is given as sdx^/\ — R\-vw.

where the Ry is computed from all measured causes; this is the standard error of estimate
(standard deviation of the residuals Yt — F() estimated from measured causes. It is assumed
that these unmeasured causes are uncorrelated with the measured causes. Why? Because if
they were correlated with any of the measured causes their omission would bias the estimates
of the effects on Y of any variable they were correlated with (usually making them larger,
because redundancy is more common than suppression).

One must also assume that the remainder of the model is correctly specified (e.g., that Xj
does cause Y rather than the other way around).
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FIGURE 12.2.1 Illustrative five-variable model.

Similarly, the direct effects of X, W, and V on Z are #zx-w> &zw-vx an^ #zvxw» respectively,
and the direct effects on Y are estimated by the coefficients of the regression equation in which
all four variables are used to estimate Y. Quite simply, then, direct effects are estimated by
partial regression coefficients in equations in which all variables with direct effects (i.e., with
arrows ending in the dependent variable) are included.

The estimated total effect of any variable on any other may be determined by the trac-
ing rule, in which all single-headed arrows and sets of arrows leading from the potential
cause to the effect variable are traced. In this tracing each causal path consisting of the
cumulative product of the coefficients leading from the causal variable of interest (e.g., V),
through other causes (e.g., W,X,Z) until the effect variable (7) is reached constitutes one of
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the potential several ways in which V influences Y. These paths may be summed to deter-
mine the total effect [e.g., V affects Y by means of W (5W x Byw.xzv)* + by means of X
(BXV-W x BYX-vwz)> + by means of Z (Bzvxw x Byz.xwv^ + by means of W via Z (5W x
^zw vx x BYZ-wvx)> + by means of X via Z (fixv x BZX.-WV x ^rz-wv)' + by means of WVia X
via Z (#vyv x fi^y x BZX.WV x #yz-w)» + by means of BYV-WXZ]- This total effect may be fur-
ther decomposed into a direct effect (that is, with all other predictors partialed) and an indirect
effect (the sum of all other paths). As we will see subsequently, total effects may be estimated
by inclusion in a model in which only potential causes of the causal variable X are included,
equivalently, no effects of X are included. Such a method makes determination of indirect
effects by subtraction practical.

The full model for the academic salaries example, as formulated in Section 3.7, is given
as Fig. 12.2.1(B). Note that this model is identical to Fig. 12.2.1 (A), except that we have not
drawn in the effects of unmeasured causes because they tend to clutter up the diagram and
also because their coefficients are not interpreted in the same way as the 5s. (This omission
of the explicit symbols representing the unmeasured causes is not strictly standard, although
common, and should not be taken as representing a substantive change in the model.)

Going back to the raw data presented in Table 3.3.1 we may calculate the direct effect of sex
on time (years) since Ph.D. as/ = BY$ = 1.72 years, the mean sex difference. Sex and time

CH12EX01 smce ph.D. are the two variables with direct effects on publications, so g and h are estimated as
BPS.T = .66 publications more for males, and 2.11 publications per year, respectively. The three
direct effects on citations are / = BCS.TP = 2.43 more citations for males, j = BCT.SP = 1.03
citations per year, and BCP.ST = .19 citations per publication. Finally, the four direct effects on
salary are estimated by the equation with all four IVs, previously found to yield / = $918 higher
for males, m = $857 increase per year, n = $93 per publication, and o = $202 per citation.
The effects on each variable coming from unmeasured causes [shown in Fig. 12.2.1 (A)] are
estimated by the standard deviations of the various residuals for the equations that produced
the preceding estimates of direct effects.

Using the tracing rule, indirect effects are estimated by products of direct effects. Thus, the
indirect effect of sex on publications is estimated by the product of the effects of sex on time
(/) and the effect of time on publications (h)\fh = 1.72 (2.11) = 3.63 or about an average of
3% publications more for male faculty attributable to their longer time in the field.

Any other indirect effects may be similarly determined as the product of the sequence of
causal estimates from a cause to an effect, that is, of all estimates that form a causal pathway
from one variable to another. Thus, one causal path from sex to citations is by means of
the direct effect of sex on publications g and the direct effect of publications on citations k
(i.e., gk = .125). Another indirect effect of sex on citations is by means of the sex effect on
time since Ph.D., /, and the direct effect of time on citations, j (i.e., fj = 1.77). The third
indirect effect of sex on citations is via the indirect effect of time on citations via publications,
fhk = .690. Indirect effects may be summed to give the total indirect effect. Thus, the total
effect of sex on citations attributable to the tendency for women to have had more recent Ph.D.s
and fewer publications is .125 + 1.77 + .690 = 2.585. We may compare this indirect effect of
sex on citations with the direct effect (/ = 2.43) and note that they are of similar magnitude,
thus the mean difference of about five citations more for male faculty members was made up
roughly equally of a direct effect and an indirect effect operating mostly through the tendency
for women to be more recent Ph.D.s. As noted earlier, these variables through which indirect
effects operate are called mediators; in this example the primary mediator of the sex difference
in citations is time since Ph.D.

The remainder of the indirect effects may be determined in the same manner as the sum of
the products of the coefficients for all causal routes from a cause to the endogenous variable
in question. It is instructive to determine all indirect effects on salary in our example (see
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TABLE 12.2.1
Direct, Indirect, and Spurious Effects on Salary (B and p)

Table 12.2.1). Sex has three kinds of indirect effects on academic salary. The first is attribut-
able to (mediated by) the sex effect on citations, /, times o, the citation effect on salary,
(2.43)($202) = $491. Second, the indirect effect of sex via publications is the sum of two
products, gn = (.66)(93) = $61 plus gko = (.66)(.19)(202) = $25 for a total of $86. Third,
the indirect effect of sex via time is the sum of four products: fin, fhn, fjo, andfhko. The indirect
effects of time since Ph.D. and publications may also be determined via the products of indi-
rect paths to academic salary. Citations have no indirect effects because the model specifies
that no variable except salary is an effect of citations. The various effects of a variable need
not have the same sign. In this example all effects happen to be positive; however, it often
happens that some direct or indirect effects are positive in sign while others are negative. Lest
the details obscure the central issue, we emphasize that each causal variable X, has a direct
effect on Y, which is simply its partial regression coefficient when all other measured causes of
Y are partialed: 5jH,2..(i)..Jt ^s me ordinary B from a simultaneous analysis of all the measured
causes. In general, eachX, has indirect effects, found as products of regression coefficients for
all paths from X, to Y that pass through at least one other variable. The sum of the latter is the
total indirect or mediated effect of X, on 7; let us call it El,-. Thus, the total effect of X,, direct
and indirect, is simply the sum:

where there are k measured causes of Y.
Table 12.2.1 also gives the spurious relationship of each variable with salary. The spurious

relationship of a variable can be found as the difference between the zero-order (nothing
partialed) B for that variable and the total effect of that variable, thus

In the case of sex, there is no spurious relationship, because its zero-order regression coefficient
equals its total effect. That is because sex is the only exogenous variable, so that its entire

Sex
Via citations (= io)
Via publications (= gn + gko)
Via time (=fm +fhn +fjo +fhko)
Total effect

Time since Ph.D.
Via citations (=70)
Via publication (= hn + hkd)
Total effect

Publications
Via citations (= kd)
Total effect

Citations
Total effect

Zero-order

$3917 (.210)

$1379 (.608)

$351 (.506)

$3 11 (.550)

Spurious

—

$36 (.016)

$220 (.317)

$109 (.193)

Direct, indirect,
and total effects

$918 (.047)
$491 (.025)
$86 (.004)
$2423 (.134)
= $3917 (.210)

$857 (.378)
$209 (.092)
$277 (.122)
= $1343 (.592)

$93 (.134)
$38 (.055)
= $131 (.189)

$202 (.357)
= $202 (.357)
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zero-order B is an estimate of its total causal effect on salary Ts. Most of this relationship
($2999 of $3917) is indirect, that is, mediated by other measured variables.

Time since Ph.D. produces a total effect of nearly $1343 per year in increased salary.
About two-thirds of this is direct, the remainder being due roughly equally to the effects of
the passage of time on the production of publications and on the likelihood of citations. The
spurious relationship due to the fact that sex influences both time since Ph.D. and salary is
very small, as we would expect from the small (.21) correlation between sex and time (given in
Table 3.5.1). As described previously, its zero-order J?$r = $1379 and its total effect is $1343,
so its spurious effect is $36 (Table 12.2.1.)

In contrast, number of publications was quite spuriously related to salary, primarily because
of its substantial (.651) relationship with time since Ph.D. What causal effect remains is
primarily direct.

Finally, citations had a direct effect on salary of $202 per citation (Table 12.2.1). About
one-third of its zero-order relationship was spurious, due to common causes.

This model is somewhat atypical because there was only one exogenous variable (sex), all
other effects being potentially attributable, in part, to this variable. Suppose another theorist
looking at this problem notes that, because the current year (say 2000) is a constant, the
variable time since Ph.D. attainment is actually equivalent to the year in which the Ph.D. was
obtained. This being so, this theorist prefers to think of gender and year of Ph.D. as exogenous
variables, without analyzing the relationships that are dependent on their correlation. Under
these circumstances, the total effect of sex would be estimated from B$S.T, and the total effect
of time would be as previously described. Indirect effects of sex via time would no longer be
part of the model.

12.2.2 Path Analysis and Path Coefficients

The terms path analysis and path coefficients are among the oldest terms in causal analysis
(Wright, 1921). They refer to causal models of the kind we have been describing, except
that standardized regression coefficient PS are usually employed as estimates of causal effects
rather than the Bs in raw units that we have been using. The use of standardized coefficients
has the advantage of simplicity of exposition that ensues when one can ignore the units of
measurement (or rather, when the units of measurement are all expressed in terms of the sample
standard deviations). There are two circumstances in which PS are particularly useful to index
the magnitude of causal effects. The first of these is when the scales on which we measure
variables are arbitrary or unfamiliar. A change of one unit on a 25-point attitude scale, a 6-point
psychiatric rating scale, or a 15-item neurological exam is not a readily interpretable quantity
(but see Section 5.2). However, if only a few variables are arbitrarily scaled, we may wish
to standardize only these and leave the remaining units intact. This is readily accomplished,
given the simple relationship of Eq. (3.5.2).

The second circumstance for preferring P to B is when we wish to compare the magnitude
of effects of different causes. Because unstandardized effects are generally in different units
(e.g., dollars per year versus dollars per publication versus citations per publication) one cannot
directly compare them. When standardized they are all in standard deviation units and therefore,
in at least that sense, comparable. Confidence limits and significance tests for the difference
between PS from the same equation are given in Section 3.7.

Standardized estimates of the causal paths (P) for the academic salary example in Fig. 12.2.1
are as follows:/ = .210,g = .023,h = .646,i = .071J = .257,k = .155,1 = .047,m =
.378, n = .134, o = .357. The last four of these coefficients are the direct effects on salary
of the four predictors. As noted, we may wish to make direct comparisons, for example, that
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the effects of time since Ph.D. and citations are very similar in this sample. Note that this
comparison is quite different from the $1343 per year and $202 per citation direct effects in
the original units. The reason is, of course, that citations are more variable than are years. The
reader may imagine what would have happened if we had coded time since Ph.D. in months.
Under these conditions the B would have been $1343/12 or $112 per month, about half as large
as the citation B. Obviously the underlying relationship has not changed with this change in
units. Therefore, standardized units are very widely used when an important goal is comparison
of the size of the effects of different variables.

The combination of these paths to determine direct and indirect effects is exactly the same
as for the B coefficients, as shown in Table 12.2.1. Thus, for example, the indirect effects via
citations for sex, time, and publications, respectively are io = .025 Jo = .092, and ko = .055.
In this population the direct effects of time since Ph.D. and citations on salary are roughly
comparable, whereas effects of publications are estimated to be about one-third as large, and
the direct effects of sex are negligible.

Nevertheless, as discussed in Section 5.2, there is good reason to prefer unstandardized
estimates whenever the original units of measurement are meaningful: 5s are more stable than
PS as one goes from study to study and the variability of the causal variables changes (Blalock,
1964; P. Cohen, J. Cohen, Aiken, & West, 1999; Tukey, 1974). We have already noted that
B coefficients have this property of constancy in contrast with rs (Section 2.11.3); PS, like rs,
change with changes in variability. It seems to us self-evident that the index of the strength of a
cause, operating on any given unit, should depend only on the cause's magnitude and not on the
variability of magnitudes of similar causal events with which it is analyzed. For example, the
pressure exerted by a gas depends on the temperature (a unit change in temperature produces
BPT units change in pressure) and in no way on the variability (range) of the temperatures used
in any given experiment. BPT will not change over experiments, whereas Ppr will.

A second reason to prefer 5s lies in the very concreteness of familiar units. There is a
great communication advantage to being able to speak of numbers of people, gallons, dollars,
months, or even IQ points. Any forswearing of this advantage in favor of units understood only
by the sophisticated is not easily justified, particularly so in the light of the relative constancy
of 5s noted previously (P. Cohen, J. Cohen, Aiken, & West, 1999).

12.2.3 Hierarchical Analysis and Reduced Form Equations

As the reader can see, by this time a great deal of information about the inner workings of these
variables has been made available. The analytic yield available for further theory construction
and testing is far more than the single equation for all four variables produced in Chapter 3
could provide. If the cost in terms of hand calculations seems a bit high, good news is at
hand. There is an easier way! One can obtain all of the detailed partitioning of effects without
the necessity of multiplications, and without danger of omitting some paths, by means of
a hierarchical analysis procedure. This technique, which produces what the causal analysis
literature refers to as reduced form equations, proceeds by entering each variable in order of
causal priority. The regression coefficient when the variable first enters the hierarchy is its total
effect, Tf. The regression coefficient in the final equation is, as always, its direct effect. The
difference between the total and direct effects is the (total) indirect effect, ET,. By finding T,
as the 5 coefficient of X, when it enters the equation, we can turn Eq. (12.2.1) around, and
solve simply for the (total) indirect effect El, without having to compute products and their
sums.
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TABLE 12.2.2
Hierarchical Analysis of Academic Salary Example

The indirect effect can be further partitioned in a hierarchical analysis by determining the
change in each coefficient as a new variable is added to the equation.

To illustrate this use, in Table 12.2.2 we present the regression coefficients obtained from
the hierarchical set of equations for the 62 faculty member sample. The first equation consists
of only one IV because sex is the only exogenous variable. Its total effect, as we saw before,
is its zero-order B = $3917, the mean salary difference between female and male faculty.
From the second equation we obtain the total effect for the newly added variable, time since
Ph.D. (compare with Table 12.2.1). We may also determine the indirect effect of sex via time
since Ph.D. as the change in B for sex from the preceding equation, $3917 — $1494 = $2423,
as before. The third equation gives the total effect for publications and, by subtraction, the
indirect effects of sex and time via publications, $86 and $277 respectively. Finally, the fourth
equation yields all direct effects and, by subtraction, the indirect effects via citations. (The
reader should check these to see that they do, in fact, match those calculated by the product of
effects in Table 12.2.1).

The spurious relationships may be determined by Eq. (12.2.2) and are as presented in
Table 12.2.1 (i.e., by finding the difference between the zero-order B and the total effect of
each variable). This method works equally well for determining causal paths as £ coefficients,
as can be seen if the reader carries out the analyses using the correlation matrix as input.

12.2.4 Partial Causal Models and the Hierarchical Analysis of Sets

It is all too frequently the case that our efforts to construct a plausible causal model fall short
of complete specification of all relationships among variables. One may be able to assert with
some assurance that certain variables (set A) are causally prior to certain other variables (set
B), which in turn are causally prior to yet other variables (set C). We may even be reasonably
confident that there are no omitted and nontrivial common causes for variables between sets.
However, we are not at all confident that there are no omitted common causes of variables
within sets, nor are we able to fully specify which variables are likely causes of which others

Equation 1
Sex

Equation 2
Sex
Time since Ph.D.

Equation 3
Sex
Time since Ph.D.
Publications

Equation 4
Sex
Time since Ph.D.
Publications
Citations

$3917

$1494
$1343

$1408
$1066

$131

$918
$857
$93

$202

= total effect of sex

$3917 - $1494 = $2423 = indirect of sex via time
= total effect of time since Ph.D.

$1494 - $1408 = $86 = indirect of sex via publications
$1343 — $1066 = $277 = indirect of time via publi cations
= total effect of publications

$1408 - $918 = $312 = indirect of sex via citations
$1066 - $857 = $209 = indirect of time via citations
$131 — $93 = $38 = indirect of publication via citations
= total effect of citations

Variables in equation 5$
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within sets. Still, we are extremely reluctant to give up all the analytic yield made possible by
our partial knowledge about causal structure, as we would have to do if we treated all variables
as exogenous and analyzed the relationships simultaneously in a single equation.

As the reader may have anticipated, it is possible to generalize the causal interpretation
of coefficients generated by the hierarchical analysis of single variables to those generated
by the hierarchical analysis of sets of variables, as described in Chapter 5. Assuming three
sets, the first equation determines the total effect of each variable in set A by entering all of
these variables into the prediction equation for Y. The second equation uses both set A and
set B in the prediction of Y. The coefficients for the B variables are their total effects, and
the differences between the total effects and the coefficients in the second equation for the
A variables indicate the portions of these effects that are mediated by B variables. This is a
"net" mediation, as it is possible that some of the kB variables in set B are redundant with a
set A variable, whereas one or more other set B variables suppress the relationship of an A
variable with Y (see Section 12.1.3). Spurious effects of set B variables are determined as the
difference between the kB partial B coefficients when only set B is in the equation and the BB.A
coefficients from the second equation. The third equation, including all A,B, and C variables,
provides the direct effects of all variables. Using these estimates along with the earlier equation
coefficients again allows the researcher to partial the effects of each variable into total, direct,
spurious, and mediated components.

What have we lost by using this not-fully-specified partial causal model? Because variables
within sets are treated as exogenous with regard to each other, we may have underestimated
(or overestimated if there is suppression) the indirect effect of some variables that actually
operate via other variables within the same set. Nor can we attribute individual indirect effects
to specific variables in a subsequent set. All other estimates are equivalent to those from a fully
specified model. Because the necessity for specifying within-set relationships is avoided, this
procedure may be feasible for many more problems than those that meet the full requirements
of specification and identification of effects in causal analysis.

12.2.5 Testing Model Elements

Naturally, having estimated the causal parameters we will wish to determine confidence limits
and significance tests against a null hypothesis of zero, or against some other theoretically
expected value. These are accomplished by the same means described in Chapter 3 for partial
B coefficients (or |3 for path coefficients.)

12.3 MODELS WITH RECIPROCAL CAUSATION

Many plausible theoretical models involve reciprocal effects of variables on one another over
time. For example, pain on movement may cause individuals to cease exercise, which in turn
causes the pain to increase. When these processes are present there are frequently problems in
using the data to estimate effects. However, in some cases we may obtain an estimate of these
effects by means of instruments. An instrument is a variable (e.g., W) that is related causally
to only one of two variables (e.g., X and Z) that have causal effects on one another. If one
has measured one or more instrumental variables for each member of this pair, it is possible
to obtain an estimate of the causal effect in each direction. This can be seen in Fig. 12.3.1,
where we note that the only reason for W to be correlated with Z is because of the causal
effect of X on Z. Similarly, the only reason for V to be correlated with X is because of the
causal effect of Z on X. Thus (using standardized estimates or path coefficients), r^ = ab,
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and Tyx = cd. Further details on this method may be found in Bollen (1989), O. D. Duncan
(1975), and Loehlin (1992).

12.4 IDENTIFICATION AND OVERIDENTIFICATION

12.4.1 Just Identified Models

In the causal models we have examined thus far there is just enough information to provide
a single unique estimate of each posited causal effect. This is a characteristic of all recursive
models in which every earlier cause is hypothesized to have a potential effect on every later
endogenous variable. In this kind of model, the number of available correlation or covariance
coefficients, k(k — l)/2 (where k is the total number of variables), is equal to the number of
estimated causal effects between measured variables plus the number of correlations among
exogenous variables.

12.4.2 Overidentification

Some of the most interesting models are those in which it is posited that certain variables
have no direct effects on other endogenous variables, either because their effects are entirely
mediated by other variables in the model or because any relationship between them is entirely
accounted for by one or more common causes (confounders). Under these circumstances we
would specify certain paths in the model as equal to zero. (However, values that are fixed in
models need not necessarily be set to zero but may be set to any theoretically justified value).
In the language of structural equation modeling these are called fixed parameters, to indicate
that we posit these causal estimates to hold in the population. The causal estimates that the
statistical analyses produce are called free parameters, reflecting the model's assertion that
these may be nonzero in the population and that their exact values are unknown so that they are
free to be estimated from the sample data. When there are fixed parameters in the model there
will be two or more estimates of certain effects, i.e., these estimates will be overidentified. For
example, in the simplest case, let us assume that our theory indicates that there is no causal
connection between two predictors (IVs). In such a case, the total effect of each IV estimated
by the equation in which it is the only predictor should be equal to its total effect when the
other predictor is also in the equation. The fact that we have multiple ways of estimating this
value allows us to determine whether the model fits the data well or not. If, for example, the
estimates in the equation including both IVs as predictors of Y were very different from their
zero-order estimates we would have to reconsider our causal model.

When models are overidentified we may use the maximum likelihood (ML) method of
estimation rather than least squares. An advantage of the ML method is that it allows us to
test the goodness of fit of our observed data to the theoretical model, using a x2 test with df
equal (approximately) to the number of constraints we have placed on the model. Of course,
what we are testing in this goodness-of-fit test is only the consistency of the data with the
fixed parameters of the model, and the test is not influenced by the free parameters in any way.
(A review of the ML method of estimating missing data in Section 11.6 may help the reader

FIGURE 12.3.3 rECIPROCAL EFFECTS IN A CAUSAL MODEL.
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with an intuitive grasp of the way that this method "reconciles" the data-based estimates with
the assumed model.) In addition to the statistical test of the goodness of fit, there are also a
number of indices of goodness of fit that take into account the amount of deviation and the
number of estimates being made. These are used to decide the seriousness (as opposed to the
statistical significance) of the inconsistencies between the model and the data.

12.4.3 Underidentification

Underidentified models are those in which there is not enough independent information to
use to estimate effects uniquely. As a result, many different numerical estimates can be made
(usually an infinite number), all of which will fit the empirical data. Underidentification is
often a consequence of reciprocal causation or causal feedback loops. To examine the simple
case of reciprocal causation, it is clear that if the correlation between two variables X and Z
is .5, this relationship is consistent with a wide range of alternative model estimates, even if
there are no confounders. All or almost all of the relationship may be due to the effect of X
on Z, or of Z on X, or any of the infinite number of combination of effects of each on the
other that is consistent with r = .5, including combinations in which the sign of one effect is
opposite to the sign of the other effect. In our causal model, if confined to these two variables,
we must make a commitment to directionality, or to specific values if we think the relationship
is reciprocal. In more complex models there can be feedback loops that are not so obvious, so
that it can be difficult to determine whether the model estimates are uniquely identified or not.

A model may also be empirically underidentified. If relationships in a model are too small,
the resulting standard errors will be too large to produce meaningful estimates. For example, in
some (overidentified) models a test of whether some path can be omitted involves agreement
between two or more estimates of effects. But if both of these estimates are approximately
zero in the first place, the test is not informative; that is, there are no material estimates that
can disagree. When certain variables are used as instruments in order to estimate nonrecursive
models, the relationships of instruments to the variables for which they are instruments must
be sufficiently large as to produce estimates of reciprocal causation with reasonably narrow
confidence limits.

12.5 LATENT VARIABLE MODELS

One of the most important extensions of regression models over the past quarter century is
the development of latent variable (LV) models, in which empirical data are used to estimate
the effects of the (unmeasured) theoretical constructs themselves. The advantages of these
models, when applicable, include both an estimate of effects of the error-free constructs and
an overall test of the fit of the model to the data. These methods are extensions of the factor
analytic model, in which the correlations or covariances among measured variables are used to
derive a smaller number of dimensions, the inferred meanings of which constitute approximate
matches to our theoretical constructs.

12.5.1 An Example of a Latent Variable Model

Structural equation models provide for tests of substantive theories and thus are limited in
their utility to the level of development of the relevant theory. For example, thus far in this text
we have treated the academic salary example as a proto-theoretical model without embedding
the observed variables in a framework of more abstract or general theoretical constructs. But
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suppose that our interest in this topic is dictated by our theory of society's reward systems.
The theory states that social rewards are a function of seniority in the system, status position,
productivity, and eminence, and that the relative influence of these components varies in social
subsystems. The researcher's goal in studying academic institutions is to establish the relative
influence of these theoretical constructs in an academic setting so that they can eventually be
compared to other settings, such as business and government. Therefore, each of the variables
that we have been examining is representative of one of these theoretical elements. Salary is
an aspect of the reward system, time since Ph.D. represents seniority, gender is an aspect of
status position, number of publications represents productivity, and citations is our measure of
eminence.

When the measured variables are placed in this framework of theoretical constructs, we
can readily see that none of them is a perfect representative of its proposed theory component.
Whereas time since Ph.D. may be a good indicator of seniority, it fails to take into account
the fact that some faculty members may have been active in the field prior to their Ph.D.s,
that others may have obtained their Ph.D.s in a part of the field which they subsequently
abandoned, so that early work didn't really contribute to their seniority in their current chosen
field, and that, in general, this exact measure of time in years is only an approximation to
what we mean by seniority. Similarly, although salary is an important part of the reward
system, it is not the only aspect of this theoretical construct, which would include "percs"
such as office location and quality, deference in disputes and decisions, and rank. Clearly
gender is only one aspect of status position, which may include ethnic and cultural background
as well as academic subdiscipline. Productivity includes publications; however, it also has
other components not measured here, including amount and quality of teaching, research
project initiation and participation, academic citizenship activities such as committee and
academic government work, consultation, student supervision, etc. Eminence is similarly
only imperfectly measured by citations, and we might have included leadership in national
organizations, awards, and job offers from other universities.

Thus it is clear that each of the measured variables is far from being a perfectly valid
representation of the relevant theoretical construct, despite the fact that we may have
measurement-error-free measures of some variables we have used in the model. That is, some
measures may be perfectly accurate representations of the variable they claim to measure (e.g.,
sex, salary), but not perfectly accurate with regard to the construct (status position or reward).
The entire theoretical model is shown in Fig. 12.5.1.

By convention, the theoretical constructs in the figure are represented as ovals or circles,
and are called latent (or unobserved) variables. The variables that we may actually measure
are represented as rectangles, and are called manifest (or observed) variables. Typically, the
models that we estimate empirically assume that the latent variables are causes of manifest
variables. Thus, the individual's productivity is a cause of the number of publications, teaching
load, research activities, and academic citizenship activities. This direction of causality is
not always plausible (as in the case of status, where the direction would logically flow in
the opposite direction) but is usually the only means of obtaining identified estimates (see
MacCallum & Browne, 1993). There are alternative ways of coping with this problem (Bollen,
1989; Bollen & Ting, 2000; P. Cohen, J. Cohen, Teresi, Velez, & Marchi, 1990), but they are
beyond this introduction.

We do not mean to suggest that a researcher is likely to start out by measuring these 25
or so variables and then estimating the coefficients for the resulting model. A more likely
and probably more successful approach would be to examine a segment at a time, perhaps
involving two or three latent variables and three or four manifest measures of each, and then
determining the adequacy of the model for these variables before going on to add or explore
other segments.
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FIGURE 12.5.1 Representation of a theory of society's reward systems.

We have kept the causal sequence of the latent variables consistent with that of the manifest
variables that we examined in our earlier models. It is extremely important to remember that
the sequencing of these variables is a part of one's theoretical model, and thus, the empirical
estimates of effects that are produced in the analyses are totally dependent on this model.
Because, in general, the model may fit the observed data no better than a wide range of
alternative models (for example, a model in which productivity was an effect rather than a
cause of eminence), the justification of the theoretical model itself is a scientifically critical
task, and distinctly different from examination of the empirical data. The empirical estimates
are provisional to the theoretical framework; that is, they depend on the framework, which
must itself be justified by scientific argument and reasoning as a separate operation (Abelson,
1995).

12.5.2 How Latent Variables are Estimated

As noted, latent variables are estimated by factor analytic methods. Factor analysis is a method
of determining the number of dimensions, fewer than the number of observed variables,
that account (in large part, although usually not entirely) for the correlations or covariance
among the observed (manifest) variables. In a successful analysis these latent variables will
be representative of the theoretical constructs posed by the investigator. For example, in our
reward-system example, we would begin with analyses that tested the validity of the hypothesis
that the relationships among the manifest variables were attributable to our theoretical latent
constructs (e.g., seniority, productivity, eminence). This part of the analyses is a test of the
measurement model for the latent variables. Relationships among these latent variables are
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frequently the major focus of a structural equation model (SEM) analysis. Once the measure-
ment model is shown to be satisfactory, the analyses determine the consistency of the data with
the hypothesized causal effects among the latent variables (the structural model).8 Findings of
good fit between this hypothesized structure and the sample data would be evidence that the
model was consistent with the theory. This information would lead us to efforts to replicate the
analyses in a new sample or to move on to investigate how the estimated parameters might vary
in a sample from a somewhat different population. For example, support for our theoretical
model in one kind of academic department might lead us to focus new studies on the issue of
the relative magnitude of performance and eminence effects on reward in different professional
fields or universities (as we did in Section 9.3).

12.5.3 Fixed and Free Estimates in Latent Variable Models

Regardless of the statistical program used to estimate LV models, the potential relationship
between each pair of variables, whether latent or manifest, needs to be described (a) as to
direction of effect, and (b) as to whether, on the basis of the hypothesized model, its value
should be constrained (fixed, either to zero or to some nonzero value) orfree (estimated from
the empirical data). Some nonzero fixed relationships may be set on the basis of theory, as, for
example, when the genetic contribution to a single gene trait is expected to be half as big for
dizygotic as for monozygotic twins. In the behavioral sciences thus far, however, most fixed
effects are fixed at zero, indicating that there is no (expected) direct causal impact of one variable
on the other. One circumstance is when latent variables have ideal manifest variables; the latter
may have no causal associations that are not mediated by the latent variable. For example,
in our extended faculty reward model, we may posit that there is no relationship between
academic citizenship and awards and honors that is not attributable to the relationship between
productivity and eminence as more general characteristics. More theoretically informative
models are those in which effects among latent variables are posited to be zero (or some
other specific value) on the basis of theory. For free effects estimated on the empirical data,
computer programs may also provide standard errors or confidence limits, for which the same
considerations of utility apply as for models involving only observed variables.9

12.5.4 Goodness-of-Fit Tests of Latent Variable Models

Often when there are fixed effects, the model will be somewhat overidentified: that is, there will
be more than one means of estimating some effects, or there will be an empirical implication
from the observed relationships that may vary from the fixed value, so that it is possible
to determine the extent to which these different estimates are consistent.10 A x2 test of the
goodness of fit can be made on the overall model. This test compares the model implied by
the relationships among the empirical variables with the model specified by the investigator.
Here the ideal outcome is a low x2> so that the resulting high probability value indicates a
good fit between the model and the data. Very low values of x2 are fairly rare when the sample
is sufficiently large and the model of even moderate complexity. Therefore it is usually more

8Details on the step-by-step operations used in such an analysis are provided by B. Byrne for computer programs
EQS (1994), LISREL (1998), and AMOS (2000).

9But there are circumstances in which the program will indicate insufficient information to compute standard
errors, and in any case such statistics will be subject to limits on their accuracy in situations of small sample size or
failure of distributional assumptions.

10Although this is often true, identification in complex models can be very difficult to determine, and different
sections of models may be under-, over-, or just identified.
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instructive to examine indices of the overall goodness of fit of the data with the model (Byrne,
1998) which are not so influenced by sample size as is x2- Of course, because they only reflect
the consistency of different estimates (e.g., of fixed effects with the effects implied by the
empirical data) neither the x2 test nor the goodness-of-fit indices provide a test of the free
parameters, which are typically the major interest in the study.

In general, the computer program will provide information regarding which effects have
the largest differences between the model and the empirical data, that is, where the more
serious sources of misspecification may be present. A researcher may then commonly free
previously fixed effects, and thus move from a "confirmatory" analysis, in which a previously
specified model is tested, to an "exploratory" analysis, in which the data at hand influence
the specification. This practice invalidates both the x2 test and the usual implications of the
goodness-of-fit indices, and reinforces the need for replication.

It is useful to reflect on how much more theoretically and empirically demanding an SEM
with latent variables is likely to be than a regression model of the relationship of a set of
observed variables to Y. A regression model is just identified—that is, it uses all the information
in the variance-covariance matrix to produce unique estimates of each effect, along with
appropriate standard errors or confidence limits (assuming that statistical assumptions have
been met). The theorist who includes latent constructs has more potential estimates than can
be uniquely provided by the empirical data—it will be underidentified unless some effects
are fixed. Furthermore, effects may be fixed because a more parsimonious model is generally
to be preferred. As a consequence, very often the first attempts to fit a theoretical LV model
onto real data are unsuccessful—because the model is so ill-fitting that it will not converge,
or because the overall index of goodness of fit is unacceptably low, or because some of the
resulting estimates are grossly implausible (too low or too high, including the possibility of
standardized effects greatly exceeding 1.0). These problems necessitate modification of the
model, and the investigator will need to consider whether the respecifications are theoretically
fatal or only in need of replication. A discussion of these issues can be found in Bollen (1989)
and MacCallum (1995). In fact, a model of the complexity of Fig. 12.5.2 is almost certain to be
untestable in its entirety, and the theorist must be content with examination of sections including
limited numbers of manifest variables in any given analysis, with necessary respecifications
being replicated in new samples.

12.5.5 Latent Variable Models and the Correction for Attenuation

What is meant when it is said that LV models provide estimates of effects of error-free variables?
Perhaps the easiest way to understand it is to return to the correction for attenuation first
presented in Eq. (2.10.5) by drawing a causal diagram. For the sake of simplicity we will
assume that we are concerned with two observed variables, X and Y, and that Y is perfectly
measured. Let us presume that the reliability of X is .7. As noted earlier, the reliability can be
defined as the correlation of X with another equally reliable indicator of the "true" variable

FIGURE 12.5.2 A Latent Variable as a True Score.
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(e.g, in this case we have drawn in such a variable as Z). Let us now define the latent variable
as Xt. The correlation of X with XT is equal to the square root of the reliability of X. By
the tracing rule we see that the correlation of X with Z, assuming that Z is equally reliable,
rxz = ab = a2 = r%x- We also note, by the tracing rule, that rXY = ac. Since we know that
a = V^xx*c = rXY/Jrxx> as given in Section 2.10.2.

In LV models the estimated value of the causal effect (such as a) of the "true" LV on an
observed manifest variable is a more complex function of the correlations among the different
indicators and other aspects of the model, but the intention is the same, namely to produce a
disattenuated estimate. The causal estimate of an LV on its measured indicator is not exactly the
same as a reliability, because the indicator may be measuring something perfectly, but still be
only an imperfect indicator of that particular LV. That is, the causal estimate is really a kind of
validity coefficient, especially when the LV is a broader construct than is the measured variable.

12.5.6 Characteristics of Data Sets That Make Latent Variable
Analysis the Method of Choice

Not all substantively interesting questions are suitable for LV analysis. The ideal LV model
has at least three measured variables for each LV (Cliff, 1983) with intercorrelations among
indicators for a given LV of at least about .5 (recalling that this correlation is the product of
the two estimated reliability/validity coefficients). Thus two equally valid indicators would
each have validity coefficients >.7. This usually requires that the investigation be planned
from the start to include a fair amount of redundancy in measurement. The occasional practice
of splitting scales into arbitrary pieces in order to have measures with high intercorrelations
has little or nothing to recommend it over the simple use of disattenuated coefficients in OLS
analysis, since each segment will be of lower reliability than the sum and the LV will be of no
more generality than the original measure. When a latent variable is itself fairly complex, so
that theoretically its influences can be seen on a number of different manifest variables, it may
be useful to begin with estimating the measurement model and continue by reassigning items
from each manifest variable to each of three or more composite measures. The correlations
among these composites will then be fairly robust, may reasonably reflect the influence of the
latent construct, and will serve the purpose of permitting estimates of effects that are adjusted
for unreliability of measurement of the latent construct.

Structural equation models are most readily estimated when there are relatively few LVs—
typically no more than three to five. The reasons for this are partly scientific and partly practical.
The scientific reasons have to do with the difficulty of specifying all the theoretically plausible
connections among the observed and latent variables in a large model, where a story needs to
be woven around every pair of variables. As noted, some fixed parameters are required in order
to produce an identified model, and additional fixed parameters are desired in order to provide
a test of goodness of fit. The practical reasons have to do with the difficulty of generating
empirical estimations when the model is complex, a difficulty that will not necessarily be
solved by new generations of computer programs.

Ordinary least squares models of observed variables avoid both of these problems, but at
the cost of allowing all relationships to be empirically estimated and oriented toward the single
outcome variable, without regard to the causal structure and process that presumably generated
them. As we have seen, hierarchical entry of predictor variables can provide some additional
grist for the inferential mill. Matrices made up of disattenuated correlation coefficients may
be used as input for regression models in order to estimate error-free effects. However, such
a procedure is virtually never done, perhaps because the confidence limits on the resulting
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estimates are complex, causing difficulties in the evaluation of the likely precision of the
estimated effects. As noted earlier, such a matrix may even be mathematically inconsistent.

Regardless of the method of analysis that leads to causal inference, it is important to keep
in mind that other models of the same variables (charmingly referred to as "aliases") may
be as consistent with the data as the model actually assessed. This is true even when there
is an excellent fit between the model and the data as indicated by a goodness-of-fit index.11

Necessarily, in these analyses as in all others, there is no substitute for replication for increasing
one's confidence in the findings.

12.6 A REVIEW OF CAUSAL MODEL
AND STATISTICAL ASSUMPTIONS

12.6.1 Specification Error

The empirical estimates generated in one's analyses will be appropriate estimates of causal
effects if:

1. The theoretical model is correctly specified—the sequence is correct and all material
sources of spurious relationships among variables have been ruled out by study design or
inclusion in the model (statistical control).

2. The causal relationship is well represented by a straight line, unless provision for
curvilinearity has been made.

3. Relationships are not conditional on other variables in the model, in which case the
model is incomplete unless interaction terms are included.

4. Whatever causal impact prior variables (e.g., X{ and X2) have on subsequent variables
has already taken place by the tune of the assessment. If not, the estimate (e.g., of the effect
of Xl on X4) may be too low, and other, simultaneously considered, influences may also be
affected (e.g., effects of X3 onX4).

5. The measured variables included in the model are free of measurement error; otherwise
their relationships with other variables will be, in general, too small (although partial relation-
ships may also be too large, see Chapter 4).12 LV models manage this problem by estimating
disattenuated effects that are attributable to imperfect reliability or validity.

6. The variables included in the model are free of correlated bias such as that due to common
measurement methods or information sources, or temporary influences on responses. This is
really a subcategory of the assumption that all common causes involving endogenous variables
are included, which is a part of (1). It is, however, particularly difficult to assess, and all too
often any evidence of correlation between variables that are supposed to be related to a given
latent variable is taken as indication of the influence of the latent variable, and not of, for
example, correlated measurement error.

Failure of any of these assumptions to hold is specification error, indicating that we haven't
asked quite the right questions of the data.

12.6.2 Identification Error

Specification error nearly always leads to identification error. Identification error is the mis-
estimation of the magnitude of some causal parameter. Identification error can also be due

11 Development of methods to determine the set of models that are consistent with both prior knowledge and the
data is a very active area of research and development (e.g., Scheines, Spirtes, Glymour, Meek, & Richardson, 1998).

12 We include this item as specification error although it might equally be thought of as an identification error.
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to sampling error or to failure of the data to meet the statistical assumptions required by the
estimation. If the model is correctly specified, estimates of causal effects will be unbiased and
their standard errors and overall model tests will be valid if the following statistical assumptions
have been met:

1. The relationships among the variables are multivariate normal (the residuals from the
regressions are homoscedastic in the population), or at least a reasonable approximation
thereto.

2. The sample is large enough for the central limit theorem to have ensured that the
coefficients will be good estimates of population values.

3. The manifest variables are closely enough related to the latent variables to prevent
empirical underidentification.

Failure to meet any of these assumptions will mean that even if we have asked the right
questions we may not have the right answers. These statistical assumptions are hardly ever
completely reasonable in real data sets of any complexity, and thus the real question is how far
can the nonconformity of the data with the statistical model be carried before the estimates lose
their meaning. These are matters of current active discussion and testing and are an extension
of the same considerations discussed in Chapters 4 and 10.

12.7 COMPARISONS OF CAUSAL MODELS

As MacCallum (1995) has pointed out, all SEMs of any complexity are likely to be only
approximations of the more complex and often not-fully-linear processes that operate in the
real world, in addition to a variety of minor and not-so-minor violations of distributional
assumptions. Thus perfect fits to real data are not to be expected (even aside from issues of
sampling error), even when the theory is reasonably veridical. The evaluation of these imperfect
models is made more difficult by the fact that other reasonable (or unreasonable) models may
fit the data as well or better, even when a satisfactory overall fit has been found. When possible,
it is desirable to examine the more theoretically compelling of these alternative models and to
present them along with their goodness-of-fit indices.

12.7.1 Nested Models

When models are nested, that is, when one model includes all the parameters of the other, plus
some additional parameters, it is possible to conduct a statistical test of whether the additional
paths in aggregate improve the fit to the data. For example, in our faculty salary model, we
may posit that gender has no direct effect on either citations or salary, fixing both i and / in
Fig. 12.2.1 at zero. Then we can compare this model to the model in which / and / are left as
free parameters, using a x2 test with 2 df. In the case of the 62 faculty members, this test yields
a x2 of 3.085 (p = .21, NS), which is not really surprising since both of these coefficients were
very small and not statistically significant in the original analysis. The only other coefficient
changed in this analysis was the effect of time on citations, which was estimated at 1.03 citations
per year, rather than the original 1.09 citations per year (see Fig. 12.2.1), a far from significant
difference. Of course, the examination of each single estimated coefficient in a model tells us
what the consequences would be of fixing that coefficient at a particular value. For example,
if the confidence interval on a coefficient of 5.0 were 2.0 to 8.0, we know that fixing the value
at 4 or 6 would not have much effect, but that fixing it at zero would be likely to be wrong.

For other comparisons—for example, if our theoretical model in Fig. 12.5.1 were to be
revised so that rewards were considered the cause of productivity and eminence a consequence
of both, the resulting models would be equally good fits (given equivalent constraints on
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correlations among residuals of manifest variables). Thus these observational data may not
allow us to choose one theory over the other. The best hope of doing so lies in the use of
experimental and longitudinal data, so that temporality may be taken into account.

12.7.2 Longitudinal Data in Causal Models

As noted at the beginning of the chapter, one of the characteristics of a cause is that it precedes
the effect. When data are all gathered with regard to the same point in time it is often not
possible to know about the ordering in time. Nevertheless, cross-sectional data are commonly
used on the assumption that the observed relationships are representative of time-sequenced
effects. This assumption may often be reasonable, but it can be particularly inappropriate
when variables may have causal effects on each other and there are no available instruments
that allow estimation of a nonrecursive model. Unfortunately, it is a frequent characteristic of
observationally-based data that a plausible mechanism exists for each of a pair of variables to
have an effect on the other. Thus, the social class-intelligence connection, the neurohormone-
affect relationship, and the attitude-behavior correlation are all examples of variable pairs for
which a causal relationship in either, or both, direction(s) is scientifically plausible.

When longitudinal data are available, direct estimates of each of a pair of reciprocally causal
variables on the other are possible. The usual model for such analyses involves estimating the
effect of variable V, measured at Time 1, on change in variable W from Time 1 to Time 2, and
the effect of variable W, measured at Time 1, on change in variable V from Time 1 to Time 2.
In these models the relevant equations would be

and

where subscripts identify the time of measurement and X stands for whatever covariates are
appropriately included in the model. In these models, because the Time 1 measure of the
dependent variable is included in the equation the effective estimate of the independent variable
is on (regressed) change in the dependent variable (see Chapter 15).

These models, although often providing the best available estimates of causal relationships,
are also dependent on the validity of an additional assumption, namely that the period from
Time 1 to Time 2 provides an appropriate estimate of the time for these causal influences to
take effect and reach a state of equilibrium, an assumption that is referred to as the stationarity
assumption. This assumption may often be problematic, especially if the effect of one variable
on the other takes place in a very different time frame than the effect in the opposite direction.
These issues are discussed further in Chapter 15.

12.8 SUMMARY

Section 12.1 introduces the scope of the current presentation and begins with an emphasis on the
indispensable role of theory in the development and testing of causal models (Sections 12.1.1
and 12.1.2). In addition to a potential cause (X) of change in some variable Y, other vari-
ables may be confounders of this relationship, by producing a noncausal relationship between
X and Y. Yet other unmeasured variables are collectively reflected as residual causes of Y,
including measurement error. Moderators are variables that modify or interact with the rela-
tionship between X and Y, and mediators are variables that "carry the influence" or reflect the
mechanisms of the effect of X on Y. Suppressors are variables that restrict the influence of X
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on Y. Exogenous variables are the variables that are "given" at the start of a causal model and
endogenous variables are those that have at least one cause also in the model (Section 12.1.3).
Section 12.1.4 discusses the use of regression equations as causal models and the critical
importance of isolating the effect of a given X by including potential confounders in the model.

Section 12.2 reviews regression analytic findings as applied to causal models. It is shown
that different equations will provide the materials for estimation of direct, indirect, and spurious
effects on Y. Such an analysis provides a substantial informational yield on a topic. In addition
to raw-unit estimates, standardized units may be employed (Section 12.2.2). Such models are
traditionally called path-analytic models, and they have the advantage of a certain kind of
comparability of estimates of effects of different variables. When the primary interest is in a
single dependent variable, the calculations that are required for the estimation of effects of
predictors can be easily carried out by hierarchical regression analysis. Such a series produces
the equivalent of "reduced form equations" where the focus is on the direct and indirect effects
of each IV (Section 12.2.3). Such a treatment is often useful when theory does not permit an
unambiguous ordering of some of the "causes." Estimates in causal models are evaluated by
the same confidence limits and significance tests shown elsewhere in the book.

When causal models include variables that have likely reciprocal effects, ordinary regression
models will not permit their calculation (Section 12.3). When other variables in the model can
be assumed to be causally related to only one of such a pair of variables, it may be possible to
estimate the reciprocal effects by two- or three-stage least squares methods (not shown here).

The regression equations we have examined include just enough information to make a
unique estimate of every coefficient in the model, they are "just-identified" (Section 12.4.1).
With more complex models and multiple endogenous variables it may be that there is enough
information to determine the consistency of the data with the model. A model is said to
be "overidentified" when there are more covariances or correlations available to estimate
the model than are actually needed, so that some are redundant. These come about by a
theoretical "fixing" of some effects to a predetermined value—often zero, sometimes equal to
some other value or, rarely, to some theoretically determined value. When ML methods are
employed, a test of the consistency of the data with one or more models may be carried out
(Section 12.4.2). Underidentification is a more serious problem, because it indicates that there
is too little information for the model to be uniquely estimated—often because of obvious or
not-so-obvious feedback loops in the proposed model (Section 12.4.3).

Latent variable models have been designed to estimate effects of "true" or latent variables
that reflect the actual interest of the scientist. Such variables are represented by three or more
"manifest" variables that owe some or all of their correlation to the influence of the latent
unmeasured construct (Section 12.5). A theoretical model full of such "latent" constructs is
illustrated, and fixed and free parameters and goodness-of-fit tests are discussed. It is shown
that LV models represent a particular kind of correction for attenuation (Section 12.5.4). Some
of the characteristics of data sets that are particularly apt for LV analysis are discussed, as well
as the limits of this and alternative methods (Section 12.5.5).

The two problems of causal inference are specification and identification errors
(Section 12.6). Relationships with relevant variables that are not included, problems of timing
of effects, and failure to include provision for curvilinearity or interactive effects are among
the errors of specification. Specification errors as well as statistical assumption failure will
cause the causal estimates to be misidentified—identification error.

Often the most theoretically revealing analyses are those for which alternative models can
be compared (Section 12.7). This is most easily accomplished when models are "nested" so
that one model includes all the causal links of the other plus some additional links. Another
interesting set of model comparisons that can be theoretically revealing arises when cross-
sectional and longitudinal data address the same model.



13
Alternative Regression Models:
Logistic, Poisson Regression,
and the Generalized
Linear Model

Throughout the text we have used the ordinary least squares regression (OLS) model. For
statistical inference, OLS regression assumes that the residuals from our analysis are both
normally distributed and exhibit homoscedasticity (see Section 4.3). But we are sometimes
confronted with a dependent variable Y that does not result in our meeting these assumptions.
For example, Y may be dichotomous, as when someone is diagnosed with a disease or not,
referred to in the epidemiological literature as "case" versus "noncase" (e.g., Fleiss, 1981). Or
y may be in the form of counts of rare outcomes, for example, the number of bizarre behaviors
exhibited by individuals in a given period of time. When the objects or events counted are
rare (e.g., many people exhibit no bizarre behavior), many individuals have zero counts, so
that the count variable Y is very positively skewed. By the nature of the dichotomous and
count dependent variables, residuals from OLS regression of these dependent variables do not
standardly meet OLS assumptions. In such instances the OLS regression model is not efficient
and may well lead to i/naccuracies in inference. A class of statistical approaches subsumed
under a broad model, the generalized linear model (Fahrmier & Tutz, 1994; Long, 1997;
McCullagh & Nelder, 1989) has been developed to handle such dependent variables that lead
to residuals that violate OLS assumptions.

In this chapter we present two statistical procedures that fall under the generalized linear
model: logistic regression and Poisson regression. Having presented these procedures, we
integrate them in an overview of the generalized linear model.

13.1 ORDINARY LEAST SQUARES REGRESSION REVISITED

A more formal characterization of the OLS regression model will help to frame the devel-
opments in this chapter. To reiterate, throughout the text we have used the OLS regression
equation:

A continuous dependent variable Y is written as a linear combination (weighted sum) of a
set of predictors. The predictors may be categorical or continuous. Individual predictors may

479
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be functions of other predictors, as in Chapter 6 for polynomial regression where we have
predictors that are powers of other predictors such as Xf, or in Chapter 7 for interactions where
we have predictors that are products of other predictors, such as XtXj. A broader term, the
general linear model, encompasses OLS regression and other statistical procedures, among
them ANOVA.

13.1.1 Three Characteristics of Ordinary
Least Squares Regression

There are three important characteristics of OLS regression. The first characteristic is the
algebraic form of the model. The model is referred to as a linear model because it is linear
in the parameters, or, equivalently, linear in the coefficients, that is, each predictor is merely
multiplied by its regression coefficient, as in Eq. (13.1.1) (see Section 6.1.1).

The second characteristic is the error structure or distribution of residuals. As we stated, a
critical assumption for OLS regression from the point of view of inference is that the residuals
(Y-Y)be normally distributed. The normal distribution has the special property that the mean
and the variance of the distribution are independent. In regression, we consider the conditional
distribution of Y for any given value of Y, that is, the distribution of Y scores associated with
a single predicted score, where the predicted score is a linear combination (or weighted sum)
of the predictors, Y = BlXl + B2X2 H + BkXk + B0. We assume that all these conditional
distributions, one for each value of 7, are normally distributed. If this is so, then the value of
conditional variance of the Y scores given any value of Y is independent of the value of Y.
Such independence is required if our data are to exhibit homoscedasticity, that the conditional
variance of Y at each value of Y is constant over all values of Y (see Section 4.3.1). Our
inferences in OLS regression depend on these assumptions of normality and homoscedasticity,
as well as on the assumption that all observations are independent.

The third characteristic is the scale of the predicted score in relation to the scale of the
observed Y score. In OLS regression, the scale of the predicted score is the same as the scale
of the criterion; put another way, predicted scores are in the same units as the observed Y. For
example, in familiar OLS regression, if the observed Y is in the units of number of "pounds
of weight," then the predicted score will be in those same units of "pounds of weight." It is
possible, however, to have forms of a regression equation in which the units of the observed Y
differ from the units of the predicted score. For example, in Poisson regression used with count
data, the observed Y entered into the regression equation might be the number of aggressive
acts a child carries out in a period of time; the predicted score will be in the form of the
logarithm of the number of aggressive acts.

In sum, then, OLS regression with which we have worked throughout the text has three
characteristics: (1) it is linear in the parameters (i.e., there is a linear equation relating the set
of Xs to Y in the form of Eq. 13.2.1), (2) the errors of prediction (residuals) are assumed to be
normally distributed and to exhibit homoscedasticity, and (3) the units of the predicted scores
are the same as the units of the observed Y scores.

13.1.2 The Generalized Linear Model

A broad class of regression models, collectively known as the generalized linear model
(McCullagh & Nelder, 1989), has been developed to address multiple regression with a variety
of dependent variables Y like dichotomies and counts. OLS regression is one special case of the
generalized linear model. Like OLS regression, all these regression models can be expressed
in a form that is linear in the parameters (Section 6.1.1). Statistical methods that fall under
the generalized linear model include, in addition to OLS regression, other forms of regression
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analyses for data that do not lead to normally distributed residuals exhibiting homoscedasticity.
These methods allow for residuals, the variance of which depends on the predicted value of
7. In addition, in these methods of regression analysis, unlike OLS regression, the form of
the predicted score is sometimes different from the form of the observed Y. In this chapter
we focus on two examples of the generalized linear model—logistic regression for categor-
ical outcome variables and Poisson regression for count variables that measure frequency of
occurrence of rare events. We then characterize the class of generalized linear models, drawing
upon logistic and Poisson regression as specific examples. We warn that the conventions for
data analysis in the generalized linear model are not so well developed as for OLS regression,
for example, measures of overall model fit or regression diagnostics. Where analogs to OLS
regression exist, they are described, their limitations noted, and any lack of consensus about
their use explained.

13.1.3 Relationship of Dichotomous and Count Dependent
Variables K to a Predictor

For any linear model, we require a dependent variable Y that is linearly related to the set
of predictors. Figure 13.1.1 illustrates the relationship of a predictor to Y for three outcomes:
(1) Fig. 13.1.1(A) for an ideal continuous Y linearly related to the predictor, as in OLS regres-
sion, (2) Fig. 13.1.1(B), for a binary (or dichotomous) Y, and (3) Fig. 13.1.1(C) for a count
variable Y.

For a dichotomous dependent variable Y, we consider the score for one individual to be
Y = 1 if the person exhibits a particular characteristic, 7 = 0, otherwise; that is, we use 1 and
0 for case versus noncase, respectively. For example, consider whether an assistant professor is
promoted to associate professor (Y = 1, for case) versus is not promoted (Y = 0, for noncase).
It is also useful for illustrative purposes to imagine summarizing the dichotomous Y for a set
of individuals as the proportion of individuals with Y = 1 at each value of some predictor. For
example, if we examine a large pool of faculty who were considered for promotion from assis-
tant professor to associate professor, we compute the proportion of those faculty with 7 = 1
as a function of the number of publications (e.g., the proportion of faculty with seven publica-
tions promoted to associate professor). Figure 13.1.1(B) illustrates the likely relationship of the
proportion of people classified as a case as a function of a single predictor X. The form of the
relationship in Fig. 13.1.1(B), is not linear, but rather S-shaped, suggesting that probability of
being a case first increases very slowly as X increases, then increases in a rather linear fashion
over the midrange of X, and then reaches asymptote (flattens out) with high values of the predic-
tor. A faculty member would hardly be promoted with none, one, or even several publications,
and would very likely be promoted when the number of publications, assuming high quality,
exceeds 20. In contrast to a linear model, the impact of adding a single publication on prob-
ability of promotion is not constant across the range of predictor X; in our example the effect
is much stronger in the middle than at the ends of the distribution of number of publications.

We expect still a different form of the relationship of the predictor to 7 if the outcome is in
the form of counts (e.g., the number of times a child acts aggressively on the playground), with
the predictor being scores on a teacher rating measure of aggressiveness. Figure 13.1.1(C)
illustrates a typical form of such count data. There are few, if any, episodes of aggressive
behavior when aggressiveness scores are low (there are many zeros on the outcome measure);
but the number of aggressive acts accelerates rapidly (i.e., at a faster than linear rate) as the
level on the aggressiveness predictor increases.

It is clear from Fig. 13.1.1(B) and (C) that the relationship of the observed outcome to the
predictor is not linear when we have dichotomous or count data. Yet, for any linear model,
including the generalized linear model, we require a predicted outcome that is linearly related
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FIGURE 13.1.1 Typical form of relationship of continuous, binary, and count outcome
variables to a predictor.

to the predictors. In generalized linear models we generate a predicted outcome that is, in fact,
linearly related to the predictors; the linear relationship is achieved by creating a predicted
score that is a monotonic but nonlinear transformation of the observed outcome.

13.2 DICHOTOMOUS OUTCOMES AND LOGISTIC REGRESSION

Beyond the continuous dependent variable Y, the most common form of Y is likely the dichoto-
mous (binary, two category) outcome, the analysis of which we will consider in detail. The
outcome for each case is dummy coded (Y = 1 for case; Y = 0 for noncase; see Chapter 8).
The probability distribution associated with a dichotomous variable Y is the binomial distri-
bution. The proportion P of scores with the characteristic (having values of 1) is the mean of
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the distribution; the variance of the distribution is a function of (depends on) P, specifically,
var(F) = P(l — P). The variance of a binomial distribution is maximum when P = .5. That
the variance of the distribution depends on the mean of the distribution is different from the
familiar normal distribution, in which the mean and variance are independent.

We begin by exploring several statistical approaches to analyzing the dichotomous depen-
dent variable Y as a function of one or more predictors: the linear probability model,
discriminant analysis, and probit and logistic regression. Using the example of promotion
to associate professor, we then develop a logistic regression model that describes the proba-
bility of promotion to associate professor as a function of a single predictor X, the number of
publications. In the logistic regression model, the predicted score is not itself dichotomous; we
are not predicting whether someone is a case versus a noncase. Rather we are predicting a value
on an underlying variable that we associate with each individual, tine probability of member-
ship in the case group (nt). What we actually observe is the group membership (case/noncase)
of each individual, but what we predict is probability of being a case. This is easier to concep-
tualize for assistant professors who have not yet been considered for promotion—we want to
develop a regression equation that predicts the probability that they will be promoted, based
on their number of publications.

Throughout the presentation of the prediction of binary outcomes we will need to distinguish
three entities. The first is the probability in the population of being a case, which we will note
as TT, for person i. The second is the predicted probability of being a case, based on some
regression model, which we will note as p{ for person i. Third is the proportion of individuals
who are cases, which we will note as P, with Q = (1 — P).

13.2.1 Extending Linear Regression: The Linear Probability Model
and Discriminant Analysis

First, recall the familiar linear regression model in the one-predictor case, which yields
predicted scores associated with a continuous predictor:

All the assumptions of OLS regression operate here. In addition, in this equation, predicted
scores have a range that is bounded by the actual observed scores; that is, there is no predicted
score lower than the lowest observed score and no predicted score higher than the highest
observed score.

The Linear Probability Model
One approach to the dichotomous criterion is merely the linear model in Eq. (13.2.1) but

with the dichotomous criterion as the dependent variable, that is, OLS regression with a
dichotomous criterion. This yields the linear probability model, a regression model in which
the predicted probability that an individual is a member of the case category p, bears a simple
linear relations to the predictor:

Again, this model is the OLS regression model; thus all the requirements of OLS regression
apply.

Since the promotion variable Y is dichotomous, it follows a binomial distribution, described
earlier. The arithmetic mean of Y is the proportion P of individuals in the whole sample who
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are cases (i.e., for whom Y = 1). For example, if we have 5 cases with dependent variable
scores ( 1 0 0 1 0 ) , the mean of these scores is .40, the proportion of "cases" in the
sample. The variance of the scores in the sample is

In turn, there are two undesirable results of this constraint on the residuals:

1. The residuals exhibit heteroscedasticity. The variance of the residuals, var(r,), is not
constant across the range of the criterion but depends on the value of the predicted score. The
variance of the residuals for any value of pt is given as

There are difficulties with this model. First is that the predicted scores, which are supposed
to be predicted probabilities of being a case given the value of the predictor, may fall outside
the range of the observed criterion scores (i.e., may be less than zero or greater than one). Thus
they cannot serve as appropriate estimates of 7t(, the population probability of being a case.

Beyond this, there are complications with the residuals that may undermine inference in the
linear probability model. An individual can have only one of two scores on Y, that is, Y = 1
or Y = 0. Thus, only two values of the residual r, are possible for an individual /, with a given
predicted probability p;:

Observed score

1
0

Predicted score

Pi
Pi

Residual (r,)

d-ft)
(0-A)

Although the OLS regression coefficients will be unbiased, they will have incorrect standard
errors. This problem can be remedied through the use of weighted least squares regression (see
Section 4.5.4).

2. The residuals are not normally distributed. This violates a required assumption for sta-
tistical tests and the estimation of confidence intervals for individual regression coefficients in
OLS regression.

Discriminant Analysis
OLS regression with a dichotomous outcome Y (i.e, the linear probability model) is

mathematically equivalent to another statistical procedure called discriminant analysis or dis-
criminant function analysis. Two-group discriminant analysis was developed by Sir Ronald
Fisher in 1936 as a statistical procedure for using a set of predictors to account for the mem-
bership of individuals in one of two groups, that is, to classify individuals into groups on
the basis of scores on the predictors in a way that best matched their actual classification.
(For example, we might have a clinician's diagnoses of a set of psychiatric patients as well
as measures on a battery of test scores on these same individuals; we could explore whether
we could account for the clinician's diagnosis of each individual based on scores on the
test battery.) In discriminant analysis, a set of predictors is used to generate a prediction
equation, called the linear discriminant function, that best distinguishes between the two
groups. Discriminant function analysis yields estimates of coefficients for each predictor
in the linear discriminant function, called discriminant function coefficients, and predicted
scores, which can be used for statistical classification, called discriminant function scores.
The equivalence of OLS regression predicting a dichotomous criterion reflecting group mem-
bership and two group discriminant analysis is manifested in several ways. First, the F test
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for the significance of/?2 (the squared multiple correlation) in OLS regression yields the same
value as the F test for the overall discrimination between groups in discriminant analysis.
Second, the values of the OLS regression coefficients differ only by a multiplicative constant
from the values of the corresponding discriminant function coefficients. Third, the tests of
significance of individual regression coefficients in OLS regression are identical to the cor-
responding tests of significance of the discrimiant function coefficients in the discriminant
function. Fourth, the predicted scores in OLS regression are correlated 1.0 with the discrim-
inant function scores in discriminant function analysis. See Tatsuoka (1988) for a classic
presentation of discriminant analysis, and Tabachnick and Fidell (2001) for a very accessible
introduction.

The question may be raised as to why this chapter presents more recent statistical methods
for dealing with dichotomous dependent variables Y, particularly logistic regression, when we
have discriminant analysis, which is so closely related to OLS regression. The existence of
discriminant analysis versus newer logistic regression reflects the ongoing evolution of statis-
tical procedures over time, with efforts devoted to the development of statistical procedures
that make assumptions that are more likely to hold true in observed data.

Discriminant analysis makes strong assumptions for inference that are not made in logistic
regression, as outlined in a classic paper by Press and Wilson (1978). The assumptions are
(a) that for each group on the dependent variable Y, the set of k predictor variables is mul-
tivariate normal, and (b) that the within-group covariance matrices are homogeneous across
the groups. If these assumptions are met, then newer logistic regression is less powerful than
discriminant analysis. However, only rarely are these assumptions met hi practice. Violation of
these assumptions may lead to a number of difficulties with inference in discriminant analysis.
Thus, the current recommendation among statisticians is to use logistic regression rather than
discriminant analysis in the two-group case. (As a practical rule of thumb, logistic regression
and discriminant analysis will yield similar results when the split between groups is not more
extreme than 80% in one group versus 20% in the other group.)

An Alternative Approach: Using a Nonlinear Mo Modeldel
Now consider Fig. 13.1.1(B) once again, which shows the proportion of individuals in the

sample who are cases as a function of the predictor. This figure suggests that empirically the
proportion of people who are cases is not expected to be linearly related to the value of X,
but that the function is S-shaped; thus the linear probability model is not appropriate. Rather,
Fig. 13.1.1(B) suggests that we should impose a monotonic but nonlinear function relating
the predictor to the observed criterion, where the observed criterion is conceptualized as the
proportion of cases at each value of the predictor. The function should be an S-shaped function
that follows the form in Fig. 13.1.1(B). That is, we should employ a nonlinear model—a model
in which the predicted score pt bears a nonlinear relationship to the value of the predictor.
It is this latter option that underlies the regression models that we apply to dichotomous
outcomes.

13.2.2 The Nonlinear Transformation From Predictor to Predicted
Scores: Probit and Logistic Transformation

To operationalize a regression model for dichotomous outcomes, we require a mathematical
function that relates the predictor X to the predicted score/?, (i.e., predicted probability of being
a case). A number of mathematical functions follow a form that highly resembles the S-shaped
curve sketched in Fig. 13.1.1(B). Two commonly used functions are \h& probit function and the
logistic function. The probit function is one in which the predicted probability of being a case,
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given a value of X, is generated from the normal curve. The logistic function is developed
in detail later. The use of these functions lead to probit regression and logistic regression,
respectively, two special cases of the generalized linear model.

Both the probit and logistic functions are expressions for the relationship between the
predictor X and the predicted probability/?,. The logistic model predominates in use in psy-
chology and sociology, and we will focus on logistic regression. The choice of logistic over
probit regression is based on various factors. First is that the logistic regression model has
advantages in interpretation of regression coefficients in terms of the odds, that is, the ratio
of the probability that an individual is a case to the probability that the person is a noncase
(odds are a familiar way of expressing probabilities for those who bet on races or other sport-
ing events). A second advantage is the simplicity of interpretation in case-control studies, in
which cases are systematically sampled based on their status on the dichotomous outcome;
for example, individuals with a particular disease (cases) are matched with those not having
the disease (noncases or controls). The proportion of cases in the sample is typically grossly
different from that in the population. Nonetheless, with logistic regression strong inferences
about the magnitude of effects in the population are appropriate if certain assumptions are
made. The most common application of probit regression in psychology is in the context of
structural equation modeling with binary variables (see Chapter 12).

Classic sources on the analysis of dichotomous data include Agresti (1990), Fleiss (1981),
and Hosmer and Lemeshow (2000). Excellent sources also include Collett (1991) and Long
(1997), and the very accessible introductions by Aldrich and Nelson (1984), Menard (2001),
and Pampel (2000). We draw on all these sources here. It should be noted that when prediction
of dichotomous outcomes is by categorical predictors only, logistic regression is equivalent to
a logit model applied to contingency tables (Fox, 1997).

Boxed Material in the Text
We caution the reader at the outset that the form of regression equations, strategies for

statistical inference, fit indices, and the like are somewhat more complex in logistic and Poisson
regression than in now familiar OLS regression. (The reader may benefit from reviewing
Section 6.4.3 on logarithms and exponents before proceeding.) Thus, in this chapter we again
adopt a strategy of putting some material into boxes to ease the presentation. The material in
the boxes is typically of interest to the more mathematically inclined reader (this same stategy
was employed in Chapters 4 and 6). The boxes provide supplementation to the text; the text
can be read without the boxes. Boxed material is set apart by bold lines; boxes appear in the
section in which the boxed material is relevant. Readers not interested in boxed material should
simply skip to the beginning of the next numbered section.

13.2.3 The Logistic Regression Equation

The logistic regression equation for predicting the probability of being a case pt from a single
predictor X is given as

The expression (B^Xj +B0) is what we usually treat as the predicted score in a single-predictor
OLS regression (see Chapter 2); it is a straightforward linear function of the value of the
predictor. The logistic function given in Eq. (13.2.4) relates this score to the predicted prob-
ability of being a case pf; this is the first way in which the logistic regression equation is
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expressed. A plot of pt as a function of X using Eq. (13.2.4) would generate the S-shaped
curve of Fig. 13.1.1(B). Equation (13.2.4) gives two equivalent algebraic expressions for the
logistic regression equation to predict/?,. Both of these expressions forp, in Eq. (13.2.4) are
unfamiliar forms for a regression equation; we are accustomed to seeing the right-hand side
of the regression equation as (B^ + B0).

Equation (13.2.4) is actually one of three ways in which the logistic regression equation is
expressed. By algebraic manipulation we obtain the second form of the logistic regression:

The logit is the function of the predicted probability pt that is linearly related to the predictor X,
that is, that lets the predictor side of the regression equation be linear in the parameter estimates.
As we will illustrate in detail later, the logit ranges from — oo to +00 asp, ranges from 0 to 1.
Box 13.2.1 provides the algebraic manipulations to develop the three forms of the logistic
regression equation.

Of particular note is that the form of the predicted score in Eq. (13.2.5) differs from that in
Eq. (13.2.4). The predicted score in Eq. (13.2.5) is the odds of being a case, explained further
later on.

The third form of the logistic regression is actually the natural logarithm of Eq. (13.2.5):

13.2.4 Numerical Example: Three Forms of the Logistic
Regression Equation

Equations (13.2.4), (13.2.5), and (13.2.6) are the three algebraically equivalent forms of the
logistic regression equation. They are illustrated with a fictitious numerical example.

For example, imagine predicting the probability that an assistant professor is promoted to
associate professor as a function of the number of publications. The fictitious logistic regression
equation of the form of Eq. (13.2.6) predicting the logit of promotion is given as

logit(promotion) = BI (publications) + B0

= .39 (publications) - 6.00,

where Bl = .39 and B0 — —6.00. Table 13.2.1 gives 31 cases who vary in number of pub-
lications from 0 to 30. In addition, the three predicted scores are given: the logit, the odds
of being promoted, and the predicted probability of being promoted.The SPSS code to gen-
erate these values is provided. One additional entry shows the number of publications that
would lead to a p = .50 predicted probability of promotion, according to the regression
equation.
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BOX 13.2.1
Development of the Three Forms of the

Logistic Regression Equation
We begin with the logistic function relating some variable zf to the predicted probability
Pi", this function generates the S-shaped curve of Fig. 13.1.1(B):

To simplify by getting rid of the negative exponent in the denominator, we multiply
numerator and denominator by &.

To generate the equation for a one-predictor logistic regression, we substitute the pre-
dictor side of the one-predictor regression equation (BiXt + B0), for z,, which yields
Eq. (13.2.4).

Equation (13.2.4) is actually one of three ways in which the logistic regression equa-
tion is expressed. Some relatively simple algebraic manipulations of the left expression
of the two in Eq. (13.2.4) will convert Eq. (13.2.4) to a more usual form in which
the right-hand side of the regression equation is (B^ + B0). These algebraic mani-
pulations also lead us to the other two forms besides Eq. (13.2.4) in which the logistic
regression may be expressed.

We take the reciprocal of Eq. (13.2.4)

We take the reciprocal of both sides of the equation, yielding Eq. (13.2.5) in the text, the
second form of the logistic regression equation. Then, we take the natural logarithm of
of Eq. (13.2.5) to yield Eq. (13.2.6), the third form of the logistic regression equation.

In the logistic regression equation, logit(promotion) = .39 (publications) — 6.00, the
Bl = .39 indicates that the predicted logit increases by .39 for each increase by one in the
number of publications. This can be verified in Table 13.2.1 by examining the two columns
Number of publications and Logit. B0 = —6.00 is the value of the predicted logit at X = 0
publications, which can again be seen in Table 13.2.1. These interpretations of Bl and B0 are
identical to the interpretations of the analogous coefficients in OLS regression.

Then we move the 1 from the right hand to the left-hand side of the equation:

Then we place the expression on the left-hand side over a common denominator:
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TABLE 13.2.1
Fictitious Logistic Regression Example Predicting Probability of Promotion to Associate

Professor as a Function of Number of Publications

The regression equation is
logit(promotion) = .39 (publications) — 6.00.

Case

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Number of publications

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

15.38

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Logit

-6.00
-5.61
-5.22
-4.83
-4.44
-4.05
-3.66
-3.27
-2.88
-2.49
-2.10
-1.71
-1.32
-.93
-.54
-.15

.00

.24

.63
1.02
1.41
1.80
2.19
2.58
2.97
3.36
3.75
4.14
4.53
4.92
5.31
5.70

Odds

.00

.00

.01

.01

.01

.02

.03

.04

.06

.08

.12

.18

.27

.39

.58

.86

1.00

1.27
1.88
2.77
4.10
6.05
8.94

13.20
19.49
28.79
42.52
62.80
92.76

137.00
202.35
298.87

Probability

.00

.00

.01

.01

.01

.02

.03

.04

.05

.08

.11

.15

.21

.28

.37

.46

.50 hypothetical case with 15.38
publications and exactly .50
probability of promotion.

.56

.65

.73

.80

.86

.90

.93

.95

.97

.98

.98

.99

.99
1.00
1.00

SPSS code
compute logit = .39*publications — 6.00.
compute odds = exp(logit).
compute prob = odds/(l + odds).
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Equivalently, the logistic regression equation may be written in the form of Eq. (13.2.5),
predicting the odds of promotion:

odds(promotion) = e(3g puWications-6.00)>

Finally, the equation may be written in the form of Eq. (13.2.4), predicting the probability of
promotion:

Three Forms of the Predicted Score
Predicted probability. In Eq. (13.2.4) the predicted score is the predicted probability

Pi of being a case. In general, the predicted probability ranges from 0.0 to 1.0. In Table 13.2.1,
the predicted probability of promotion is zero for assistant professors with 0 publications, and
1.00 for 30 publications. A useful value is (—B^/B^), which gives us the value of predictor X for
which the predicted probability is .50. For our example, (-50/

5i) = -(- 6.00)/.39 = 15.38
is the number of publications for which the predicted probability of being promoted = .5, as
illustrated in Table 13.2.1.

Odds. Equation (13.2.5) has the predicted odds [/?,-/(! —pi)] of being a case as the
predicted score. Odds are defined as the ratio of the predicted probability of being a case/?, to
the predicted probability of not being a case (1 — /?,). Theoretically, the odds range from 0.0
to +00 as the probability /?, ranges from 0.0 to 1.0. If the probability of being a case is exactly
.50, the odds of being a case versus not being a case are exactly 1.0. The odds exceed 1.0 when
the probability exceeds .5; the odds are less than 1 (but never negative), when the probability
is less than .5. In Table 13.2.1, the computed odds range from .00 to 298.87. The odds are 1.00
for X = 15.38 publications, when;?, = .50. Note that for/?, < .50, the odds are less than one,
though never negative; as/?, ranges from .50 to 1.00, the odds accelerate rapidly in value.

Logit. Equation (13.2.6) is the expression of the logistic regression in which the predictor
side is linear in the parameters, as in OLS regression. The predicted score in this form of
regression equation, that is, the logit or natural logarithm of the odds, In/[/?,/(! — /?,)], is
linearly related to the predictor X. The characteristics of the logit and the relationship of the
probability /?,- to the logit are illustrated in Fig. 13.2.1. As the probability of being a case /?,
ranges from zero to one (on the abscissa of Fig. 13.2.1), the logit theoretically ranges from
-co to +00, that is, the logit is a predicted score that potentially ranges without bound, just as
in OLS regression. (Note that Fig. 13.2.1 is cast in terms of population probability it). Hence
the compression of probabilities close to zero and close to one in Fig. 13.1.1(B) is eliminated
in the logit. (Computationally, the logit is well behaved as/?, ranges between zero and one, but
offers some computational complexities at the boundaries of /?, at exactly zero and one). The
logit equals zero when/?, = .50; put another way, the logit is centered at zero. Table 13.2.1
illustrates the behavior of the logit in the numerical example. The logit ranges from —6.00 to
+5.70 as ̂  ranges from zero to one. (We do not see the logit go to -co, because the actual
predicted probability for zero publications is .00246, not zero; we do not see the logit go to
+co for the same reason). Box 13.2.2 explains how the predicted score is transformed from
the logit to the odds to the probability.

The behavior of the logit, odds, and probability are well displayed in Table 13.2.1. To sum-
marize, the logit takes on both negative and positive values without bound. The odds range
from zero upward without bound. The probabilities naturally range from 0 to 1. When proba-
bilities are less than .50, the odds are less than one, and the logit is negative; for probabilities
greater than .5, the logit is positive and the odds greater than one. The logit varies linearly with
the value of the predictor (recall the .39 additive increment to the logit for each increase of one
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FIGURE 13.2.1 Logit = In (y^) as a function of the value of probability K. The
logit ranges from — oo to +00 as probability ranges from 0 to 1. The logit = 0 when
probability = .5.

publication). The probabilities, in contrast, do not. As the number of publications increases
from zero to 10, the probability of promotion increases from only .00 to .11. As number of
publications increases from 10 to 20, the probability of promotion increases dramatically from
.11 to .86. Finally, the diminishing returns of publications above 23 is clearly noted, in that the
probability of promotion increases from .95 to 1.00.

BOX 13.2.2
Unwinding the Logit: From Logit to Odds to Probability

The three different logistic regression equations (Eqs. 13.2.4, 13.2.5, and 13.2.6), are
merely transformations of one another. Equation (13.2.6) has the most appeal from
the predictor side in that it is linear in the coefficients; yet the predicted score is the
unfamiliar logit.

Although the form of Eq. (13.2.6) is completely familiar on the predictor side, we
might wish to couch the predicted score as the odds or the probability of being a case.
We can easily compute the odds and probability from the logit. To find the odds from
the logit, we simply exponentiate the logit (equivalently, find the antilog of the logit; see
Section 6.4.3). This is straightforward to do. On a calculator, enter the value of the logit
and hit the key marked e*. In SPSS or other statistical packages a statement of the form
COMPUTE ODDS = EXP(LOGIT) produces the odds. For example, in Table 13.2.1,
with 12 publications, the logit is — 1.32; the corresponding odds are e~1-32 = .27. Finally,
to find the probability from the odds, we use the expression

For example, if the odds are .27, the probability of being promoted are
.27/(I + .27) = .21.
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13.2.5 Understanding the Coefficients for the Predictor
in Logistic Regression

The coefficients for predictors in logistic regression analysis are presented in two forms in
most software and in publication. First, they are presented as typical regression coefficients
from Eq. (13.2.6). In the example of Table 13.2.1, Bl = .39 and BQ = -.60 are the familiar
regression coefficient and regression constant. As we have shown, the Bl coefficient indicates
the linear increment in the logit for a one-unit increment in the predictor. Second, coefficients
for the predictors are presented as odds ratios:

An odds ratio is the ratio of the odds of being a case for one value of the predictor X
divided by the odds of being a case for a value of X one point lower than the value of X in the
numerator (see Section 6.4.3 and Box 13.2.4 for e notation). The odds ratio tells us by what
amount the odds of being in the case group are multiplied when the predictor is incremented by
a value of one unit (e.g., by how much the odds of promotion are multiplied for each additional
publication). An odds ratio of 1.0 is associated with a regression coefficient B = 0, indicating
the absence of a relationship with Y; that is, the odds of being a case are equal for subjects with
any given score on X and for those with a score one unit higher. Odds ratios greater than 1.0
correspond to positive B (regression) coefficients and reflect the increase in odds of being in
the case category associated with each unit increase in X. Thus an odds ratio of 1.80 indicates
that the odds of being a case are multiplied by 1.80 each time X is incremented by one unit.
Because the relationship is multiplicative in the odds ratio, a two-unit increase in X would be
associated with 1.8 x 1.8 = 3.24 times the odds of being a case. Odds ratios falling between
0.0 and just below 1.0 correspond to negative B coefficients and signify that the odds of being
a case decrease as predictor X increases.

Epidemiologists most often report outcomes in terms of odds ratios for each predictor rather
than the value of the regression coefficients themselves. Hence, in epidemiological literature
in which the probability of contracting a disease is given as a function of some risk factor,
such as exposure to some chemical, the results might be stated as follows: The odds are four
times higher of getting a rare form of cancer if one has been exposed versus not exposed to the
chemical.

We have rewritten the form of the logistic regression equation for the odds in a slightly
different way and substituted in the values of the coefficients from the numerical example in
Table 13.2.1 (recall that algebraically, r(s+t) = rV = iV; see Table 6.4.1):

and for 2 publications,

Suppose we examine the odds of promotion given 3 publications versus 2 publications: for
3 publications,

for an odds ratio of
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If we repeat this examination for 5 versus 4 publications, or 11 versus 10 publications, we
find the value of the odds ratio to be the same. The odds of promotion are multiplied by 1.48
for each increment of 1 publication. In Table 13.2.1, for example, the odds of promotion with
10 publications are .12, and with 11 publications, .12(1.48) = .18. The odds of promotion
with 16 publications are 1.27; with 17 publications, 1.27(1.48) = 1.88. In sum, when the logit
is incremented by a constant additive amount, here BI = .39, the odds are multiplied by a
constant amount, the odds ratio, here 1.48.

We can also consider increments in the odds when predictor X increases by more than one
point. For example, an increase from 10 to 15 publications is associated with an increase in
the estimated odds of promotion of 1.485 =7.10 times. Thus, since the odds of promotions
with 10 publications are .12, the odds of promotion with 15 publications are .12(1.485) =
.12(7.10) = .85. Note that increments in the predictor X (here, increasing in the number of
publications from 10 to 15) are associated with a corresponding powering of the odds ratio
(here, raising the odds ratio to the fifth power).

13.2.6 Multiple Logistic Regression

Multiple logistic regression is the straightforward extension of the univariate case, with the
same three forms of the logistic regression equation:

Equations (13.2.11) and (13.2.13) illustrate the two commonly used forms of logistic regres-
sion. Equation (13.2.11) is the linear regression, which is expressed in log odds (logits).
Just as in OLS regression, each of the regression coefficients hi multiple logistic regres-
sion is a partial regression coefficient; each is interpreted adjusting for other effects in the
model. Equation (13.2.13) is the multiplicative equation, in which the coefficients have been
transformed to odds ratios (Section 13.2.5) and the predicted scores are odds. This reflects the
mathematical relationship between original units and their logs—a relationship that is mul-
tiplicative in original units will be additive in their logs. Standard computer programs report
both the linear regression coefficients from Eq. (13.2.11) and the odds ratios from Eq. (13.2.13)
(equivalently Eq. 13.2.12).

Generalizing from Eq. (13.2.4) for the third form of the logistic regression equation, in
which probabilities are predicted, we have the expression

In Eq. (13.2.10), we learned that when the logistic regression equation is in the form predicting
the odds, the coefficients are multiplicative. Extending this to multiple logistic regression, an
alternative expression for the odds that shows the multiplicative nature of the coefficients in
predicting the odds is given as

or equivalently,
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Interactions and Higher Order Variables
Equation (13.2.11) shows the general form of the linear regression equation to predict the

logit. Predictors in logistic regression may take the form of interactions formed as products of
other predictors XjXj or powers of other predictors as in polynomial regression X* (Greenland,
1998; Jaccard, 2001). If we consider the multiple logistic regression equation in the form of
Eq. (13.2.11), we could characterize the interaction between Xl andX2

 m predicting the logit as

In this form, we can think of the interaction as having an impact on the logit, as an additive
amount over and above the prediction from X^ and X2 alone, following the interpretation
of interactions in Chapter 7. That is, for a one-unit increase in X1X2, from which Xl and
X2 have been partialed, the logit is increased additively by B3 units. We can say that the
regression of the logit on KI depends on the value of X2 (or the converse), just as in OLS
regression.

Our thinking about the interaction is different for the odds and follows our thinking about
the meaning of the regression coefficients as amounts by which the odds are multiplied for a
one-unit increment in a predictor. In the form of the logistic regression predicting the odds, as
in Eq. (13.2.13), the interaction will appear as follows:

13.2.7 Numerical Example

In Table 13.2.2 we present a numerical example of the prediction of whether a woman is
in compliance with mammography screening recommendations (1 = in compliance, 0 =
not in compliance) from four predictors, one reflecting medical input and three reflecting
a woman's psychological status with regard to screening: (1) PHYSREC, whether she has
received a recommendation for mammography screening from a physician; (2) KNOWLEDG,
her knowledge of breast cancer and mammography screening; (3) BENEFITS, her perception
of the benefits of mammography screening for her health; and (4) BARRIERS, her perception

For a one-unit increase in X\X2, from which Xj and X2 have been partialed, the odds are
multiplied by B3 units. We can again think of the regression of the odds on Xl as depending
on the value of X2 (or the converse); however, the model is multiplicative in the odds, and this
holds for the interaction as well.

If we analyze the same data with a dichotomous outcome in both OLS and logistic regression,
and the model contains an interaction, we may not find the same effects for the interaction in the
two analyses. We may find an interaction in OLS but not in logistic regression or the converse.
The existence of interactions depends on the scale of the dependent variable. Moving from
OLS to logistic regression in essence involves changing the scale of the dependent variable as
we move from a linear function shown in Fig. 13.1.1 (A) to an S-shaped function as shown in
Fig. 13.1.1(B). We encourage readers to trust the results of the logistic regression model, which
is more suited to the properties and error structure of binary outcome data. It should be noted
that discrepancies between OLS and logistic regression are an example of the broader issue
of model consistency across linear versus nonlinear models (See Chapter 6). Jaccard (2001)
provides an exceptionally clear explanation of the interpretation of interactions in logistic
regression.
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TABLE 13.2.2
Multiple Logistic Regression Predicting Compliance

With Mammography Screening Guidelines

I. Logistic Regression

A. Initial Log Likelihood Function (intercept is included in the model).
-2 log likelihood 226.473 (Dnull, the null deviance)

B. Prediction from four predictors.
Estimation terminated at iteration number 4 because log likelihood decreased by
less than .01 percent.

-2 log likelihood 167.696 (Dk, the model deviance)

Chi-square
Model chi-square 58.778

C. Regression equation.

1. Regression coefficients.

df
4

significance
.001 (Anm-£>*)

Variable B

PHYSREC 1.842
KNOWLEDG -.079
BENEFITS -.544
BARRIERS -.581
Constant -3.051

SE Wald x2

.488 14.230
1.074 .001
.243 5.020
.166 12.252

1.369 4.967

df Significance

1 .001
1 .941
1 .025
1 .001
1 .026

95% CI

Lower Upper

.88 2.80
-2.18 2.02

.07 1.02
-.91 -.26

2. Odds ratios.

Variable

PHYSREC
KNOWLEDG
BENEFITS
BARRIERS
Constant

Exp(fl) (odds ratio)

6.311
.924

1.722
.559

95% CI

Lower

2.42
.11

1.07
.40

Upper

16.44
7.54
2.77

.77

II. Discriminant Function Analysis

A. Prediction from four predictors.
F(4,159) = 16.294,p < .001

B. Discriminant function coefficients.

Variable

PHYSREC
KNOWLEDG
BENEFITS
BARRIERS
Constant

Discriminant function coefficient

1.419
-.312
-.295
-.416

-1.424

t

4.034
-.373
1.817

-3.530
.684

Significance

.001

.710

.071

.001

.495
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of the barriers to her being screened. The data are a random sample of 175 cases from a larger
sample of 615 cases in Aiken, West, Woodward, and Reno (1994); 11 cases were eliminated
due to missing data, yielding 164 complete cases for analysis. Of the 164 complete cases,
46% were in compliance with screening guidelines; 69% had received a recommendation for
screening from a physician.

We initially considered the relationship of each separate predictor to screening compliance.
There is a powerful bivariate relationship between physician recommendation and screening
compliance: Of women who had received such a recommendation for screening, 61% were in
compliance, as opposed to only 14% of those who had not received such a recommendation,
X2(l) = 31.67, (|> = .44,p < .01. Both perceived benefits and perceived barriers have strong
bivariate correlations with compliance, r(162) = .36,—.41, respectively, p < .01 in both
cases. However, knowledge does not correlate with compliance, r(162) = -.07.

Table 13.2.2, Part I, summarizes the results of the logistic regression. We focus first on the
coefficients for the individual variables, presented in two forms, as regression coefficients and

CH13EX01 odds ratjos jn p^ j (d) an(j j (C2)t respectively. In Part I (Cl), the variables are listed, with
the coefficients in the linear form of the regression analysis:

Overall, the groups were significantly differentiated by the discriminant function. The discrim-
inant function coefficients for PHYSREC and BARRIERS predictors reached conventional
significance levels, and the coefficient for BENEFITS approached significance. As we explore
significance testing in logistic regression, we will see that the results of the discriminant analy-
sis and the logistic regression converge. We are not surprised, since the groups are close to
evenly divided into cases versus noncases.

Each regression coefficient is a partial regression coefficient, as in OLS regression. For physi-
cian recommendation, holding knowledge, benefits, and barriers constant, the logit increases
by B — 1.84, when a woman has received a screening recommendation from her physician.
As previously explained, the odds ratio for physician recommendation is computed by expo-
nentiating the regression coefficient: e1 -842 = 6.31. Again, partialing out knowledge, benefits,
and barriers, the odds of compliance with screening recommendations increase by a factor
of over 6, if the women receives a physician recommendation for a mammogram. Perceived
benefits are positively related to compliance (B = .54), with a corresponding odds ratio greater
than one, odds ratiObenefits = e-54 = 1.72. Perceived barriers are negatively related (B = -.58),
with a corresponding odds ratio less than one, odds ratiobarriers = .56. Finally, knowledge
is unrelated to compliance (B = —.08), with a corresponding odds ratio very close to one,
odds ratiOjmowjedge = .92. Formal significance tests for individual regression coefficients are
developed in Section 13.2.12.

Since the split between cases and noncases in this data set is close to equal (i.e., .467.54
for cases to noncases), we expect very similar results from a discriminant analysis applied
to the same data. Results of the discriminant analysis are given in Table 13.2.2, Part II. The
discriminant function (analogous to a regression equation) that best distinguished the two
groups was as follows:
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13.2.8 Confidence Intervals on Regression Coefficients
and Odds Ratios

Regression Coefficients
The estimated regression coefficients in logistic regression are asymptotically normally

distributed (more about their estimation is given later). Thus, the structure of the confi-
dence interval for a regression coefficient Bj is the same as for regression coefficients in
OLS regression, as given in Chapter 2, Section 2.8.2, and in Chapter 3, Section 3.6.1.

where (3J5 is the population logistic regression coefficient. The margin of error me = z\-a/2^B •
The value Zi_a/2 is the familiar critical value from the z distribution, z = 1.96 for a = .05,
two tailed; z = 2.58 for a = .01, two tailed; SEB. is the estimate of the standard error of the
regression coefficient. This yields a lower limit and an upper limit of an interval within which
we are (1 — a) percent confident that the population value ft* lies:

The relationship of the ranges of the confidence intervals to significance of regression coeffi-
cients is as in OLS regression. A confidence interval for a nonsignificant coefficient will include
zero; the confidence interval for a significant coefficient will not include zero. The 95% con-
fidence intervals are given for the regression coefficients in Table 13.2.2, Part I (Cl). For
example, for BENEFITS, me = Zi_a/2S£B. = 1-96 x .243 = .476, so that lower = Bj -me =
.544 _ .476 = .07, and upper = Bj + me = .544 + .476 = 1.02. The confidence interval
does not include zero; just as in OLS regression, a test of the difference of this coefficient
from zero would be significant. For KNOWLEDG, me = Zi-a/2SEB. = 1.96 x 1.074 = 2.104
so that lower = Bj -me- -.0794 - 2.104 = -2.18, and upper'= B} + me = -.0794 +
2.104 = 2.02. This confidence interval includes zero, and, as in OLS regression, is associated
with a nonsignificant regression coefficient.

Odds Ratios
The confidence intervals on odds ratios are not symmetric, since the odds ratio has a lower

limit of zero. The upper and lower limits of the confidence interval on an odds ratio can be
easily computed from the corresponding limits on the confidence interval for the regression
coefficient. Each limit for an odds ratio is computed by exponentiating the limits from the
confidence interval for the regression coefficient:

Odds ratios close to 1.0 are associated with regression coefficients close to zero. The con-
fidence interval on an odds ratio for a nonsignificant predictor will include the value of one,
when the corresponding confidence interval for the regression coefficient includes the value
of zero. For example, in Table 13.2.2, Part I(C2), the confidence interval on the odds ratio
for knowledge is [.11 < odds ratio < 7.54], corresponding to a confidence interval on the
knowledge regression coefficient itself, in Part I(C1), of [-2.18 < pj < 2.02]. The confi-
dence interval on an odds ratio for a negatively predicting variable will range below one when
the corresponding confidence interval for the regression coefficient has negative limits. For
example, in Table 13.2.2, Part I(C2), the confidence interval on the odds ratio for BARRIERS
is [.40 < odds ratio < .77], corresponding to a confidence interval on the barriers regression
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coefficient itself, in Part I(C1), of [—.91 < (3* < -.26]. Finally, the confidence interval on an
odds ratio for a positively predicting variable will range above one when the corresponding
confidence interval for the regression coefficient has positive limits. Once again, in Part I(C2)
the confidence interval on the odds ratio for BENEFITS is [1.07 < odds ratio < 2.74],
corresponding to an odds ratio on the benefits regression coefficient itself, in Part I(C1), of
[.07 < p? < 1.02].

13.2.9 Estimation of the Regression Model: Maximum Likelihood

In OLS regression, estimated values of regression coefficients are selected that minimize the
sum of squared residuals of prediction, the least squares criterion. The solution is an analytic
solution; that is, there is a set of known equations from which the coefficients are calculated, the
normal equations (see Appendix 1). In logistic regression and in other cases of the generalized
linear model (e.g., Poisson regression), there is no analytic solution (i.e., there are not a set
of equations from which the coefficients are derived directly). Instead, the solution to the
regression coefficient estimates is iterative, that is, by trial and error, with each trial informed
by the previous trial. A statistical criterion is specified for the coefficients to be chosen, and
different values of the coefficients are tried until a set of coefficients is found that makes the
solution as close to the statistical criterion as possible. The statistical criterion employed is
maximum likelihood. We had an earlier encounter with this approach when we estimated a
model for a sample for which some cases had missing data (Section 11.2.1). As in the current
consideration, the estimation in that case concerned a dichotomous outcome.

The maximum likelihood concept begins with the concept of the likelihood of an individual
or a sample. A likelihood for any person is a measure of how typical the person is of some
population. The likelihood for a sample is a measure of how typical the sample is of the popu-
lation. For example, we could quantify the likelihood that a woman 5'3" occurs in a population
of women, or the likelihood of drawing a sample of women with a mean height of 5'3" from
a population of women. Extended to regression analysis, the likelihoods under consideration
are the likelihoods of individuals having particular scores on the dependent variable Y, given
values on the predictors Xl,...,Xk, and the specific values of regression coefficients chosen
as the parameter estimates. The maximum likelihood estimation method provides maximum
likelihood estimates of the regression coefficients (and their standard errors), that is, estimates
that make a sample as likely or typical as possible, given values on the predictors and dependent
variable Y. The computed likelihood of a sample given the maximum likelihood estimates is
termed the maximum likelihood of the sample, typically denoted L.

In the course of maximum likelihood estimation, estimates of regression coefficients are
tried, the likelihood of the sample, given the estimates, is calculated. Then the estimates
are modified slightly according to a search procedure that guides the selection of regression
estimates in a manner that increases the likelihood of the sample. This process is repeated,
with each attempt referred to as an iteration. These iterations continue until the likelihood
of the sample, given the set of regression coefficients, ceases to change by more than a small
amount termed the convergence criterion. A solution has converged when the amount of change
from iteration to iteration falls below the convergence criterion. Under some circumstances,
convergence fails to be reached. Multicollinearity among predictors and a large number of
predictors contribute to nonconvergence. A caution with maximum likelihood estimation is
that estimates of the coefficients will not exist if there is complete separation on a predictor
or set of predictors between the group coded 1 and the group coded 0 (e.g., if all cases in
Table 13.2.1 with 15 or fewer publications were not promoted, and all those in with 16 or more
publications were promoted).
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The iterations in logistic regression (and other generalized linear models like Poisson regres-
sion) are accomplished by special mathematical algorithms. Different computer programs use
different algorithms and thus may provide (usually slightly) different estimates and statistical
test values. This is in contrast to OLS regression, which has a single analytic solution—any
discrepancies between computer programs in OLS regression are attributable to differences in
accuracy of the programs. Table 13.2.2., Part I(B) shows that the final solution is reached in
four iterations for this example.

13.2.10 Deviances: Indices of Overall Fit of the Logistic
Regression Model

Measures of model fit and tests of significance for logistic regression are not identical to
those in OLS regression, though they are conceptually related. In familiar OLS regression,
measures of variation (sums of squares or SS) are the building blocks of R2 (the squared
multiple correlation, index of overall fit) as well as of tests of significance of overall prediction
and gain in prediction (see Section 3.6.4). For OLS regression, we have the total variation
in the DV, that is SSy = E(7 — MY}2\ this value is a summary number of all the variation
in the criterion that can potentially be accounted for by a set of predictors. We also have
the predictable variation, the amount of variation in the criterion accounted for by the set of
predictors, that is, SSregression = E(F — M%)2. Finally, in OLS regression we have the residual
variation, or variation not accounted for by the set of predictors, that is,

In logistic regression, measures of deviance replace the sums of squares of OLS regression
as the building blocks of measures of fit and statistical tests. These measures can be thought
of as analogous to sums of squares, though they do not arise from the same calculations. Each
deviance measure in logistic regression is a measure of lack of fit of the data to a logistic
regression model. Two measures of deviance are particularly useful. The first is the null
deviance, Dnull, which is the analog of SSy in OLS regression. DnuU is a summary number of
all the deviance that could potentially be accounted for. It can be thought of as a measure of
lack of fit of data to a model containing an intercept but no predictors. It provides a baseline
against which to compare prediction from other models that contain at least one predictor.
The second is the model deviance from a model containing k predictors, Dk; it is the analog
of SSresidual in OLS regression. It is a summary number of all the deviance that remains to
be predicted after prediction from a set of k predictors, a measure of lack of fit of the model
containing k predictors. In logistic regression, if the model containing k predictors fits better
than a model containing no predictors, then the model deviance should be smaller than the null
deviance. This is the same idea as in OLS regression; if a set of predictors in OLS regression
provides prediction, then SSresidual after prediction should be smaller than SSy.

We caution here that although these analogies exist between deviance and variation (or
variance), deviance is not measured in the same units as variation; thus deviances should
not be referred to in writing in terms of variation or variance, a temptation into which we
can easily fall when considering goodness of fit indices in logistic regression, presented in
Section 13.2.11.

The deviance measures are actually built from maximum likelihoods under various logis-
tic regression models (see Section 13.2.9 for a discussion of likelihoods). As we have said,
measures of goodness of fit and test statistics in logistic regression are constructed from the
deviance measures. Since the deviance measures are derived from ratios of maximum likeli-
hoods under different models, the statistical tests built on deviances are referred to collectively
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as likelihood ratio tests. A full explanation of the development of deviance measures from max-
imum likelihoods and likelihood ratios is given in Box 13.2.3. Because of the way in which
deviances are structured from likelihoods, standard notation for deviance in many regression
texts and computer output is — 2LL or —2 log likelihood.

An examination of the deviances associated with the mammography screening exam-
ple in Table 13.2.2 provides some intuition about how we use deviances. In Table 13.2.2,
Part I(A), the null deviance, Dnu]] = 226.47, from a model containing only the intercept
and no predictors. In Table 13.2.2, Part I(B), the model deviance, Dk = 167.70 when the
four predictors are included in the regression equation. That Dk is smaller than £>null tells
us that the four predictors collectively contributed to prediction of the DV. Again, model
deviance is a measure of lack of fit, or what is left to predict after the inclusion of k
predictors.

BOX 13.2.3
Maximum Likelihoods, Likelihood Ratios, and Deviances

Measures of deviance are developed from maximum likelihoods under various regres-
sion models. Maximum likelihoods from different models are formed into likelihood
ratios. Deviances are then defined as a function of differences between likelihood ratios.
The series of steps in the development of deviances is explained here.

Maximum Likelihoods for Varying Models
The likelihood of scores on the dependent variable Y, given scores on the predictors

and the set of regression coefficients, varies as a function of the predictors included. For
any regression model with a given set of predictors, there is a maximum likelihood that
can be obtained, given the values of the regression coefficients. Three different maxi-
mum likelihoods are used in the development of measures of overall fit and statistical
significance of fit in logistic regression.

1. Maximum likelihood of sample under a perfectly fitting model. A
theoretical model with perfect fit forms the basis of comparison for the fit of other
models. Conceptually, such a model has as many predictors as cases. The maximum
likelihood under this perfectly fitting model is 1.0, the highest possible.

^perfect = maximum likelihood of sample under a perfectly fitting model = 1.0.

2. Maximum likelihood of sample under model containing only an
intercept. We define a maximum likelihood under the assumption that the outcomes
on Y are randomly related to set of predictors X. We do so by defining a null model that
contains only an intercept. The predicted probability for each individual is the base rate
of cases in the sample; the predictors offer no differentiation among cases whatever, the
worst possible fit.

Aiuii = maximum likelihood of sample, given null model containing only an intercept,
lowest maximum likelihood under any possible model.

3. Max/mum likelihood of sample under model containing intercept plus
k predictors. We compute the maximum likelihood of a sample for any model
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containing the intercept plus k predictors.

Lk = maximum likelihood of a sample under a model containing intercept plus k
predictors.

We use this likelihood to assess the goodness of prediction from the model containing
the intercept plus k predictors.

Likelihood Ratio
A likelihood ratio is a ratio of two maximum likelihoods, typically under one model

versus under a more complete model (i.e., with more predictors):

Deviance
The deviance is a measure of lack of fit of one model compared to another model.

The deviance is defined as minus twice the value of the log of the likelihood ratio, and
is abbreviated as — 2LL in various texts.

This null deviance is analogous to SSY, the total variation in the dependent variable
y, from OLS regression. The null deviance measures the discrepancy from the worst
possible to the best possible model, all the discrepancy for which it is possible that a
model account.

(Continued)

Given that ln(a/fc) = ln(o) — ln(fc), the expression for deviance can also be written as

Deviances contrast maximum likelihoods under various models. The larger the value
of deviance for a particular model, the worse the model; that is, deviances are measures
of "badness of fit." The specific deviance calculations we present here have direct analo-
gies to familiar measures of total variation SSy and residual variation SSresidua] in OLS
regression.

Dnu//, the Null Deviance

The null deviance DnuU contrasts the maximum likelihood L^ under the model
containing only the intercept with the maximum likelihood I/perfect under the theoretically
perfectly fitting model:
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Dk, the Model Deviance

The model deviance Dk contrasts the maximum likelihood Lk under the model con-
taining a set of k predictors with the maximum likelihood L^ecl under the theoretical
perfectly fitting model:

13.2.11 Multiple R2 Analogs in Logistic Regression

In OLS regression we have the squared multiple correlation, R2 as a single agreed upon measure
of goodness of fit of the model, the proportion of total variation in the criterion accounted for by
a set of predictors. No single agreed upon index of goodness of fit exists in logistic regression.
Instead a number have been defined (see reviews in Estrella, 1998, and Long, 1997; Hosmer
and Lemeshow (2000) present a current review). These indices are sometimes referred to as
Pseudo-R2s. None of the measures is without limitations, yielding no clear choice for logistic
regression. None of these indices is a goodness of fit measure in the sense of having an
interpretation as "proportion of variance accounted for," as in OLS regression (more about
this later). We present three such indices, the first of which is in common use, the second and
third of which will enjoy increasing use now that they are part of standard computer output.
Additional information about the relationship of these measures to the likelihoods defined in
Box 13.2.3 is given in Box 13.2.4.

R2
L ranges between zero and one.1 The measure is easily calculated from the deviance measures

(—ILL measures) from the null model and the model containing k predictors. Simulation work
by Estrella (1998) suggests that this measure does not increase monotonically with increases
in the odds ratio in the single-predictor case.

Cox and Snell Index
Cox and Snell (1989) offered a second index of overall goodness of model fit that is related

to R2 from OLS regression. The Cox and Snell index is problematic however, in that it does not
have a maximum value of one, but rather reaches a maximum value of .75 when the proportion
of cases in the sample equals .5.

!/?£ has the same in structure as the normed fit index (NFI) proposed by Bentler and Bonett (1980) in the structural
equation modeling context.

The model deviance is analogous to 55residua] from ordinary least squares regression.
This deviance measures the amount of the lack of fit that remains after modeling with k
predictors, a measure of badness of fit. We expect this value to decrease as we include
useful predictors in the regression equation.

A commonly used index in logistic regression (Menard, 2000) follows the form of/?2 from
OLS regression, that is, R2 = (SStota] — SSresidual)/SStotal, and employs the deviance measures
based on measures of likelihood,
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Nagelkerke Index

To ameliorate the difficulties with the Cox and Snell index, Nagelkerke (1991) proposed
a third measure of overall goodness of fit. The Nagelkerke index corrects the Cox and Snell
index by dividing the Cox and Snell index by the maximum possible value that it can attain for
a given proportion of cases. Both the Cox and Snell and the Nagelkerke measures are reported
in SPSS.

Table 13.2.3 summarizes three R2 analogs (R2
L, Cox and Snell, and Nagelkerke) using

the example from Table 13.2.2. The null deviance for this model was Dnull = 226.473.
The model deviance for a model containing only the PHYSREC predictor (not given in
Table 13.2.2), was DPHYSREC = 191.869, and that containing the four predictors (PHYSREC,
KNOWLEDG, BENEFITS, BARRIERS) was D4 = 167.696. R2

L for the four predictor model
from Eq. (13.2.23) = (226.473 - 167.696)/226.473 = .26, or 26% of the null deviance
accounted for by the set of predictors (notice that we are careful to avoid referring to this as a
"variance accounted for"). We are tempted to think of this as an effect size measure, scaled in
the same manner as R2 from OLS regression, but the two are not directly the same measure.
An inspection of Table 13.2.3 shows the substantial differences in the values of the /?£, Cox
and Snell, and Nagelkerke indices. The R\ and Cox and Snell measures show much closer
agreement with one another than either does with the Nagelkerke index. The Nagelkerke index
will always be larger than Cox and Snell, because, as explained earlier, the Nagelkerke index
corrects for the fact that Cox and Snell does not reach a theoretical maximum of 1.0. Publica-
tions employing these measures should clearly indicate which is being used. If the Nagelkerke
index is reported, it is important to explain that the index is adjusted so that the maximum
value it can attain is 1.00, an appropriate adjustment relative to Cox and Snell.

Why These Aren't "Variance Accounted For" Measures

Again, we caution that all these indices are not goodness of fit indices in the sense of "pro-
portion of variance accounted for," in contrast to R2 in OLS regression. This seems puzzling,
perhaps, but the explanation is straightforward. Reflect for a moment on the OLS regres-
sion model, which assumes homoscedasticity—the same error variance for every value of the
criterion. Given homoscedasticity, we are able to think of the total proportion of variance that is
error variance in a universal sense, across the full range of Y. In contrast, in logistic regression,
we have inherent heteroscedasticity, with a different error variance for each different value of
the predicted score pt (recall Eq. 13.2.3). For each value of ph then, we would have a different
measure of variance accounted for if we were to apply the R2 analogs to different portions of

TABLE 13.2.3
Measures of Fit for the Example in Table 13.2.2.

Predicting Mammography Compliance

Variables in equation

PHYSREC alone

PHYSREC, KNOWLEDG

PHYSREC, KNOWLEDG,
BENEFITS, BARRIERS

Tf2KL

.15

.15

.26

Measure of fit

Cox and Snell

.19

.19

.30

Nagelkerke

.25

.26

.40
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the range of pt. Thus, we cannot talk about variance accounted for in a universal sense for
logistic regression.

Use of goodness of fit indices in logistic regression is by no means universal as it is in OLS
regression, where reporting of/?2 is standard. Traditional users of logistic regression focus on
odds ratios for individual predictors. For example, epidemiologists use logistic regression to
develop models of specific risk factors for disease. In contrast, psychologists seek overall fit
indices based on their grounding in OLS regression. The logistic R2 analogs are generally not
so well behaved statistically as is R2 in OLS regression. The logistic analogs may fail to reach
a maximum of 1; they may fail to track the odds ratios as indices of strength of prediction from
individual predictors. According to Hosmer and Lemeshow (2000) the logistic R2 measures
for good logistic regression models are generally smaller than R2 for good models in OLS
regression; this may lead to misperception of logistic regression results as indicating poor
models.

13.2.12 Testing Significance of Overall Model Fit: The Likelihood
Ratio Test and the Test of Model Deviance

Likelihood Ratio Test of Contribution of the Predictor Set
In OLS regression we have an overall F test for the significance of prediction from the set

of k predictors, given in Eq. (3.6.7). The analog to this test in logistic regression is a likelihood
ratio x2 test for overall model fit.

Recall that in OLS regression, SSregression = SSY - SSresidual, with k degrees of freedom.
In logistic regression, we compute a difference between the null and model deviances. This
difference is a measure of amount of the null deviance (total deviance that might be accounted
for) that is accounted for by a model containing k predictors. The difference is frequently noted
as G, for goodness of fit or model prediction:

BOX 13.2.4
Fit Indices in Terms of Likelihoods

The R\ and Cox and Snell indices of overall model goodness of fit discussed in Sec-
tion 13.2.11 can be expressed in terms of likelihoods defined in Box 13.2.3. R2

L is
expressed in terms of likelihoods as follows:

This expression is algebraically equivalent to R\ = (Dm}} — Z)Jt)/Dnull given in
Eq. (13.2.23) and is presented in lieu of Eq. (13.2.23) in some texts (e.g., Hosmer
and Lemeshow, 2000, which refers to the index as R2^).

The Cox and Snell (1989) index of goodness of fit reflects the exact relationship
between R2 and the likelihood ratio statistic in a linear model with normally distributed
errors and is given as
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This measure is distributed as x2 with k degrees of freedom, where k is the number of
predictors, or, equivalently, the difference in degrees of freedom of the null deviance versus
the model deviance. G is a test of the simultaneous contribution of the set of k predictors
to the prediction of the dichotomous DV. It can be thought of as a measure of "goodness
of contribution from the predictor set." In Table 13.2.2, Part I(B), the model chi square is
G = 226.473 - 167.696 = 58.778, with k = 4 degrees of freedom for the four predictors, and
is significant at beyond conventional levels.

As we showed in Box 13.2.3, the null and model deviance are calculated from likelihood
ratios. In general, tests that involve likelihood ratios in their calculation are referred to as
likelihood ratio tests (standardly abbreviated LR); the G statistic in Eq. (13.2.24) is a likelihood
ratio test. This test is not the familiar Pearson x2 test based on contingency tables. Both the
likelihood ratio x2 test and the Pearson x2 test can be computed for logistic regression; both
are compared to the same x2 critical values for significance. Both are often reported in standard
computer output. These two measures depend on different mathematical formulations of the
residuals from a logistic regression, as explained in Box 13.2.7. Reporting of the LR tests
of model fit in publication is standard practice.2 Other tests of overall model fit in logistic
regression are described in Box 13.2.5.

/s There More Deviance to Be Accounted For:
A Test of Model Deviance
The likelihood ratio test we have just considered assesses the contribution to prediction

from a set of k predictors, a test of goodness of fit of the fc-predictor model. It leaves open the
question of whether there is still more deviance that can be accounted for after the inclusion
of the k predictors. In work in model testing—for example, in structural equation modeling,
introduced in Chapter 12—there is a focus on testing whether models are adequate or whether
they leave significant proportions of deviance unaccounted for. Analogous testing of failure
of model fit can be carried out in logistic regression. The G statistic developed earlier tells us
whether our model containing a set of predictors is better than the null model; here we learn
whether the model provides less than perfect fit.

Model deviance, Dk, is a measure of lack of fit to a model including k predictors. In the
numerical example in Table 13.2.2, Part I(B), the model deviance = 167.696 with all four
predictors in the model. We may test the null hypothesis that this model deviance does not
differ from that expected by chance alone. The corresponding alternate hypothesis is that the
model deviance is systematically larger than expected by chance alone, indicating failure of
the predictors to account completely for the criterion (i.e., there is room for improvement
in prediction). Here, failure to reject the null hypothesis is the desired outcome to support
the adequacy of the regression model. (Note that this is the opposite of classic hypothesis

2Deviances are labeled "—2 log likelihood" and "—2 log L" in SPSS and SAS, respectively. Deviances carry these
labels wherever they appear in output. Both SPSS and SAS begin with a model that contains only the intercept
and provide the value of Dnull, the deviance with the intercept only. Both SPSS and SAS for any particular logistic
regression equation containing k predictors provide the value of Dk. For each regression equation, both SPSS and
SAS provide a LR x2 test of the significance of contribution of the set of predictors to prediction. These tests are
labeled "Model chi square" in SPSS and "chi square for covariates" in SAS. SAS also provides the Akaike Information
Criterion (labeled AIC) and the Score test (so labeled) as well. SPSS refers to the regression coefficients for predicting
the logit from Eq. (13.2.6) as "B"; SAS, as "parameter estimates." SPSS refers to odds ratios as "Exp(fi)"; SAS, as
"Odds Ratio." There is an important discrepancy between SPSS and SAS. If one codes case = 1, noncase = 0, then
SPSS by default will predict being a case, whereas SAS will predict being a noncase. Hence, all the coefficients will
be of opposite sign in the SPSS versus SAS output, and odds ratios will be inverted; the keyword descending in SAS
causes SAS to predict being the probability of being a case (Y = 1), consistent with SPSS.
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testing, in which rejection of the null hypothesis supports the research hypothesis.) The actual
value of the model deviance value is tested for significance against a x2 distribution with
[n — (k + 1)] df, where k is the number of predictors, not including the intercept.

For our numerical example, the critical value for the model deviance has [n — (k + 1)] =
[164 - (4 + 1)] = 159 df and is X2

95(159) = 189.42; the model deviance Dk = 167.696.
We do not reject the null hypothesis, and we interpret this as indicating that the four pre-
dictors are adequate to account for mammography screening compliance. There is not a
significant amount of unaccounted for deviance remaining after prediction from the four
predictors.

Sparseness of Data and Tests of Model Adequacy
There is concern that statistical tests in logistic regression may encounter difficulties if data

are sparse. To understand sparseness, conceptualize the data of logistic regression as falling
into cells defined by a combination of the dependent variable and values of the predictor. In
the mammography screening example PHYSREC takes on two values (1,0) and BENEFITS
takes on six values (0, 5) as predictors. Compliance (1,0) taking on two values as the DV.
Thus we have 2x6x2 = 24 cells. Sparseness refers to having zero frequencies or very small
frequencies in some of these cells. With regard to sparseness of data, likelihood ratio tests like
G in Eq. (13.2.6) that are based on differences in deviances are not affected when data are
sparse. However, with sparse data, the x.2 test of model deviance just described is no longer
distributed as x2 and/? values from the x2 distribution are no longer accurate. In fact, the test
of model deviance for the mammography example is subject to the problem of sparseness and
should not be trusted.

BOX 13.2.5
The Wald Test, the Score Test, and the Hosmer-Lemeshow

Index of Fit
In addition to the likelihood ratio test G described in Section 13.2.12 for overall model
fit, there are two other tests, the Wald test and the Score test, that may be applied to
testing whether a set of predictors contributes to prediction of an outcome. The Score
test is also known as the LaGrange multiplier (LM) test. Both the Score and Wald tests
are based on the distribution of likelihoods as a function of the values of estimates of the
regression coefficients. Long (1997) provides an extended discussion of model testing
in generalized linear models.

Hosmer and Lemeshow (2000) provide an additional goodness of fit test that exam-
ines whether the S-shaped function of the logistic regression is appropriate for the
observed data. It is based on the familiar Pearson x2 in which observed frequencies
(f0) are compared to expected frequencies (fe) qunder a model. The basis of the test is
the predicted probabilities /?, of being a case. Data are broken into g categories, and the
expected frequency of cases versus noncases in each category based on thep,s are com-
puted. The Hosmer and Lemeshow goodness of fit statistic is the Pearson x2 for the 2
(case, noncase) by g (categories) table, with g — 2 df. Nonsignificance indicates the fit
of observed frequencies of cases in the categories compared to those expected based
on the logistic regression. The validity of the test of fit depends on there being large
expected frequences in all cells; the power of the test is not high for sample sizes less
than 400 (Hosmer and Lemeshow, 2000).
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13.2.13 x2 Test for the Significance of a Single Predictor
in a Multiple Logistic Regression Equation

In OLS regression, we test whether each individual predictor contributes to overall prediction.
The test of contribution of an individual predictor in OLS regression is actually an F test of
the increment in SSregression by the inclusion of that variable, over and above all other variables.
This F test (with degrees of freedom = 1, ^residuai) is me square of the t test for an individual
predictor (with degrees of freedom = Residual)- The f test *s defined as the ratio of the predictor
to the estimate of its standard error.

Likelihood Ratio Test
In logistic regression, the direct analogy to the OLS F test of gain of prediction for a single

predictor is defined on the basis of the difference in model deviances for the model containing
k predictors and one containing (k — 1) predictors, with the predictor in question eliminated.
This yields a likelihood ratio x2 test with 1 df.

Suppose we wished to compute such measures for each of the four predictors in Table 13.2.2,
Part I(C). We would require four further regression analyses, each containing only three pre-
dictors. These three predictor equations are compared to the four-predictor equation to test
for the increment in prediction from the addition of a single predictor. These three predic-
tor regressions, each eliminating a different predictor, are actually not shown in Table 13.2.2;
results of these analyses are reported here. For example, with PHYSREC eliminated, the model
deviance from the remaining three predictors (BENEFITS, BARRIERS, KNOWLEDG) was
D(k-i) = 184.368. With all four predictors including PHYSREC in the model, the model
deviance was Dk = 167.696, as before, so that x2(l) = 184.368-167.696 = 16.672, p < .01.
The x2 values for BENEFITS and BARRIERS are 5.287 (p < .05), and 13.770 (p < .01),
respectively. The test for KNOWLEDG does not reach a conventional significance level,
X2(D = .005.

Wald Tests
The likelihood ratio x2 test just described is the preferred test for the impact of individual

predictors in a set of predictors. However, standard computer programs, among them SPSS and
SAS, report Wald tests instead for individual predictors. The Wald statistic reported in SPSS
and SAS is the ratio of square of the estimate of the regression coefficient Bj to the square of
the estimate of its standard error SEB.

The test is distributed as x2 with 1 degree of freedom under the null hypothesis. The Wald
tests for individual predictors are given in Table 13.2.2, Part I(C), and may be compared to
the likelihood ratio tests reported earlier for the individual predictors, since both tests are
distributed as x2 with 1 degree of freedom. In all cases except the zero value of the test for
the KNOWLEDG predictor, the likelihood ratio tests exceed the corresponding Wald tests in
value. This is consistent with findings that the Wald test is less powerful than the likelihood
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ratio test. Wald tests are also biased when data are sparse. Again, the likelihood ratio test is
preferred.3

13.2.14 Hierarchical Logistic Regression: Likelihood Ratio x2 Test
for the Significance of a Set of Predictors Above and
Beyond Another Set

A common strategy in OLS regression, developed in Section 5.5, is to examine whether a set B
of m predictors contributes significant prediction over and above another set A of k predictors.
Likelihood ratio (LR) x2 tests in logistic regression can be formulated for the same purpose.
Hierarchical LR tests of the contribution of a set of m predictors over and above another set of k
predictors follow the same structure of differences between deviances. Deviances are computed
for the k predictor model, Dk, and the (m + k) predictor model, D^m+k). The difference between
these deviances is an LR test for the significance of contribution of the set of m predictors over
and above the set of k predictors, with m degrees of freedom.

In the numerical example of Table 13.2.2, we are most interested in whether psychological
factors contribute to screening compliance beyond physician recommendation. Thus PHYS-
REC constitutes set A with k = 1 predictor. The deviance with only PHYSREC as a predictor
is 191.869. The second set B consists of m = 3 predictors, KNOWLEDG, BENEFITS,
and BARRIERS, the psychological factors. The deviance from the four-predictor equation
is 167.696. The LR x2 test with m = 3 degrees of freedom = 191.869 - 167.696 =
24.173, p < .01. The psychological factors do add predictability over and above physician
recommendation.

Revisiting the Indices of Goodness of Fit
In Section 13.2.11 we reviewed R2 analogs in logistic regression. We saw (Table 13.2.3)

that the indices differed in magnitude from one another for a single model. On the other hand,
if we inspect these indices in hierarchical models, they tell a consistent story about the gain in
prediction from adding sets of variables. In Table 13.2.3, we present a series of three models:
prediction of mammography screening (a) from PHYSREC alone, (b) from PHYSREC plus
KNOWLEDG, and (c) from PHYSREC and KNOWLEDG, plus BENEFITS and BARRIERS.
All three indices in Table 13.2.3 tell the same story: There is no increment in prediction by
the addition of KNOWLEDG to PHYSREC, but the addition of BENEFITS and BARRIERS
contributes substantial incremental prediction. Hosmer and Lemeshow (2000) point out the

3The Wald test for the contribution of an individual predictor is defined in two ways. First is as given in Eq. (13.2.28).
Second is as the square root of Eq. (13.2.28) (e.g., Hosmer & Lemeshow, 2000, p. 16):

At asymptote, maximum likelihood estimators, including the estimates of the regression coefficients, are normally
distributed, meaning that as sample size increases, the distribution of the estimators becomes more and more normal
in form. Hence the Wald statistic, as given in Eq. (13.2.29) is distributed as a z test for large samples. The user of
statistical software for logistic regression should take care to determine whether the Wald test is given in the x2 form
of Eq. (13.2.28) or the z test form of Eq. (13.2.29).



13.2 DICHOTOMOUS OUTCOMES AND LOGISTIC REGRESSION 509

utility of the logistic R2 analogs in the course of model building. Table 13.2.3 illustrates their
utility as relative measures for comparison across models.

13.2.15 Akaike's Information Criterion and the Bayesian
Information Criterion for Model Comparison

The comparison of models using LR tests described in Section 13.2.14 requires that one model
be nested within the other. By nested is meant that all the predictors in the smaller model are
included among the predictors in the larger model and the identical cases are included in both
analysis. Two indices, Akaike's Information Criterion (AIC, Akaike, 1973) and the Bayesian
Information Criterion (BIC) provide comparison of model fit in models that are not nested.
These two indices also take into account the number of regression coefficients being tested;
given equal fit of two models, the more parsimonious model (i.e., having fewer predictors)
will have a better AIC fit index. Values of the AIC will be smallest for a model that exhibits
good fit with a small number of predictors. (See Box 13.2.6 for computation of the AIC.) The
AIC is used by comparing AIC values across estimated models; there is no statistical test of
the AIC. The Bayesian Information Criterion (BIC) is a second measure of fit that takes into
account the number of predictors. The BIC may be negative or positive in value; the more
negative the value of the BIC, the better the fit.

13.2.16 Some Treachery in Variable Scaling and Interpretation
of the Odds Ratio

To this point our numerical example has been presented with only unstandardized logistic
regression coefficients. The PHYSREC predictor is a dichotomous predictor that ranges from
0 to 1; we now call this PHYSREC(10). The BENEFITS and BARRIERS psychological pre-
dictors range from 0 to 5; we call them BENEFITS^) and BARRTERS(5)0). Thus, of course, a
1-unit change on PHYSREC(10), which covers the full range of the PHYSREC(1>0), scale, is not
comparable to a 1-unit change on BENEFITS^ 0), which covers one-fifth of the BENEFITS(5 0)

scale.
Consider the regression equation for predicting mammography screening from PHYSREC

and BENEFITS in Table 13.2.4. The same regression equation is shown with four different
predictor scalings. Table 13.2.4A gives the analysis of predictors in the original scaling.

where n is the number of cases. Note the penalty in the numerator for the number of
predictors in the model; for two models yielding the same maximum likelihood Lk, the
one with the smaller number of predictors will have a smaller AIC.

BOX 13.2.6
Computation of the Akaike's Information Criterion

Computation of the AIC is based on the likelihood under the model containing m = k +1
predictors (including the intercept, Lk)
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TABLE 13.2.4
Impact of Predictor Scaling on Regression Coefficients and Odds Ratios

A. Original predictor scaling: physician recommendation (1,0); benefits (5, 0).

B. Revised predictor scaling: physician recommendation (1, —1); benefits (5, 0).

C. Revised predictor scaling: physician recommendation (1, 0); benefits (1, 0).

D. Revised predictor scaling: physician recommendation and benefits standardized (z scores),
and criterion of compliance unstandardized.

Note: Dependent variable is COMPLY (1,0).

Scaling a Dichotomous Predictor

For physician recommendation, the dummy-variable coding (see Section 8.2) is 1 =
recommendation and 0 = no recommendation, which means that a 1-unit change in the value
of the predictor goes from not having a recommendation to having a recommendation. Note
that the regression coefficient for PHYSREC(10) is #PHYSREC(I,O) = 1-934 and the odds ratio
is e^pHYSREcu,o) — 6 92. The logit for obtaining a mammogram increases by additive amount of
1.934 when a woman receives a recommmendation for screening from her physician, and the
odds of her obtaining a mammogram are multiplied by 6.92. Recall that in general the odds
ratio is the amount by which the odds are multiplied for a 1-unit increase in the predictor (here,
of receiving a recommendation for a mammogram).

Now we repeat the analysis, but with an unweighted effects code form of the PHYSREC
predictor (see Section 8.3), that is, 1 = recommendation, — 1 = no recommendation. The
change in interpretation of regression coefficients for unweighted effects versus dummy coding

Variable

PHYSREC (1,0)
BENEFITS (5, 0)
Constant

B

1.934
.694

-4.550

SE

.467

.229
1.053

Waldx2

17.164
9.157

18.687

df

1
1
1

Significance

.000

.002

.001

Exp(S) (odds ratio)

6.920
2.002

Variable

PHYSREC (1,-1)
BENEFITS (5, 0)
Constant

B

.967

.694
-3.583

SE

.234

.229
1.015

Wald x2

17.164
9.157

12.454

df

1
1
1

Significance

.000

.002

.001

Exp(B) (odds ratio)

2.631
2.002

Variable

PHYSREC (1,0)
BENEFITS (1,0)
Constant

B

1.934
3.470

-4.550

SE

.467
1.147
1.053

Waldx2

17.164
9.157

18.687

df

1
1
1

Significance

.000

.002

.000

Exp(B) (odds ratio)

6.920
32.129

Variable

ZPHYSREC
ZBENEFIT
Constant

B

.898

.718
-.327

SE

.2168

.2373

.1941

Waldx2

17.164
9.157
2.843

df

1
1
1

Significance

.000

.002

.092

Exp(fi) (odds ratio)

2.455
2.051
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is the same as in OLS regression. The results of an analysis with unweighted effects coded
PHYSREC(1(_D, that is, 1 = yes;-l = no, are given in Table 13.2.4B. First, as in OLS
regression, the regression coefficient for PHYSREC(1 _1} is .967, exactly half of the value of
the corresponding coefficient in the first dummy-coded analysis. What value is the odds ratio
for PHYSREC(1 _1} relative to that for PHYSREC(10)?

Note that 2.63 = V6.92. Halving the regression coefficient corresponds to taking the square
root of the odds.

The odds ratio based on effects coding (1, —1) does not inform us directly of odds that
a woman will receive a mammogram if she does versus does not receive a physician's rec-
ommendation. To get this odds ratio directly we must use the (1, 0) coding of physician
recommendation. With the (1, —1) effects codes, a 1-unit increase in the PHYSREC(1(_1) pre-
dictor is only half the distance from no recommendation (—1) to recommendation (1). The
regression coefficient from the effects coded predictor can be converted to the odds ratio for
the impact of recommendation on odds of screening. First, double the regression coefficient
from the effects coded analysis (since £(!/_!) = .967,2 x 5(i/_i) = 1.934). Then exponentiate
the doubled coefficient to get the proper odds ratio for the increase in odds of mammography
screening when one has received a physician recommendation (el-934 = 6.92).

Treachery in Sea/ing a Continuous Predictor
We often combine medical or demographic variables that are dichotomous (male, female;

African American, Caucasian; family history, no family history; physician recommendation,
no physician recommendation) with continuous variables such as psychological variables (e.g.,
perceived benefits, barriers) that are scaled and cover a range well beyond (0,1). If we ignore the
difference in scaling, we may misinterpret the smaller regression coefficients that result from
prediction from the psychological variables with larger ranges as indicating weaker prediction
from the psychological variables. The differences hi coefficient magnitude are accentuated
when we move to odds ratios. To the uninitiated or casual consumer of logistic regression, who
quickly scans a column of odds ratios, the binary variables may appear much more powerful
than the psychological variables. The benefits predictor BENEFITS^ 0) has a 5-point range, so
a 1-unit change in benefits covers only a fifth of the scale. A 1-unit change in PHYSREC(10>
is from no recommendation to a recommendation. We rescale the benefits scale to have the
range from 0 to 1 by dividing each benefits score by 5, yielding BENEFITS(10>. Having
divided the benefits scale by 5, the regression coefficient for BENEFITS(10) is multiplied
by 5; B = .694 x 5 = 3.47, as shown in Table 13.2.4C. Then we rescale the odds ratio:
^aied = e3.4698 _ 32.13. if a woman moves from the lowest to highest score on BENEFITS
(perhaps a goal for an intervention to increase screening rates), her odds of being screened
increase by a factor of 32; perceived benefit appears to be a very powerful psychological
variable.

This example illustrates the importance of addressing predictor scaling when comparing
odds ratios. Hosmer and Lemeshow (2000) suggest that when working with a continuous
predictor, one should consider the magnitude of change in units on that predictor that would be
meaningful and report coefficients and odds ratios associated with that change. For example,
if a 2-unit change seemed meaningful for the BENEFITS scale, then one would report the
rescaled B coefficient and odds ratio for a 2-unit change. For a 1-unit change on the 5-point
BENEFIT scale (Table 13.2.4A), the logit increases by BBENEFrrs(5 0) = .694. For a w-unit
increase in benefits, recall that the amount of change in the logit is simply wB. Here, for a
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2-unit increase in BENEFITS^), the increase in the logit is 2 x .694 = 1.388. The odds are
multiplied by the value ewB> for a w-unit increase in the predictor. For a 2-point increase in
BENEFITS(5 o), the odds ratio is g2*-694 = 4.01, or, equivalently, the odds of compliance are
multiplied by 4.01. If one reports coefficients and odds for greater than a 1-unit change on a
scale, what is being reported should be clearly explained to the reader.

Standardized Regression Coefficients
The use of standardized regression coefficients is the familiar way in OLS regression to

address the issue of differential scaling of predictors. However, standardized regression coef-
ficients are a matter of some complexity in logistic regression. In OLS regression, we compute
the standardized regression coefficient |3; from the corresponding unstandardized coefficient
Bj as follows (rearranged from Eq. 3.2.5):

13.2.17 Regression Diagnostics in Logistic Regression

Section 10.3 provides a full exposition of regression diagnostics and their use in OLS regression.
These regression diagnostics are based on the assumption that the residuals in an analysis are
normally distributed, according to the general linear model. Regression diagnostic measures
of leverage, distance, and influence have been generalized to logistic regression in classic work
by Pregibon (1981). The reader is cautioned that the generalizations are not complete, due to

where sdx is the standard deviation of the predictor, and sdY is the standard deviation of Y.
Using this equation in logistic regression poses problems, because in the linear form of logistic
regression, the variable being predicted is the logit of the underlying probability of being a case
and not the observed Y (case, noncase). Thus, to standardize coefficients, we would require
the standard deviation of this underlying logit. Although some software packages do report
standardized coefficients, it may be unclear precisely how standardization is accomplished. If
the analyst wishes to report a standardized solution, then a simple strategy exists: Standardize
the predictors and estimate the unstandardized logistic regression (Pampel, 2000). The resulting
coefficients give the change in the logit for a one standard deviation change in the predictors.
The coefficients are "semistandardized," that is, standardized only on the predictor side. Use
of this approach should be explained in publication, due to the unusual semistandardization.
In Table 13.2.4D, the data are reanalyzed with the dependent variable retained as COMPLY
(1,0), and both predictors first converted to standardized scores (z scores, i.e., ZPHYSREC and
ZBENEFTT for the z scores associated with PHYSREC and BENEFITS, respectively). The
resulting regression coefficients and odds ratios are approximately equal, suggesting relatively
equal strength of the predictors. There is a downside to this approach: The coefficients and
odds ratios for the dichotomous predictors lose their straightforward interpretation because
the values of 0 and 1 in the z score scale metric no longer represent the two categories of the
scale. This leads some analysts to object to the approach. Menard (1995) and Pampel (2000)
provide clear discussions of standardization in logistic regression, including standardization
of predicted logits to come closer to full standardization.

Another way of thinking about the contributions of two predictors, as in OLS regression, is
to ask whether each contributes prediction over and above the other. Thus we may ask whether
BENEFITS contributes to reduction in deviance over and above PHYSREC and vice versa,
according to Eq. (13.2.27).
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the complexity of the logistic regression model. Graphical diagnostics are more difficult to
interpret because of the dichotomous distribution of the criterion. Informative discussions of
diagnostics in the logistic regression context are found in Collett (1991), Fox (1997), Hosmer
and Lemeshow (2000), Long (1997), Menard (1995), and Ryan (1997).

The present section does not give a full explication of diagnostics in logistic regression.
Rather, since regression diagnostics are regularly reported in logistic regression software, this
section aims to highlight divergences between OLS and logistic regression diagnostics and to
caution analysts concerning issues in the use of diagnostics in logistic regression. A review of
Section 10.3 is recommended to set this section in context.

Leverage in Logistic Regression
Recall that in OLS regression, the leverage of a point, hiit is a measure of the potential of a

case to influence regression results, (i.e., to change the regression coefficients by its presence
in the data set). Leverage in OLS regression is based solely on scores on the predictors. In OLS
regression the farther a case is from the centroid of the points on the predictors (the means of all
the predictors), the greater is the leverage (see Section 10.3.1, Eq. 10.3.1). In OLS regression
the value of the dependent variable (DV) for the case has no effect on the leverage measure.
Pregibon (1981) provided a generalization of the measure of leverage to logistic regression. In
this generalization, the leverage values hti depend on the DV scores as well as on the predictors,
yielding a discontinuity between the definitions of leverage in OLS and logistic regression.
A further discontinuity exists between leverage measures in the two cases. Leverage in OLS
regression is greatest for those cases most extreme in the predictor space (i.e., farthest from the
centroid of points). However, leverage in logistic regression increases as the extremeness of
cases increases up to a point and then diminishes rapidly for the most extreme cases. In other
words, a very extreme case can have a lower leverage score than a less extreme case! Hosmer
and Lemeshow (2000) recommend that one should examine the predicted probability /?, for
a case before interpreting leverage measures; only for/?, between .10 and .90 are leverages
assured to increase with increasing distance of the point from the centroid of the predictor
space.

Residuals in Logistic Regression
Residuals play a central role in regression diagnostics. The fact that the residuals in OLS

regression are theoretically normally distributed yields great simplification in regression diag-
nostics. The distribution of residuals in OLS is expected to be independent of the predicted
score 7, so the size of residuals can be interpreted in the same manner across the range of the
predictor. Further, if the homoscedasticity assumed in OLS regression holds, the variance of
the residuals is constant for all values of the predicted score; residuals associated with different
predicted scores may be directly compared. In logistic regression, the size of residuals and
their variance is dependent upon the predicted probability, p,; the residuals are non-normal
and heteroscedastic. This adds a layer of complexity to the analysis of residuals.

Deviance residuals. In OLS regression the squared residual of each case (Y - Y)2

contributes to SSresidual, the overall measure of lack of fit of the OLS regression model. The
residuals from individual cases form the basis of a number of regression diagnostic measures
in OLS regression.

In logistic regression, a deviance residual is computed for each case; it measures the numer-
ical contribution of the case to the overall model deviance Dk, the overall measure of lack of
fit of a logistic regression model. Adding to the complexity of residual diagnostics is the fact
that there is a second type of residual in logistic regression, the Pearson residual. Both the
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deviance and Pearson residuals are used in the computation of diagnostic measures in logistic
regression that are analogs of residual diagnostics in OLS regression. There is a preference
in the literature for the use of deviance residuals over Pearson residuals for two reasons: (1)
deviance residuals are closer to normally distributed, and (2) Pearson residuals are unstable
when Pi is close to zero or one. Deviance residuals pose problems for interpretation, however,
in that the expected value of the deviance residual (the average deviance residual) depends on
the value of p, the overall probability of a case; the value of the residual cannot be considered
independent of this overall probability. Details of the computation of the deviance and Pearson
residuals are given in Box 13.2.7.

Externally student/zed residuals. In OLS regression externally studentized residuals
are useful in identifying outliers. The externally studentized residual for each case is based
on a regression analysis in which the case in question has been omitted (see Section 10.3.2).
Externally studentized residuals in logistic regression have been defined for both deviance
and Pearson residuals. Those based on deviance residuals are asymptotically normally distrib-
uted; the difficulty for psychology is that we have small sample sizes—we can hardly assume
asymptotic distributions.

In Section 10.3.21 tests were provided for externally studentized residuals (see Eq. 10.3.4).
In addition, suggestions were made for cut scores, beyond which a residual is seen as signaling
a potentially problematic case. We do not see these same t tests and suggestions for cut scores
in the logistic regression context. The definition of cut scores for residuals is typically justified
by normal theory, based on the number of standard deviations on a normal curve. Recall again
that residuals in logistic regression are not normally distributed; in fact, the residuals follow a
binomial distribution for each value of/?,.

Influence in Logistic Regression
Influence diagnostics, that is, measures of the extent to which individual cases affect the

regression coefficient estimates (Section 10.3.3) have been extended to logistic regression;
these include an analog of Cook's distance for impact of a case on the overall fit of the
regression model and DFBETA for the impact of a case on individual regression coefficients.
DFBETAs are useful in logistic regression for identifying cases that may have an undue impact
on particular regression coefficients.

Graphical Approaches to Diagnostics
A number of graphical displays, among them index plots of residuals, normal probability

plots of residuals (q-q plots) and added variable plots have been suggested for use in diagnostics
in logistic regression (for a discussion of the use of these graphs in OLS regression, see
Chapter 4). Collett (1991) and Cook and Weisberg (1999) provide an extensive review of
graphical displays applied to logistic regression. These plots may also be extended to model
checking, that is, to examining whether the fitted model is an adequate representation of the
data. As Collett (1991) pointed out, however, since residuals in logistic regression are generally
not normally distributed, a correct logistic regression model may yield plots that suggest
difficulties with the model. For example, a normal probability plot of deviance residuals may
well show residuals deviating from a straight line even with a well-fitting model.

How to Proceed With Diagnostics in Logistic Regression
In light of these caveats, the reader must be cautious in drawing conclusions from diagnostics

in logistic regression. One may examine measures of leverage for cases for which p{ falls
between .10 and .90, remembering that beyond these values leverage no longer reflects distance
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from the centroid of the X space. Studentized residuals that are very large relative to the rest of
the sample may reflect cases that are problematic. Cases that will have the largest residuals are
those with extreme predicted probabilities, either close to 0 or close to 1. They will be cases that
do not follow the model (e.g., a student who by virtue of exceptionally strong scores on a set of
academic ability predictors in a model should succeed in college but who, unlike other students
with these same scores, fails miserably). DFBETAs may also flag potentially problematic cases,
which may well be the same cases that simply do not follow the model. Graphical displays
of diagnostics will aid detection of potentially problematic points. The reader should take
the view, however, that diagnostics in logistic regression are not so straightforward as in OLS
regression. Even greater caution should be applied before cases are deleted based on diagnostic
measures in logistic regression than in OLS regression.4

BOX 13.2.7
Deviance and Pearson Residuals in Logistic Regression

The Pearson residual for case i is given as (Long, 1997, p. 98)

Since the residuals exhibit heteroscedasticity, the residual (7, — /?,) is divided by its
binomial standard error, which depends upon /?,-.

The deviance residual is defined as

where sign (F, — /?,) is the sign of the discrepancy between the observed score Y (1, 0)
and the predicted probability. The expression compares the observed y, to the predicted
Pi score.

Neither the Pearson nor the deviance residual given here is standardized; that is,
neither has a standard deviation of 1. Both may be standardized by dividing each value by
the value J\ — hu, yielding standardized Pearson and deviance residuals, respectively.

4The naming of the diagnostics identified here is inconsistent across software packages. These are the terms used
in SPSS and SAS: (a) leverage A|V (LEVER in SPSS, H in SAS); (b) Pearson residual, Eq. (13.2.33), (ZRESID in SPSS,
RESCHI in SAS); (c) deviance residual, Eq. (13.2.34), (DEV in SPSS; RESDEV in SAS); (d) externally studentized
residual (SRESID in SPSS); (e) DFBETA (DFBETA in SPSS; DFBETAS in SAS); (f) analog of Cook's distance
(COOK in SPSS; CBAR in SAS).

A final complication in the computation of diagnostics in logistic regression is that they are computed in one of
two ways: (1) based on individual cases in the data set, as they are presented here, or, (2) based on aggregated data (see
Hosmer and Lemeshow, 2000 for a discussion). For the aggregated measures, data are broken into categories, where a
category consists of all those cases that have the same values on the predictors. With continuous predictors, categories
will be sparse (i.e., contain few cases). Basic diagnostic building blocks, specifically residuals and leverage values, are
defined somewhat differently depending on whether aggregation is or is not used; further, the asymptotic distributions
of the measures differ depending on aggregation strategy. Numerical results of diagnostics differ depending on
aggregation. It may be unclear what strategy is used for computation in any particular software package, adding a
layer of uncertainty to the meaning of specific values of the measures.
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13.2.18 Sparseness of Data

We defined sparseness of data in Section 13.2.12 and indicated how sparseness biases tests of
model deviance and Wald tests, as well. Sparseness (having numerous cells with zero counts)
also decreases the power of statistical tests in logistic regression. In addition, sparseness
may cause difficulties in estimation. The analysis may not converge (see Section 13.2.9). Or,
estimates of regression coefficients and their standard errors may "blow up" (i.e., become
huge), signaling estimation difficulties.

13.2.19 Classification of Cases

Once a logistic regression has been accomplished, the predicted probabilities pi for each indi-
vidual may be used to generate a predicted case status (i.e., whether the individual is predicted to
be a case or a noncase). This is accomplished by choosing a cut score on the/?, continuum, above
which an individual is classified as a case; otherwise, noncase. Then the predicted status (case,
noncase) can be compared with the observed case status to determine how well the logistic
regression model recovers case status. The classification of cases is ancillary to logistic regres-
sion and is also carried out following other statistical procedures, particularly discriminant
analysis, which is described in Section 13.2.1. Classification is useful when statistical models
are developed to make decisions among individuals (e.g., hiring decisions based on a battery of
test scores). Classification provides another way of characterizing the goodness of fit of a logis-
tic regression model. A description of classification is given in Box 13.2.8, along with a numer-
ical example. The critical issue of selection of a cutoff score for classification is discussed.

BOX 13.2.8
How Accurately Does a Logistic Regression Model Identify Cases?

Suppose we compute for each case the predicted probability of being a case, pt. Then we
classify each individual as case versus noncase based on whether the pt score exceeds
some cutoff. These classifications are statistical classifications, based on logistic regres-
sion model. We then compare the statistical classifications to the actual classifications
in a 2 x 2 classification table, shown in Table 13.2.5. The number of correct statistical
classifications is the sum of the correct rejections (classifying a noncase as a noncase)
plus hits (classifying a case as a case) in the parlance of statistical decision theory.
In epidemiological terms, one can examine sensitivity, the proportion of actual cases
who are classified as cases, and specificity, the proportion of noncases who are classi-
fied as noncases (Fleiss, 1981). Such an analysis may be informative if the goal of the
logistic regression analysis is, in fact, classification of cases, as in computerized medical
diagnosis, rather than the derivation of a model of "caseness" based on a set of predictors.

A most critical issue in classification is the choice of cutoff on the;?, continuum. Neter,
Kutner, Nachtsheim, and Wasserman (1996) have suggested three criteria: (1) use a cut-
off of .5, such that if the predicted probability of being a case is greater than .5, the
individual is classified as a case; (2) select the cutoff that leads to the most accurate
classification, through a process of trial and error; and (3) use some a priori information
about the proportion of cases versus noncases in the population (e.g. the actual propor-
tion of women who are in compliance with mammography screening guidelines in the
population). The choice of cutoff will change the sensitivity versus specificity of the
classification scheme (this is analogous to the inverse relationship between Type I and
Type II error in hypothesis testing as one changes the critical value of a statistical test).

(Continued)
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TABLE 13.2.5
Classification Results From the Mammography Example

Observed class
membership

0
1

Predicted class membership
0 1

60
23
83

2. Cut = ̂  = .20.

Observed class
membership

0
1

28
53
8l

Predicted class membership
0 1

40
4

44

3. Cut = ̂  = .80.

Observed class
membership

0
1

48
72

120

Predicted class membership
0 1

81
50

131

7
26
33

Total Number correct /?count

88
76 113 .68

164

Total Number correct /?£ount

88
76 112 .68

164

Total Number correct Rcomt

88
76 107 .65

164

n2
^AdjCount

.33

D2
^AdjCount

.32

R2
"AdjCount

.25

Note: R2
count is the unadjusted proportion of correct classifications, the sum of the main diagonal

elements divided by the total n = 164.
R2

AdjCount is the adjusted proportion of correct classifications, "the proportion of correct guesses beyond
the number that would be correctly guessed by choosing the largest marginal" (Long, 1997, p. 108).

A number of measures of the agreement of two classifications have been developed,
among them the phi coefficient, weighted kappa (Cohen, 1968a), and Goodman and
Kruskal's X (Goodman & Kruskal, 1979). Treatments of these measures are given in
Fleiss (1981), Kraemer (1985; 1988), and Menard (2001). Kraemer, Kazdin, Offord,
Kessler, Jensen, and Kupfer (1999) provide a useful explication of such measures and
their interrelationships.

(Continued)

A. Classification table.

Observed class membership 0

1

Predicted class membership

0

Correct rejections

Misses

B. Classifications under various cut scores.
1. Cut = £, = .50.

1

False alarms

Hits
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Classification accuracy depends on the base rate of a phenomenon in the population,
that is, the proportion of individuals in the population who are cases. If, for example, a
base rate of 80% of the adults in a community suffer from allergies during a particular
month, then a physician has an 80% chance of being correct in diagnosing a new patient
from that community as having allergies without ever seeing the patient!

Two simple measures of classification accuracy (Long, 1997) are the proportion of
correct classifications (hits plus correct rejections) and the proportion of additional
classification accuracy gained by the logistic regression scheme, over and above clas-
sification accuracy based on the distribution of the outcome alone (e.g., above the base
rate of 80% in the above example). The former measure does not handle the base-rate
issue; the latter does. These are given as follows, where n is the total number of cases,
and nmax is the total number of cases in the larger observed category:

for the uncorrected proportion correct, and

for the proportion gain in prediction accuracy over and above that provided by
classification based on marginals alone. This is Goodman and Kruskal's X (Long, 1997).

Computations are given for the mammography data in Table 13.2.5B. Part Bl gives
the classification table for a cut score of pt = .50. There are 88 cases observed to be
noncases, and 76 cases, of the 164 cases in all. In all 60 of the noncases are correctly
classified, along with 53 of the cases. The proportion of correct classifications with a
.50 criterion is .68, that is, fl£ount = (53 + 60)/164. The adjusted count is /?idjCount =
(53 + 60 - 88)/(164 - 88) = .33, where 88 is the number of cases in the larger
observed class. This .33 indicates that the prediction scheme produces classification
accuracy that is 33% higher than by merely guessing that all cases arise from the more
frequent category.

Table 13.2.5 shows how insensitive measures of overall classification accuracy are to
the choice of cutoff, but how dramatically measures of sensitivity (proportion of actual
cases classified as cases) and specificity (proportion of actual noncases classified as
noncases) are affected by cutoff choice. Part B2 gives the classification results for a
cut score of p, = .20; Part B3, for a cut score of p{ = .80. /?count essentially does not
change as the cut score is moved from .20 to .80. However, sensitivity and specificity
change dramatically as the cutoff is moved. The sensitivity, or proportion of actual
cases classified as cases, decreases from sensitivity of 72/76 = .95 when the cut score
is .20 (Part 2) and fully 120 of the 164 individuals are classified as in compliance to
sensitivity = 26/76 = .34, when the cut score is .80 (Part 3) and only 33 of 164 individ-
uals are classified as in compliance. Conversely, specificity increases from 40/88 = .45
when the cut score is .20 (Part 2) to 81/88 when the cut score is .80 (Part 3). The issue of
cutoff is well illuminated by considering the use of medical diagnostic tests; a change in
cutoff may well determine whether an individual is diagnosed or not as having a disease.

Classification results reflect the adequacy of the model in distinguishing cases from
noncases (once accuracy that can be achieved from the base rate by just predicting the
larger category is taken into account). These results provide a useful adjunct to other
meaures of fit in logistic regression. However, sometimes we may have a well-fitting

(Continued)
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model in terms of predicted probabilities of being in a category and simultaneously
low classification accuracy, above and beyond the base rate. For example, suppose
our model is very accurate in predicting that a person with a certain profile has a
predicted probability of being a case of pt = .50. For this person, we have a 50/50
chance of being wrong in classification based on the model because we can only clas-
sify this person as a case versus a noncase. Poor classification results in the face
of a well-fitting model may particularly occur when we are predicting rare events.
A mathematically based science of classification has been developed in which clas-
sification rules take into account prior odds of class membership and the costs of
misclassification. Tatsuoka (1988) provides an introduction to misclassification models.

13.3 EXTENSIONS OF LOGISTIC REGRESSION TO MULTIPLE
RESPONSE CATEGORIES: POLYTOMOUS LOGISTIC
REGRESSION AND ORDINAL LOGISTIC REGRESSION

We may encounter dependent variables for which the outcomes fall into several nonordered
categories. For example, we may wish to account for the college (business, engineering, liberal
arts) into which a student matriculates as a function of ability and interest scores. Alternatively,
the outcome categories may be ordered, as when students express one of three levels of interest
in being liberal arts majors (low, moderate, and high). Polytomous logistic regression (also
refered to as multinomial logistic regression) is used to examine an outcome variable consisting
of nonordered responses. A second approach is the analysis of nested categories, in which
contrasts among categories, like familiar contrasts in ANOVA and OLS regression (Chapter 8),
are accomplished in a series of dichotomous outcome logistic regressions. Categories may be
either ordered or not. Third, ordinal logistic regression is used to examine an outcome variable
consisting of ordered categories.

13.3.1 Polytomous Logistic Regression

Expositions of polytomous logistic regression of increasing mathematical detail are given
in Menard (2001), Hosmer and Lemeshow (2000), who use the term multinomial logistic
regression, and Fox (1997), along with numerical examples. Assume that as a dependent
variable we are comparing a group of college students who are undecided about a major
(major = 0) to those who have elected a humanities (major = 1) or a science (major = 2)
major. We wish to distinguish these g = 3 nonordered groups on the basis of a series of interest
test measures Xl, X2,..., Xk. We begin by choosing one group to serve as a baseline group, here
those students who are undecided about a major. The data from all three groups are entered into
a single polytomous logistic regression analysis. In the course of the analysis, (g — 1) distinct
logistic regression functions, all with the same k predictors, are computed for the g groups
(here, g — 1 = 2 for the three student groups). The first contrasts the humanities majors with the
undecided students; the second contrasts the science majors with the undecided students. The
logistic regression functions are combined into one overall polytomous regression equation that
includes the intercepts from the (g — 1) logistic regression functions plus the (g — 1 )k regression
coefficients for the k predictors in the (g — 1) regression functions. Testing of model fit of this
combined regression equation proceeds along the lines previously described for likelihood
ratio tests (see Section 13.2.12, Eq. 13.2.26). There is one overall likelihood ratio x2 test
(G test) of fit of the model, with (g — l)fc degrees of freedom. Tests for the impact of individual
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predictors proceed as before. Indices of fit such as R2
L in Eq. (13.2.23) can be computed for

the full model. Numerical examples of polytomous logistic regression are provided in Menard
(2001), Hosmer and Lemeshow (2000), and Fox (1997).5

13.3.2 Nested Dichotomies

An alternative to polytomous logistic regressions is a series of dichotomous logistic regressions
(Fox, 1997). The particular dichotomous logistic regressions are a series of nested regressions
based on a series of nested partitions of the multiple categories represented by the depen-
dent variable. The partitions follow the patterns of sets of orthogonal contrasts, described in
Section 8.5. For the example of majors (undecided = 0; humanities = 1; science = 2), we
might first consider a partition of the undecided versus the other students (0 versus 1+2) and
then a second partition in which we contrast the humanities majors versus the science majors.
The patterns of nested contrasts of the categories follow from the logic or theory underlying
the research. In the case of predicting choice of major from a number of academic interest
measures, we might predict that undecided students have a lower overall level of interest in
academic subjects than those who have declared any major (contrast 1); we might then predict
that differential patterns of interest predict the choice of science versus humanities major (con-
trast 2). As Fox (1997) shows, a variety of partitions can be generated from a set of categories.
Some do not imply an order among the full set of categories (e.g., for four categories, 1+3
versus 2 + 4, followed by 1 versus 3 and 2 versus 4). Other series imply an underlying order
(e.g., for a series, 1 versus 2 + 3 + 4, followed by 2 versus 3 + 4, followed by 3 versus
4, referred to as continuation dichotomies (Fox, 1997) or as following a continuation-ratio
model (Greenland, 1998). The individual contrasts are treated in separate dichotomous logis-
tic regressions. For the example of majors, the first logistic regression would be of the group
coded 0 versus the group formed by combining the groups coded 1 and 2. The second would
contain only the groups coded 1 versus 2. Each analysis yields a likelihood ratio x2 test (G
test). By virtue of the fact that the contrasts are orthogonal, the likelihood ratio tests from the
two analyses may be pooled into an overall fit statistic by adding the likelihood ratio x2 values
and the corresponding degrees of freedom.

Table 13.3.1 presents the analysis of an ordinal outcome variable Y, the steps (STEPS)
women have taken to obtaining a mammogram following an intervention (versus no-

cm 3EX02 intervention control) to increase mammography screening. Data are a subset of those presented
in Aiken, West, Woodward, Reno, and Reynolds (1994). Four ordered categories of the out-
come are (1) to do nothing about getting a mammogram, (2) to contact a health professional
about mammograms, (3) to make an appointment for a mammogram, (4) to actually obtain
a mammogram. The single predictor is whether the woman participated in a psychosocial
intervention to increase mammography screening or served as a control subject (INTERVEN),
with participants coded 1 and control subjects coded 0. Three continuation dichotomies were
created from the STEPS outcome: (a) S123V4, which measures whether women obtained a
mammogram [category 4] versus not [categories 1,2, 3]; (b) S12V3, which measures whether
a woman made an appointment [category 3] versus did nothing or contacted a health profes-
sional [categories 1,2]; and (c) S1V2, which measures whether a woman contacted a health
professional [category 2] versus did nothing [category 1]. Three separate dichotomous logis-
tic regression analyses are presented in Table 13.3.1A, B, and C for S123V4, S12V3, S1V2,
respectively. From the analysis of SI23V4 (Table 13.3.1 A), we see that the odds of obtaining
a mammogram were increased by a factor of 4 (odds ratio = 4.15) if women participated in

5SPSS 10.0 has a procedure for polytomous regression. Epidemiologists recommend STATA for handling
polytomous data.



TABLE 13.3.1
Three Approaches to Analysis of Ordinal Outcome Variable of STEPS

to Compliance as a Function of Intervention (INTERVEN).

A. Dichotomous logistic regression predicting S123V4 from INTERVEN,
i.e., obtaining a mammogram (4) versus all other
categories (1, 2,3)

B. Dichotomous logistic regression predicting S12V3 from INTERVEN,
i.e., having an appointment for a mammogram (3) versus taking no action or
contacting a health professional (1,2)

Null deviance
Model deviance
Model chi square

39.391
37.908

1.483

Ri =
Idf p =

.04

.223

Variables in the Equation

Variable B

INTERVEN 1.255
Constant -3.761

SE Wald

1.137 1.218
1.011 13.829

df

1
1

Significance

.270

.001

Exp(fi)

3.508

C. Dichotomous logistic regression predicting S1V2 from INTERVEN,
i.e., contacting a health professional concerning mammograms (2)
versus doing nothing (1)

D. Ordinal Regression Analysis predicting STEPS continuum
from INTERVEN

521

Null deviance
Model deviance
Model chi square

Variable

INTERVEN
Constant

170.326
159.081
11.245

Rl = .07

\df p<.001

Variables in the Equation

B

1.423
-1.838

SE Wald

.461 9.504

.407 20.403

df

1
1

Significance

.002

.001

Exp(fl)

4.148

Null deviance
Model deviance
Model chi square

120.090
114.387

5.704

Rl = .05

idf P = .on

Variables in the Equation

Variable B

INTERVEN 1.071
Constant -1.194

SE Wald df

.461 5.408 1

.361 10.940 1

Significance Exp(5)

.020 2.919

.001

Null deviance
Model deviance
Model chi square

329.806
311.406
17.479

Rl = .05

Idf p < .001
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TABLE 13.3.1
(Continued)

Variables in the Equation

Score Test of Proportional Odds Assumption
Chi-square = .032 with 2df (p = .984)

E. OLS Regression, predicting STEPS continuum from INTERVEN
(1 = intervention, 0 = control)

R2 = .12, F(l, 137) = 17.899, p < .001

Variables in the Equation

Variable B SE Beta t Significance of t

INTERVEN .898 .212 .340 4.231 .001
(Constant) 1.647 .169 9.748 .001

Note: Analyses A, B, and C are continuation category analyses. Analysis D is
an ordinal logistic regression. Analysis E is an ordinary least squares regression.

an intervention, model x20) = 11.24,;? < .01. From the analysis of S12V3 (Table 13.3.1B),
we see that the odds of making an appointment were increased by a factor of between 3 and 4
(odds ratio = 3.51) if women participated in an intervention, model X2(l) = 1-48, ns. (Lack
of model significance is attributable to the very small group (n = 5) who made an appointment
for a mammogram but did not actually obtain the mammogram by the time of data collection).
Finally, from the analysis of S1V2 (Table 13.3.1C), we see that the odds of contacting a health
provider were increased by a factor of 3 (odds ratio = 2.92) if women participated in an inter-
vention, model X2(l) = 5.70,p < .05. The model x2 values are summed to yield an overall
test of the impact of the intervention on the propensity of a woman to obtain a mammogram,
X2 = 11.25 + 1.48 + 5.7046 = 18.43 with 3df,p < .01. From these analyses, we may con-
clude that the intervention does have a strong impact on propensity to obtain a mammogram.
Further, we may conclude that the odds of moving up the steps toward a mammogram are
similarly impacted by the intervention across the continuum, since all three odds ratios were
within close range of one another. This last result is clearly not a necessary outcome. It might
have been the case, for example, that the intervention was powerful in stimulating women
who had already contacted a health professional about a mammogram to make an appointment
for a mammogram or to obtain a mammogram (S12V3) and (S123V4), respectively, but that
the intervention did nothing to stimulate women to take the first step of contacting a health
professional (S1V2).

13.3.3 Ordinal Logistic Regression

Suppose we believe that the steps are, in fact, a logically ordered behavioral progression of
movement toward obtaining a mammogram. Conceptually, the four categories that will serve
as the DV are thought of as reflecting an underlying continuum of propensity to obtain a

Variable

Threshold- 1
Threshold-2
Threshold-3
INTERVEN

B

-1.872
-1.692
-.601
1.464

SE

.324

.318

.288

.354

Wald

33.295
28.274
4.365

17.106

df

1
1
1
1

Significance

.001

.001

.037

.021

Exp(fi)

4.324
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mammogram (\Jr). Movement from step to step indicates that the woman has passed a thresh-
old along the underlying continuum. The thresholds need not be equally spaced, since only
ordinality is assumed. With four different ordered behaviors, as in the STEPS outcome, there
are three hypothesized latent thresholds T,-. Categories 1 versus 2, 3, and 4 are separated by
threshold Tt; categories 1 and 2 versus 3 and 4, by threshold T2; categories 1, 2, and 3 versus
4 by threshold T3.

Movement along the latent continuum as a function of predictor(s) can be modeled in a form
of ordinal regression model, also referred to as a proportional odds model or parallel regression
model. These names are informative about the assumptions of the model. The structure of the
model can be cast in terms of the odds of transition across thresholds, given values on the
predictors. In the ordinal logistic regression model, it is assumed that these odds are equal
across the continuum, given values of the predictors, hence the term proportional odds model.
Put another way, we assume that the predictors have the same impact on crossing all the
thresholds. For the mammography intervention, this amounts to saying that the intervention
has the same impact on moving a woman from doing nothing to contacting a health professional
(i.e., crossing the first threshold T 0 as on moving a woman from contacting a health professional
to making an appointment for a mammogram (i.e., crossing the second threshold T2) as on
moving a woman from making an appointment for a mammogram to obtaining a mammogram
(i.e., crossing the third threshold T3).

Estimation of an ordinal logistic model involves estimation of a model for the probability
of membership in a particular category, given values on the predictors and values of the
thresholds. Consider a 3-category scale—disagree (D), undecided (£7), and agree (A). Calling
ptj the probability that case, is in category^, we have three predicted probabilities for each case:
PiDipiu-, 3&&PiA- Threshold T! is between!) and U; and threshold i2 is between U and A. Then
in ordinal logistic regression the following equations are estimated in the one predictor case:

6Ordinal logistic regression is implemented in SAS PROC LOGISTIC by simply entering an ordered categorical
variable as the DV, and in SPSS PLUM as well.

where ^ and t2 are the sample estimates of the population thresholds ^ and T2, respectively.
Note that the regression coefficient B is constant across equations, following the parallel
response assumption. The estimated thresholds 11 and t2 differ across equations (for simplicity,
an overall regression intercept is omitted).

Operationally, a single analysis is performed in which the dependent variable entered is the
ordered step variable in which each individual is assigned the value of the category in which
he/she falls. In ordinal logistic regression, the logistic regression model is used to predict the
probability of membership in a category. A single regression coefficient Bj and corresponding
odds ratio for predictor Xj are estimated for the full data set, corresponding to the overall impact
of the predictor on the probability of membership in a category. The regression coefficient and
odds ratio are assumed to apply equally across the continuum of categories. Estimates of the
latent thresholds are also given. The scale of the latent variable is arbitrary; hence the scale of
the thresholds ij is arbitrary (not in any particular units). The progression of thresholds along
a continuum, however, can be seen. Long (1997) provides a discussion of standardization and
interpretation of values on the latent continuum.6
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An ordinal logistic regression of the STEPS variable is given in Table 13.3. ID. Overall, the
odds of moving along the STEPS continuum from category to category as a function of the
intervention are 4.32, an estimate of the overall impact of the treatment across the continuum.

The critical assumption of the model of proportional odds (or, equivalently, parallel slopes)
is tested by a Score test. This test compares the fit of a model in which a single slope is
applied to the whole continuum (the ordinal regression model) versus an unconstrained model
in which a different slope is permitted for cases below versus above each threshold. The null
hypothesis is that the parallel slopes model applies, that is, that the predictors have the same
impact on crossing all the thresholds or, equivalently, that the odds ratios for crossing the
thresholds, given the predictors, are equal. For the data set in Table 13.3.ID, the model is not
rejected, X2(2) = .03, ns. The assumption of parallel slopes is met. This is consistent with our
conclusions from the analysis of the continuation thresholds in Table 13.3.1 A, B, and C, that
the odds ratios are quite similar across the continuum.

What if this test of proportional odds were significant, signifying that the ordinal regression
model is not appropriate? The continuation category approach might be applied to develop
separate models of the transition across each of the thresholds. In the ordinal regression model,
a single set of predictors with identical regression coefficients must apply across the whole con-
tinuum. With the continuation category approach, there is the opportunity to develop different
models of each transition, each containing its own set of predictors.

Ordinal Logistic Regression Versus the Nested
Dichotomies Approach
If the researcher has reason to believe that a single model describes movement along

the full latent propensity continuum across all thresholds, it is useful to begin with ordinal
logistic regression. The associated Score test provides useful information about whether the
researcher's hunch is correct or not. If the researcher is correct (i.e., the Score test is nonsignif-
icant for an adequate sized sample), then a simple and parsimonious model of movement along
the propensity continuum has been established, the overall ordinal logistic regression equation.
In addition, the researcher obtains estimates of the thresholds. Should the Score test be rejected
for ordinal logistic regression, then the researcher can move to a more complex representation
of crossing each threshold, using the nested dichotomies approach for continuation categories.

Ordered Category Methods Versus Ordinary
Least Squares Regression
Finally, an alternative approach to the analysis of the STEPS continuum is a usual OLS

regression in which we assume that the four steps constitute an interval scale of propensity
to obtain a mammogram, with the three thresholds equally spaced across the continuum.
If this is so, then the OLS and ordinal regression results converge. An OLS analysis of the
STEPS variable is reported in Table 13.3. IE. Of course, the ESfTERVEN predictor does predict
STEPS, as we would expect from the three dichotomous logistic regressions and the ordinal
logistic regression. The use of the OLS model for an ordinal DV that lacks equally spaced
scale intervals may result in the same difficulties we saw with OLS regression applied to a
dichotomous variable: non-normality of residuals and heteroscedasticity.

The analysis strategies of ordinal logistic regression and nested dichotomous logistic regres-
sions with continuation categories may be useful when the outcome is measured on a Likert
scale (e.g., strongly disagree... strongly agree), as well as with behavioral continua. In psy-
chology, at least, we use Likert scales frequently for attitude measurement, for example. Yet
in attitude change experiments, we typically examine arithmetic mean shifts. We do not ask
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whether our experimental manipulations are equally effective across the attitude continuum, a
question that is answered with ordinal logistic regression and the nested dichotomies strategy.
Use of OLS regression with Likert scales or other ordered category scales does not inform this
question. In OLS, an overall regression coefficient is assumed to apply across the continuum;
no test of this assumption like the Score test for parallel slopes in ordinal logistic regression
is supplied in the OLS framework. Neither are measures of the odds of crossing thresholds on
the Likert scale supplied in OLS regression as they are in both ordinal logistic regression and
nested dichotomous logistic regressions with continuation categories. Ordinal logistic regres-
sion also offers measures of thresholds; these threshold estimates provide information about
category width. We believe that ordinal logistic regression and nested category approaches
merit more frequent use than they currently enjoy.

13.4 MODELS FOR COUNT DATA: POISSON REGRESSION
AND ALTERNATIVES

Count data in many substantive areas provide an informative dependent variable. As pointed
out earlier, counts might include the number of aggressive acts a child commits during a
30-minute playground period, the number of cigarettes an individual smokes in an hour, the
number of scholarly articles a faculty member publishes in a year. In all cases, the measure is
characterized as the number of events that occur in a particular time period—a count. Poisson
regression analysis predicts the number of events that occur in a specific time period from
one or more independent variables. The assumption is that the number of events generated in
a period of time depends on an underlying rate parameter. Because both logistic regression
and Poisson regression are cases of the generalized linear model, there are direct parallels
between logistic regression analysis and Poisson regression analysis. We present the Poisson
regression model and then draw parallels to the logistic regression model. Finally, we use the
characteristics of logistic regression and Poisson regression as examples of the generalized
linear model to provide a more complete characterization of the generalized linear model.

Poisson regression is appropriate when we examine a phenomenon of very rare events, so
that if we count the number of events for each of a sample of people, there are numerous people
with scores of zero. To return to the example of number of cigarettes smoked, if we count the
number of cigarettes smoked in an hour by attendees at a large party, there will many zeros,
since many people do not smoke at all. We warn the reader at the outset that there are relatively
few examples in behavioral science of the use of Poisson regression. Further, less effort has
been devoted to data-analytic conventions (e.g., diagnostics) and interpretation of results than
in logistic regression.

13.4.1 Linear Regression Applied to Count Data

The problems that we encounter in applying OLS regression to count data mirror those encoun-
tered in applying OLS regression to dichotomous outcomes. The residuals are not normally
distributed, and they exhibit heteroscedasticity; therefore inferences about individual predic-
tors and overall prediction may well be biased if OLS regression is applied. Moreover predicted
scores can be out of range, specifically, below zero, which is impossible for counts. Further,
the regression coefficients from OLS regression applied to count data may be biased and
inconsistent, meaning that they do not become more accurate as sample size increases (Long,
1997). Moreover, the standard errors from the OLS regression may underestimate true standard
errors, leading to inflated t tests for individual regression coefficients; significance of these
coefficients is thus overestimated (Gardner, Mulvey, & Shaw, 1995).
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Transforming Y Versus Poisson Regression
In Chapter 6 we discussed transformations that can be applied to dependent (and

independent) variables in order to render the data better behaved for us in OLS regression.
By better behaved we mean closer to meeting assumptions of normality of residuals and
homoscedasticity. For a count dependent variable, the square root is suggested as a poten-
tially useful transformation (see Section 6.4.13). The question may be raised as to whether
one need use Poisson regression. Might it not be possible to simply take the square root of
each count and apply OLS regression to the square roots of the counts? When we are dealing
with rare events for which there are many zero counts, the OLS approach does not handle the
excess of very low scores relative to the rates predicted by OLS regression; it also does not
handle the heteroscedasticity problem (Gardner, Mulvey, & Shaw, 1995). Poisson regression
is preferred. This question of the use of transformations plus OLS regression versus the use of
newer methodologies is reflective of the evolution of statistics, a point made in Section 13.2.1
in the discussion of discriminant analysis versus logistic regression. The work on transforma-
tions historically precedes some of the developments of numerical methods for the generalized
linear model. If one takes the approach of transformation of the count DV followed by OLS
regression, it is important to examine residuals for non-normality and heteroscedasticity before
accepting conclusions based on the analysis.

13.4.2 Poisson Probability Distribution

An understanding of Poisson regression is facilitated by a consideration of the Poisson dis-
tribution. The Poisson distribution is a probability distribution, like the normal, binomial, or
t distribution. The Poisson distribution is used to represent the error structure in Poisson regres-
sion. Five examples of the Poisson distribution are plotted in Fig. 13.4.1. Each distribution
shows the probability that an individual will produce a specific number of events in a given
time period. The x axis shows number of events and the y axis, the probability of each number
of events. Each of the distributions is generated by the same equation, but a characteristic
known as the rate parameter differs across the distributions. The rate parameter is the average
number of events expected in the time period. The rate parameter is typically denoted as IJL, as in
Fig. 13.4.1. The numerical values of the probabilities plotted in each distribution are also given
above the graphical representation. Imagine that the probabilities for IJL = .50 are probabilities
of achieving various numbers of scholarly publications in a year in a work environment that
does not emphasize publication for merit and promotion; the probability of no publications
is .61; of one publication, .30, of four or more publications, 0.00. Those probabilities for
IJL = 4.00 might represent probabilities of different numbers of publications in a year for an
institution that heavily emphasizes scholarly publication for merit and promotion. Note that
the probability of no publications is only .02; of four or more publications, .57. The source of
these probabilities in Fig. 13.4.1 is the Poisson distribution, given in Box 13.4.1.

The Poisson distribution is the most basic probability distribution applied to regression when
the outcomes are count data. The five examples in Fig. 13.4.1 highlight important characteristics
of the Poisson distribution. First, the probabilities only apply to counts of events; counts
are whole numbers that range from 0 to +00, as represented on the x axis of Fig. 13.4.1.
The rate parameter, however, can have decimal values, because it represents the average or
expected number of counts. Second, when the rate parameter or mean (ji) is very small (e.g.,
when the expected number of events is |i = .50 in Fig. 13.4.1), then many cases with zero
events are expected, and the distribution is very positively skewed. As the mean number
of events increases, the distribution becomes increasingly symmetrical, approaching a normal
distribution. With |JL = 10, the distribution is almost normal in form; what we see in Fig. 13.4.1
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Note: Each curve reflects a different rate parameter (\i). The illustration of
the curve for [i = 10 shows only the left half of this distribution. The curve
would decline almost symmetrically to the right if the number of events from
11 to 20 were provided.

FIGURE 13.4.1 Probability of Y events according to Poisson distribution as a function
of the expected (mean) number of events. The expected number of events (or the rate
parameter) is noted as u,.

for [i = 10 is the left half of such a distribution that declines almost symmetrically to zero
as the number of events continues to increase from 11 to 20 (the right half of the distribution
is not shown in Fig. 13.4.1). Third, as the mean number of events increases, the variance of
the number of events across the population also increases. When the mean number of events
is |i = .50, the majority of cases have counts of 0, and the highest count is 3. When the mean
is |x = 4.00, in contrast, the counts given in Fig. 13.4.1 range from 0 to 10. In fact, for the
Poisson probability distribution, the mean and the variance of the distribution are equal:

This last property is important; it states that the variance of the Poisson distribution is
completely determined by the mean of the distribution.

When the mean count in a distribution is large so that symmetry of the distribution of
events is approached, then OLS regression may be tried. Careful checking of residuals for
heteroscedasticity and nonnormality is advised, in justifying the appropriateness of OLS
regression.

Case Y

100 0
101 1
102 2
103 3
104 4
105 5
106 6
107 7
108 8
109 9
110 10

Expected number of events (|x)

H = .50 |i = 1.25

.61

.30

.08

.01

.00

.00

.00

.00

.00

.00

.00

.29

.36

.22

.09

.03

.01

.00

.00

.00

.00

.00

M, = 2.00

.14

.27

.27

.18

.09

.04

.01

.00

.00

.00

.00

\i = 4.00

.02

.07

.15

.20

.20

.16

.10

.06

.03

.01

.01

It = 10.00

.00

.00

.00

.01

.02

.04

.06

.09

.11

.13

.13
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BOX 13.4.1
The Poisson Probability Distribution

The expression for the Poisson distribution is as follows:

13.4.3 Poisson Regression Analysis

Exactly paralleling logistic regression, we have three forms of the regression equation in
Poisson regression. First, we predict the expected number of events (|i) from values on a set
of predictors Xl, X2,..., Xk.

where Y = the number of events and |x = the expected or mean number of events, and
Y\ is Y factorial = Y(Y - 1)(Y - 2).. . 1.

This expression generates all the curves displayed in Fig. 13.4.1. For example, for
IJL = 4.00 and Y = 3 publications,

(As before, to find e 40°, enter -4.00 into a calculator, and press the ex button; see
Box 13.2.2.)

Equation (13.4.3) is not in a form that is linear in the coefficients. If we take the logarithm of
both sides, we have a second regression equation that is linear in the coefficients and in which
the logarithm of the predicted expected number of events is the predicted score:

Third, we can write an equation in which we predict the probability of each specific number
of events, given the expected average number of events ft. For the predicted probability of a
count of c events (/?c) we have

Let us focus on Eq. (13.4.3). This is a simple exponential equation. The equation represents
a curve like that in Fig. 13.1.1(C), which shows the predicted number of events as a func-
tion of values of a predictor X. The curve rises faster than a straight line as X increases.
Equation (13.4.3) predicts more events when X is high than would be predicted from a linear
equation.

A natural question, given the curve in Fig. 13.1.1(C) is, whether a quadratic polynomial
regression equation Y = B^X + B2X

2 (a form of OLS regression) would fit the curve. In fact, a
quadratic polynomial might closely approximate the curve. However, the increasing variance
of Y with increasing X, a characteristic of count data, would still exist in the data and would be
ignored in polynomial regression, potentially causing difficulties in inference that are handled
in Poisson regression.
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Fictitious Example ofPoisson Regression
and Interpretation of Coefficients

A fictitious example illustrates the form of a Poisson regression for count data. Assume
we are predicting the expected number of aggressive acts that a young child will exhibit on a
playground during a 30-minute recess period. The single predictor X is a 0-10 rating of each
child's aggressiveness by the teacher. We have a one-predictor Poisson regression equation;
Eq. (13.4.3) simplifies to

Assume that the appropriate Poisson regression equation is |i = e(35X l-6y>. Figure 13.4.2
provides the aggressiveness ratings for 11 children, one at each value of rated aggressiveness.
The expected rate (predicted number of aggressive acts) for each child according to the Poisson
regression equation and the predicted number of aggressive acts from a linear regression
analysis (OLS) are also presented. The predicted rate (|1) from Poisson regression indicates
that aggressive acts are rare if the child is rated 5 or lower in aggressiveness (at a rating
of 5, only 1.07 acts are expected). Thereafter, as the rating rises from 6 to 10, the number of
expected aggressive acts increases rapidly to 6. Poisson predicted rates are noted with dots,

Poisson regression equation: |i = e(35x l-68)

Predicted
rate (£)

Aggressiveness from Poisson
Case rating regression

100 0
101 1
102 2
103 3
104 4
105 5
106 6
107 7
108 8
109 9
110 10

0.19
0.26
0.38
0.53
0.76
1.07
1.52
2.16
3.06
4.35
6.17

Predicted
number of acts

from linear
regression

-0.79
-0.26

0.27
0.80
1.33
1.86
2.39
2.92
3.45
3.98
4.51

In (£) from
Poisson

regression

-1.68
-1.33
-0.98
-0.63
-0.28

0.07
0.42
0.77
1.12
1.47
1.82

FIGURE 13.4.2 Poisson regression versus linear regression for a fictitious example
predicting number of aggressive acts in a 30-minute recess as a function of teacher rating
of aggressiveness according to a Poisson regression equation.
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linear regression predicted scores with filled triangles. Note that when the rating is either very
low or very high, the Poisson regression analysis predicts a higher number of aggressive acts
than the linear regression equation, whereas the linear regression equation predicts higher
scores in the midrange of the rating scale. The Poisson model accounts for the cases with
zero counts and with very high counts, whereas OLS regression misses these aspects of the
count data.

The B coefficient in the Poisson equation, B = .35, can be interpreted in two ways. First,
for a 1-unit increase inX (the aggressiveness rating), the predicted rate (|i, expected number of
aggressive acts) is multipliedby the value e8. For B = .35, e -35 = 1.42. For example, for a child
with a rating of 6, we expect £ = e

(35x~1-6® = ji = g[-
35(6)-i.68] — 1.52 aggressive acts; for a

child with a rating of 7, we expect 2.16 aggressive acts, (1.52)( 1.42) = 2.16. Second, for a unit-
1 increase in X, the predicted score in the linear equation, ln(ji), the natural logarithm of the
expected number of aggressive acts, increases by .35. For a rating of 7, ln(|i) = .77; for a rating
of 8, ln(|i) = .77 + .35 = 1.12. (Interpreting the meaning of the Poisson regression equation
is clear in the e8 form, which yields a predicted count, whereas the value of the logarithm
of the expected count cannot be interpreted directly in terms of counts). It should be noted
that all the predicted rates from the Poisson regression equation are positive, corresponding to
numbers of events, which cannot fall below zero. In contrast, the predicted number of acts from
the linear regression equation is negative for aggressiveness scores of 0 and 1, an impossible
situation.

Heteroscedasticity of Residuals
Refer again to Fig. 13.4.1, and assume that the values JJL represent values of predicted scores

from Eq. (13.4.3). For each curve based on a particular value of \L we see a distribution of
Y scores (the number of events); each curve is a conditional distribution of Y scores, (i.e.,
the Y scores of all individuals with a particular value of JJL.) There is clear heteroscedasticity
of the conditional distributions of Y. As the value of JJL increases, the spread of the expected
distribution of Y scores becomes broader. For example, for ji = .50, Y scores between 0 and
3 have expected probabilities greater than zero; for ji = 4.00, Y scores between 0 and 10 have
expected probabilities greater than zero.

13.4.4 Overdispersion and Alternative Models

The Poisson regression model makes the very restrictive assumption that we have already
encountered: The variance a2 = ji, or the variance of the residuals around each predicted rate
equals the predicted rate. In order that this assumption be met, all of the systematic variation
in rates ji, across individuals must be accounted for completely by the set of predictors; no
other potential predictor could account for additional variance. Put another way, all individuals
with the same values on the predictors should have the same observed rate parameter. In the
fictitious example, this means that all the systematic variation in the observed number of
aggressive acts would be accounted for by scores on the teacher aggressiveness rating scale.
If there is systematic variation in rates that is not accounted for by the predictor set, then
there will be greater variation in the residuals around each predicted rate than is permitted
by the Poisson regression model (i.e., a2 > ji). This condition is termed overdispersion (see
Gardner, Mulvey & Shaw, 1995, and Land, McCall, and Nagin, 1996 for discussions of
overdispersion). Overdispersion is frequently found in count data. Overdispersion leads to
inflation of the goodness of fit x2 test. In addition, with overdispersion, the standard errors of
Poisson regression coefficients are too small, so the significance of predictors is overestimated.
The level of dispersion relative to a Poisson distribution is often characterized by a dispersion
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parameter <|>, which equals 1 if the Poisson variance assumption is met, is greater than 1 for
overdispersion, and is less than 1 for underdispersion.

There are a number of statistical approaches for analysis of count data that exhibit overdis-
persion. First, is the overdispersed Poisson model, which belongs to a class of models called
quasi-likelihood regression models (Fahrmier & Tutz, 1994). A second approach to overdis-
persion is the use of an alternative regression model, the negative binomial regression model.
Both approaches are described in Box 13.4.2.

BOX 13.4.2
Alternative Models for Count Data With Overdispersion:

The Overdispersed Poisson Model and the Negative
Binomial Regression Model

In the overdispersed Poisson model, the dispersion parameter <j> is calculated from the
data themselves; the standard errors of the regression coefficients for overdispersed data
are adjusted by multiplying them by (|>. If there is overdispersion, and thus cj> > 1, the
values of the standard errors are increased, thereby decreasing the excess significance
in the statistical tests of the regresison coefficients. If <(> = 1, the Poisson model holds.
No special model is specified of the distribution of the excess variance relative to the
Poisson variance. That is, no probability distribution is assumed for how the individual
rate parameters [i, vary around the expected rate parameter IJL, given values on the set of
predictors. This is the hallmark of quasi-likelihood models, that a portion of the variance
is not assumed to follow a particular probability model.

The negative binomial model assumes that for each individual, a Poisson distribution
applies, but that the rates for individuals m, given specific values on the predictors, vary
across individuals. A new probability distribution known as the negative binomial distri-
bution is used to characterize the variance of the residuals. The variance of the negative
binomial distribution is comprised of two components: (1) the expected rate IJL (as in
Poisson regression) plus (2) a second amount that characterizes the additional variance
in the rate parameter across individuals, not accounted for by the Poisson distribution
(see Gardner, Mulvey, and Shaw, 1995, p. 399; Land, McCall, and Nagin, 1996, p. 397;
Long, 1997, p. 233). As a result, the negative binomial variance for each value of (i, is
greater than IJL,. Put another way, the negative binomial model of the errors allows greater
variance than is permitted by Poisson regression, thereby accounting for overdispersion
in count data. Negative binomial regression may still result in inflated t values.

The negative binomial regression model is one of a class of mixed Poisson models
that mix a second source of variance with the Poisson variance to account for overdis-
persion (Land, McCall, & Nagin, 1996, p. 397). In contrast to quasi-likelihood models,
which specify no particular probability distribution for the excess variance, mixture
models specify a second probability distribution for the second source of variance,
over and above the Poisson distribution, which characterizes the first source of vari-
ance. In the negative binomial regression model, the second probability distribution is
another discrete probability distribution, the gamma distribution. The combination of
the Poisson distribution with the gamma distribution yields the negative binomial dis-
tribution. It is this mixture of probability distributions that is the hallmark of mixture
models. Newer approaches to overdispersion include the semiparametric mixed Poisson
regression characterized by Land, McCall, and Nagin (1996).



532 13. LOGISTIC, POISSON REGRESSION, THE GENERALIZED LINEAR MODEL

13.4.5 Independence of Observations

Poisson regression also assumes that the observations are independent of one another, just as
in OLS regression and logistic regression. However, the basic datum in Poisson regression
is an event (a publication, an aggressive act, etc.) exhibited by one individual. Such events
emitted by one individual tend to be correlated; that is, the fact that one event has occurred may
increase the probability of subsequent events. This correlation between events is referred to
in economics as state dependence, or in biometric and sociological literature as the contagion
model (see Land, McCall, & Nagin, 1996, p. 395). Considering our example of number of
aggressive acts, it is easy to imagine how a single aggressive act of a child on the playground
can lead to still other aggressive acts as a fight ensues. Such nonindependence of events leads to
clusters of events, or higher numbers of events in particular individuals than would be expected
from the Poisson distribution. In addition, it leads to an excess of zeros, that is, more cases
in which there are zero events than would be expected by the Poisson model. In the case of
state dependence, the distribution of the counts observed for individuals in the sample does
not follow Poisson distributions, and other count models must be employed.

13.4.6 Sources on Poisson Regression

Accessible sources on Poisson regression are less readily available than are sources on logistic
regression. Neter, Kutner, Nachtsheim, and Wasserman (1996, pp. 609-614) provide an intro-
duction; Long (1997, pp. 217-249) provides a more extensive treatment. Gardner, Mulvey,
and Shaw (1995) and Land, McCall, and Nagin (1996) provide discussions of limitations of
Poisson regression and alternative models.

13.5 FULL CIRCLE: PARALLELS BETWEEN LOGISTIC
AND POISSON REGRESSION, AND THE

GENERALIZED LINEAR MODEL

13.5.1 Parallels Between Poisson and Logistic Regression

There are many parallels between Poisson regression and logistic regression. Having reviewed
the presentation of logistic regression in detail, the reader should find these parallels facilitate
an understanding of Poisson regression. These parallels will also facilitate a characterization
of the generalized linear model, of which logistic regression and Poisson regression are two
special cases.

Parallels between logistic and Poisson regression exist in six areas: (1) three forms of
regression equation, (2) the interpretation of coefficients, (3) the relationship of the form of
observed Y scores to the form of predicted scores, (4) the concept of error structure, (5) nature
of the estimates and estimation procedures, and (6) the nature of significance tests.

Three Equations
Three forms of the logistic regression equation predict the odds of a case, the log of the odds

(thelogit), and the probability of being a case, given in Eqs. (13.2.12), (13.2.11), and(13.2.14),
respectively. In Poisson regression, the three forms of the Poisson regression equation predict
the expected number of events (|i), the log of the expected number of events, ln([i), and
the predicted probability of observing c events (pc), in Eqs. (13.4.3), (13.4.4), and (13.4.5),
respectively. In logistic regression we move from the predicted score in the form of the logit
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to the odds by taking the antilog; we then compute the probability from the odds. In Poisson
regression, we move from the predicted score in the linear equation form, that is, ln(|i), to the
predicted number of events, by taking the antilog of ln(|i), yielding (jl). Then we can substitute
(|i) into Eq. (13.4.5) to obtain predicted probabilities.

Interpretation of Coefficients
Consider the one-predictor logistic regression equation Eq. (13.2.6) and the one-predictor

Poisson regression equation, written in linear form as

In logistic regression, the value of the logit, In [/?/(! — £)]> increases linearly with the value
of BI, the regression coefficient. In Poisson regression, the value of m(|i) increases linearly
with the value of Blt the regression coefficient. In logistic regression the odds, [p/(l — /?)],
are multiplied by the value e8^ for each one unit increase in X, as in Eq. (13.2.5). In Poisson
regression, written as Eq. (13.4.3), the expected rate (£) is multiplied by the value e81 for
each one unit increase in X. For both logistic and Poisson regression, these interpretations
generalize to the multiple predictor case.

Form of Observed Y Versus Predicted Score
In both logistic regression and Poisson regression, the predicted score in the linear form of

the regression equation is not in the same units as the observed Y score. In logistic regression,
the observed Y score indicates group membership (1 = case;0 = noncase). However, in the
linear form of the logistic regression equation, the predicted score is in the form of a logit,
as shown in Eq. (13.2.11). In Poisson regression, the predicted score in the linear form of the
regression equation is again not in the same units as the observed Y score. The observed Y
score is a count of the number of events in a specific time period. However, in the linear form
of the Poisson regression equation, the predicted score is the logarithm of the count, as shown
in Eq. (13.4.4).

Error Structure
Both Poisson regression and logistic regression have non-normally distributed residuals as

inherent in the model. In both cases the variance of the errors around the predicted score is
determined by the value of the predicted score, leading to heteroscedasticity in both models.

Estimates and Estimation Procedures
Both Poisson and logistic regression employ maximum likelihood estimation, with iterative

solutions for the regression coefficients.

Significance Tests

Likelihood ratios, deviances (null and model), and likelihood ratio x2 tests proceed in the
same fashion for Poisson as for logistic regression for testing overall model fit, contribution of
predictor sets and individual predictors. As with all maximum likelihood estimates, the distri-
butions of estimates of the regression coefficients in Poisson regression approach normality as
sample size approaches infinity; Wald tests apply to individual coefficients and combinations
of coefficients.
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13.5.2 The Generalized Linear Model Revisited

The generalized linear model is a highly flexible approach to characterizing the relationship
of predictors to a dependent variable Y that subsumes a variety of specific regression mod-
els. Logistic and Poisson regression are two such specific instances of the generalized linear
model; they serve to illustrate the characteristics of this broad class of models of prediction,
which also includes OLS regression. The regression models included in the generalized linear
model can all be expressed in a form that is linear in the parameters. For OLS regression,
logistic regression, and Poisson regression, these forms are given as Eqs. (13.1.1), (13.2.11),
and (13.4.4), respectively. All instances of the generalized linear model assume that observa-
tions are independent. The varieties of the generalized linear model are characterized in two
ways, explained next: the variance function and the link function.

Variance Function
The generalized linear model gains part of its great flexibility by extending the assumption

of the distribution of the residuals from normality to a family of probability distributions,
the exponential family. If the dependent variable is dichotomous, then the residuals follow
a binomial distribution (see Section 13.2). If the dependent variable consists of counts of
the number of events in a period of time, then the residuals follow a Poisson distribution
(see Section 13.4.2). The binomial and Poisson distributions, and other distributions that
are members of the exponential family (e.g. gamma, inverse Gaussian) in general have the
property that the mean and the variance of the distribution are not independent, that is, the
variance depends on the mean. (The Gaussian or normal distribution, which is also a member
of the exponential family, is an exception in which the mean and variance are independent).
The lack of independence of the mean and variance of the distribution of residuals leads to
heteroscedasticity, since the conditional variance of the criterion around a predicted value
Y depends on the value of Y. We saw this dependence in Eq. (13.2.3) for the variance of
residuals associated with dichotomous Y and Eq. (13.4.1) for the variance of residuals for a
count variable Y. When we find residuals that are not normally distributed, we require a model
of the variance function, that is, a model of how the conditional variance of Y varies as a
function of Y. For example, the Poisson distribution, which gives Poisson regression its name,
comes into play in the assumed variance function for the residuals, a central aspect of the
generalized linear model. In Poisson regression, it is assumed that the residuals at each value
of (i, the predicted rate, are distributed as a Poisson distribution, with variance also equal to |i.

Link Function
In each form of regression we have encountered—OLS regression, logistic regression, and

Poisson regression—we have considered the relationship of the form of the observed Y score
versus the predicted score in the regression equation that is linear in the coefficients. We have
noted that in OLS regression, observed Y and predicted scores are in the same units. Once again,
in logistic regression we have dichotomous Y versus the predicted logit, in Poisson regression,
the count versus the predicted log (count). The link function in the generalized linear model
is the transformation that relates the predicted outcome to the observed dependent variable Y.
A second source of flexibility in generalized linear models is the variety of link functions that
are possible. For OLS regression, the link function is the identity function, since observed and
predicted scores are on the same scale. For logistic regression, the link function is the logit;
for Poisson regression, the link function is the logarithm.

Regression models that are linear in the coefficients, whose residuals are assumed to follow
a variance function from the exponential family, with one of a variety of link functions are
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members of the generalized linear model. McCullagh and Nelder (1989) is the classic reference
work on generalized linear models. Fahrmier and Tutz (1994) is a second complete source.

13.6 SUMMARY

Ordinary least squares regression assumes that the dependent variable has normally distributed
errors that exhibit homoscedasticity. Categorical dependent variables and count variables do
not exhibit these properties. If these conditions are not met, OLS regression may be inefficient
and lead to inaccurate conclusions (Section 13.1).

Binary dependent variables traditionally have been examined using two-group discriminant
analysis. The logistic regression model for binary dependent variables is presented as an appro-
priate alternative, first for the single-predictor case, and then for the multiple-predictor case
(Section 13.2). Three forms of the logistic regression model—predicting the logit (log odds),
the odds, and the probability of being a case—are developed and explained (Sections 13.2.3
and 13.2.4). The characterization of regression coefficients in the form of odds ratios is
explained (Section 13.2.5). Confidence intervals for regression coefficients and odds ratios are
presented (Section 13.2.8). Maximum likelihood estimates and maximum likelihood estimation
are characterized (Section 13.2.9). Likelihood ratios, deviances, and statistical tests for overall
model fit based on likelihood ratios and deviances are introduced (Section 13.2.10, 13.2.12).
Indices of overall model fit are introduced (Section 13.2.11). Wald and likelihood ratio tests
for significance of individual predictors are presented (Section 13.2.13), and likelihood ratio
tests of gain in prediction from sets of predictors are explained (Section 13.2.14). Difficulties
in predictor scaling are addressed in logistic regression (Section 13.2.16). Issues in the use of
regression diagnostics in logistic regression are explained (Section 13.2.17). The application
of logistic regression to statistical classification is introduced (Section 13.2.19).

The logistic regression model is extended to multiple response categories with presentation
of polytomous logistic regression. The analysis of ordered categories by nested dichotomies
and ordinal logistic regression is illustrated (Section 13.3).

Poisson regression is developed for count data, that is, dependent variables that are counts
of rare events, such that there are many scores of zero and the count dependent variable is
highly positively skewed (Section 13.4).

Logistic regression and Poisson regression are used to illustrate the characteristics of the
generalized linear model, with explication of the variance function and the link function
(Section 13.5).



14
Random Coefficient
Regression
and Multilevel Models

OLS regression and the regression approaches subsumed under the generalized linear model,
including logistic and Poisson regression, all assume that observations are independent of one
another. If observations on two individuals are independent of one another, then knowledge of
scores on one individual provides no information whatever about scores on the other individual.
Put another way, there is no relationship between the measures on one individual and measures
on any other individual. Should there be repeated observations on the same individuals, standard
OLS regression analyses assume that these observations are independent across time.

14.1 CLUSTERING WITHIN DATA SETS

Our observations may well not be independent. Sections 4.3.1 and 4.4.5 introduced the issue of
dependency among residuals, which may occur when the cases are members of an intact group,
(e.g., a family, a community organization). Consider, for example, the IQ scores of children
within families. We expect correlation among these IQ scores; the IQ scores of children within
a single family may be more similar to one another in value than would be expected in a
random sample of children. Measures taken on members of dyads—for example, spouses
or twins—are also highly interrelated. Dependency can arise in measures of demographic
characteristics of individuals who live in close proximity (e.g., among the incomes or ethnicities
of individuals who live in particular neighborhoods of a large metropolitan area). Dependency
can also occur in experimental research when we run participants in groups, and the behavior
of group members can influence the responses of individuals, for example, in experiments
in group processes in social psychology. Under some circumstances dependency can arise in
experiments when the presentation of the treatment condition inadvertently varies slightly from
session to session in which groups of subjects participate. Correlation or dependency among
subsets of cases within a data set, as reflected in all these examples, is referred to as clustering.

Dependency in data can also arise when we take repeated measures on single individuals
over time. For example, we might measure the anxiety level of each of a set of individuals
once a month for a period of months. We would expect that the anxiety measures from any
one individual would be more correlated with one another than the anxiety measures across

536
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individuals. This is another form of dependency in data, referred to as serial dependency (see
Section 4.4.5). In this chapter we focus on clustering among individuals within groups, and
approaches to handling data that contain such clustering of individuals. Chapter 15 is devoted
to the treatment of repeated measures data that may exhibit serial dependency. Much of what is
developed here for the treatment of clustering among individuals generalizes directly to serial
dependency; Section 15.4 develops this generalization.

When data are clustered, OLS regression may lead to inaccuracies in inference. The ran-
dom coefficient regression model, an alternative to OLS regression, is structured to handle
clustered data. The random coefficient (RC) regression model differs from OLS regression in
the assumptions made about the nature of the regression coefficients and correlational structure
of the individual observations. Further, when individuals are clustered into groups, we may
have multiple levels of measurement, at both the individual and the group level. For clients
in therapy groups, for example, we may measure characteristics of the clients (individual
level) and characteristics of the therapist that impact all members of the group (group level).
Measures taken on multiple levels may be treated in multilevel models (equivalently termed
hierarchical linear models), which employ random coefficient regression (Goldstein, 1995;
Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002; Snijders & Bosker, 1999).

14.1.1 Clustering, Alpha Inflation, and the Intraclass Correlation

As indicated, clustering poses difficulties for statistical inference in the general linear model
and generalized linear model frameworks. If data are clustered, the standard errors of OLS
regression coefficients are typically negatively biased (i.e., too small). Thus the confidence
intervals around individual regression coefficients are typically too small. Statistical tests for
the significance of individual regression coefficients, which involve division of the coefficients
by their standard errors, will in general be too large, leading to overestimation of significance,
or alpha inflation. As clustering increases (i.e., as scores within clusters become increasingly
similar to one another), alpha inflation increases as well; that is, the actual level of Type I error
increasingly exceeds the nominal level. This same bias occurs if logistic regression is applied
to clustered data.

The degree of clustering, (i.e., the degree of correlation or nonindependence among a set
of observations), is measured by the intraclass correlation (ICC; Shrout & Fleiss, 1979). The
ICC measures the proportion of the total variance of a variable that is accounted for by the
clustering (group membership) of the cases. The ICC also can be conceptualized as a measure
of the extent to which members of the same category (for example, children within families)
are more similar to one another than to members of other categories.1 Put another way, the
ICC measures whether scores from different groups are more discrepant from one another
than scores within the same group. The ICC ranges from 0 for complete independence of
observations to 1 for complete dependence.2 An assumption underlying the general linear
model and generalized linear model is that ICC = 0.

1 There are multiple definitions of the intraclass correlation (ICC) that arise in the context of varying experimental
designs. The ICC is often used as a measure of interjudge reliability in designs in which multiple judges rate multiple
targets. Shrout and Fleiss (1979) provide an explication of the multiple definitions of the ICC in the estimation of
interjudge reliability.

2This presentation of the ICC assumes that clustering produces similarity or positive correlation among cases
within a cluster; this is by far the usual situation in clustered data. In rare instances, for a particular research purpose,
an experimenter may create clusters in which the individuals are sampled to be highly discrepant from one another,
(i.e., more dissimilar from one another than might be expected by chance alone). In this exceptional instance, the ICC
can be negative and lead to an actual Type I error rate lower than the nominal Type I error rate (Kenny & Judd, 1986).
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14.1.2 Estimating the Intraclass Correlation

We can calculate the ICC for any variable in a data set with a clustered structure, that is,
in which individuals are members of groups or clusters. Using common notation, if we let
T represent the amount of variance in a variable that is due to differences among groups in
the population, and a2 represent the variance among scores within groups, pooled across all
groups, then the total variance is given as T + 02. The population expression for the ICC is
given as follows:3

If groups do not differ from one another, then T = 0, and the ICC = 0.
Data on a common dependent variable taken across a set of groups are required to estimate

the ICC (e.g., the educational attainment of children within families, each of which has at least
two children). The ICC can be estimated from a fixed effects one-factor nonrepeated measures
analysis of variance (ANOVA) in which the factor is the grouping variable (for example,
family), and the levels are the particular groups (the particular families). Members of the
groups (children within families) serve as the observations. For those familiar with ANOVA,
the estimate T of T is taken from MS^^t and MSerror, where T = MS^^ - MSerror/n,
where n is the number of cases per cell for equal group sizes. The estimate a2 of a2 is taken
directly from MSerror as a2 = MSerror Then the estimate of the ICC based on the fixed effects
one-factor ANOVA is given as follows:

For unequal group sizes, n is replaced by h = Mn — [sd2(rij)/(gMn)], where Mn is the mean
number of cases per group, sd2(rij) is the variance of the number of cases per group, and g is
the number of groups (Snijders & Bosker, 1999).

For those familiar with fixed effects one-factor ANOVA, examination of the ICC in relation
to the omnibus F test for the one-factor ANOVA may provide more insight into the ICC. The
omnibus F test in one-factor fixed effects ANOVA is given as F = MStieatm&M/MS error. We
see that if MS^^m = MS error, indicating that there is no effect of the grouping factor, then
the ICC = 0.

An ICC of .01 or .05 may seem very small; however, the actual alpha level of statistical
tests increases dramatically even with such apparently small ICCs. For example, in a one-
factor fixed effects ANOVA with n = 25 cases per cell and an ICC of only .01, the actual
alpha level for the test of the treatment factor is .11 when the nominal alpha level (the alpha
level for the tabled critical value) is .05. With n — 25 cases per cell and an ICC of .05, the
actual alpha level is .19 for nominal alpha of .05. The alpha inflation increases as the ICC
and sample size increase (see Barcikowski, 1981, p. 270; Kreft & de Leeuw, 1998, p. 10 for
further numerical examples). This same sort of alpha inflation occurs in regression analysis
with clustered data.

3This expression corresponds to ICC(1, 1) of Shrout and Fleiss (1979), one of a number of expressions for the
ICC, which vary across designs and data structures.
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14.2 ANALYSIS OF CLUSTERED DATA
WITH ORDINARY LEAST SQUARES APPROACHES

Clustered data historically have been the cause of great statistical hand wringing and analytic
acrobatics. Clustering has been viewed as a "problem" with data, something that requires
handling in order to get on with the study of the relationships of predictor measures on indi-
viduals (e.g., the IQ scores of individual children within families) to some DV of interest (e.g.,
educational attainment, or the level of education achieved by each child). In the OLS regres-
sion context, three approaches have been taken to examining the relationship of predictors
to a dependent variable when data are clustered (have group structure). The first is to ignore
clustering and analyze the individual cases as if there were no group structure in the data,
referred to as disaggregated analysis. In the IQ example, we might predict educational attain-
ment from the child's IQ, ignoring the fact that there may well be clustering among siblings,
who appear in the same data set. Here we expect alpha inflation. The second is to aggregate
data at the group level, obtaining a mean on each predictor variable and on the DV for each
group; the groups are then treated as the unit of analysis, referred to as aggregated analysis.
In the IQ example, we might relate the mean IQ of the children in each family to the mean
level of schooling achieved by the children of that family. There are conceptual difficulties
with this approach. The resulting regression equation describes the relationship of the means
of predictors in individual clusters to the mean of the dependent variable in those clusters. We
set out to study how the IQ scores of individual children relate to their level of educational
attainment. However, the aggregated analysis tells us how mean child IQ in a family relates
to mean level of schooling in that family. Generalizing or more correctly particularizing from
the group equation to the individual might lead to very inaccurate conclusions; generalization
from results at one level of aggregation to another (or unit of analysis to another) is referred
to as the ecological fallacy (Robinson, 1950).

The disaggregated analysis and the aggregated analysis estimate very different regression
coefficients. Using the terminology of analysis of covariance (ANCOVA), the disaggregated
analysis estimates the total regression coefficient of the criterion on the predictor, BT, illustrated
in Fig. 14.2.1(A). The aggregated analysis estimates the between-class regression coefficient,
BB. Again there is a single regression equation; here each group is treated as a single case.
The disaggregated versus the aggregated analyses may yield very different results. Kreft and
de Leeuw (1998) provided an example in which this is so; they examined the relationship
between education (the predictor) and income (the dependent variable) within 12 industries:
The total regression coefficient in the disaggregated analysis was positive, with higher edu-
cation associated with higher income overall. However, the between-class coefficient was
negative. Overall the highest paid industries had lower average education levels than did lower
paid industries (e.g., there was lower average education and higher average salary in the trans-
portation industry; in the teaching industry, there was higher average education and lower
average salary).

The third OLS approach is to analyze the regression of a dependent variable on predictors
of interest at the individual case level, but to include as predictors a set of (g — 1) dummy
codes for g groups or clusters to identify the group membership of each individual in the data
set (see Section 8.2). Consider Fig. 14.2.1(B), which shows a series of regression lines, one
for each group. The regression lines all have the same slope; however, all the intercepts differ,
indicating that the different groups have different arithmetic mean levels on the dependent
variable. Having the (g — 1) dummy codes as predictors takes into account these differences in
intercepts of the individual groups. There is only one slope, a constant across all the groups;
that is, it is assumed that the slope of the regression of Y on X is constant across all groups.
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(A) Total regression of Y on X, ignoring group structure.

(B) Separate regression lines within each group. All slopes are equal to one another and to BT.
Intercepts differ across groups; intercepts represent overall level on Y within each group at
X = Q.

(C) Separate regression lines within each group. Both slopes and intercepts differ
across groups.

FIGURE 14.2.1 Slopes and intercepts in OLS and random coefficient models.

Once the dummy codes for the groups are included in the analysis, the regression coefficient
for the predictor in question (here, child's IQ) is the pooled within-class regression coefficient,
Bw. The pooled within-class regression coefficient is the weighted average of the regression
coefficients in each of the individual groups. This approach is, in fact, the analysis of covariance
(ANCOVA) model (see Section 8.7.5). Typically, when we use ANCOVA, the focus is on the
effect of groups on the outcome when the individual level predictor (the covariate) is partialed
out. In contrast, here the focus is on the relationship of the individual level predictor to the
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dependent variable when differences among group means are partialed out. This third analysis
corrects for any differences in the means of the groups when the predictive utility of particular
individual level predictors is assessed (e.g., the regression of educational attainment on IQ
with family membership controlled).

It is also possible to model interactions between group membership and predictors; for
example, one could include in the regression analysis interaction terms between each dummy
code and IQ; the set of interaction terms measures whether the relationship of IQ to educational
attainment varies across families. In Fig. 14.2.1(C), each group has a different intercept and a
different slope. The differences in intercepts would be captured by the (g — 1) dummy codes
discussed earlier. Another (g — 1) interaction codes, the cross product of each dummy code
with the predictor in question (here, IQ), would be required to capture the differences in slopes.

The approach to handling clustering with dummy codes to account for group mean differ-
ences on the dependent variable is often referred to as the fixed effects approach to clustering
(see, for example, Snijders & Boskers, 1999). This name arises because OLS regression analy-
sis, on which the approach is based, is also referred to as a fixed effects regression analysis, for
reasons explained in Section 14.4. As is explained in Section 14.14, under some conditions,
(e.g., small numbers of clusters in the data set) this approach is recommended for the analysis
of clustered data.

14.2.1 Numerical Example, Analysis of Clustered Data
With Ordinary Least Squares Regression

In this section we present a numerical example of the use of OLS approaches to handling
clustered data. Here we introduce a simulated numerical example of the prediction of weight
loss as a function of motivation to lose weight; we will use this example throughout the chapter.
We assume that the data have been collected from intact women's groups that have a focus
on diet and weight control; the groups meet regularly to discuss diet and weight control,
and have some level of cohesion. We may thus expect some correlation among the women
within a group j in both their motivation to lose weight and weight loss success. There are a
total of 386 women in all distributed across the 40 groups. Group size ranges from 5 to 15
women. There is substantial clustering in the data, reflected in the fact that the groups differ
substantially in mean pounds of weight lost, from a low mean of 9.75 pounds lost to a high
mean of 24.43 pounds lost. Using Eq. (14.1.2) we estimate the ICC. Based on a fixed effects
one-factor analysis of variance with the 40 groups as levels of the group factor, the ICC is
estimated at .22. Specifically, MS^^^ = 60.0225, MSeiror = 16.0231, and n = 9.63, and
the ICC = (60.0225 - 16.0231)/[60.0225 + (9.63 - 1)(16.0231)] = .22.

Disaggregated Analysis

Table 14.2.1 provides analyses of these data by three OLS approaches. The disaggregated
analysis is given in Table 14.2.1 A. Here weight loss in pounds (POUNDS) for each individual
woman is predicted from motivation to lose weight (MOTTVATC); MOTTVATC is measured on CH14EX01

a six-point scale and is centered around the grand mean of the 386 cases. Group membership
is completely ignored. This analysis yields the total regression coefficient BT = 3.27 with a
standard error of .15. With n = 386 cases and a single predictor (k = 1), there are (n — k — 1)
degrees of freedom for MSresidual, and (1, 384) df for the F test for overall regression. The
total regression coefficient BT = 3.27 indicates that on average, across all cases, with group
structure ignored, there is a 3.27-pound predicted weight loss for each one unit increase in
motivation.
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TABLE 14.2.1
OLS Regression of Pounds Lost on Motivation With Three Approaches

to Clustering Within the Data

A. Disaggregated analysis of individual cases with clustering ignored

R2 = .545, F(l, 384) = 459.57, p < .001

B. Aggregated analysis using group means of predictor and criterion

R2 = .492, F(l, 38) = 36.80, p < .001

C. Disaggregated analysis with dummy coded groups (k — 1 = 39 dummy codes in all)

39 Group Codes: R2 = .297, F(39,346) = 3.75, p < .001
39 Group Codes plus MOTIVATC: R2 = .704, F(40,345) = 20.48, p < .001

Note: The notation GRXX refers to the dummy code for group XX. For example, GR38 refers to the dummy code
in which group 38 is coded "1"; all other groups, "0".

AggregatedAnalysis
The aggregated analysis is given in Table 14.2.IB. The dependent variable is the mean

weight loss in the group; the predictor, the mean motivation level in the group. There are 40
CH14EX02 groups and hence 40 cases in all. Mean weight loss is predicted from mean motivation level,

yielding the between class regression coefficient BB = 4.16; the standard error is .69. With 40
groups and a single predictor, there are 38 degrees of freedom for MSresiduai, and (1, 38) df for
the F test for overall regression. Note that the ratio of the regression coefficient for MOTIVATC
to its standard error is much larger in the disaggregated analysis, f(384) = 21.44, than in the
aggregated analysis, ?(38) = 6.07. The between class coefficient BB of 4.16 indicates that if we
consider only the mean weight loss per group as a function of mean motivation in the group,
the mean weight loss increases by 4.16 pounds for each one-unit increase in mean motivation
in the group; each group contributes equally to this result, regardless of sample size. This
value is larger than the total regression coefficient BT = 3.27. The reason is that a small group
with both high mean motivation and high mean weight loss or a small group with both low

Variable

MOTIVATC
(Constant)

B

3.270
15.003

SEE

.153

.156

Beta

.738

t

21.438
96.409

Significance of t

.001

.001

Variable

MOTMEANC
(Constant)

B

4.162
15.159

SEB

.686

.304

Beta

.701

t

6.067
49.910

Significance of t

.001

.001

Variable

GR1
GR2

GR38
GR39
MOTIVATC
(Constant)

B

-1.192
1.254

2.444
-2.931

3.119
15.264

SEB

1.098
1.130

1.285
1.178
.143
.722

Beta

-.0419
.0419

.067
-.092

.704

t

-1.086
1.110

1.902
-2.488
21.765
21.138

Significance of t

.278

.268

.058

.013

.001

.001
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mean motivation and low mean weight loss can have a strong positive impact on the between
class regression coefficient, since there are only 40 pairs of observations (i.e., pairs of group
means) in the analysis. In fact, such groups exist in the data set. The few cases within each such
extreme group have less influence when treated as individual data points in the large overall
sample of n = 386 cases in the previous disaggregated analysis.

Disaggregated Analysis With Dummy-Coded Groups
The disaggregated analysis with (g — 1) dummy codes for the g groups is given in

Table 14.2.1C. For the 40 groups there are 39 dummy codes. For each dummy code, mem-
bers of all the groups except one are coded zero (0); the members of the remaining group
are coded one (1); the 40th group is coded zero on all 39 dummy codes and serves as the
base group. Choice of the base group is arbitrary in this analysis, since the dummy codes are
used together to characterize the influence of group structure on the dependent variable. The
pooled within-class regression coefficient for MOTTVATC is Bw = 3.12 with a standard error
of .14. This coefficient is the weighted average of the regression coefficient of pounds lost on
motivation within each group. With 39 dummy coded predictors for group membership and the
MOTTVATC predictor, there are k = 40 predictors in all, and again n = 386 for the individual
women. There are (n - k -1) = (386 - 40 -1) = 345 df for MSresidual, and (40,345) df for the
F test for overall regression. This analysis controls for (partials out) the differences in mean
weight loss per group when the impact of motivation on weight loss is estimated. The 39 group
dummy codes account for almost 30% of the variance in pounds lost (/^Oups = -297). MOTI-
VATC accounts for another 40% of the variance in pounds lost (^0ups+MonvATC = -704). The
ratio of the regression coefficient for MOTIVATC to its standard error in this analysis is only
very slightly smaller than in the disaggregated analysis, ?(345) = 21.77. We are comfortable
in concluding that there is an impact of motivation, once mean differences in pounds lost
across groups are controlled. In this particular data set, the results of this analysis differ very
little from those of the disaggregated regression analysis in Table 14.2.1 A; this is hardly a
necessary result. In fact, it is more usual that the standard error of the predictor in question
(here MOTIVATC) is larger when group structure (clustering) is taken into account than when
it is not.

This last result makes it appear that clustering has little effect on the estimate of the sig-
nificance of the relationship of motivation to weight loss. However, there is more to the story.
These particular data were simulated to have widely varying slopes of the regression of weight
loss on motivation across groups, and the analysis with the 39 dummy codes in Table 14.2.1C
does not take into account these slope differences. As previously discussed, we could estimate
a model in which slope differences were permitted by forming the cross-product terms between
each of the dummy codes and MOTIVATC. This analysis poses complexities due to centering.
We would have to change from using dummy codes to represent groups to using weighted
effects codes (see Section 8.4) so that all predictors would be centered. With weighted effects
codes and centered MOTIVATC, the estimate of the regression of pounds lost on MOTIVATC
in the model containing all the interaction terms would be at the mean of all the groups (see
West, Aiken, & Krull, 1996).

14.3 THE RANDOM COEFFICIENT REGRESSION MODEL

We now have available a newer regression model than OLS, the random coefficient (RC)
regression model, which provides a highly flexible approach to the handling of clustered
data. The RC regression model is mathematically different from OLS regression, as are the
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estimation procedures employed. When data are clustered, the RC model provides accurate
estimates of relationships of individual level predictors to a dependent variable while at the
same time taking into account clustering and providing accurate estimates of the standard errors
of regression coefficients so that alpha inflation is avoided. Random coefficient regression also
permits the analysis of multilevel data within a single regression model. Multilevel data contain
predictors measured at more than one level of aggregation, for example, measures of IQ taken
on individual children within a multichild family, plus a measure of total family income taken at
the level of the family. The term multilevel model (or, equivalently, hierarchical linear model)
is applied to these random coefficient regression applications in which there are predictors at
multiple levels of aggregation (Raudenbush & Bryk, 2002). It is in this multilevel framework
that the RC regression model has enjoyed extensive use in educational research, for example,
in the study of the impact of type of school (public, private) on the relationship of children's
socioeconomic status to mathematics achievement (Raudenbush & Bryk, 2002) and in sociol-
ogy in the study of the impact of individual and contextual (e.g., societal) variables on such
outcomes as contraceptive utilization by individual women (e.g., Wong & Mason, 1985). These
models have an advantage, explained in Section 14.7.3, that the cross-level interaction between
variables that occur at different levels of aggregation can be examined (for example, the inter-
action between family income and child IQ on educational achievement). These models are
now enjoying increasing use within psychology. In this chapter we present the random coeffi-
cient model for the continuous DV. These models have also been extended to binary, ordered
category, and count variables (see Snijders & Bosker, 1999, chapter 14; Wong & Mason, 1985).

14.4 RANDOM COEFFICIENT REGRESSION MODEL
AND MULTILEVEL DATA STRUCTURE

A brief review of several aspects of OLS regression sets the stage for the introduction to random
coefficient regression.

14.4.1 Ordinary Least Squares (Fixed Effects)
Regression Revisited

Recall that in OLS regression we have a single population regression equation, which, in the
one-predictor case, is as follows:

14.4.2 Fixed and Random Variables

Following the convention of Kreft and de Leeuw (1998), we underline random variables. By
random variables are meant variables whose values are selected at random from a probability
distribution. Both the error term €, and the dependent variable Y_ are random variables. Here
we assume a normal probability distribution of error in the population with mean |x = 0 and
variance a^. In OLS regression the Xs are assumed to be fixed, that is to take on a predetermined

where Pg is the population intercept, Pj is the population unstandardized regression slope,
and €, is the random error in prediction for case i. (Readers should not confuse the notation
P* for population unstandardized regression coefficient with the notation ^1 for the sample
standardized regression coefficient.)
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set of values (though in many applications of OLS regression, we do not meet this assumption).
In addition, PQ and P* are the fixed parameters of the unstandardized regression equation for
the whole population regression equation. This is the source of the term fixed effects regression
analysis applied to OLS regression.

In any single OLS regression analysis we draw a random sample of cases from the population
and estimate a single regression equation for the sample:

In OLS regression the sample intercept (regression constant) B0 and slope (regression coeffi-
cient) BI are estimates of the fixed intercept PQ and slope P* in the population, respectively, and
are considered fixed; there is one estimate of the fixed intercept PQ an<^ one estimate of the fixed
slope P* from the analysis; e-t is the random error associated with observation Xt in the sample.

14.4.3 Clustering and Hierarchically Structured Data

In random coefficient regression we retain the notion of a population regression equation with
a population intercept and population slope. However, we add complexity in terms of the data
structure, that the data are clustered into groups, or hierarchically structured. The clustering
yields levels within the data structure. The lowest level of aggregation, the individual, is
referred to as level 1 or the micro-level. The cluster or group level is referred to as level 2 or
the macro-level. It is possible to have more than two levels in the data structure (e.g., children
within families within neighborhoods); we limit the presentation to two levels. The clusters in
any data set are assumed to be a random sample of all possible clusters in the population. For
example, the 40 women's diet groups in the numerical example are assumed to be a random
sample of the population of all women's diet groups. Although in OLS regression the individual
case is the unit that is randomly sampled, in random coefficient regression it is the cluster or
group that is randomly sampled.

14.4.4 Structure of the Random Coefficient Regression Model

The notation of random coefficient regression and multilevel modeling is somewhat arcane.
In developing the RC regression model and its application to multilevel modeling, we use
common notation from leading texts in the multilevel modeling field. We do so in order that
the reader may refer to other sources for further information and may follow the terminology
of common software for multilevel modeling. Our notation follows that of Raudenbush and
Bryk (2002) and Snijders and Bosker (1999), and is very close to that of Kreft and de Leeuw
(1998) and Goldstein (1995). It is summarized in Table 14.4.1.

Within a single random coefficient regression analysis, we have g groups in all. We use the
subscript./ to denote any one of the groups, with the particular group unspecified (i.e., group./).
The group membership of each case in the analysis is identified; hence we think of case i in
group;.

The RC regression model is more complex than OLS regression because the RC model
addresses the group structure inherent in the data as well as both individual level and group level
relationships among variables. There are three types of regression equations in the random coef-
ficient regression model. First, there are level 1 (micro-level) regression equations, one for each
group in the data set. Second, there are level 2 regression equations that carry the group struc-
ture. Third, there is an overall regression equation, the mixed model equation, that combines the
level 1 and level 2 equations. In addition, there are a set of variance components that summarize
the differences among the groups. In what follows we develop the RC model and its extension to
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TABLE 14.4.1
Notation for Random Coefficient Regression in the Multilevel Framework

A. Coefficients in micro-level equation for group j.
B0j = level 1 regression intercept in group j.

BIJ = level 1 regression coefficient (slope) in group j.

B. Fixed population regression coefficients: the fixed part of the model.
Yoo = the population regression intercept.
y10 = the population regression coefficient for the regression of the dependent variable

on the level 1 predictor.
y01 = the population regression coefficient for the regression of the dependent variable on

the level 2 predictor.
Yn = the population regression coefficient for the interaction between the level 1 and level 2

variables in predicting the dependent variable.

C. Residuals and variance components: the random part of the model.

1. Residuals.
ry = level 1 error for subject i in group./ (level 1 equation).

MO; = random deviation of the intercept of an individual group j from the overall
population intercept (level 2 equation).

My = random deviation of the regression coefficient of an individual group j from the overall
population regression coefficient (level 2 equation).

2. Variance components.
a2 = variance due to random error at level 1 (i.e., variance of the /-,-,•).

TOO = variance of the random intercepts (i.e., variance of uQj).

in = variance of the random regression coefficients (i.e., variance of My).

TO] = covariance between the errors of the random regression
coefficients and the random regression intercepts (i.e., covariance between u0j and My).

Note: Notation follows Raudenbush and Bryk (2002) and the HLM software (Raudenbush, Bryk, Cheong, &
Congdon, 2001) as well as Snijders and Bosker (1999); the only difference from Kreft and de Leeuw (1998) is
their use of €«, rather than r,y , for the level 1 residual. Goldstein (1995) also uses e,y, rather than r,y; also, the t

notation for variance components is replaced with CF^O, etc., as in the MLwiN software (Goldstein et al, 1998).

multilevel modeling with no more than one predictor at each level. We do this for ease of presen-
tation only. Any number of predictors may be entered at each level (micro, macro) of the model.

14.4.5 Level 1 Equations

We have the following level 1 (micro-level) equations, one for each group in the analysis:

For each group./, we have made one equation specific to that group by appending the subscript
j to every term in the equation: to the dependent variable ytj for case i in group./, to the predictor
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xtj for case i in groupy, to the level 1 residual or random error rtj for case i in group./. The level 1
regression intercept B0j and the level 1 slope By also carry the subscript./', again showing the
specificity to groupy'. Since we assume that the groups are a random sample from a population
of groups, the intercepts and slopes of the level 1 equations for the various groups become
random variables in the random coefficient regression model. Hence they are underlined in
these level 1 equations. Put another way, in any single random coefficient regression analysis,
we conceptually have a whole series of regression analyses, one for each group, each with its
own intercept and slope. Within the single random coefficient regression analysis there is a
distribution of these intercepts and a distribution of the slopes. The term random coefficient
regression stems from the assumption that the intercept B0;- and the slope By are themselves
random variables.

14.4.6 Level 2 Equations

In random coefficient regression analysis, we still retain the notion that there is an overall
population regression equation. The level 2 or macro-level equations express how the set of
level 1 intercepts for each cluster (B0;-) and the level 1 slopes (By) relate to the intercept and
slope from the overall population regression equation. Again, we use common notation from
multilevel modeling with y00 (gamma zero zero) for the population regression intercept and y 10

for the population regression slope. These are the fixed parameters of the population regression
equation. We assume that the level 1 (micro-level) intercepts from the various individual groups,
B01, B02,..., B0j, B0g, vary randomly in value around the population intercept y00.

We specify a level 2 model for how the intercept B0j in each group relates to the population
intercept yoo. The equation indicates that any B0; is comprised of a fixed part yoo and a random
partM^:

Once again, Eq. (14.4.4) indicates that the regression intercept B0; in any particular group y is

a function of the fixed population intercept y^ plus a random deviation u0j = B0j — YOQ of the

group intercept from the overall fixed population intercept.
Similarly, we assume that the level 1 regression slopes from the various groups

Bn,B12,... ,Bij,Big, vary randomly in value around the fixed population regression coef-
ficient y10, with random deviation My of By from y10, yielding the following level 2 model for
the regression slope:

The level 2 equations characterize the group structure inherent in the data, as noted in the j
subscript for each group. The identity of the groups within the analysis is embodied in the
level 2 equations. The clustered nature of the data is captured at level 2. Recall that in OLS
regression the group structure is identified with a set of (g — 1) dummy variables for g groups.
The level 2 model characterized by only Eq. (14.4.4) in random coefficient regression replaces
the (g — 1) dummy codes in OLS regression (see Section 14.4.9).

There is a relationship between the random coefficient regression model and the fixed OLS
regression model, further explained later. If there is no variation among the intercepts across
the groups and no variation among the slopes across the groups, then the random coefficient
regression model is equivalent to fixed OLS regression.
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14.4.7 Mixed Model Equation for Random Coefficient Regression

The presentation of the RC model thus far makes it appear that the level 1 and level 2 equations
are treated separately. In fact, they are combined to form a single RC regression equation,
referred to as the mixed model because it "mixes " the two levels, in that it contains terms from
both the level 1 and level 2 models (the term mixed model, extensively used in econometrics,
is enjoying increasing use in psychology). If we substitute Eqs. (14.4.4) and (14.4.5) for the
intercept and slope, respectively, in group; into the level 1 equation for that group; (Eq. 14.4.3)
we obtain the mixed model form of the random coefficient model:

The final expression (Eq. 14.4.6) is the mixed model equation. It gives the regression of the
Y on the level 1 predictor in terms of fixed population values, the population intercept YOO
and population slope y10, plus a complex error term that includes the level 1 error r(y plus
the level 2 deviations u0j and MI;. The residual rtj has the same interpretation as the residual
in OLS regression, the extent to which the DV is not predicted from the level 1 predictor(s).
The u0j deviation measures the discrepancy between the specific group intercept and the fixed
population intercept. The MI; deviation measures the discrepancy between the specific group
slope and the fixed population slope. The mixed model error term is larger than the error term for
a corresponding disaggregated OLS total regression equation that ignores group membership
and predicts yy- from x^; the OLS error term in Eq. (14.4.1) only consists of €,-, which is the
analog of ry in the RC model. Equation (14.4.6) characterizes the outcome of RC regression
analysis, a single regression equation that takes into account group structure in the estimation
of the regression coefficient for the regression of the criterion on the level 1 predictor.

In the example of predicting pounds lost from motivation, Eq. (14.4.6) gives the regression of
weight loss on motivation, taking into account the group structure of the data. The regression
coefficient and intercept resulting from a single predictor RC regression as in Eq. (14.4.6)
may be highly similar to the coefficient and intercept from a total regression disaggregated
OLS regression analysis of the whole data set, ignoring group membership. However, the
standard error of the intercept y0o from the RC regression equation is expected to be larger
(appropriately so) than in the OLS regression equation, so long as the groups exhibit variation
in their individual intercepts, Bol,BQ2,.. .,B0j,B0g. Similarly, the standard error of the slope
coefficient y10 from the multilevel formulation is expected to be larger (appropriately so) than
in the OLS regression equation, so long as the groups exhibit variation in their individual slopes
Bj±,B\2,...,Bij,Big.

14.4.8 Variance Components—New Parameters
in the Multilevel Model

The RC regression model employs a concept not employed in OLS regression, that of variance
components. The variance components are a hallmark of random coefficient models. In the ran-
dom coefficient regression model we have three different sources of random errors or deviations
: (1) the level 1 random errors, ry, from random variation in the Y scores in Eq. (14.4.3); (2) the
level 2 deviations of the random intercepts around the population intercept, u0j in Eq. (14.4.4),
and (3) the level 2 deviations of the random slopes around the population slope, MI;- in
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Eq. (14.4.5). Each of these sources of random deviation can be summarized as a variance. First
we have the level 1 variance a2 of the ri}rs. The level 1 variance is typically assumed to be constant
across groups and thus bears no group subscript here. At level 2, we have the variance of the
level 1 random intercepts around the population intercept, (i.e., the variance of the MQ/S)» noted

TOO (tau zero zero). At level 2, we also have the variance of the level 1 random slopes around
the population slopes (i.e., the variance of the w1;s) noted TU. Each of these variances—that

is, a2, T0o, an^ Tn—ig a variance component of the random coefficient regression model.
The variance components %), and TH provide a simple way to capture the impact of

group structure on the relationship of predictors to the dependent variable. Consider TQQ, the
variance of the level 1 random intercepts in the random coefficient regression model; to the
extent that individual groups have different random intercepts (Bq/)> the value of TOQ will be
large. The parameter TOO is an elegant construction: instead of keeping track of the individual
intercepts £01, B02, • •••> B0j, BQg of the g groups, the intercepts of the g groups are replaced in
the random coefficient model with a single variance component, the variance of the intercepts,
TOQ. What about the variance of the slopes, TU? Instead of keeping track of the individual
slopes Bn,Bi2>... ,Bij,Big of the g groups, the slopes of the g groups are replaced in the

random coefficient model with a single variance of the slopes, TU.
We can make a conceptual link between the variance components and the dummy codes

for group membership in the third OLS regression analysis, described in Section 14.2.1 and
illustrated in Table 14.2.1C. In the OLS framework, we had a much more cumbersome way to
model the intercepts of the individual groups: We used (g — 1) dummy codes in the regression
equation. If the groups had different means on the dependent variable (in our example, if the
different groups had different average amounts of weight loss) then the set of (g — 1) dummy
codes would account for significant variance in the dependent variable, because the set of
dummy codes capture differences among the means of the groups on the dependent variable
(equivalently, differences in intercepts if we think of estimating a regression equation in each
group). Conceptually, we can replace the (g— 1) dummy codes of OLS regression with the single
variance component TOQ in random coefficient regression. The random coefficient regression
model requires only two variance components, TOO an^ in, to summarize all the between-
group differences in intercepts and slopes, respectively. To summarize this same variance in
OLS regression, we would need (g — 1) dummy codes to capture intercept differences, plus
another (g — 1) interaction terms of each dummy code with the level 1 predictor to capture the
variance of the slopes. Thus two terms in the RC regression model replace 2(g - 1) terms in
OLS regression to fully characterize the differences in regression equations across the groups.

As a final note, there is actually one more variance component in the RC regression model.
The random slopes and intercepts may also covary. Thus a third variance component is esti-
mated: the covariance between the level 1 slopes and intercepts across groups, noted TOI . This
term provides interesting information from a theoretical perspective. It may be that the inter-
cept and slope are positively related; in the weight example, this would mean that the groups
that showed the highest average weight loss also exhibited the strongest relationship between
motivation and weight loss.

14.4.9 Variance Components and Random Coefficient versus
Ordinary Least Squares (Fixed Effects) Regression

When does the RC regression model simplify to the fixed OLS regression model? In fixed
effects regression analysis, we have only one variance component, a2, which is estimated by
MSresidual. In RC regression, we have the level 1 variance component a2, plus two level 2
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variance components, TOO and tn. If TOO ̂ d TU are equal to zero in a population, then the
random coefficient regression model simplifies to fixed OLS regression. Under what circum-
stance would both TOO and TII be zero? If the intercepts of all the level 1 regression equations
in all the groups were identical, then TOO would equal zero (no variance among the intercepts).
If the slopes of all the level 1 regression equations in all the groups were identical, then Tn

would equal zero (no variance among the slopes). If both TQQ and Tn are zero, then there is
no effect of clustering or group membership on the outcome of the regression equation; the
random coefficient regression equation is equivalent to an OLS regression that ignores group
membership.

The Random Intercept Model
It is possible that either TOO or TU is equal to zero but the other variance component is not.

For example, suppose we estimate an RC regression model with a single level 1 predictor and
with both random intercepts and slopes, as in Eqs. (14.4.3), (14.4.4), (14.4.5), and find that
TOO is greater than zero but Tn equals zero. (Statistical inference for variance components is
illustrated and explained later.) Again, that TOO is greater than zero indicates that the intercepts
differ across groups. That Tn equals zero signifies that the slopes across groups are all equal
to one another and can be considered as fixed (i.e., to take on a constant value across groups).
Figure 14.2.1(B) illustrates this data structure. In the weight loss example, we would say
that the groups differed in pounds lost (intercept) but reflected a constant relationship of
MOTIVATC to pounds lost (slope). We could respecify the model as a random intercept
model, with Eqs. (14.4.3) and (14.4.4) as before, but Eq. (14.4.5) replaced by the expression
By = y10. The random intercept model is the analog in RC regression to the OLS (fixed
effects) regression analysis in which (g — 1) dummy codes represent differences among the
means of g groups. We consider the choice between the random intercept and fixed model in
Section 14.14.

14.4.10 Parameters of the Random Coefficient Regression Model:
Fixed and Random Effects

We can organize all the parameters of the RC regression model into two classes, referred to as the
fixed effects and the random effects. The population regression intercept and slope (regression
coefficient), YQQ, Yio> respectively, in Eqs. (14.4.4), (14.4.5), and (14.4.6) are referred to as the
fixed effects. The variance components are referred to as the random effects. These two classes
of parameters are two distinct foci of hypothesis testing in the random coefficient regression
model, as we illustrate later.

14.5 NUMERICAL EXAMPLE: ANALYSIS OF CLUSTERED DATA
WITH RANDOM COEFFICIENT REGRESSION

We now use what we have learned about random coefficient regression. We return to the weight
reduction example introduced in Section 14.2.1 and employ RC regression to predict pounds

CH14EX03 iost from motivation. Random coefficient models were executed in S AS PROC MIXED; Singer
(1998) has provided an excellent tutorial on the use of PROC MIXED for analyzing multilevel
models and longitudinal growth models. Results are presented in Table 14.5.1, which shows
output from SAS PROC MIXED.
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TABLE 14.5.1
Analyses of Weight Loss as a Function of Motivation

With Random Coefficient Regression

A. Random coefficient regression: unconditional cell means model to derive
intraclass correlation.

Random Part: Covariance Parameter Estimates (REML)

TOO, variance of intercepts
a2, level 1 residual

Cov Parm Subject

UN(1, 1) GROUP
Residual

Estimate

4.906
16.069

Std Error

1.560
1.225

Z

3.14
13.12

Pr>|Z|

0.002
0.001

B. Random coefficient regression: prediction of pounds lost from motivation (level 1)
at outset of diet program

Random Part: Covariance Parameter Estimates (REML)

TOO, variance of intercepts
TO], covariance between

slope and intercept
tn, variance of slopes
a2 level 1 residual

Cov Parm

UN( 1, 1)
UN(2, 1)

UN(2, 2)
Residual

Subject

GROUP
GROUP

GROUP

Estimate

2.397
0.585

0.933
5.933

Std Error

0.741
0.385

0.376
0.476

Z

3.23
1.52

2.48
12.47

Pr>|Z|

0.001
0.128

0.013
0.001

Solution for Fixed Effects

Yoo
Yio

Effect

NTERCEPT
MOTIVATC

Estimate

15.138
3.118

Std Error

0.280
0.211

DF

39
345

t

54.13
14.80

Pr > \t\

0.001
0.001

Note: The UN notation is the SAS notation for a variance component. REML stands for restricted maximum
likelihood (Section 14.10.1).

14.5.1 Unconditional Cell Means Model
and the Intraclass Correlation

We begin with estimation of the ICC in RC regression as an alternative to the approach shown
for estimating the ICC in the fixed model (Section 14.1.2). Actually, the RC model used for
estimating the ICC is a bit simpler than the one presented in Eqs. (14.4.3), (14.4.4), and (14.4.5).
It contains no level 1 predictor X in Eq. (14.4.3), so the level 1 equation corresponding to
Eq. (14.4.3) becomes yfj = B0j + rtj for groupy'. Each group's equation has an intercept B0j but

no slope; each individual score is predicted solely from the mean of the group. The hierarchical
structure of identifying group membership is retained in the level 2 equation for the intercept,
which is identical to Eq. (14.4.4). Since there is no longer a predictor X and thus no longer
a random slope By in the model, there is no equation Eq. (14.4.5). This model is called an

unconditional cell means model. It is equivalent to a one-factor random effects ANOVA of
pounds lost with group as the sole factor;4 the 40 groups become the 40 levels of the group

4The analysis of variance (ANOVA) model in common use is the fixed effects ANOVA model. Consider a one-factor
model. A fixed effects one-factor ANOVA assumes that the levels of the factor included in the data set are a fixed set
of levels, in fact, all the levels to which we wish to generalize. This corresponds to the fixed effects OLS regression
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factor. This analysis provides estimates of %), me variance among the 40 group intercepts
(or equivalently, the variance among the groups in mean number of pounds lost), and a2, the
level 1 residual variance. (The TOO here is the same parameter as T in Section 14.1.2; that is,
TOO

 an(i T measure the same thing. What differs here is the estimation approach.) As shown
in Table 14.5.1A, the estimates of TQQ and a2 are 4.906 and 16.069, respectively. They reflect
4.906 units of between class variance in pounds lost (differences between groups in mean
pounds lost by the end of the experiment) and 16.069 units of within class variance in pounds
lost that might be accounted for by the treatment and motivation predictors. Both these values
are significantly greater than zero, according to the z tests reported in Table 14.5.1 A (i.e.,
z = 3.14, z = 13.12, for TOO anc^ <*2» respectively). That the value of TOO is significantly greater
than zero tells us that there is random variation among the intercepts of the individual groups—
we should not ignore clustering. We will use the values of TOO and a2 to track the impact of
the level 1 and level 2 predictors in accounting for weight loss. These two values are used to
compute the ICC, which is given as ICC = TOO/(TOO + <*2) = 4.906/(4.906 + 16.069) = .24
(this is the same as the ICC formula in Eq. 14.1.1). The estimated ICC of .24 is very substantial.
This estimate is very similar to that derived from the fixed effects ANOVA in Section 14.2.1
(ICC estimate of .22). We expect that if disaggregated OLS regression and RC regression are
applied to these data, the standard errors of regression coefficients in OLS will be smaller than
in RC regression, leading to overestimates of significance of predictors.

14.5.2 Testing the Fixed and Random Parts of the Random
Coefficient Regression Model

In a next step we examine the prediction of pounds lost from motivation in an RC regression
model, given in Table 14.5.IB. There are two parts to the analysis: (1) a random part that
provides the estimates of the variance components, TOO, ^oi» ^n> ^d ^2> an^ (2) a fixed part
that provides the estimates YOO and YIO °f me fixed regression constant and fixed regression
slope, YOO and yio» respectively. We consider first the fixed part, given under Solution for Fixed
Effects in Table 14.5. IB. The RC regression equation predicting pounds lost from motivation
is Y = 3.12MOTIVATC + 15.14, where YQQ = 15.14, and YIO = 3.12. For every 1-unit
increase in motivation (on a 6-point scale), predicted pounds lost increases by 3.12 pounds,
with an average weight loss per group of 15.14 pounds. Note the standard error of the random
regression coefficient is .211.

Now we consider the random part. In the model in Table 14.5.1 A, which contained no level 1
predictor, there are only two variance components, TQQ and a2. When motivation is added as
a level 1 predictor, the possibility arises that the slope of the regression of pounds lost on
motivation may vary across groups; hence the model presented in Table 14.5.IB contains two
more variance components, the variance of the slopes across groups, Tn, and the covariance

model, which assumes that predictor X takes on a fixed set of values, and that our results pertain only to those values.
The random effects ANOVA model assumes that the levels of the factor included in the data set are a random sample of
all possible levels to which we wish to generalize. Consider the 40 women's groups in the diet example. If we create
a fixed factor of Women's Group in a fixed effects ANOVA, with the 40 women's groups as 40 levels of the factor
(as we did to estimate the ICC from the one-factor fixed effects ANOVA in Section 14.2.1), we should conceptualize
any results as pertaining to only those 40 groups. If we create a random factor of Women's Group in a random effects
ANOVA, with the 40 women's groups as a random sample of possible levels of the factor, then we may generalize
our results to the "population of women's groups." Historically, in the 1960s and 1970s, much attention was paid to
the distinction between fixed and random ANOVA models. This distinction has not been a focus for over 20 years;
researchers in psychology, at least, have automatically used fixed effects ANOVA, perhaps without awareness of the
distinction from random effects ANOVA (software packages for ANOVA as a default provide fixed effects ANOVA).
Now that random coefficient regression models are becoming more popular, there is a new awareness of the distinction
between fixed and random models.
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between the intercept and slope, t0i. The estimate of the variance of the slopes across groups
is TI i = .933, and is significantly greater than zero, z = 2.48; this tells us that the groups differ
in the slopes of pounds lost on motivation, and that once again, the clustering should not be
ignored. The covariance between the random slopes and random intercepts of the 40 groups
TOI is estimated as TOI = .585. The positive covariance tells us that the higher the intercept for a
group (the higher the pounds lost), the higher the slope, or the stronger the positive relationship
of pounds lost to motivation. However, this covariance does not differ significantly from zero,
z = 1.52, ns.

What has happened to the estimated within group variance in pounds lost a2 with the addition
of the level 1 predictor motivation? Recall that a2 = 16.069 in the unconditional means model
without the motivation predictor in Table 14.5.1 A. The addition of motivation as a predictor
yields a substantially reduced a2 = 5.933 (Table 14.5.1B); in all [(16.069 - 5.933)/16.069] x
100 = 63% of the within group variance in pounds lost has been accounted for by the level 1
motivation variable. Similarly, consider T^ = 4.906 in the unconditional means model without
the motivation predictor (Table 14.5.1 A). The addition of motivation as a predictor yields a sub-
stantially reduced T^ = 2.397 (Table 14.5.IB); in all [(4.906 - 2.397)/4.906] x 100 = 51% of
the between-group differences in average number of pounds lost has been accounted for by the
level 1 motivation variable. The 40 groups fluctuated in mean number of pounds lost; this fluc-
tuation was systematically related to the mean motivation level of individuals within the groups.

14.6 CLUSTERING AS A MEANINGFUL ASPECT OF THE DATA

To this point we have treated clustering or group structure in the data as if it were a nuisance that
posed problems when we study the relationship of a level 1 predictor to a dependent variable
(here, MOTIVATC to pounds lost). Clustering in data arises for meaningful reasons occasioned
by the nature of research questions. For example, what is the effect of a mother's interest in
literature on her children's development of reading habits? Or, is the relationship between stu-
dents' mathematics background and their performance in graduate courses in applied statistics
affected by the characteristics of the instructor?

In our study of weight loss, we might consider how level of group cohesiveness (level 2)
and women's motivation (level 1) affect the number of pounds lost, a level 1 outcome. We may
further ask whether there is a cross-level interaction between group cohesion and individual
women's motivation in predicting individual women's pounds lost; perhaps cohesiveness in
the group enhances the relationship of motivation to weight loss among individual women.
Our research questions reflect this multilevel structure.

14.7 MULTILEVEL MODELING WITH A PREDICTOR AT LEVEL 2

To translate the preceding examples into the RC regression model we add predictors at level 2.
The term multilevel modeling is typically applied here, when we have both level 1 and level 2
predictors. In the weight loss example, we might add a measure of group cohesiveness W as a
level 2 predictor.

14.7.1 Level 1 Equations

When we add a level 2 predictor to the regression equations the level 1 equation is unaffected,
remaining the same as earlier:
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14.7.2 Revised Level 2 Equations

The level 2 equations show the addition of the level 2 predictor Wj. This predictor has one
score for each group (e.g., a measure of group cohesion). If we believe that the intercepts of
the groups are affected by the level 2 predictor, we add the level 2 predictor to Eq. (14.4.4).
For example, if we believe that the average pounds lost per group depended on group cohesion
(a source of mutual social support for dieting), we would add the group cohesion predictor Wj
to the level 2 equation for the random intercept. Note that there is only one score on group
cohesion for each group; that is, cohesion is a characteristic of the group. We might hypothesize
that higher group cohesion is associated with greater average weight loss in a group. Average
weight loss per group is reflected in the intercept for the group BQj.

14.7.3 Mixed Model Equation With Level 1 Predictor
and Level 2 Predictor of Intercept and Slope
and the Cross-Level Interaction

Once again, we write a mixed model equation that shows the prediction of Y from the level 1
and level 2 predictors. We substitute the level 2 equations (Eqs. 14.7.1 and 14.7.2) into the
level 1 equation (Eq. 14.4.3) to obtain a mixed model equation:

Note that we have a new fixed effect, y01, the regression coefficient of the group intercept B0j

on the level 2 predictor.
If we believed that the relationship of the dependent variable Y to the level 1 predictor is

affected by the level 2 predictor, we add the level 2 predictor to Eq. (14.4.5). For example, we
might hypothesize that high group cohesion would strengthen the relationship of motivation
to weight loss, which is reflected in the level 1 regression coefficient 51; for each group. We
would then add the group cohesion measure Wj to the level 2 slope equation:

Again, we have a new fixed effect, yn, the regression coefficient of the group random slope
BIJ on the level 2 predictor.

Cross-Level Interaction
The first three terms of Eq. (14.7.3) indicate that the pounds lost criterion is predicted

from the level 2 cohesion predictor Wj, the level 1 centered motivation predictor x{j, and the
cross-level interaction WjXtj between cohesion Wj and centered motivation^. The cross-level
interaction in the mixed model expression for the slope (Eq. 14.7.3) results from the level 2
equation for the slope (Eq. 14.7.2), which states that the level 2 predictor predicts the level 1
slope. In causal terms, the level 2 predictor changes (or moderates) the relationship of the
level 1 predictor to the dependent variable (see Section 7.3.2 for a discussion of moderation).
This fixed part of the equation is analogous to the OLS regression equation with a two-predictor
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interaction in Eq. (7.1.2); there are now four fixed effects—y01, y10, yn, y0o—in the multilevel
model. They correspond to the regression coefficients and regression intercept, respectively,
in OLS regression equation Y = BI W + B2X + B3 WX + BQ, containing a WX interaction.

Variance Components

The final term in Eq. (14.7.3) contains the random components of the model. It is once
again a complex error term, characteristic of RC regression equations. It contains the same
components as in the model with no level 2 predictor, in Eq. (14.4.6), the level 1 residual r,y
plus level 2 residuals uQj and My for the intercept and slope, respectively. The level 1 residual
rtj retains the same interpretation as in Eq. (14.4.6). However, the interpretation of the level 2

random error terms MO;- and «1; changes when a level 2 predictor is added. The term MQ/ is now
the residual deviation of the level 1 intercept B0j from the population intercept y00 after the
level 1 intercept has been predicted from the level 2 predictor. Put another way, MQ/ measures
the part of the discrepancy between the group j intercept BQJ and the population intercept

Yoo that cannot be predicted from the level 2 predictor. If the level 2 predictor W provides
prediction of the level 1 intercept, then MQ, in Eq. (14.7.1) will be smaller than in Eq. (14.4.4)
in a model with no level 2 predictor. In the weight loss example, with group cohesion as the
level 2 predictor, uQj represents the part of the level 1 intercept that cannot be accounted for
by group cohesion. The same is true for residual «1;- in Eq. (14.7.2). If the level 2 predictor
explains some of the variance in the level 1 slopes, then the residual in Eq. (14.7.2) will be
smaller than in Eq. (14.4.5).

Finally, instead of considering the residuals MQ/ and M i /»w e can think of their variances, TOO,
and Tn, the variance components in the model. A goal of multilevel modeling is to account for
these variances of the random intercepts and slopes, respectively, by level 2 predictors (i.e., to
explain the differences among the groups in their intercepts and slopes).

14.8 AN EXPERIMENTAL DESIGN AS A MULTILEVEL DATA
STRUCTURE: COMBINING EXPERIMENTAL MANIPULATION

WITH INDIVIDUAL DIFFERENCES

We have strong interest in psychology in the effects of experimental manipulations. Moreover,
we have interest in how individual differences interact with experimental manipulations. We
often examine whether individuals respond to an experimental manipulation or intervention
more strongly or weakly as a function of some stable individual difference characteristics. In
multilevel analysis the experimental manipulation and individual difference characteristics are
readily portrayed, with participation in conditions of an experiment treated as a level 2 variable
and individual characteristics that may affect how individuals respond to the conditions as
level 1 variables. Note that if there is no clustering in the data set, then a fixed OLS regression
approach can be taken instead. The experimental manipulation (e.g., treatment versus control),
the individual difference variable, and the manipulation by individual difference interaction
serve as predictors. Note that this is not the classic ANCOVA model described in Section 8.7.5,
which assumes no interaction between the manipulation and individual difference covariate.
Rather it is the aptitude-treatment or experimental personality design considered in West,
Aiken, and Krull (1996; see also Section 9.3).

Again consider the diet example. Now assume that the 40 women's groups are entered into
a research project to evaluate the impact of a diet program (the "treatment") on the number of
pounds lost in a three-month period. Groups are randomly assigned to experimental condition



556 14. RANDOM COEFFICIENT REGRESSION AND MULTILEVEL MODELS

(i.e., the level 2 unit is the unit of random assignment). There are two conditions: (1) baseline
condition (control group) of weekly group meetings to discuss dieting triumphs and tragedies,
or (2) amulticomponent treatment (experimental group) consisting of diet specification, weigh-
in and counseling, exercise, food preparation lessons, plus weekly group meetings to discuss
dieting triumphs and tragedies. As before, at the individual level, the motivation of each
individual to lose weight at the outset of the intervention is assessed as the level 1 predictor of
weight loss. The treatment condition (experimental versus control) is a level 2 predictor called
TREATC. Issues of appropriate coding of the treatment variable and centering the motivation
variable are considered in Section 14.9.

The mixed model regression equation for the experiment is as follows:

14.9 NUMERICAL EXAMPLE: MULTILEVEL ANALYSIS

We now explore the analysis of the diet treatment, assuming that 60% of the 40 groups,
or 24 groups (comprised of n = 230 individual cases in all) were randomly assigned to
the treatment, the other 16 groups (comprised of n = 156 individual cases in all), to con-
trol. Treatment is centered around the grand mean at the individual level into a weighted
effects coded predictor5 TREATC, where experimental = 156/(156 + 230) = .404, and

5 Coding and centering (scaling) issues become very complex in multilevel models with cross level interactions in
which there are unequal sample sizes in each group. Since the regression model contains an interaction, the first order
effects of MCOTVATC and TREATC are conditional (i.e., are interpreted at the value of zero on the other predictor),
just as in OLS regression with interactions (see Section 7.12). The scaling of the IVs to produce appropriate 0-points
on each variable will depend on the sampling plan and the effect(s) of most interest in the study. In the present case,
we centered MOTTVATC around the grand mean of all of the individual cases. A weighted effects code based on the
number of cases in the treatment and control at the individual level was used to create TREATC. This choice parallels
the centering of MOTTVATC and thus facilitates interpretation. The interpretation of each conditional main effect is
at the mean of all individual cases on the other predictor. This choice also permits the most direct comparison of the
present multilevel results with those of the original OLS analysis which ignores group membership.

In a multilevel analysis we would learn whether the treatment (TREATC) had an effect on
weight loss (experimental manipulation), whether motivation (MOTIVATC) predicted weight
loss (individual difference), and whether there was a cross-level interaction between treatment
and motivation (TREATC x MOTTVATC). We might hypothesize that treatment strengthens
the relationship of motivation to pounds lost by giving motivated participants the vehicles for
effective dieting. In terms of level 2 Eq. (14.7.2), we are hypothesizing that treatment mod-
erates the relationship of motivation to weight loss, an interaction hypothesis. This example
provides a model for analysis of the many experimental studies in which experimental condi-
tions are administered to groups of subjects and in which either group composition or group
processes (e.g. increased cohesion), could affect outcomes.

The mixed model framework can accommodate a second interpretation of the cross-level
interaction as well. We can conceptualize that the level of motivation moderates the impact of
treatment. This conceptualization is consistent with research that asks, "for whom is treatment
most effective," under the assumption that characteristics of the individual (e.g., motivation)
condition the impact of treatment. This second conception does not fit into the hierarchical
structure that the level 2 variable affects the level 1 variable. Nevertheless, the cross-level
interaction in the mixed model framework can accommodate this interpretation.
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TABLE 14.9.1
Multilevel Analysis and OLS Regression Analysis of the Weight Experiment

With an Intervention and an Individual Difference Variable

A. Multilevel random coefficient regression: prediction of pounds lost from motivation (level 1),
treatment (level 2) and the cross-level interaction between motivation and treatment

Random Part: Covariance Parameter Estimates (REML)

B. OLS regression: prediction of pounds lost from motivation, treatment and the interaction
between motivation and treatment

Note: MOTTVATC and TREATC are the motivation and treatment predictors each centered around the grand mean
of the variable. SAS reports Sig t as .000; in publication report p < .001.

control = (-230)/(156 + 230) = -.596. Table 14.9.1 A provides the analysis of the multilevel
(mixed) model Eq. (14.8.1). The fixed part of the analysis yields the regression equation:

Y = 1.53 TREATC + 3.13 MOTTVATC + 1.25 TREATC x MOTTVATC + 15.17

The positive interaction of treatment with motivation indicates a synergy between individual
level motivation and treatment. (See Section 9.3, for a treatment of continuous by categorical
variable interactions.)

We first take the interpretation of the cross-level interaction that is consistent with the
multilevel formulation, that the level 2 predictor (treatment) affects the random intercepts
(average pounds lost per group), and that the level 2 predictor also modifies the random slopes
(the relationship between motivation and pounds lost).

We form the simple regression equations for the regression of pounds lost on motivation
within each treatment condition, just as is done in OLS regression (see Section 7.3). To do so,

TOO, variance of intercepts
TOI , covariance between

slope and intercept
tn, variance of slopes
a2 level 1 residual

CovParm

UN(1, 1)
UN(2, 1)

UN(2, 2)
Residual

Subject

GROUP
GROUP

GROUP

Estimate

1.967
0.145

0.556
5.933

Std Error

0.657
0.314

0.301
0.475

Z

2.99
0.46

1.85
12.48

Pr>|Z|

0.003
0.645

0.065
0.001

Solution for Fixed Effects

Yoo
Yoi
Yio
Yn

Effect

INTERCEPT
TREATC
MOTIVATC
TREATC*MOTIVATC

Estimate

15.166
1.528
3.130
1.245

Std Error

0.259
0.529
0.185
0.377

df

38
38

344
344

t

58.49
2.89

16.95
3.30

Pr>|t |

0.001
0.006
0.001
0.001

Effect

INTERCEPT
TREATC
MOTIVATC
TREATC*MOTIVATC

Estimate

15.105
1.578
3.330
1.446

Std Error

.148

.301

.145

.300

df

1
1
1

t

5.239
22.968
4.820

Sig t

.000

.000

.000
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we rearrange the regression equation to obtain the simple slope of pounds lost on motivation
as a function of treatment.

Y = (3.13 + 1.25 TREATC) MOTIVATC + 1.53 TREATC + 15.17.

For the control group, where TREATC = —.596, the regression of pounds lost on motivation
is as follows:

Y = [3.13 + 1.25(-.596)]MOTTVATC + 1.53(-.596) + 15.17

Y = 2.38 MOTIVATC + 14.26.

For the experimental group, where TREATC = .404, the regression of pounds lost on
motivation is as follows:

Y = [3.13 + 1.25(.404)]MOTIVATC + 1.53(.404) + 15.17

Y - 3.64 MOTIVATC + 15.79.

The simple regression equations are illustrated in Fig. 14.9.1 (A). The treatment raised the
average number of pounds lost at the mean motivation level of the 386 cases from 14.26 to
15.79 pounds. Further, it strengthened the relationship of motivation to pounds lost. In the
control group, each 1 unit increase in motivation was associated with a predicted 2.38 pounds
lost. In the experimental group, each 1 unit increase in motivation was associated with a
predicted 3.64 pounds lost.

We now take the second interpretation of the interaction, asking whether the impact of
treatment varies at different levels of motivation. We rearrange the regression equation to
obtain simple regression equations of pounds lost on treatment at different levels of motivation
(see also Aiken & West, 1991, Chapter 7; West, Aiken, & Krull, 1996.)

Y = (1.53 + 1.25 MOTIVATC) TREATC + (3.13 MOTIVATC + 15.17)

Motivation is centered at the grand mean of the 386 cases, so that MMOTIVATC = 0.00; and
sdMOTIVATC = 1.02. The regression of pounds lost on treatment is shown next at one standard
deviation below the mean of motivation, at the mean of motivation, and one standard deviation
above the mean of motivation:

1 sd below: Y = [(1.53 + (1.25)(-1.02)]TREATC + [(3.13)(-1.02) + 15.17]

Y = . 26 TREATC +11.97.

at the mean: Y = 1.53 TREATC + 15.17.

1 sd above: Y = [(1.53 + (1.25)(1.02)]TREATC + [(3.13)(1.02) + 15.17]

Y = 2.80 TREATC + 18.36.

These simple regression equations are illustrated in Fig. 14.9.1(B). As individual motivation
increases, the impact of treatment on weight loss increases as well. There is essentially no
impact of treatment when motivation is low, with an increase to 2.80 pounds of weight loss
attributable to treatment when motivation is high.

The variances of the intercepts and slopes are conceptualized as sources of variance to be
accounted for by level 2 predictor TREATC. Recall that the intercept from each individual group
(with motivation centered) reflects the amount of weight lost in that group; if the intervention
has an effect, the variance in intercepts should at least in part be accounted for by the treatment
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FIGURE 14.9.1 Simple slopes for cross-level interaction between MOTIVATC
(level 1) and TREATC (level 2) predictors.

condition. The random part of the analysis in Table 14.9.1 A versus that in Table 14.5.IB
shows that all three level 2 variance components have been reduced by the addition of the
level 2 treatment variable plus the cross-level interaction. The variance of the intercepts is in
part accounted for by the treatment, with TOO dropping from 2.397 to 1.967, or a [(2.397 —
1.967)/.2.397] x 100 = 18% reduction in variance unaccounted for intercept variance. There
is still a significant amount of intercept variance remaining to be accounted for, z = 2.99. The
variance of the slopes is well accounted for by treatment, with Tn dropping from .933 to .556,
or a [(.933 — .556)/.933] x 100 = 35% reduction in unaccounted for slope variance; there is,
however, unaccounted for variance remaining in the slopes, z = 1.85, p = .06.

Table 14.9. IB gives the disaggregated OLS regression analysis ignoring group membership,
for comparison with the random coefficient regression analysis in Table 14.9.1 A. Pounds lost
is again predicted from TREATC, MOTIVATC, and their interaction. The regression equation
is almost identical in the two analyses; for the OLS analysis,

Y = 1.58 TREATC + 3.33 MOTIVATC + 1.45 TREATC x MOTIVATC + 15.10.

However, the standard errors are uniformly smaller in OLS than in the random coefficient
model, leading to alpha inflation in significance tests. Of particular note is that the standard
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error for the level 2 TREATC variable is .529 in the multilevel model in Table 14.9.1A and only
.301 in the disaggregated OLS regression equation in Table 14.9.IB. The multilevel analysis
handles the TREATC variable as if it were based on 40 observations (one per group). The OLS
analysis handles the TREATC variable as if it were based on 386 independent cases, yielding a
negatively biased standard error. Overall, the difference in standard errors between the single-
level OLS model and the multilevel model can be attributed to two sources. First is the change in
model from one that ignores clustering (single-level OLS regression) to a model that accounts
for clustering (multilevel RC regression). Second is the difference in estimation procedures
for OLS versus the multilevel model, described in the next section.

14.10 ESTIMATION OF THE MULTILEVEL MODEL PARAMETERS:
FIXED EFFECTS, VARIANCE COMPONENTS,

AND LEVEL 1 EQUATIONS

14.10.1 Fixed Effects and Variance Components

The approach to estimation is a key difference between OLS regression and RC regression. The
parameter estimates in RC regression are obtained by maximum likelihood estimation (ML),
described in Section 11.2 and in Section 13.2.9, or alternatively by a related method, restricted
maximum likelihood (REML). Chapter 3 of Raudenbush and Bryk (2002) provides detail on
estimation of the multilevel model and on hypothesis testing within the multilevel model.
The fixed and random parts of the model (i.e., the fixed effects and variance components) are
estimated using iterative procedures. The estimation begins with an initial estimate of one set
of parameters (say, the fixed effects) and uses these values in the estimation of the other set (the
variance components). The new estimates of the second set are used to update those of the first
set, and the procedure continues in this manner until the process converges. (Convergence of
iterative solutions is explained in Section 13.2.9.) Estimation of variance components involves
algorithms that produce maximum likelihood estimates.

Confidence intervals (interval estimates) are available for the fixed effects and for the vari-
ance components. The confidence intervals (and statistical tests) for variance components are
problematic because the sampling distributions of the variance components are skewed.

14.10.2 An Equation for Each Group: Empirical Bayes Estimates
of Level 1 Coefficients

To this point, we have ignored the regression equations within each group. Yet a third class of
parameters may be estimated—these are the level 1 random intercept fiq/ and random slope B^
for each individual group. These estimators are another important contribution of the RC
regression model. We have not heretofore focused on regression equations for the individual
groups. In many application of RC regression and the multilevel framework, the focus is on
the overall relationships of level 1 and 2 predictors to some outcome, and whether there is
evidence of variability in the intercepts and slopes across groups. There is not a focus on the
regression estimates By and #y m particular groups. However, there are instances in which
the estimates of regression equations for individual groups are of importance, for example, in
policy-related research in which decisions are made as to what classes of individuals might
receive special treatments or interventions based on evidence of the efficacy of the treatments
for those particular classes.

One obvious option for obtaining the estimates is to carry out an OLS regression in each
group. If group sizes are large, this is a viable strategy. But what if we have small group
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sizes? It is possible to have groups so small in RC regression analysis that there are fewer
cases in the group than there are level 1 predictors in the RC regression equation. The OLS
regression equation cannot even be estimated! Alternatively, we may have groups large enough
to estimate the OLS equation, but still so small that we have little, if any, confidence in the
resulting estimates. In still other groups, larger in size, the OLS estimates may be quite reliable.
An approach to estimation of regression coefficients called empirical Bayes estimation allows
us to obtain an estimate of the regression coefficients in each group. The approach actually
combines estimates of the intercept and slope for each group from two different sources.

Two Estimates of Regression Coefficients for a Single Group
Assume we have a very large sample size in group j to estimate the OLS regression slope

and intercept for that group. We compute an OLS regression using only the data from group
j and obtain our first set of estimates. The first set of estimates are the OLS estimates, which
we will call fiq/,OLS and B1j,OLS for the estimates of the intercept and slope, respectively, in
group j.

Assume now that we have no information about group j. We would use the RC regression
equation, generated from all the cases from all the groups, to provide a set of estimates of
the coefficients that could be used for the individual group j. This second set of estimates
for individual group j is based on the estimates from the full data set of the population fixed
effects, Y00, Y01, Y10, and Y11. The estimates for group7, which we will call BO;,POP and ^I/,POP
to indicate that they are based on estimates of the population fixed effects, are

where W is the level 2 predictor and Wj is the value of this predictor hi group7'. Note again that
the estimates of the fixed population effects YOQ, Yoi» Yio» and Yn are based on all the cases in
the whole analysis, regardless of group membership.

Empirical Bayes Estimators
In practice we are usually somewhere between the two extreme situations so that both sets of

estimates provide useful information. Estimators of the level 1 coefficients for each group7' are
obtained by taking a weighted average of the two sets of estimates; these estimators are termed
shrinkage estimators or empirical Bayes (EB) estimators. We use the notation #Q/,EB and #I/,EB
for the resulting empirical Bayes estimates of the intercept and slope. Whether the estimates
from the single group7, 5q/,OLS and ^I/,OLS» or me estimates from the full data set, £Q/,POP and
#I/,POP» ^e more heavily weighted in forming fiq/.EB and #I/,EB depends on the precision of
the estimates from the individual group estimates, that is, the standard errors of fiq/.OLs and
#I/,OLS- The more precise the estimates B0jOLS and B^OLS* me more we are willing to rely
on the coefficients derived for the individual group. Yet, at the same time, it is advantageous
to capitalize on the highly precise estimates based on the whole data set, #O;,POP and ^I/,POP-
Because the empirical Bayes (EB) estimators use the information taken from the full sample
to estimate coefficients for each individual group, the EB estimates for individual groups are
said to "borrow strength" from the estimates based on the whole data set. As indicated, the
EB estimators are also called shrinkage estimators, because the estimates for individual group
coefficients are drawn to (shrink toward) the overall population estimates. The term shrinkage
as used here is completely unrelated to the use of the term shrinkage in the context of unbiased
estimates of the squared multiple correlation, described in Section 3.5.3.
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The relative weighting of the two sets of estimates in deriving the compromise EB estimate
depends on the precision of the estimates from the individual group j. The following is an
expression for the EB estimator #Q/,EB of the level 1 regression intercept in group./:

The weight X0y, which is the measure of stability of the OLS coefficient B0j for group j, ranges

from 0 to 1 and varies inversely as the size of the squared standard error SEy OLS of the OLS
coefficient fiq/,OLS fr°m me sample:

As can be seen from Eq. (14.10.3), the lower the precision of the estimate of the measure
on the group (i.e., the smaller X0;), the more the EB estimator B0;EB of the random intercept

for that group is drawn to the estimator based on the population fixed effects /?Q/,POP> fr°m

Eq. (14.10.1). An analogous shrinkage estimator of the level 1 regression slope in group j is
given as follows:

Numerical Example: Empirical Bayes Estimation
A numerical example, based on the analysis in Table 14.9.1 A, illustrates the EB estimates.

Here the variable W in Eq. (14.10.1) and (14.10.2) is TREATC, the treatment condition. We
consider a group assigned to the control condition. In the control condition, the value of the
level 2 TREATC predictor is -.596. Using Eq. (14.10.1) and (14.10.2), we obtain the estimates
from the full data set:

Then the EB estimate of the slope in the group is

*ttEB = >-v fly.OLS + (1 - W fli;.pop = .274(4.750) + (1 - .274) (2.388) = 2.765.

This EB estimate for the slope in the single group has moved much closer to (has "shrunken"
to) the overall estimate of the slope from the full data set.

In an OLS regression analysis of a single group in the control condition with n = 9 cases, we
obtain the OLS estimates fiq/.OLS = 15.626 and 51; OLS = 4.750. There is quite a discrepancy
between the estimate of the relationship between motivation and weight loss in the single
sample versus the overall data set. In the overall data set, it is estimated that there is a loss
of 2.388 pounds for each 1-unit increase in motivation; in the single sample the estimate of
pounds lost as a function of motivation is twice as high at 4.750 pounds. However, the standard
error of Bl}; OLS is quite large, SE\. OLS = 1.475. The weight for BljOLS in the EB estimator is
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For the intercept, the squared standard error SE2
oj,OLS = 1.096. The value of X0; =

1.967/(1.967 + 1.096) = .642. Then the EB estimate of the intercept for the group is

%m = S %OLS + (1 - V %POP = .642 (15.626) + (1 - .642)(14.245) = 15.131.

Finally, the EB estimate of the regression equation for group j is

This equation is a compromise between the OLS regression equation for the sample, based
on only 9 cases and with a large standard error for the sample slope #I/,OLS> an(^ the overall
equation from the full data set, y,y)POP = 2.388 MOTTVATC + 14.245!

14.11 STATISTICAL TESTS IN MULTILEVEL MODELS

We have examined tests of significance of both fixed and random effects in the numerical exam-
ple in Tables 14.5.1 and 14.5.2. Here we provide more information about the tests themselves,
following expositions by Raudenbush and Bryk (2002) and Singer (1998).

14.11.1 Fixed Effects

Tests of the fixed effects are made against the standard error of the fixed effect, resulting
in a z test. Alternatively, a t test is computed, as is given in both SAS PROC MIXED and
the specialized multilevel software package HLM (Raudenbush, Bryk, Cheong, & Congdon,
2001). Degrees of freedom for the test depend on whether the predictor is a level 2 predictor
or a level 1 predictor. For level 1 predictors, the df depend on the numbers of individual cases,
groups, and level 1 predictors. For level 2 predictors, the df depend on number of groups and
number of level 2 predictors, and are specifically (g — Sq — 1) df, where g is the number of
contexts (groups) and Sq is the number of level 2 predictors.

14.11.2 Variance Components

Each variance component may be tested for significance of difference from zero in one of
several ways. First is a chi square test, based on OLS estimates of within group coefficients,
which contrasts within group estimates with the fixed population estimate. Use of this test
requires that most or all contexts be of sufficient size to yield OLS estimates. The result is
distributed approximately as x2» with (g — Sq — 1) df, where g is the number of contexts
(groups) from which OLS estimates can be obtained and Sq is the number of level 2 predictors
(this test is reported in HLM output). Second is a z test based on large sample theory, reported
in SAS PROC MIXED. Both Raudenbush and Bryk (2002) and Singer (1998) express caution
concerning this latter test because of the skew of the sampling distribution of the variance
components and because of the dependence on large sample theory (asymptotic normality is
assumed but not achieved). There is a third approach to examining variance components, a
model comparison approach, based on likelihood ratio tests of nested models. This is the same
form of test as in the testing of nested models in logistic regression explained in Section 13.2.14.
In the RC context we specify a model that allows a particular variance component to be nonzero,
for example, the variance of the slopes. We then specify a second, more restrictive, model that
forces this variance component to zero. A likelihood ratio x2 test is used to test whether the
model fit is significantly worse when the variance component is forced to zero. If so, we
conclude that the variance component is nonzero.
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14.12 SOME MODEL SPECIFICATION ISSUES

There are many issues in the specification and execution of multilevel models. We address two
related issues here: (1) the issue of whether there are instances in which the same variable can
serve as a level 1 and level 2 predictor in a single equation, and (2) issue of centering variables
in multilevel models.

14.12.1 The Same Variable at Two Levels

There is a very interesting but theoretically complex possibility that the same variable can exist
at more than one level in a single data set. A classic example from education is the impact on
academic achievement of the socioeconomic status (SES) of the child versus the average SES
of the children in the child's school (Burstein, 1980; see also Raudenbush & Bryk, 2002). In
a group therapy context we might measure the depression level of an individual client at the
outset of therapy versus the average depression level among all members in the group; we might
hypothesize that being in a group of very depressed individuals would impede the progress
of an individual client in overcoming his or her own depression. The conceptual issue in both
these examples is whether we can provide a distinct theoretical role for the same variable at the
group level and the individual level. For the therapy setting we might argue that the average
level of depression in the group reflects the depressed cognitions expressed by group members
in response to statements by the individual client in question, whereas the client's own level
of depression at therapy outset would reflect the level of individual disturbance. These two
aspects of depression might have separate influences or even interact in predicting therapy
outcome.

14.12.2 Centering in Multilevel Models

Centering in multilevel models is useful for decreasing multicollinearity among predictors and
between random intercepts and slopes, thereby stabilizing the analysis. Centering in multilevel
models is more complex than in OLS regression. Kreft and de Leeuw (1998) provide a straight-
forward exposition; a more technical exposition is given in Kreft, de Leeuw, and Aiken (1995).
Singer (1998) provides advice on centering in contextual models in the multilevel framework.

For level 1 variables there are two common options for centering: (1) centering each score
around the grand mean (COM) of all the cases in the sample, ignoring group membership,
and (2) centering each score around the group mean in which the case occurs, referred to
as centering within context (CWC) (Kreft, de Leeuw, & Aiken, 1995). We contrast these
approaches with retaining data in their raw score (RS) form.

The COM approach simply involves subtracting a single constant from each score in the
whole distribution regardless of group. In a multilevel model containing a cross-level inter-
action, the resulting fixed effect parameters change from raw score (RS) to COM scaling, as
does the variance component of the intercept, but there is a straightforward algebraic relation-
ship between the COM and RS results. It is parallel to the algebraic relationship shown in
Section 7.2.5 for centering OLS in equations including interactions. Moreover, measures of
fit, predicted scores, and residual scores remain the same across RS and COM.

CWC is a very different matter. CWC eliminates all the information on mean level differ-
ences between the groups because the group means are subtracted out. The mean of each group
becomes zero. In order to not lose valuable information (in our weight example, information
on the mean pounds lost per group), one must build back mean weight loss per group as a
level 2 variable. We refer to the use of CWC without building back group means as CWCj and
CWC with the group means entered at the second level as CWC2 in Kreft, de Leeuw, and Aiken
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(1995). With CWCt there is no way to recover the between class information available in the
RS analysis. Only if it can be powerfully argued that differences between the group means
on a predictor bear no relationship to the outcome would one consider using CWQ. CWC2

reinstates the eliminated between class mean differences at level 2. Even if the focus is on
the impact of within group variation on a predictor, we recommend CWC2; then the presence
versus absence of effect of a predictor at the group level becomes a matter for exploration,
rather than an untested assumption (see Singer, 1998, for an example).

The choice of centering approach depends on the research question. COM was used in
all the multilevel numerical examples reported here. The rationale for this choice was that
the level 1 motivation variable was a person variable to be controlled when the impact of the
intervention was assessed; there was no theoretical rationale provided for a special role of the
mean level of motivation in the group versus the motivation of the individual within the group
to which she belonged on dieting outcomes. Had there been such an interest, we would have
used the CWC2 approach for characterizing motivation and then added the treatment variable
as a level 2 predictor. We might have hypothesized a level 2 interaction between treatment
and mean level of motivation of the group as well as, or instead of, the cross-level interaction
between treatment and individual level of motivation.

Level 2 variables may be centered or not. We also centered the level 2 treatment pre-
dictor of treatment (experimental, control) around the grand mean, using weighted effect
codes (Chapter 8) at the individual level. We did so to avoid multicollinearity and estimation
difficulties, and to facilitate interpretation. (See footnote 5.)

Users of specialized software for multilevel modeling (mentioned in Section 14.15) should
take caution to understand how data are being centered by the software. A safe approach is
to first center (or not) the level 1 and level 2 data in the form assumed appropriate for the
particular problem at hand and then enter the data into the software. This assures that one will
obtain the centering desired.

14.13 STATISTICAL POWER OF MULTILEVEL MODELS

OLS ignoring group membership has a substantially inflated Type I error rate when group
sizes are large and the intraclass correlation increases. Kreft and de Leeuw (1998) discuss the
complex issues involved in statistical power for multilevel models and provide a summary of
simulation studies on power. Statistical power must be addressed separately for level 1 and
level 2 effects. Power for level 2 effects is dependent on number of groups, power for level 1,
on number of cases. Simulation studies suggest that large samples are needed for adequate
power in multilevel models and that the number of groups is more important than the number
of cases per group. Kreft and de Leeuw suggest that at least 20 groups are needed to detect
cross-level interactions when group sizes are not too small. The whole issue of statistical power
is complicated, because the power differs for fixed effects versus random effects as a function
of effect size and intraclass correlation, and both the number of groups and number of cases
per group.

14.14 CHOOSING BETWEEN THE FIXED EFFECTS MODEL
AND THE RANDOM COEFFICIENT MODEL

We began the discussion of the handling of clustered data with an exposition of OLS approaches,
among which was a faced effects model in which the dependent variable Y was predicted from
level 1 variables plus a set of (g — 1) dummy codes to account for differences in means of
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the g groups or clusters in the data. The alternative presented was the random coefficient (RC)
regression model in Eqs. (14.4.3) through Eq. (14.6.6). Snijders and Bosker (1999) provide a
clear exposition of the issues in choosing and provide recommendations, several of which are
mentioned here. The choice depends on the number of groups, the sample sizes per group, the
distribution of the level 1 and level 2 residuals, assumptions about how groups were sampled,
the resulting generalizations one wishes to make, and the focus of the analysis. Constraints on
the available data may dictate choice. With a small number of groups (fewer than 10 according
to Snijders and Bosker, 1999), the fixed effects approach is recommended. Further, if the
individual groups have special meaning (e.g., various ethnicities) and one wishes to speak to
the model within each of the special groups, then the fixed effects approach is more appropriate.
On the other hand, if the groups are merely a random sample from a larger population of groups
and one wishes to generalize to the population of groups (e.g., from a sample of families to
the population of families), then the RC approach is appropriate. Small numbers of cases per
group lead one to the RC model, since shrinkage estimators can borrow strength from the full
data set and the fixed effects approach may be very unstable (with large standard errors). On
the other hand the RC model as it is typically implemented makes the assumption that the
level 2 residuals are normally distributed.

14.15 SOURCES ON MULTILEVEL MODELING

We have barely scratched the surface of the large and complex area of multilevel modeling.
As previously pointed out, Kreft and de Leeuw (1998) is an excellent starting point for fur-
ther studying of multilevel models, followed by Snijders and Bosker (1999), and then by
Raudenbush and Bryk (2002) and finally by Goldstein (1995). Singer (1998) provides a highly
accessible introduction to the use of SAS PROC MIXED for random coefficient regression.
Littell, Milliken, Stroup, and Wolfinger (1996) provide extensive documentation of SAS PROC
MIXED. In addition to SAS PROC MIXED, there are several specialized software packages for
multilevel modeling, of which the HLM software (Raudenbush, Bryk, Cheong, & Congdon,
2001) is perhaps the easiest to use. MlwiN (Goldstein et al., 1998) is another popular pack-
age. Chapter 15 of Snijders and Bosker (1999) is devoted to a review of software that can
accomplish multilevel models.

14.16 MULTILEVEL MODELS APPLIED TO REPEATED
MEASURES DATA

This section has addressed only clustering of individuals within groups. However, RC regres-
sion and multilevel models can also be applied to clustering (or serial dependency) that results
from having repeated measurements on individuals. In repeated measures applications, the
individual becomes the level 2 unit of aggregation. The repeated observations on each indi-
vidual become the level 1 units. The interest in such repeated measures applications is on
modeling an overall trajectory of how individuals on average change over time (the population
fixed effects), of developing a trajectory for each individual, and in modeling the individual
differences in the trajectory from both level 1 and level 2 predictors. Repeated measures mul-
tilevel analysis is presented in Section 15.4. In addition, Snijders and Bosker (1999) provide
an accessible introduction.
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14.17 SUMMARY

OLS regression and regression approaches subsumed under the generalized linear model
(Chapter 13) all assume that observations are independent. When data are clustered such that
individuals within clusters (e.g., children within the same family) are more like one another
than are randomly selected individuals, bias is introduced into inference in OLS regression.
Standard errors of OLS regression coefficients are negatively biased (too small), leading to
alpha inflation (Section 14.1). Degree of clustering is measured with the intraclass correlation
(ICC, Section 14.1). Clustering can be handled within the OLS regression framework by adding
code predictors that identify the clusters and account for cluster differences (Section 14.2). A
newer alternative regression model, the random coefficient (RC) regression analysis, handles
clustering in a different way from OLS. RC regression permits the appropriate modeling of
the impact of individual level predictors on a DV when data are clustered, yielding proper
estimates of standard errors (Section 14.3). The RC regression model is presented, and its
components explained: level 1 and level 2 equations, the mixed model equation, the variance
components (Section 14.4). Concepts of fixed versus random parts of the model are explained.
A numerical example is provided (Section 14.5). Clustering in data can be a meaningful aspect
of the data (Section 14.6). Random coefficient regression is used to model multilevel data
(Section 14.6), that is, data that contain predictors measured at different levels of aggregation,
for example, on individual children within families (level 1) and on the families themselves
(level 2). The multilevel RC regression model is developed (Section 14.7) with predictors at
two levels of aggregation. The use of the multilevel model for the analysis of experiments in
which individual differences may interact with treatment effects is developed (Section 14.8)
and illustrated with a numerical example (Section 14.9). Estimation of fixed effects, variance
components and empirical Bayes estimators are explained (Section 14.10). Statistical tests
of the fixed and random components of RC regression are described (Section 14.11). Issues
in model specification, including centering of predictors are addressed (Section 14.12). The
choice between OLS regression based approaches and the random coefficient approach to
handling clustered data is discussed (Section 14.14).



15
Longitudinal
Regression Methods

15.1 INTRODUCTION

15.1.1 Chapter Goals

For the most part, the regression techniques we have reviewed in this book have been equally
applicable to data gathered in cross-sectional surveys, laboratory or field experiments and
trials, and two-wave longitudinal studies. However, when variable sequencing and changes
over time are important aspects of the research, there are new kinds of questions that can be
asked and an additional range of data analytic options. This chapter is intended to provide
an introductory bridge to the more complex regression-based methods for answering research
questions with data characterized by multiple assessments over time.

The analytic methods selected by the researcher will depend on both the structure of the
data and the goals of the research. Our goal is to acquaint the reader with the major questions
that can be addressed by repeated measure data, with the factors to be considered in choosing
among available analytic alternatives, and with some simple illustrations. Section 15.12 at the
end of the chapter reviews the essence of these research questions and the corresponding data
structure for each of the major models described in this chapter. We will not cover issues of
study design (e.g., retrospective or prospective data collection) or data quality (e.g., retention
of sample). Our coverage of assumptions required by the methods (e.g., that the model for
the subjects lost to follow-up or missing data is equivalent to that for those remaining in the
sample) should not be assumed to be comprehensive. Almost all methods designed for scaled
variables assume multivariate normality of the random error terms, and the models described
here will be more or less sensitive to failure of this assumption. The need to carry out the
diagnostic procedures described in Chapter 4 is likely to be more, rather than less, critical as
the complexity of the analysis increases.

568
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15.1.2 Purposes of Gathering Data on Multiple Occasions

As a rule there are three overarching reasons for gathering longitudinal data.1 The first is
that the investigators are interested in change over time per se. Such an interest is often the
rationale for repeated measure designs in experimental studies. It is also an important focus for
developmental researchers who may investigate changes that take place with age. The second
reason is that one needs to know what variables may account for individual or group differences
in change over time: Much of this chapter is devoted to these topics.

The third major reason for measuring variables at multiple time points is clarification of
the sequencing of variables and changes in variables as a way of bolstering causal inferences.
Equivalently, we may say that these analyses focus on variables that influence change in
other variables. In these analyses, if experimental introduction of change-producing variables
is not feasible or not carried out, naturally occurring changes over time are often used as
a proxy for controlled changes. As almost any examination of published structural equa-
tion models will show, it is extremely common to find that causal effects operating in a
direction contrary to that of the interpretation are all too plausible. When data are gathered
without reference to the timing of changes in variables, as in cross-sectional data, our infer-
ences about the functional relationships that give rise to the observations are bound to be
correspondingly weak.

Another problem with causal inferences from cross-sectional data is that we are forced to use
the differences between subjects as a proxy for what happens when a variable changes within
or for each (or for some) of a given set of subjects. Often the propositions we use in our causal
theories apply to individual subjects, rather than to differences between individuals. Thus we
may say that the occurrence of a particular experience X is expected to have an effect Bx on
some outcome, averaged across individuals. However, with cross-sectional data we make this
inference by comparing not the individuals before and after event X but different individuals
who have and have not experienced X, thus assuming that those who have not experienced X
were equivalent collectively to those who have experienced X prior to this experience, or, put
differently, would have been equivalent were it not for X. Of course, some of the variables
to which we wish to attribute causal effects are relatively fixed characteristics such as blue
eyes or gender or social class of birth. Our theories typically do not address the issue of the
means by which changes in such variables would come about, or whether these means of
change themselves would have differential effects on Y. Therefore we must presume that these
variables are a kind of proxy for the mechanisms of other variables that may have more direct
active influence on Y.2

15.2 ANALYSES OF TWO-TIME-POINT DATA

In the vast majority of published longitudinal studies in psychology and other behavioral
sciences, data are collected at two time points. Thus, although there are scientists who will
insist that such data may hardly be considered longitudinal, we will begin here.

1 See Baltes and Nesselroade (1979) for a more extended discussion of the uses of longitudinal data.
2See Lord (1969) for a discussion of this issue, also Holland and Rubin (1988). Time itself is such a variable,

being only a "stand-in" for a potentially large number of change mechanisms.
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15.2.1 Change or Regressed Change?

One of the first decisions that arises is whether to use as one's dependent variable the raw
change in Y from T1 to T2 or to use a regression model with Y2 as the dependent variable.3 One
issue, introduced in Section 2.10.4, is that the correlations of change scores with postscores
and prescores (r(y2_y])y2) and (r^y2_Yl)Yl)

 are rather like part-whole correlations and may be
considered to produce misleading findings when the goal is to remove the influence of the
earlier variable. The heart of the problem with simple change scores, therefore, lies squarely in
their necessary dependence on prescores. It is possible to write the equation of the correlation
of the prescore with change as a function of the correlation between Yl and Y2 and the two
sdsas

Note that the numerator subtracts from a fraction (rYly2) °f SYI
 a^ °f S^Y2- F°r example,

whenry]y2 = .64,sdYl = 12, andsdy2 = 10, Eq. (15.2.1) yields rY^Y2_Yi)
 = —.24. If ry^ were

smaller (say, .50), rYi(Y2_Yi) would be even further from zero (—.36). Note that this formula is
an identity, that is, an algebraic necessity that makes no special assumptions. In particular, note
that it contains no reference whatever to the reliability of Y. Thus, the dependence of change on
initial level operates irrespective of unreliability, although, all things equal, unreliability will
enhance it. Thus, if it is our intention by subtracting the prescore from the postscore to remove
the effect of the initial level of Y and produce a measure that only reflects change in Y, we
have obviously failed. This intuitively obvious method produces a measure that contains some
variance wholly due to the prescore 7t. Thus, its relationship to other variables is therefore
influenced by their positive or negative relationships to Yl.

This problem, once identified, is readily solved. As we have seen throughout the book, we
may remove the influence of all correlation of Y with any variable by including that variable
in the equation. Such a method works as well when the dependent variable is Y2 and the
variable the influence of which we wish to remove is YI as it does for any other pair of
variables. The structure of such regressed or partialed change scores helps clarify the nature of
the problem with simple change scores. The variable Y2 partialing YI is literally Y2 — By2Yl Y\.
Now By2Yi = rY]Y2sdy2/'sdYl, a quantity that will almost certainly be less than one and almost
certainly positive. For example, for such representative values as rY}y2 = .50,sdYl = 10 and
sdy2 = 12,By2Yi = (.50)(12)/(10) = -60. This says that for each unit increase in Yl we expect
a .6-unit increase in Y2, and that for an uncorrelated-with-7! index of change we must use
Y2 — .6Yl. However, the simple change score is Y2 — 7t, for which we can write Y2 — 1.0 (J^).
The trouble with using the simple change score is that it suggests that the regression of Y2 on YI
has a slope of 1.0 instead of the actual By2Yi, that is, that there is a unit increase in Y2 associated
with each unit increase in 71? instead of what in the example was only a .6-unit increase in Y2.
Regression coefficients of postscore on prescore of 1.00 almost never occur in the behavioral
sciences; as noted, they are almost always less than one. For BY2Yi to equal 1.00 requires that
rY} y2 = 1.00 when the sds are equal, and more generally that rYi y2 = sdYi /sdy2, a most unlikely

3Numerical subscripts in this chapter refer to the successive time points; thus Xj and X2 refer to X measured at
the study's first and second time point, respectively. T\ and T2 refer to study time points 1 and 2, where it is presumed
that T2 came after T}.
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occurrence. Thus the effect of using change scores is typically one of overcorrection of the
postscore by the prescore.4

This analysis may illuminate why simple change scores work quite well in the physical
sciences. Whereas in the behavioral sciences individual differences in true change and mea-
surement error both operate to reduce By2y , neither of these factors operates so significantly
in the physical sciences. Indeed, in the physical sciences By^ is often equal to 1.00 to a close
approximation, so that simple change scores are automatically regressed change scores. This
analysis also alerts us to the possibility of encountering in a behavioral science application the
circumstance that BY^ approaches 1.00, in which case simple change scores will approximate
regressed change scores and may be used interchangeably.

15.2.2 Alternative Regression Models for Effects
Over a Single Unit of Time

When regression methods are selected for assessing regressed change and the methods are
limited to the single equation regression analyses described in the early chapters of this book,
there are still several optional models. If the time period between assessments varies for
different subjects, one may include a variable reflecting this period in order to examine possible
main effects and more probable interactions (moderating effects) of variations in duration on
the effects of earlier predictors. For example, it is generally a reasonable expectation that the
longer the time period the weaker the stability in a given variable and often the weaker the
expected influence of a variable measured at the earlier time point on a later Y or on change in
Y (that is, Y2.i). The inclusion of a variable T reflecting the period of time may show that the
regression of Y2l on ̂ i declines as a function of time (T) between observations (tested by the
interaction of T with Xt).

This rule of thumb, however, raises the question of what the optimal interval should be for
examining causal effects of one variable on another. It takes no more than slight reflection
to realize that no generalization can be made and that such decisions are likely to be domain
dependent. For example, experimental effects are often expected to have short term actions
whereas surveys of cohorts are usually designed to ask questions about relatively slowly chang-
ing variables. However, timing effects may differ for subsets of variables even within study
designs and domains. This is not to say that the question of plausible timing of effects is not an
important one (P. Cohen, 1991; Gollob and Reichardt, 1991). Consideration of timing effects
is a central part of the theoretical scientific task of specifying the mechanisms for functional
relationships, albeit one that has been infrequently addressed in the social sciences thus far
(McArdle and Woodcock, 1997).

There are several different models for examining the relationship between a given X and Y
in two-wave longitudinal data. The simplest model is one in which Xl is used to predict Y2',
this may be thought of as a simple prediction model. In Fig. 15.2.1 Model A, we use earlier
assessed symptoms to predict subsequent role performance. This model is not unambiguously
relevant to causal inference in any circumstance in which either a causal effect of Y on X is
plausible or when common causes of X and Y (potentially including shared measurement error)
are likely. The issue with regard to common causes is the same one discussed in Section 12.2.
However, in this case, 7X (or an earlier version of F) may also be thought to be a potential
common cause of Xl and Y2.

4We will see in later sections, however, that this point of view depends on our theoretical model of change, and
that difference scores may be exactly what we need to match our model. Although there has been an historic debate
about the reliability of change scores, we will not discuss this issue here.

15.2 ANALYSES OF TWO-TIME-POINT DATA 571
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FIGURE 15.2.1 Regression models for two-time-point data.

The most straightforward way to remove the potential influence of Yl is to include it in the
equation predicting Y2 so that the estimated effects of other IVs are independent of it. This is the

CH15EX01 predominant model for estimating such effects from two wave data in the published literature.
In Fig. 15.2.1, Model B, we begin with the familiar model often referred to as "cross-lagged"
analyses, in which we focus on the equation predicting Y2. (Another equation predicting the
T2 value of symptoms would determine whether earlier role impairment effected the change
in symptoms.) As can be seen in this example, it is typical that the estimated effect (Bx) in
such a cross-lagged model is smaller in absolute magnitude than the effect when the earlier
measure of Y is omitted from the equation (Model A). This is because of the typical positive
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correlation of Yl with Y2 and Yl with X{. In testing such a model we are providing for the
potential presence of causal effects in both (or several) directions, including common effects
of other variables that would be reflected in the correlation between Xl and Yl.

As noted in earlier chapters, these estimates are subject to potential distortion by the effect
of measurement error in the covariate (here, Y^), which typically (but not always) leads to
underadjustment and therefore an overestimate of the effects of variables that are correlated
with YI . Thus, when feasible, many investigators turn to SEM with multiple indicators in order
to estimate effects for error-free variables (see Chapter 12).

However, if the effects of X on Y2 take place over a much shorter period of time than
is represented by the interval between study waves, employing Xl may lead to a serious
underestimate of its impact. Under these circumstances, using X2 in predicting Y2 may provide
an estimate that is closer to the true impact of X than using Xt. Model C in Fig. 15.2.1
illustrates such a circumstance. In these analyses it would be prudent to include both Xv and YI
as predictors as well, and to be cautious in interpreting the direction of the effect. One would
need a strong theoretical argument or prior evidence to justify such an analysis. On the other
hand, an analysis in which the interval between "cause" and "effect" is too great is not easier
to justify, since findings from this analysis may seriously underestimate the effect of X and
will have a lowered statistical power to reject the null. Better yet, the researcher should carry
out a study in which a more appropriate timing is included.

Another limitation that arises with two-wave data is in the estimation of potential mediating
effects of other variables (e.g., Z). Suppose, for example, that our theoretical interest is in
estimating the influence of symptoms on role impairment and in determining whether the
increase in likelihood of negative experiences associated with higher levels of symptoms may
mediate this effect. If Zj is the representative of that mediator in the equation, the effects
of Xi on Z may not have been complete by TI . Therefore the mediating effect of Z may be
underestimated by BZ] (Fig. 15.2.1, Model D). On the other hand, if 72 is employed (Model E)
there is the possibility that its relationship with Y2 is in part due to a causal effect of Y on Z.
In such a case its mediating effect would be overestimated.

15.2.3 Three- or Four-Time-Point Data

These problems with determining effects of mediators may be mitigated, and in some cases
solved, by the availability of three waves of data, so that the mediating effect of Z can be
estimated by including its value in the middle wave (Model F). Of course, as implied earlier, no
number of data collection points can adequately compensate for grossly inappropriate timing
with respect to the influences being studied. Thus a strong theory including the probable
intervals or sequences involved in the phenomena under study is of great importance.

Of course, if we have three or four time points of measurement we may specify and test
multiwave structural equation models as described in Chapter 12 and as elaborated in later
sections of this chapter. Perhaps the simplest of these models are those in which we test
whether the effects of certain variables are comparable across time points. Alternatively, we
may have more complex hypotheses, examples of which will be taken up in the next sections.

15.3 REPEATED MEASURE ANALYSIS OF VARIANCE

In considering the many choices of extensions of the regression model it may be useful to
think about data in terms of a three dimensional structure. One dimension (n) is subjects (e.g.,
individuals, geographical or political units, biological cells, etc.). The second dimension is
variables (X), which, for purposes of this discussion, will include both the dependent variable
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TABLE 15.3.1
Repeated Measure Data in Analysis of Variance Format

Group

1
1
1
0
1
0
0
1

1
0
1
1
0
1
1
0

Total
0
1

ID no.

1
2
3
4
5
6
7
8

193
194
195
196
197
198
199
200

MY

MY

My

RPerf,

102.93
56.34
40.92
21.29
72.53
28.03
19.73
56.80

55.14
26.05
63.84
38.01
62.00
54.86
57.17
20.76

48.83
40.28
56.57

RPerf2

80.24
56.82
53.99
11.83
47.98
47.03
59.42
65.35

74.66
41.06
80.74
39.79
63.43
24.48
56.99
34.84

51.08
44.66
56.88

RPerf3

61.71
56.84
60.92
00.00
54.97
46.97
47.06
50.07

40.88
54.87
94.27
45.31
99.22
28.90
61.12
60.15

55.67
51.28
59.63

RPerf4

85.84
52.98
62.54
32.77
55.70
69.97
53.60
55.76

54.97
42.75
82.32
68.90

105.35
55.62
62.44
67.43

57.54
56.79
58.23

SumRPerf

330.72
221.98
218.38
65.89

234.17
192.00
179.81
227.98

225.64
164.73
321.17
192.01
330.01
163.87
237.71
188.17

213.12
193.01
231.31

CH15EX02

Y of interest and all potential predictors. The third dimension is time (IT), which includes all
time points at which there are data.

The traditional method of handling such data has been within the framework of repeated
measure ANOVA. In such a design each subject generates a score at each of two or more (fixed)
time points, or under two or more different experimental conditions. Subjects are also often
divided into groups representing the independent variable(s) of interest. Other variables may
also be included as covariates, but their inclusion may be ignored for the present.

Let us consider, for example, data from two groups of subjects arrayed in columns, measured
on four occasions, represented as a row of four scores for each subject, as in Table 15.3.1.
In the typical case we are interested in both the row and the column means in this data set,
and there might have been covariates, other variables characterizing the individual subjects,
as well.

15.3.1 Multiple Error Terms in Repeated Measure
Analysis of Variance

When data have this three-dimensional structure, we employ different variance components
to provide appropriate standard errors and significance tests for the different parameters that
are estimated. For parameters involving differences between subjects' average scores across
the repeated measures (called trials here), an error term generated from the variance of these
average scores is required. For parameters involving changes in the mean scores over the
repeated trials, the appropriate error term involves variation around the individual subjects'
means, that is within subjects. Thus, unlike ordinary regression analysis, multiple error terms
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TABLE 15.3.2
Significance Tests for Repeated Measure Analysis of Variance

Source

Between subjects
Groups
Subjects within groups (error)

Within subjects
Trials
Groups by trials
Subjects within trials within
groups (error)

Polynomial tests
Linear across trials
Group difference in linear trend
Linear trials residual (error)
Quadratic across trials
Group difference in quadratic trend
Quadratic trials residual (error)
Cubic across trials
Group difference in cubic trend
Cubic trials residual (error)

SS

18,283.575
132,972.682

10,434.979
5,970.968

95,767.216

10, 184.063
5, 844.542

42,430.784
4.178

100.631
25,656.498

246.737
25.795
89.293

df

1
198

3
3

594

1
1

198
1
1

198
1
1

198

MS

18,283.575
671.579

3,478.326
1,990.323

161.224

10, 184.063
5,844.542

264.802
4.178

100.631
129.578
246.737
25.795
89.293

F

27.225

21.574
12.345

38.459
22.071

0.032
0.777

2.763
0.289

P

<.001

<.001
<.001

<.001
<.001

.858

.379

.098

.592

are required. In ordinary regression analyses, as we have seen, the total variance in Y is either
associated with the IVs or not associated with them, so that a single error term may be employed
in the tests of all statistical estimates in the final equation. However, in all of the models that
follow it should be assumed that the computer algorithms that carry out the analyses include
operations that separate variation into within subjects and between subjects components.

In Table 15.3.2 we note a significant effect for "groups," which is a test of the difference
between the last two values in the final column of Table 15.3.1,193.01 and 231.31. We also see
a significant "trials" effect, which is a comparison of the first four values in the Table 15.3.1
row labeled Total: 48.83, 51.08, 55.67, and 57.54. The "groups by trials" significant effect
tells us that the two groups did not show the same pattern across the four trials, as can be seen
in the first four values in the last two rows, where, for example, the largest value for the group
coded 0 was in the final trial while the largest value for the group coded 1 was in the third
trial.5

15.3.2 Trend Analysis in Analysis of Variance

As noted, a major purpose of a repeated measure ANOVA is often the investigation of systematic
changes in mean Y over time. There will be t — 1 degrees of freedom associated with these
differences in means, where t is the number of times the measures were observed. When the
measures are gathered at least three times, it is often the case that the investigator's major
interest is in whether this change follows a straight line (is linear), and sometimes there is
also an interest in whether it shows a significant bend in the line representing the means over

5We address issues of covariance heterogeneity that may occur in sequenced data in the next sections; such
heterogeneity formally violates the assumptions of ANOVA models.



576 15. LONGITUDINAL REGRESSION METHODS

FIGURE 15.3.1 Linear and quadratic slopes for two groups.

time (i.e., is quadratic). As in linear regression, each of these functions has a single degree of
freedom. The linear term is the estimate of the systematic increase or decrease of mean scores
over the measurement occasions and thus represents the slope over time (where the time units
are whatever period separates the repeated measures). To estimate the quadratic (U- or inverted
U-shaped) tendency of the means over the repeated measures, the various occasions are coded
in a way that is directly comparable to that described for ordinary regression (Chapter 7). A
quadratic slope can be estimated and, as for the linear slope, an appropriate standard error
provided. In fully balanced designs (no missing data, equal intervals) these two components
are statistically independent.

For our illustrative example the means are plotted in Fig. 15.3.1. The presence of a linear
slope for the group coded 0 is obvious, as is the lack of such a slope in the group coded 1.
On examination of the statistical tests (Table 15.3.2) we find that the 1 df linear slope for
the combined group is statistically significant (MS = 10,184,7^ 198 = 38.46,p < .001), as
is the difference between the linear slopes of the two groups (MS = 5,845, F1198 = 22.07,
p < .001). As can be seen, neither the quadratic nor the cubic effect is statistically significant
for the group as a whole, nor are these effects different for the two groups.

15.3.3 Repeated Measure Analysis of Variance
in Which Time Is Not the Issue

Suppose we have the following alternative theoretical predictions to test: Both theories recog-
nize that a certain kind of experience—let us call it here "disappointment"—will lead to an
increase in dysphoria. The first theory predicts that repeated exposure will lead to a "steeling"
or accommodation effect in which it loses its effect on dysphoria. The second theory predicts
that repeated exposure will lead to a cumulative effect. These two predictions are put to the test
in a repeated measure experiment in which subjects are each tested for dysphoria three times.
Subjects are subjected to four experimental conditions. The first group is simply tested on three
occasions without experimental manipulation in order to serve as a control for the repeated
assessment of dysphoria. The second group is tested on two occasions and subjected to the
disappointment treatment on the third. The thmTgroup is tested on one occasion, subjected to
the treatment prior to the second assessment, and assessed again on a third occasion. The fourth
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TABLE 15.3.3
Tests of Steeling Versus Cumulative Effects

Total sample
Group 1
Group 2
Group 3
Group 4

Between subjects
Group
Subjects within groups
Within subjects
Between sessions
Sessions by group
Residual

T{My

9.93
10.02
10.26
9.46
9.98

(sd)

(0.95)
(0.69)
(1.05)
(0.93)
(1.04)
SS

62.69
63.69

66.21
92.50

134.03

T2MY

11.19
9.80

10.00
12.36
12.58

df

3
36

2
6

72

(sd)

(1.60)
(0.76)
(1.09)
(1.18)
(0.75)
MS

20.90
1.77

33.10
15.42
1.86

T,My

11.70
9.93

13.01
10.59
13.26

F

11.81

17.78
8.28

(sd)

(2.36)
(1.28)
(0.45)
(1.08)
(3.42)

P

<.001

<.001
<.01

group is tested on one occasion and then twice again, each time receiving the disappointment
condition. The critical question is what happens on this last assessment—is there a further
increase in dysphoria as predicted by the cumulation model or a decline as predicted by the CHISEXOS
steeling model? The ANOVA findings are shown in Table 15.3.3.

At first glance it appears that our study has come to a draw—although there was an effect
of the disappointment treatment on each group, the effect on group 4 who got it twice was the
same the second time as the first tune. However, when we look closer we notice that there was
a much larger standard deviation in this group (3.42) than in the other groups. Such a finding
invalidates the assumptions of the ANOVA, and we decide to look further. Figure 15.3.2 plots
the three assessments for the 10 subjects in group 4. In this artificial example it is abundantly
clear that this group is heterogeneously composed of some subjects who apparently had a

FIGURE 15.3.2 Dysphoria among subjects in group 4.
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"cumulative" effect and other subjects who had a "steeling" effect. We are going to have to
change our method of analysis to take this problem into account.

15.4 MULTILEVEL REGRESSION OF INDIVIDUAL
CHANGES OVER TIME

The ANOVA repeated measure framework assumes constant error (residual) Y variances at
the different time points and covariances between time points. This is equivalent to assuming
that there are no significant (unaccounted for) individual differences in systematic changes
over time (such as linear slopes) and there are equal correlations among all possible pairs of Y
values measured at different times. These assumptions may be violated in real data. It is this
problem and the opportunities for answering new kinds of questions that the multilevel model
(mixed regression, hierarchical linear regression) computer programs are designed to handle
for longitudinal data.

In a sense, then, the first question we need to answer when looking at multiple time point
data is whether there are "unaccounted for" individual differences in change over time. If
there are, there are two implications: first, that these individual differences may be associated
with measurable variables, and second, that these individual differences need to be taken into
account in order to make the statistical tests of model effects appropriate.

15.4.1 Patterns of Individual Change Over Time

Figure 15.4.1 provides the plots of changes over time for each of six subjects in some illustrative
alternative data structures. For YA it appears that the changes over time may be more or less
consistent across subjects, but some subjects seem to score higher than others. These data are
therefore, on the face of it, consistent with the ANOVA model. In the second plot we see that
YB seems to increase at a faster rate for some subjects than for others, giving us a "fan-shaped"
distribution over time. In the next plot we see that YC increases over time for some subjects but
declines for others. In the final plot it is hard to see what general trend in YG may be present,
because some individuals fluctuate wildly in comparison to others.

We have looked thus far at overall differences in means and slopes over time in the framework
of the repeated measure ANOVA model. Now we shift our frame to an equation predicting
Y for each subject from a "fixed" IV consisting of Time (e.g., age at each assessment, or
any other scale reflecting the time between the assessments). We then can investigate the two
coefficients resulting from each individual's equation, BQ and BT, as "random" variables only
partly reflected in average "fixed" values for the sample as a whole. To accomplish this we
employ the same kinds of mixed or multilevel regression techniques that we employed to
account for clustering of subjects in Chapter 14.

To review, Chapter 14 introduced the notion of clustered observations, that is, subsets of
observations in a data set that are not independent of one another. As described in Section 14.1,
there are two broad sources of clustering. First, clustering can arise because there are intact
groups of individuals in the data set (e.g., children within families). Second, clustering can arise
because the same individual is measured repeatedly and these repeated scores are included in
the data analysis. Chapter 14 developed the multilevel model for the analysis of data sets in
which individuals are clustered into groups; in this chapter we present the multilevel analysis
of observations on individuals from whom data have been gathered at multiple time points.
Needless to say, although the multilevel analyses of clustered data and repeated data are very
closely related mathematically, some translation in thinking is required to link the two broad
classes of application of multilevel analyses.
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FIGURE 15.4.1 Illustrative sets of change patterns.

In Section 14.4.4 we learned that the full data set, pooled over clusters, yielded a set of
fixed regression coeffficients in an overall equation predicting Y from all predictors. Here,
with a number of individuals measured over time we can also estimate an overall regression
equation that characterizes, on average, how these individuals change over time. The regression
coefficients in these overall regression equations are referred to as the "fixed effects" of the
multilevel analysis.

The multilevel analysis also allows for measurement of relationships of predictors to Y
separately for each individual subject, as it did in the previous chapter for individual clusters
of subjects. In longitudinal data this includes the variance due to individual differences in the
intercepts of the equations that characterize individual changes over time. There is another
variance component associated with the variance across individuals in the slopes in these
equations. A third variance component is the covariance between the individual slopes and
intercepts across all the individuals. These variance components are the "random effects" in
the multilevel model.

In sum, there is a direct translation between multilevel modeling applied to individuals
clustered within groups and to repeated measurements on individuals. All the structures of the
analysis—fixed effects regression coefficients of an overall equation, regression equations at
the level of the cluster or individual, and variance components reflecting differences among
clusters or differences among individuals—are the same across applications. The estimation
procedures and tests of significance are the same as well.
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As in all regression equations, the individual intercepts reflect the estimated value of Y at the
zero value of the predictors (e.g., Time). If zero is not a meaningful time point the investigator
may choose another point (e.g., Timel, or the mean of the Time variable, or the final time point)
and subtract that value from all the time values (see Section 7.2 for a discussion of centering).
If the time point selected as zero is the mean time, so that Time is centered, there will be no
correlation between the intercept and linear slope across subjects. This may or may not be
optimal, depending on the purposes of the analysis (see Kreft, de Leeuw, and Aiken, 1995,
for a more complete presentation of this issue in the context of clustering by groups). It has
the advantage of separating these elements, which may be desirable, especially if the analysis
investigates interactions of the time variable with other predictors. On the other hand, as we
will see in the next section, it may fail to reveal certain patterns of particular interest.

To analyze these data we may use one of the programs for multilevel data. The analysis will
indicate how much of the variance in Y is accounted for by these "random" differences between

CH15EX04 subjects in the intercepts and slopes of their individual equations predicting Y. Table 15.4.1
presents these analyses for our dependent variable, YA, in a sample of 60 respondents.6

The first model tested will give us an overall reference for the total variance in Y by including
as a random IV the individual differences in intercepts of the 60 subjects. Of course, with no
other predictors in the model the intercepts are equivalent to subjects' means. The output
includes a test of the significance of the variance component attributable to these between-
subject differences in Y means. In each of these models it is useful to divide each estimated
effect by its standard error (SE), noting that the chance probability of a value of 2 or more is
<.05. For Model 1, equivalently but depending on the computer analysis program employed,
the output may supply a x2 test of the improvement of fit between the model in which the only
predictor was the fixed mean (intercept) of the total group (so that we have the total Y variance
in the "residual" term), and the model in which random variation in means (intercepts) was
also included. As we noted in the hierarchical analysis of clustered data (Section 14.11.2) this
X2 test is based on the difference in the function —2 log likelihood (—2 LL), which in this case
is 81.4, with 1 df, clearly statistically significant. Thus, there were clear individual differences
over the multiple occasions in these data. Indeed, as in the analysis for clustered subjects we
may determine the intraclass correlation associated with subject differences in means on YA
as 2.46/(2.46 + 3.02) = .45. In our Model 1 the individual differences in YA across the time
points are captured in the residual random term.

The next step in the analysis (Model 2) tests whether there is also significant variance in
slopes over time (that is, in the BT of the n subjects that predict YA from Time) and in the
covariance between mean and slope. To test this we add these random effects to the model
specification, and test the improvement in fit to the model. If Time had been centered, the means
and slopes of individuals would generally be uncorrelated. Any other coding of Time typically
leads to correlation (covariance) between means and slopes across subjects, which is easily
pictured if one imagines where a value of zero Time would be for those with different slopes. If
zero Time is the initial measurement or prior to the initial measurement and the general slopes
are positive, a negative correlation between slope and intercept may be expected. If zero Time
corresponds to the final measurement point given the same positive slope, a positive correlation
between slope and intercept is the rule. For these data we see in the second row of Table 15.4.1
that there was significant random slope variance as well as negative covariance between means

6For simplicity, illustrations in this section employ balanced and complete data, and limit analyses to linear changes
over time. The accompanying programs provide the algorithms used to create each of these data sets. The reader is
encouraged to examine these algorithms in order to concretize the meaning of each of the analyses and findings
presented here, and to create additional data sets to check on his/her understanding of the program output. Each of
the programs used for these analyses, in this case PROC MIXED of SAS and MixReg in SYSTAT, have different
conventions for output, and different options for models, but essentially equivalent estimates for equivalent models.



15.4 MULTILEVEL REGRESSION OF INDIVIDUAL CHANGES OVER TIME 581

TABLE 15.4.1
Multilevel Analyses of Longitudinal Data on YA and YB

Model predictors

YA Model 1:
random intercept

YA Model 2:
random intercept and slope

YA Model 3:
fixed Time; random
intercept and slope

YB Model 1:
random intercept

YB Model 2:
random intercept and slope

YB Model 3:
fixed Time; random intercept
and slope

YB Model 4:
fixed Time, Group; random
intercept and slope

YB Model 5:
fixed Time, Group,
and Time x Group;
random intercept and slope

Random
variance (SE)

Ia

R

I
S
I,S
R

I
S
I, S
R

I
R

I
0
I, S
R

I
S
i,s
R

I
S
i,s
R

I
S
I,S
R

2.46 (0.56)*
3.02 (0.28)*

17.80 (10.84)*
1.12 (0.21)*

-4.07(1.63)*
.228 (.024)*

3.22 (0.63)*
.009 (.006)

-.047 (.046)
.228 (.024)*

2.70 (0.70)*
5.54(0.51)*

11.91(2.62)*
2.12 (0.39)*

-4.39 (0.94)*
.231 (.024)*

7.14(1.35)*
1.01 (0.19)*

-2.08 (0.45)*
.231 (.024)*

22.88(11.66)*
1.02(0.19)*

-4.53 (1.50)*
.230 (.024)*

3.11 (0.62)*
.009 (.006)

-.071 (.047)
.230 (.024)*

Fixed
effects (SE) Ax2

I

I

I
T

I

I

I
T

I
T
G

I
T
G
GxT

11.95(0.23)* 81.4*

12.61 (0.23)* 385.6*

8.79 (0.24)* 214.8*
1.05(0.02)*

12.96(0.17)* 45.1*

11.98(0.22)* 506.3*

9.80 (0.35)* 43.6*
1.05 (0.13)*

7.36 (0.66) 3.8
1.05 (0.13)
4.88 (0.43)

11.00(0.34) 209.3*
0.05 (0.03)

-4.01 (0.47)
2.01 (0,05)

°I = Intercept; S = Slope; I, S = Intercept-slope covariance; R = Residual.
*p < .01.

and slopes. In the illustrative data we analyzed here there were five assessment points, and
we chose to examine only the linear effect over time, with its single df. Other functions of
the individual differences over time are captured in the residual "random" effect. We see that,
although statistically significant, this effect is much reduced in comparison to Model 1.

Model 3 adds Time as a fixed predictor to the model to determine whether there is a significant
average (linear) effect of Time. In this example we see that there is a significant effect, and
thus adding it to the model, necessarily, improved the fit between data and model. For these
data we also note that this "fixed" IV accounted for all the significant variance in slopes of
YA on time—that is, that the differences between the subjects in the slopes (i.e., in the linear
change of YA over time) were no longer statistically significant (.009/.006 < 2). Individual
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mean differences (or intercepts) remain a significant source of variance in YA, that is, there
is still significant variance in the (random) intercepts. In addition there is significant residual
variance in the "random" individual differences in means over time.

Turning to the analysis of YB, we note that there were significant individual differences
(variance) in means (intercepts), Model 1, and in slopes (Model 2), as well as in the covariance
between means and slopes. In YB Model 3 we see that although there was a significant overall
linear effect of time, there remained significant random variance in both intercepts and slopes.

15.4.2 Adding Other Fixed Predictors to the Model

Even where there is significant random variance in a dependent variable associated with the
individual differences in slopes and intercepts, it is always possible that we can identify the
"fixed" variables that account for these differences. In the case of example YB, we have, in fact,
created the data to reflect two different subsamples of subjects who differ in their intercepts
and slopes. In the usual data-analytic sequence, in Model 4 we add to the model that includes
the single fixed IV, Time, the dummy variable representing the two groups as a "fixed" IV, and
determine whether the fit of the data to this model is improved relative to the previous model.
We see that the improvement in fit is marginally significant (x2 = 3.8,p = .05), with 1 df for
the Group variable we added as a predictor), indicating that these groups differ with regard to
their intercepts. As in OLS, the intercept of the fixed effect portion of the model represents the
intercept of the reference group, the group coded 0, and the coefficient attached to the group
variable reflects the difference between the intercept of the group coded 1 and the reference
group. At this point we also see that the random effects (variances) of individual differences
in slope and intercept remain significant. As we move on to Model 5, however, where there is
a very significant improvement in model fit as the fixed effects of different slopes for the two
groups is added, we no longer have a significant random effect of slope. The average change
for the reference group is near zero (0.05;SE = 0.03), whereas the average linear slope for
the group coded 1 is 2.06 (= 0.05 + 2.01 ;SE = 0.05). Of course, these values reflect the
model for the data as created by our algorithm. Thus, what were "random effects" or apparent
individual differences in slopes before group membership was considered, now turn out to be
effects of the set of fixed FVs, namely group membership.

This model then reduces to (i.e., is equivalent to) the ANOVA model.7 However, it is
important to note that, in contrast to the repeated measure ANOVA model, the variable(s)
accounting for the differences in slopes in mixed regression models may be scales rather
than categorical (groups), and they may or may not also account for individual differences in
intercepts (means on Y). In addition, as we saw in the ANOVA model, changes over time that
are not linear may also readily be examined as potential fixed or random effects, along the
same lines as those examined in Chapter 6. That is, one may add the Time x Time product to
evaluate the quadratic effect of Time in either or both the random and fixed predictors, and
include it in interactions with Groups or other fixed predictors as appropriate to the purposes
of the study.

The data illustrated as YC in Fig. 15.4.1 include subjects whose scores increase, decrease,
or stay approximately constant over time, and may be analyzed by the same methods employed
for the YB data.

7The example employed in the previous section is thus in no way structurally different from this analysis, and the
reader is invited to analyze the data provided for that example in the same manner.
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15.4.3 Individual Differences in Variation
Around Individual Slopes

In Fig. 15.4.1, the data for YG presented a different problem. Here we saw that some subjects
had much greater fluctuation over time around their own slopes than did other subjects. In fact,
these data were created using the same model as YB. In each data set, half of the subjects have CHISEXOS
no linear change over time (Group = 0) and the other half (Group =1) have a 2-unit average
increase at each additional time point. We then created YG, in which the random normal errors
added to the change over time of subjects in Group = 1 (linear slope, BT = 2) were three
times as large as those in the other group (Group = 0). As a consequence, in the second data
set, YG, the residual random variance was much larger than it had been in YB although the
fixed effect estimates were the same.

The purpose of this illustration is to demonstrate an aspect of the algorithm employed in
most multilevel regression programs, namely empirical Bayes estimation.8 According to this
algorithm, estimates of statistics (e.g., BT) of individual subjects are "re-estimated" to be closer
to the overall mean BT as a function of their distance from the overall mean and their standard
errors. We illustrate this by examining some particular cases from this data set. In order to
accomplish this we need to examine the estimated case-by-case effects employed in the model,
which is an optional output from each of the major programs. We then compare these estimates
with the actual OLS-calculated slope for each case, based on the k = 5 data points for each
subject.

Table 15.4.2 presents the estimated slopes for selected subjects along with their OLS slopes
based on the five observations. These estimates will vary a little, depending on the error model
and what fixed effects are included. Here we will just examine the estimates from a model that
includes random slope and intercept and fixed effects of Time. In this example, the average
slope was 1.05 (a random variation from the model's 1.00) because half of the subject scores
were created from a population slope of 0.00 and half with a population slope of 2.00.

Subject 5 and subject 16 each had a similar observed slope over the five assessments.
However, the variation around that slope was greater for subject 5. The empirical Bayes
procedure moves both estimates of the random component of the slope toward the total sample

TABLE 15.4.2
Comparison of Empirical Bayes Estimates With Ordinary

Least Squares Estimates

Subject

5
16
37
42
32

OLS slope (SE)

-0.1070 (.142)
-0.1010 (.127)

2.4810 (.575)
2.4910 (.398)
1.0210 (.452)

Empirical Bayes
slope estimate

-0.1010
-0.0956

2.3465
2.3557
0.9653

Difference

+.0060
+.0054
-.1315
-.1353
-.0557

8Bayes noted in the eighteenth century that when there is previous information about the value of some parameter,
a new estimate of this parameter based on additional statistical information can combine the previous estimate with the
new data (Stigler, 1986). In this case the total sample values may be thought of as the previous estimate, and the values
of an individual case is "new information." In empirical Bayesian methods such "new information" is "re-estimated"
to the extent that its statistics are far from the average values and have large standard errors, either because they are
based on fewer data points or because they are based on data with larger residuals or error around an estimated statistic.
Section 14.10.2 presents mathematical details on this procedure.
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value of 1.05, but moves the less reliable (larger SE) subject 5 more. Turning to subjects 37 and
42, we see that each is further from the total sample value than the earlier cases, and each is
moved a little more than the earlier cases. Finally, subject 32 is very close to the sample value
and is moved very little despite its large SE (also note that the average estimated value is no
longer the same as the average observed value, which is still reflected in the fixed portion of the
model: Because the portion of the sample with the higher slope also had the greater variance
around that slope, the estimated value is now less than 1.0). The exact algorithm cannot be
inferred from this illustration, but the principles on which it is based remain.

This demonstration of the effects of differential reliability of data-based estimates (larger
SEs) is probably less crucial in the context of complete and balanced data than it is when the
number of data points varies for different subjects, a topic discussed in Section 15.4.6. The
moral is the same, however: When you don't learn very much from a given piece or set of
data, you don't change your estimate very much from whatever it was before you looked at
that information.

15.4.4 Alternative Developmental Models and Error Structures

One of the characteristics of these studies of change over time is that they may find some other
model of the change process more theoretically compelling than the between-within subject
model for error variance that we have examined thus far. There are a number of such models
that have been included as possibilities in one or more computer programs used to analyze
repeated measure longitudinal data. This section will examine only a few of these.

One reasonable possibility is an autoregressive or Markov model where each new time point
is a combination of the previous time point and some change. This developmental model is
theoretically consistent with the presence of influences on Y that create "structural" changes
that influence subsequent values. If there is autoregression, the measures at time 3, for example,
will reflect the scores at time 2 plus some (random) change. The measures at time 4 will reflect
the scores at time 2 plus the change to time 3 plus some additional change. This model may be
fit with or without overall individual (random) or group (fixed) differences in means or slopes.

If the data show an autoregressive structure, the correlations among Y values at the different
time points will show a "simplex" structure, by which we mean that the correlations between
time points gradually decline over time. Thus, we would expect that the correlation between
the scores at T2 and those at T4 would be smaller than the correlation of either with T3. In
fact, we anticipate that if one partials an intermediate time point set of scores, the correlation
between scores at any two time points would be zero (in the population). Such a data structure
is consistent with an autoregressive model.

To illustrate, we have created a data set, YE, characterized by first order autoregressive
effects (meaning that the data at any point are influenced only by the previous time point and

CH15EX06 a change) Figure 15.4.2 plots the values for five subjects.
In Table 15.4.3 we show selected output from the PROC MIXED program for this data set.

In the first model we see that there are significant effects for the random slope and intercept (and
their interaction, because we did not center Time). In the next model we added a fixed effect
for Time, which was not significant, and this model was not an improvement over the previous
one. In the third model for YE, however, we added a fixed effect of the Lagl variable, that is, the
value at the previous assessment as a predictor. This model was a substantial improvement of
fit, and the fit is entirely due to the fixed effect of the lagged YE (consistent with our algorithm
for the construction of YE). Note that the random effects were no longer statistically significant,
except for the residual effect, not included here. Although we created this data set to have no
other effects, in real data there may well be other fixed or random effects.
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FIGURE 15.4.2 Autoregressive data for five subjects.

It is also possible to have data in which there are differences between subjects in the
magnitude of the autocorrelation, so that autocorrelation should be included as a "random"
component. From some perspectives these variations over subjects may be viewed as variations
in the magnitude of disturbances or autocorrelated error. We have created a data set YF in which
there is autocorrelated error as well as fixed effects for slopes and the group by slope interaction.
The results of the analyses of these data are also in Table 15.4.3. In the first model we have

TABLE 15.4.3
Autoregressive and Autoregressive Error Analyses

Data and Model

YE autoregressive:
random intercept and slope

Fixed Time;
random intercept and slope

Fixed Time, lag^,
random slope and intercept

YF autoregressive error:
random intercept and slope

Random intercept, slope,
and autoregression

Random intercept, slope,
and autoregression; fixed
Time, Group, and
Group x Time

Random effects (SE)

I
S
I,S

I
S
i,s
I
S
i,s

I
S
i,s
I
S
i,s
AR

I
S
i,s
AR

.388 (.093)*

.048 (.011)*
-.054 (.025)*

.387 (.093)*

.048(.011)*
-.053 (.025)*

.180(.099)

.012 (.008)
-.0300018)

11.36(2.45)*
2.03 (0.37)*

-4.00 (0.87)*

—
2.01 (0.38)*

-3.97 (0.89)*
.990 (.002)*

—
.005 (.012)
.093 (.060)
.965 (.008)*

Fixed effects (SE)

I
T

I
T
L,

I

I

I
T
G
GxT

9.767 (.048)*

9.839 (.092)*
-.024 (.031)

3.232 (0.538)*
0.027 (0.022)
0.658 (0.053)*

11.77(0.24)*

11.87(0.24)*

12.00 (0.34)*
-.047 (.044)

-4.21 (0.48)*
2.05 (0.06)*

AX
2

289.6*

0.6

28.5*

701.7*

718.8*

215.0*

*p < .01.
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jumped right to the random slope, intercept, and slope by intercept (again, not having centered
Time). This model is a statistically significant improvement over an intercept-only model
(equivalently, these random coefficients account for a significant portion of the total variance
in YF). In the next model we add autoregression to the random portion of the model, and find
it to improve the model significantly. We also note that in this model all variance previously
associated with individual differences in intercept has gone—that is, it has been shown to be
accounted for by random autoregression. In the final model we have added the fixed effects of
Time, Group, and their interaction. Although there was no main effect for Time (no slope for the
group coded 0), the three variables added significantly to the model. However, at this point the
only significant random terms are the autoregression and the residual term (not shown here).

Theory and this kind of reasoning may lead an investigator to examine the fit of a model with
autocorrelated error, or it may even lead to tests of autoregressive moving average models in
which one removes the (usually fixed) influence of (usually weighted) averages of (a specified
number of) previous values of Y in order to investigate change. Such models are often employed
when one has time varying IVs, as in time series analyses, or in extensions of the multilevel
model we will shortly discuss.9

It is beyond the scope of this introductory chapter to discuss all the possible models for
error structure in multilevel regression analyses. References and illustrations of alternatives
can be found in McArdle and Aber, (1990); Littell, Milliken, Stroup, and Wolfinger (1996);
and in the manuals for the computer programs that analyze these data. One method of testing
alternative error models is to compare the log likelihoods of alternative models, although
they will not necessarily be nested (see Bollen, 1989, and Byrne, 1998, for a discussion
of alternative goodness-of-fit measures). In addition, it is always a prudent course to save
the residuals from the (final) estimated model to test for homoscedasticity and to determine
whether there are changes in the variances and covariances over time. As in all regression
analyses, residuals should be normally distributed, with no systematic relationship with the
predicted values. Changes in the residual variance over time or a decline in the correlation
between measures over longer intervals may suggest that the fit may be improved by inclusion
of an autocorrelation structure.

15.4.5 Alternative Link Functions for Predicting Y From Time

In addition to alternative methods for defining the error structure of these models, there are
also alternative link functions describing the changes in the measures over time. Recall that
a model's link function is the function of the dependent variable that is related linearly to the
IVs. In Chapter 13 we discussed the logit and probit link functions suitable for dichotomous
dependent variables and the Poisson link function as the function of highly skewed count
variables that may be linearly related to the IVs. In this discussion we have focused on the linear
slope over time, but when the dependent variable has these distributions, these alternative link
functions to time (and to other IVs) have the same characteristics and advantages in longitudinal
data as in the analyses discussed there. Usually special computer programs are required for
these analyses.

With continuous scale values for Y, the first thing to do with any data set is to plot the individ-
ual curves. As discussed in Chapter 6, it may be that some transform of the data will linearize
the changes over time and make the variance around the linear slope more homoscedastistic.
Alternatively, as noted earlier, one may wish to add quadratic and perhaps even cubic functions
of time to the random or fixed predictors. There is, of course, the inconvenience of combining

9Any effects of constant "fixed" IVs (e.g., sex, group membership, or variables measured at a time prior to the
intervals being assessed) will necessarily be removed from both Y and the other IVs by this method.
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two or more statistics to represent a single curve over time. For some problems one may use a
single nonlinear function to represent the theoretically plausible changes over time. For exam-
ple, if a single bend in the curve over time is expected, one might use some quadratic function
instead of a linear function of time. Indeed, in theory, any transform of the time variable that
reflects the theoretical model may be produced and used as a random or fixed effect.

Some functions may require that one move away from the OLS models to alternatives avail-
able in certain computer programs. For example, an exponential curve, where each increase
is proportionate to the earlier value (e.g., so that one expects, for example, greater decline for
those with higher scores at the beginning of the study), may be plausible. Another theoretical
possibility is that there will be a common time point (a "knot") representing a point following
which there is an expected increase or decrease in the average linear slope. So, for example,
one might expect one general linear change in "identity" over the first year of high school
and a different slope over the remaining years. (And these slopes may reflect significant "ran-
dom" individual differences as well as potential "fixed" mean differences.) In principle more
complex curve functions may be fitted, but in practice there are few empirical examples.10

15.4.6 Unbalanced Data: Variable Timing and Missing Data

In the illustrations we have employed thus far, the data have been complete—that is, every
subject has an observation at every time point and all time points are the same for all subjects.
In real longitudinal data this is very rarely the case, and many of the same issues arise in
efforts to cope with missing data that are discussed in Chapter 11. With regard to fixed IVs, the
same techniques are potentially available, including imputation of values (Graham, Taylor, &
Cumsille, 2001) However, the multilevel regression programs themselves "cope" with other
kinds of missing-data problems, and in particular those of missing assessment points or attrition
for some subjects, and variable timing of assessment.

When there are a fixed number of assessments at similar intervals for different subjects, the
problem of variable timing is the easiest to manage, because we do not need to measure time
(or age) as integers, but can use the actual time for each observation or assessment of each
subject. In longitudinal data we may plan to assess children at ages 12, 18, and 24 months,
for example, but availability, holidays, illness, and other scheduling problems may cause the
timing to vary somewhat. To "control" for these variations in OLS analysis we may enter age of
observation in a regression equation along with the longitudinal predictors. In doing so, we are
acting as if the average influence of age of observation is an adequate control for variation in
age for each of the subjects. In multilevel longitudinal models, however, the age of assessment
for each subject is a part of the individual's prediction equation. Therefore, age effects reflect
each individual's own change over the time points.

We will, of course, need to make the assumption that these variations in timing are not
related to the functions we are investigating in any way that would distort our model estimates.
This assumption can be tested, in part, by examination of the relationship between variations
in timing and each of the IVs, and, perhaps even more important, of the interaction between
such timing variations (if substantial) and one or more IVs in predicting Y. In general, when
there are systematic changes over time the improved precision of measurement associated with
exact timing should improve the estimated values from the model.

The problem of missing assessments illustrated in Fig. 15.4.3, and particularly when due
to attrition, is a little different. Here, again, we have a choice between two assumptions. The
first is that the data are missing "completely at random," that is, that the model of Y for the
subjects missing some data points is the same as the model of Y for those with all data points.

°See Boker (2001) for a discussion of methods to analyze cycling or recurrent phenomena.
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FIGURE 15.4.3 Data with missing and varying measurement points.

The alternative is that the data are missing "at random," meaning that the model of Y for
the subjects missing some data points is the same as the model of Y for those with all data
points who are also equivalent on measured covariates. When either of these assumptions is
tenable, the empirical Bayes estimates that are employed may have smaller standard errors
and thus tighter confidence limits than those that would be generated by OLS analysis, were it
feasible (and certainly than OLS carried out on those with complete data only). As in the case
of variations in timing, it is also possible to test for relationships of missingness (coded as a
dummy variable) with IVs or Y measured in previous (or subsequent) assessments.

Two particular longitudinal designs may require some special consideration when the focus
is on age changes. The first is the cohort sequential design, which is undertaken in order to
speed up the coverage of age changes, usually on the assumption that cohort effects (effects
of the historical year of birth) are likely to be trivially small over small numbers of years. In
such designs the investigator may, for example, begin the study with cohorts bora every third
year over the age range of interest and follow each cohort for five consecutive years. Thus, for
example, the youngest cohort, bom in 1990 and first studied in 1995, is seen until 1999, at the
ages of 5, 6, 7, 8, and 9. The second cohort, bom in 1987 and first studied in 1995, is seen at
the ages of 8, 9, 10, 11, and 12. The third cohort, born in 1984 and first studied in 1995, is
seen at the ages of 11,12, 13,14, and 15. Thus, in a five-year period data have been collected
on changes from age 5 to age 15.

Another very common longitudinal design is what is sometimes known as a panel design.
In such a case the original sample may vary substantially on age, representing some population
heterogeneous with regard to age. Determination of age-associated change from such data is
not problematic for the multilevel regression programs, although nonlinear changes and cohort
effects are more probable as the age range examined increases.

15.5 LATENT GROWTH MODELS: STRUCTURAL EQUATION
MODEL REPRESENTATION OF MULTILEVEL DATA

Whenever there are individual differences in slopes there are also changes in variance and
covariances over time. This means that these models may be analyzed not only by multilevel
model programs (such as HLM and PROC MIXED), but also by structural equation model
(SEM) programs such as LISREL, EQS, and MX, which work with variance/covariance or sum



15.5 SEM ANALYSIS OF MULTILEVEL DATA 589

squares/products matrices. Translations from one kind of program to the other are discussed
and illustrated by Willett and Sayer (1994), and emerging practices and programs are clearly
bringing these two traditions closer and closer together (e.g., McArdle, 1998). The central
features of the SEM representation of the longitudinal models include a more explicit spec-
ification of the hypotheses about the causal structure and the potential to estimate subjects'
"true" latent variable scores on the change parameters.

15.5.1 Estimation of Changes in True Scores

The first elaboration on repeated measure ANOVA that is available in programs designed to
model "growth" is employment of factor structure models to estimate the models for growth
in true (error-free) scores rather than observed scores. As we saw in Chapter 12, estimation
of relationships among error-free latent variables is a major reason for employing structural
equation models. However, in the models examined in Chapter 12 the structure of variable
means was generally ignored, with a focus on covariance. Growth models focus instead on both
the changes in means over time and covariance, with mean vectors and covariance matrices
used to provide information that can be used to generate estimates of change functions in
error-free constructs (latent variables).

In longitudinal data the error-free aspects of each individual's scores are usually represented
by two latent variables, one representing individual differences in level (mean or intercept)
across time and the other representing individual differences in linear slope over time. The
"true" portion of each individual's growth trajectory is defined as the (linear or other slope or
BT.) overall trend over time, made up of the individual's "random" variation from the overall
average effect weighted by the "fixed" effect at each time point, that is, the effect common to
the sample as a whole. The contribution of error at each time point added to this "true" or latent
score comprises the observed score (see Aber & McArdle, 1991, for a clear illustration). The
errors may have any theoretically relevant and empirically supported structure, autoregressive
or other.

Note that variance we include as "error" in the ANOVA sense, that is, residual sources of
variation over time, is not necessarily "error" in a measurement sense. In general, it may be pru-
dent to think of it simply as "residual variance." That is, variations in an individual's slope over
time may reflect "disturbances" (unmeasured influences) as termed by the econometricians,
and may have little or nothing to do with measurement error as such.

15.5.2 Representation of Latent Growth Models
in Structural Equation Model Diagrams

One of the most useful features of SEM growth models is the explicitness of the covariance
and error structures that can be tested for a fit to the data. Figure 15.5.1 depicts a standard latent
growth model (LGM) predicting five repeated observations over time. Model specification for
LGM A is "classic" insofar as it assumes that residual scores are all uncorrelated and of equal
variance. This model looks a little different from other SEMs because the means and mean
changes over time need to be represented as well as the sources of variance and covariance.
As always, latent variables are represented in circles or ovals and observed variables are
represented in rectangles. The latent variable L represents the individual differences in levels
of Y (means over time or intercepts), and this variable has the same impact on the observed
variable Y at all time points. The latent variable S represents the individual differences in slopes
of Y over time, and it, too, has a constant influence on the observed variable Y at all time points.
The triangle K represents all fixed effects estimated in the model (i.e., overall sample mean
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FIGURE 15.5.1 Latent growth Model A.

and average slope), and the "sling" indicates covariance between these constants. Following
programming conventions of EQS, disturbance factors are specified for latent variables L and
S to account for variance around the sample mean and average slope. In many models we also
need to represent the covariance between disturbance factors for L and 5. The latent variables
et are the error terms, and the slings represent their variance.

Using the same data analyzed earlier in multilevel analyses, this classic latent growth model
can be specified to predict YA and YB scores and produce essentially the same results. Although
illustrations presented here were analyzed with EQS, other SEM programs such as LISREL
and MX also could be used. Before proceeding, the data analyzed with PROC MIXED must be
reorganized into a different kind of data file. Instead of placing repeated variables into multiple
records for each subject, EQS requires that all repeated data appear in a single record. As
depicted in Fig. 15.5.1, the complete model for YA is specified in separate steps and evaluated
for improvements in fit in a nested sequence of model comparisons. Based on changes in degrees
of freedom with each model respecification, changes in maximum likelihood x2 statistics are
used to identify significant changes in fits. Overall goodness of fit (i.e., correspondence between
estimated and observed covariance matrices) will be evaluated here with the Comparison Fit
Index (CFI); (Bentler, 1990). Ranging from zero to 1.00, the CFI indicates an acceptable fit
when it reaches scores of .90 or higher.

First, a null model hypothesizing no growth is specified by predicting all five observations
of YA based on the overall mean (i.e., the "fixed intercept"). This specification corresponds in
Fig. 15.5.1 to the pathway from triangle K to latent variable L and then to all five observed
variables. All pathways are equally weighted at 1.00 because, by definition, all variables are
equally predicted by the fixed intercept. Also, error variance is specified for each observation of
YA. To be consistent with the multilevel analysis presented in Table 15.4.1, all error variances
are fixed to be equal.

To assess whether individual variation in intercepts accounts for a significant portion of the
data, Model 1 (Ml) adds the "random intercept" to the model. In Fig. 15.5.1, this step adds
disturbance factor DL and its pathway to latent variable L to the model. Next, Model 2 (M2)
assesses whether individual variability in slope or "random slope" accounts for a significant
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TABLE 15.5.1
Structural Equation Model Analysis of YA Data

MO
Ml
M2

M3

Model predictors

Intercept and residual
Adds random intercept
Adds random slope and
(Covariance intercept/slope)
Adds fixed Slope

X2

691.46
609.82
233.32

22.98

df

18
17
15

14

CFI

.00

.00

.59

.98

AX2

81.64
376.50

210.34

A4f

1
2

1

P

<.01
<.01

<.01

CFI = Comparison Fit Index.

portion in the data. The random slope is depicted hi Fig. 15.5.1 by latent variable S and
disturbance factor Ds, which at this stage are identical. (This redundancy disappears once the
fixed slope and its pathway from triangle K to latent variable S are added to the model.) The
basis coefficients from latent variable S to the five observed measures (0, 1, 2, 3, 4) indicate
that linear growth is expected. By beginning these ascending weights with zero, the intercept
in the model is set to equal the mean of the first observed variable. Other weights can be used
for a variety of purposes, including testing for quadratic or exponential growth. Along with
random slope variance, covariance between disturbance factors DL and Ds (depicted by the
curved arrow in Fig. 15.5.1) is added to the model at this stage. Finally, to assess whether
there is any "true" change for all subjects, Model 3 (M3) adds the fixed slope to the model.
Graphically, the pathway from triangle K to latent variable 5 is thus added to the model.

Table 15.5.1 presents x2 statistics and CFI scores for each successive model fit and contrasts
between models. Changes in x2 statistics are essentially the same as those in Table 15.4.1.
Although each successive model improves overall fit, only the final model produces an accept-
able fit as indicated by the CFI score of .98. Table 15.5.2 contrasts parameters estimated by
PROC MIXED and EQS for model M3. Aside from the fixed intercept, parameter estimates
and standard errors produced by EQS differed little for those calculated by PROC MIXED.
Notice that the fixed intercepts estimated by EQS and PROC MIXED differed by 1.053, which
exactly equals the fixed slope estimated in both models. When the basis coefficients in the
SEM estimation of YA are respecified to be consistent with the values used for time in PROC
MIXED (1, 2, 3, 4, 5), both models produce essentially the same results, including the same
fixed intercept.

Although the classic model also predicts changes in YB, additional specifications are nec-
essary to model group effects. First, data from different groups are stored and analyzed hi
separate data files. The same model comparisons described earlier for YA for models Ml, M2,
and M3 are specified for both groups, and all parameter estimates are constrained to be equal in
each sample. To be consistent with PROC MIXED model specifications, the basis coefficients

TABLE 15.5.2
Comparison of Multilevel and Latent Growth Models of YA Data

Random Effect (SE) Fixed Effect (SE)

Model predictors

Intercept
Slope
Covariance intercept/slope
Residual

PROC MIXED

3.222 (.635)
0.009 (.006)

-0.047 (.046)
0.228 (.024)

EQS

3.191 (.613)
0.009 (.006)

-0.038 (.044)
0.232 (.025)

PROC MIXED

8.790 (.241)
1.053 (.023)

EQS

9.843 (.248)
1.053 (.023)



592 15. LONGITUDINAL REGRESSION METHODS

TABLE 15.5.3
Structural Equation Model Analysis of YB Data

MO
Ml
M2

M3
M4
M5

Model predictors

Intercept and residual
Adds random intercept
Adds random slope and
Covariance intercept/slope
Adds fixed Slope
Adds Group
Adds fixed Slope x Group

X2

819.95
774.52
290.90

248.78
245.06
44.70

df

38
37
35

34
33
32

CFI

.00

.00

.50

.58

.59

.98

AX
2

45.43
483.62

42.12
3.72

200.36

Mf p

1 <.01
1 <.01

1 <.01
1 <.10
1 <.01

CFI = Comparison Fit Index.

for the slope are specified as 1, 2, 3, 4, and 5. As summarized in Table 15.5.3, Model 4 (M4)
tests for group effects by releasing the equality constraint on fixed intercepts, thus allowing
separate parameters to be estimated for each group. Then, Model 5 (M5) tests for interactions
between groups and slopes by releasing the equality constraint on fixed slopes in the two
samples. When comparing nested models, changes in x2 statistics in Table 15.5.3 all closely
correspond to those in Table 15.4.1. The EQS output indicates that the fixed intercept is 11.81
(SE .35) in the group coded 0 and 7.79 (SE .35) in the group coded 1. When the fixed intercept
in group 0 is subtracted from the same estimate in group 1, the difference (—4.02) is almost
identical to the parameter estimate for group effects in Table 13.4.1. When the fixed slopes are
subtracted (2.06 - 0.05 = 2.01), we also get the same parameter estimated by PROC MIXED
for group by slope interactions.

As illustrated in Fig. 15.5.2, latent growth models can be modified to account for alternative
error and covariance structures in longitudinal data. In latent growth Model B, the curved arrows
between the error factors represent specifications for autoregressive error. In Model C we see a
model that is autoregressive in the observed variables. Although a review of the mathematical
estimation of alternative models is beyond the scope of this chapter, it is worth noting that
specific techniques may vary depending on the program used. When making nested model
comparisons for YE, for instance, both PROC MIXED and EQS produced similar results in
Models Ml, and M2. This is confirmed by comparing changes in x2 values in Tables 15.4.3
and 15.5.4. When using the same basis coefficients, both programs also produced essentially
the same parameter estimates for Model 2, as summarized in the top section of Table 15.5.5.
However, the bottom portion of Table 15.5.5 shows notably different results for Model 3 once
autoregressive or "lag" effects between observed variables were added to the model. In EQS
autoregressive path specifications between each observation of YE were simply added to the
model, which means that the first observation of YE had no lag effect and was predicted only by
latent variables L and S and its corresponding error factor. To test for autoregressive effects in
PROC MIXED, a separate "lag" variable had to be created for all repeated variables, including
the first observation of YE, and this difference in model specification led to the different results
in Table 15.5.5. The specific details are less important here than the overall point that the
different modeling techniques are each correct within the context of the corresponding program
used. Although multilevel and SEM traditions have indeed come much closer together, there
are still certain areas where they do not overlap.

These simple models may be the basis for models to which more fixed or time-varying
predictors are added. In addition to the latent growth models of individual variables, newer
methods make it possible to examine latent growth models in which multiple indicators are
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FIGURE 15.5.2 Latent growth Models B and C.

TABLE 15.5.4
Structural Equation Model Analysis of YE Data

MO
Ml

M2
M3

Model predictors

Intercept and residual
Adds random intercept, random slope,
and Covariance intercept/slope
Adds fixed Slope
Adds Lag!

x2

313.84
36.93

35.07
30.96

df

14
11

10
9

CFI

.01

.91

.92

.93

AX
2

—
276.91

1.86
4.11

Adf

—
3

1
1

P

—
<.01

NS
<.05

CFI = Comparison Fit Index.
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TABLE 15.5.5
Comparison of Multilevel Latent Growth Models of YE Data

Model predictors

Model 2
Intercept

Slope
Covariance intercept/slope

Model 3
Intercept
Slope
Covariance intercept/slope

Lag!

Random E

PROC MIXED

0.387 (.093)
0.048 (.011)

-0.053 (.025)

0.1 80 (.099)
0.012 (.008)

-0.030 (.046)

ffect (SE)

EQS

0.381 (.091)
0.059 (.013)

-0.058 (.027)

0.388 (.091)
0.060 (.013)

-0.061 (.027)

Fixed Efl

PROC MIXED

9.839 (.092)
-0.024 (.031)

3.232 (.538)
0.027 (.022)

0.658 (.053)

:ect (SE)

EQS

9.889 (.089)
-0.047 (.037)

9.896 (.089)
-0.017 (.037)

-0.012 (.006)

employed for the latent variables. Such models also make it possible to explore the constancy
of the structure of latent variables over time.

15.5.3 Comparison of Multilevel Regression and Structural
Equation Model Analysis of Change

As noted, except for models using some other link or change function, one remains, more or
less, in the same framework, and these models can be fitted with either multilevel regression
programs or structural equation models. That is, one can do so if the data are at equal intervals
and complete (balanced), as in these examples. However, such balanced data are often not
available. Some designs, such as staggered longitudinal samples (cohort sequential longitudinal
studies) can be analyzed with latent growth models as well as with multilevel regression models
(McArdle & Hamagami, 1991). Nonrandom missing data, especially with regard to slope
differences, which is an all-too-likely theoretical possibility, is likely to be a serious problem
regardless of the analytic approach.11 If the missing data points are not too many, the full matrix
might be estimated by multiple imputation procedures (Section 11.3) and either a multilevel
regression or an SEM program employed. Multilevel regression programs can readily cope
with unequal intervals and missing data, including data with only a single data point for some
individuals. Although perhaps accomplished with a little more difficulty with an SEM program
than with a multilevel regression program, panel and staggered cohort designs can be carried
out with either approach (see Mehta & West, 2000, for the MX script for LGM analysis of
cohort-sequential or panel data).

In general, the advantages of latent variable SEM models include more flexibility in speci-
fication, explicitness of all aspects of the model, and potential latent variable score estimates.
However, they are most feasible when there are relatively few data points per subject. The
advantages of multilevel model estimation include much more flexibility in the characteristics
of the available data and easier employment of all the data. Multilevel regression programs
may be more flexible with regard to data that are not "balanced" with regard to the timing
and number of measurement points for each subject. In addition the multilevel programs can

11 For example, it is often the case that students with low achievement or potential respondents who are more
depressed are more likely to be missing from one or more assessments. If this problem is not taken into account by
inclusion of some appropriate indicator, the estimated mean and slope of the population including such individuals
may be highly biased by the analysis, and particularly by the empirical Bayesian procedure, which would estimate
extreme cases with missing values to be less extreme than they were observed to be.
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usually offer more options with regard to link functions and error structures and can handle
more time points.

In this chapter we have generated data to illustrate a number of the features and inter-
pretations of the multilevel program output. Analyses of real data, however, are often more
ambiguous Me Ardle and Aber (1990) provide an illuminating example of five different plausi-
ble models of change applied to a single data set. This example resulted in "aliases"—multiple
models with which the data show approximately equivalent values of the fit indices.

Recent advances in multilevel regression and LGM include clustering subjects by trajectory
type (Muthe"n, 2001; Nagin, 1999) and other elaborations of the model possibilities (Collins &
Sayer, 2001). Among the critical issues not discussed here is the question of whether the
variables and the relationships among the variables have the same meaning over time. These
issues and others are discussed in Me Ardle and Nessekoade (1994) and in T. E. Duncan,
S. C. Duncan, Strycker, Li and Alpert (1999).

15.6 TIME VARYING INDEPENDENT VARIABLES

Often the point of a multilevel analysis of a time-varying DV is estimation of the effect of one or
more IVs that change over the course of the longitudinal investigation. As noted in Section 14.2,
relationships among the average values of variables (as in analyses of variables relating to
average income at the county level) can lead to very different conclusions than relating the
same variables across the individual units (such as persons) within these aggregates (Robinson,
1950). Similarly, the relationships of the changes in IVs to changes in Y for individual subjects
may not be the same as the relationships of differences between subjects in those same IVs with
values of Y either cross-sectionally or on the average (Kraemer, Yesavage, Taylor, & Kupfer,
2000). A recent change in health, economic, or marital status will not necessarily show the
same change in Y that is observed in cross-sectional comparisons of demographic groups, or
the same effects on Y as when they are measured as fixed characteristics throughout the period
of study. In the long run it is likely that longitudinal investigations of change in process will
be much more informative about short- and long-term effects of variables than cross-sectional
studies can ever be.

In addition, there may be substantively and statistically significant differences in the rela-
tionship between time-varying IVs and Y for subjects in different subgroups. For example, in
clinical randomized tests of differential treatment efficacy, an experience, independent prob-
lem, or intervention that takes place early in the trial may not have the same meaning or effect
that it would have had later in the trial.

The methods employed by the different multilevel analyses are designed to make tests
of these hypotheses appropriate, flexible, and efficient. In doing so, like all model-based
techniques, they require specification of one or more hypothesized models that gave rise to the
data. Because these models are different from the more familiar ones based on cross-sectional
data, we have yet to become fully fluent in the matching of our theoretical reasoning with
the implied model. Once specified and tested, such analyses are evaluated in terms of the
closeness of the fit of the data to the alternative models. The multilevel regression programs
that we discussed earlier provide for such changing IVs and alternative models.

Changes in variance and covariance over time also provide clues as to a likely appropri-
ate structure for the model.12 For example, suppose that either the observed or the residual
covariances (or correlations between scores at different time points) are consistent over time.

12As Mehta and West (2000) show, differences in the linear slopes for individuals must be reflected in a pattern
of decreasing and then increasing variance, although not necessarily the full pattern within the observed age range.
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In general, such a circumstance suggests that differences between subjects may be accounted
for by "fixed" FVs (stable characteristics of the subjects, such as gender). Random effects that
remain may reflect unmeasured but consistent or stable individual differences in traits or con-
texts. On the other hand, changes in variance and covariance over time not accounted for by
simple differences in slopes suggest the existence of important to-be-measured time varying
effects that should not be dismissed as "random" error.

15.7 SURVIVAL ANALYSIS

One particular kind of longitudinal question is that of how long it takes to reach some change
in dichotomous status (to die, to recover, to get married, or to succeed) and whether there are
differences in this time profile associated with sample characteristics or group membership.
Special parametric and nonparametric models have been developed for this kind of data.

15.7.1 Regression Analysis of Time Until Outcome
and the Problem of Censoring

When the outcome of interest is the time that elapses before some change in state or status
such as death or recurrence of a behavior, it may be reasonable to employ that duration as Y in
an ordinary regression analysis. For example, suppose the problem was posed as the time to
the first gross role failure (represented in our earlier example as role impairment scores of 1.6
or higher). We show some such data as "actual time" in Table 15.7.1. Should the distribution
of durations be grossly non-normal, an appropriate transformation may solve the problem
(see Section 6.4). However, we note in this example a problem that makes the analyses of
durations by ordinary multiple regression problematic. This is the problem that at the end of

TABLE 15.7.1
Data and t Tests for Time to Role Failure

CH15EX07
ID no.

1
2
3
4
5
6

193
194
195
196
197
198

Mean Total
Group 1 Mean
Group 2 Mean
t test (df)

Actual time

.91
1.85
7.10

11.52
1.21
9.91

.81
10.68

.83
9.14
1.15
1.51

5.16
6.42
4.03

4.69 (198)

Observed time

.91
1.85
7.10
—
1.21
9.91

-.81
—
.83

9.14
1.15
1.51

3.88
4.84
3.19

3.32 (156)

Group

2
2
2
1
2
1

2
1
2
2
1
2

1.55
n = 92/105
n = 66/95
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the study some subjects had not yet "attained" role failure and therefore there is no clear time
to attainment for these subjects. In our example these data are shown as "observed" time in
Table 15.7.1. Obviously, if we leave these individuals out of the analysis we may seriously
distort the picture.

Among the data we see that of these 12 subjects, 2 took longer to meet the criterion than
the follow-up allowed (10 units), namely subjects 4 and 194. We also note that leaving out the
subjects who had not met the criterion at follow-up led to a substantial underestimate of the
mean time taken by this sample. The mean of those meeting the criterion by follow-up was
3.88 in comparison to 5.16 if the study had continued until all subjects met the criterion, an
underestimate of 25% in this sample, in which 42 or 21% of the sample was lost. A similar
decline in the estimate of the mean difference between the two groups is apparent. Complete
data give a mean difference of 2.39 time units (6.42 - 4.03), whereas incomplete follow-up
gives a mean difference of 1.65 time units (4.84 — 3.19).

In order to analyze these data using time to criterion as the dependent variable in a regression
equation, one may assign some time beyond the study cutoff date to these subjects, but such
an assignment will necessarily be viewed by other scientists as arbitrary. One may treat those
who have attained the status in one analysis and examine the correlates of the rate of status
attainment in another, but it may be awkward to put these two analyses together.

In some studies the problem is even more serious because the length of follow-up may vary
from one subject to another. This can happen when subjects enter the study over a period of
time but the study ends at the same time for all subjects. It can also happen when some subjects
are lost to follow-up before the end of the study, which may also happen because the individual
is no longer in the "at risk" status, as, for example, when a subject dies. This problem is known
as the problem of right censoring. That is, if each person's time in the original state is viewed
as a line that extends to the right to a length representing the time until that state is changed,
some lines will be censored (end) before the state is attained, and indeed some participants may
never attain the state in question. Figure 15.7.1 illustrates this phenomenon for a (fictitious)
study of re-arrest in a group of prison releasees. In general researchers can follow up subjects
only for a certain period of time, and some people are lost to follow-up, so that it is not known

FIGURE 15.7.1 Time to re-arrest or loss to follow-up.
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TABLE 15.7.2
Survival Analysis of Time to Role Failure

Stratification by groups; Kaplan-Meier estimation:

Group 1, n = 66 of 95 failing:
Product limit likelihood = —334.967. Mean survival time = 6.441.
Survival Quantiles: 75%, 2.695; 51%, 7.181; 31%, 9.908

Group 2, n = 92 of 105 failing:
Product limit likelihood = —455.321. Mean survival time = 4.030
Survival Quantiles: 75%, 1.272; 50%, 2.300; 25%, 7.100

Log-rank test of group difference: Tarone-Ware : x2 = 16.212,1 df, p < .01

if and when the change of state occurred. As noted, the intake period may extend over time so
that some individuals are observed over a longer period than are others, and those who have
not yet changed their status when the study ends may include a number with relatively short
follow-up periods.

When one can make the assumption that censoring due to loss to follow-up or any other
reason is not likely to be related to the timing of the change in status, it is possible to use survival
methods to estimate the curves representing the rate of change in status for all members of the
sample, or for members of subsamples of interest. This function is called the Kaplan-Meier or
survival function. It is also possible to focus on the conditional probability of change in status
given "survival" in the original state up until that point in time. The logit of this function is
called the hazard function. The most common statistical approach to estimating this function
was devised by Cox (1972; Cox & Oakes, 1984) and is often called Cox regression. This
approach begins with data in which the duration of the interval to the event being studied is
measured in continuous time, as in our illustrative example. Table 15.7.2 provides a part of the
output from a survival analysis of the data presented in Table 15.7.1. We note that the estimated
means of the two groups from this analysis, 6.44 and 4.03, are much closer to the complete
sample values (6.42 and 4.03) than were the data actually "observed" in the (fictitious) study.
The output also provides estimated times at which quartiles (25%, 50%, 75%) of each group
had achieved the target status and a significance test on the difference between the curves in
the two groups.

FIGURE 15.7.2 Survival function for two groups.



15.7 SURVIVAL ANALYSIS 599

As a rule survival functions are graphed, and such graphs may be as informative about the
data as the formal statistical analyses. Figure 15.7.2 provides the estimated changes over time
(survival function or proportion remaining in the original status) for the two groups in the
illustrative data. Confidence limits on these lines are usually also available as part of computer
program output. The survival function model is nonparametric; however, when a particular
model for change over time is appropriate, parametric comparisons of curves are possible.

An alternative common situation is one in which the researcher does not know exactly when
the event occurred but knows the interval within which it took place. For example, it may have
happened in a given year or in some other unit representing the times between systematic
reassessments. Survival methods have been adapted to such data as well, although they will
not be reviewed here.

The analysis of data with time in discrete units is easier to link to methods already reviewed
in this book, and therefore we will review it here briefly. The analysis of hazard functions
over discrete units is mathematically closely related to logistic regression, and indeed may
be accomplished by means of a logistic regression program if the data are structured so as to
create a record for each subject for each time period up to the point when the change in status
occurs (see Singer & Willet, 1991). By such a structure we literally mean that each subject is
represented by three variables: ID, time of assessment (e.g., 0 for the beginning of the study),
and status (0 at the beginning of the study), as well as any other variables representing group
membership or control variables. An additional line of data is entered for the subject with the
same variables up to the point at which the status changed to 1 or the subject was lost to follow-
up (or not otherwise followed further although still in zero status, because of death, conclusion
of the study, etc.). In such a structure the hazards associated with individual subjects are a
level 1 variable, as earlier, in a multilevel logistic regression program. The dependent variable
is whether the change hi status has or has not occurred during the observed time period, and
the predictors include the time variable, group membership variables, and controls.

When we include independent variables in the analysis the intercept in the equation for
the hazard function (the logit of the conditional probability of changing to the "outcome"
state) represents the risk when the values of all IVs are at zero (which suggests the value of
centering these variables). The B{ coefficient for each IV represents the (log of the) ratio of
odds of moving to the outcome status associated with each increase of one unit in that IV
(see Section 12.3). As in the simpler logistic regression model with one line per subject, the
analytic programs provide appropriate standard errors or confidence limits for the statistics in
the prediction model.

15.7.2 Extension to Time-Varying Independent Variables

A useful elaboration of the survival model is to one in which the values of the IVs may change
over time. Again, picture the creation of a file in which subjects are repeatedly entered until
the point in time when they enter the status that is the object of the investigation. Since each
IV is repeated on each line of data it is possible to enter different values when their values
change. The interpretation of the hazard equation is unaltered.

15.7.3 Extension to Multiple Episode Data

There are circumstances in which the "outcome" status may not be final, and individuals may
move back into the risk status and potentially re-enter the outcome status. For example, suppose
that one is examining relapse from episodes of depression or time to establishment in regular
housing among the homeless. The data collection may begin in the former case with recovery
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from an episode of depression and in the latter case with the loss of housing. Among those
who have another episode of depression or who obtain regular housing there may be some
subjects who again recover, or who again lose their housing. In the data structure described
here, subjects who attain the outcome state (relapse or housing) are not represented in the data
until they are once again in the "opening state" (recovered or homeless), at which point they
begin as time 1 again. A variable representing the episode number would make it possible
to determine whether the hazard associated with a given IV remains constant over multiple
episodes. Willet & Singer (1995) provide more detail and examples.

15.7.4 Extension to a Categorical Outcome:
Event-History Analysis13

As we noted in Chapter 13, it is possible to expand from a two-value dependent variable to a
categorical variable with more than two categories. Event-history analysis, a term often used in
economics and sociology, may include survival analysis (with two statuses) or elaborations for
ordered or unordered categories (Blossfeld & Rohwer, 2002). Such an analysis may often have
the goal of determining modal sequences of categorical memberships or states among subjects.
Because the statistical treatment and the kinds of questions involving multiple categories
go well beyond those readily included in a regression framework, they will not be further
discussed here.

15.8 TIME SERIES ANALYSIS

Classical time series analyses examine changes in a variable for a single unit over equally
spaced time intervals. Applications may be for the purpose of forecasting future values of Y,
or they may be designed to estimate the likely effect on Y of changes in one or more "input"
variables (Box, Jenkins, & Reinsel, 1994). In the social sciences they are often used in the
analysis of social or economic policy. Thus, in contrast to the techniques discussed earlier, the
method and inferences are based on changes seen in a single unit over a number of time periods
rather than on contrasts between individual subjects who do or do not change over time. In this
design the sample size is not based on the number of subjects (which is one, or one pair, or one
set of interacting objects) but on the number of time points. For example, we might study the
effect of daily maximum temperature on the number of bottles of drinking water purchased in
a city over a series of 90 consecutive summer days. The n = 90, the number of bottles is the
DV, and maximum temperature is the IV.

Other areas in which studies of single units are employed include certain areas of psy-
chophysics and learning theory (Gregson, 1983) and the interaction of individuals in dyads
(e.g., Gottman, 1979, 1994). In some applications coefficients based on time series analyses
may be used as variables in between-subjects designs. For example, the extent to which the
behavior of one member of a dyad influences the behavior of the other member (the regression
of subject B's behavior on the lagged subject A's behavior) may be employed as a descriptor
of either the dyad or of one or both members (e.g., Jaffe, Beebe, Feldstein, Crown, & Jasnow,
2001).

13The term event-history analysis is sometimes used exchangeably with survival analysis. In this discussion we
limit its meaning to situations in which more than two state variables are simultaneously examined.
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15.8.1 Units of Observation in Time Series Analyses

Because it would seldom be a behavioral researcher's goal to generate a theory that applied
to only one person, and perhaps also because of the very complexity of the potential feedback
that may be modeled, such techniques are often applied to aggregated units, as in the testing
of economic theory. In such aggregate units, despite the complexity of theory, the causes may
be fewer than in the observation of a single individual, where a variety of very short term
influences may make the variables unpredictably unstable.

Consider, for example, the investigation of unemployment rates in a large city as compared
to unemployment durations for a single individual, both measured over a 30-year period.
We may be unlucky and choose an individual who is never unemployed during that time or
who is unemployed only once or twice so that inferences about causes would be based on
little information. Even if we find an individual who is unemployed several times we would
have a range of potential causes—age, past job experience, current economic conditions,
opportunity structure in occupations for which she has been trained, the effects of pregnancy
and childbearing—that could not reasonably be assessed with regard to so few data points.
Many of these causes may change only modestly or not at all for the entire population of
a large city, leaving a more feasible number of variables to be included in the theory and
tested in the data, which will vary continuously over time. Because of these smaller numbers
of operational influences, aggregate data can ordinarily be expected to produce much larger
multiple correlations. A useful consequence is that despite the small sample sizes that may
characterize the available number of time units on aggregate data, the analyses will have
reasonable statistical power because of the small residual variance.

15.8.2 Time Series Analyses Applications

Time series analyses solve the problem of determining priority in changes to bolster causal
inferences by measuring both dependent and independent variables over time to trace how
changes in one variable are followed by changes in the other. However, the fact that we
have moved our focus from differences in changes across subjects to changes over time for a
given unit does not mean that we have eliminated the inferential problems caused by potential
common causes and causal effects in the opposite direction. Just as in the two-wave study
discussed in Section 15.2, we may find that the presumed effect of Xt on F(r+1) was really due
to the effect of Yt or Y(t-\) on both, or to other common causes (serially correlated errors and
omitted variables). Of course, with time series data this is a potential problem with regard to
every variable at every time point. One solution is to remove from each variable that proportion
of its variance that is attributable to its value in the previous time period. As we noted earlier,
this phenomenon is autocorrelation. This may be done by partialing from each variable at
each time t the variance attributable to its value at the previous t — 1 period. These "lagged"
variables (e.g., Xt ) then supply the basic data for the analyses.'xt-\

The time series design makes it possible to consider effects of variables at various lags,
that is, over one or more subsequent time periods, and of effects of inertia on the system.
Therefore, time series analyses are often suitable for testing more complex models involving
direct and indirect feedback or cyclical phenomena. However, unless there is a lot of change in
the variables over a large number of time periods, a number of different complex models may
fit the data more or less equally well. For this reason, time series analyses may often be more
useful in testing theories and estimating magnitudes of theoretically generated parameters than
in generating "exploratory" models.

One of the applications of time series analysis in the behavioral sciences is the use of
interrupted time series to estimate the effect of an intervention or treatment. The study begins
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with a thorough model of the relationship between time, changes in other variables, and changes
in Y. Then the variable representing the intervention is added to the model to estimate its effect
on Y. In such a design it is critical to have an accurate model of what the level of Y would have
been in the absence of the intervention (Velicer & Colby, 1997). In our study of temperature
and bottles of water, for example, we may have planned this in order to determine the effect
of opening a number of city water fountains on the bottles purchased. We could then add a
variable coded 0 prior to the fountain opening and 1 thereafter, thus enabling us in our analysis
to control for the effects of any unanticipated changes in the weather on our estimate of the
fountain effect on water sales.

15.8.3 Time Effects in Time Series

When the effects of previous values of Y are removed, in some sense one may say that the
effects of time are not the subject of time series analysis at all. Rather, the focus is on the
contingency of change in one variable (Y) on change in other variables (the IVs). If there is a
theoretical reason for expecting a longer interval of influence, or for there to be inertia in the
system, variables may be lagged for t — 2, etc., or the model may provide for autoregressive
effects of moving averages (ARTMA models), as deemed appropriate. Time series analyses
have many particular features that are integral to the theories being tested. A fuller presentation
of these features and options is beyond the purposes of the current brief introduction. Recent
developments have linked time series and cross-sectional data (Dielman, 1989).

15.8.4 Extension of Time Series Analyses
to Multiple Units or Subjects

Time series analyses of individual subjects may be employed as a prelude to comparisons of
models in a sample of individuals (e.g., Zevon & Tellegen, 1982). An examination of our earlier
discussion of multilevel analyses with time-varying IVs (Section 15.4.6) reveals a similarity of
purpose between these analyses and time series analyses in which the goal is determining an
estimate of the average timing and magnitude of influence of IVs on 7. Programs for carrying
out such analyses with a perspective and functions of variables more like those of traditional
time series analyses are under development or available for the matrix-programming data
analyst.

15.9 DYNAMIC SYSTEM ANALYSIS

When two or more variables have been measured on several occasions, it may be possible
to test mathematical models of theoretically plausible patterns of mutual influence. These
models may apply to single subjects (Molenaar, Rovine, & Corneal, 1999; Wood & Brown,
1994) or to groups of subjects (e.g., Boker, Schreiber, Pompe, & Bertenthal,1998; Hamagami,
McArdle, & Cohen, 2000). When models are fairly simple, as when the change from one
occasion to the next in either or each can be assumed to be reasonably represented as a linear
function of the other, it is possible to estimate such models for true or latent variables. With
simple additive models, estimation may also be possible using combinations of cross-sectional
and longitudinal data.

Although presentation of the method is beyond the scope of this chapter, it is instructive to
examine a graphical display of the findings from recent analyses.14 In this study the topic was

14Manuscript available from P. Cohen.
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FIGURE 15.9.1 Residential/romance vector field.

the reciprocal influence of residential setting, financial support, and romantic commitment
during the transition from adolescence to young adulthood between ages 17 and 27. Each
of the three variables was based on structured narrative interviews and rated on a 100-point
scale ranging from 0 = a fully childlike state (e.g., residence: living in a residence that was
selected, furnished, maintained, and supported entirely by parents) to 99 = a fully adult state
(e.g., romance: living with a partner with whom there is a mutual long-term commitment,
characterized by efforts to maintain partner satisfaction).

Figure 15.9.1 provides a graphic depiction of the mutual influences between residence and
romance and Fig. 15.9.2 between residence and finance.15 In each figure arrows indicate the
predicted direction and magnitude of change in latent variables over the next period (in these

FIG URE 15.9.2 Financial/residential vector field.

15There is, of course, a third dyad, romance and finance, not depicted here.
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data, the following year) for an individual in that segment of the bivariate distribution. The
region in which these "arrows" consist of little more than dots indicates the region of stability
or no influence on the following year's values of the two variables.

Figure 15.9.1 is interpreted as follows: The region of equilibrium between romance and
residence (the region where the "arrows" are minimal or nonexistent) runs from a point of
childlike residential status but a score of 20 on the romance variable (casual dating) up through
the region of equally adult status on the two variables. When residential transition status was
more adult than romantic status, the subsequent changes were predominantly in the more adult
direction (arrows upward and to the right) for both romance and residence. When the romantic
transition level was more adult than the residential status, both variables tended to move toward
a childlike status in the following year.

Looking at the dynamic relationship between financial "adultness" and residence transition
level (Fig. 15.9.2) we note that the region of stability occurs when the financial situation is
a little more adult than the residential one. When the residential status is more adult than
the financial status there is a tendency for both to increase in the following years. When the
finances are too much more adult than the residential situation (e.g., mostly self-supporting
but still living in a parental home) the outlook in the following year is toward a more childlike
status in both variables.

These analyses were carried out by an SEM program and showed all bivariate bidirectional
effects to be statistically significant. We will not attempt a full presentation here, these findings
being only an illustration of the possibilities when the data are sufficient.

15.10 STATISTICAL INFERENCE AND POWER ANALYSIS
IN LONGITUDINAL ANALYSES

Repeated measure ANOVA and ANCOVA use the conventional F tests employed in other
OLS procedures, with the required separate error terms for within-subject and between subject
effects. Power estimation and analysis methods may be found in J. Cohen (1988); Borenstein,
Rothstein, and Cohen (2001); and elsewhere; and will not be elaborated here.

More complex methods employing maximum likelihood and related statistical algorithms
ordinarily produce goodness-of-fit measures and indices. As noted in earlier discussions (e.g.,
Section 12.8) significance tests on these methods employ a different logic. The goal of the
analysis is to produce a model that is consistent with the data, and a statistically significant x2

in such an analysis indicates that the data are "significantly" unlikely to have been produced by
the specified model. The same effect of sample size is seen on these tests, where a statistically
significant x2 is a sign of poor fit, as in traditional tests, where a significant difference from some
null hypothetical value is usually the desired goal. Therefore large samples very frequently
show "significant" deviation from perfect fit. For this reason, conclusions about the adequacy
of the model are usually attentive to both a decline in the x2 when additional estimates are
added to the model and the goodness-of-fit indices that take both the fit and the number of
parameters estimated into account. When models are "nested" so that one model estimates the
same parameters as another, plus some additional parameters (so that there are fewer constraints
on the model), it is possible to use the difference in x2 (with df equal to the difference in number
of estimated parameters) to test whether the less constrained model fits the data significantly
better. The most constrained model typically assumes that there is no change in means over
time, that error variances are equal, that factor loadings on latent variables (if included in
the model) are equal, or equivalent "nil" kinds of models. In general investigators will have
examined data sufficiently prior to the formal analyses to ascertain that this model is not likely
to be optimal.
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Perhaps one of the principal problems in longitudinal data is the frequently small number of
time intervals covered. The power to test more complex models when there are few time points
is sharply limited. As models have more and more parameters there are more and more possible
variations that may appear to be similarly compatible with theory and previous research. As
noted earlier, MeArdle and Aber (1990) provide an explication of a large number of alternatives
for a fairly simple multi-occasion data set. Thus, it is extremely critical for the investigator
to examine alternatives that are consistent with "principled argument" (Abelson, 1995) before
making the case for preferring a particular one based on an empirical estimation.

15.11 SUMMARY

Section 15.1 notes that longitudinal analyses usually have one or more of three goals: (1) They
are designed to improve inferences about the direction and magnitude of influences of one
variable or set of variables on another by establishing sequence, (2) they are designed to inform
about average changes in variables over time/trials/age, or (3) they are designed to inform
about individual or group differences in change over time and variables that relate to these
differences. The simpler methods in this chapter are usually used with either the first or the
second goal in mind. Newer methods may examine two or more of these issues. Almost all
of the newer methods are designed to help solve some common data problems as well. The
principal problems are measurement error, missing data due to attrition or other problems,
different assessment intervals or periods, and sometimes problems due to the sparseness of the
number of repeated assessment occasions. This summary describes each section in this chapter
with regard to the kind of substantive question being asked and the structure of the data that
are being analyzed.

Section 15.2: Research question: What are the effects across subjects of prior values of IVs
on subsequent values of or change in Yl Data structure: Multiple subjects measured at each
of two occasions on a scaled or dichotomous dependent variable and on the IVs of interest.
This section reviews the use of multiple regression with two or more waves of data collection,
with an emphasis on bolstering inferences about the direction and magnitude of influences
on Y. It is shown that the spacing of the assessment interval relative to the timing of effects
of independent variables may be critical for estimations of both direct effects and mediation
effects.

Section 15.3: Research questions: What patterns of change over occasions characterize
the average subject, and how do these patterns differ for subjects in different groups? Data
structure: Multiple (repeated) measures of a scaled dependent variable for each of a number
of subjects or other units and one or more variables that divide subjects into groups (often, but
not necessarily, of equal size). Intervals between assessments are generally equal. In classical
repeated measure ANOVA, the principal goal is determining differences in the average Y scores
at each measurement point for the sample as a whole or for subgroups. When the data consist
of longitudinal assessments, the analyses may also determine whether the pattern of means fit
linear or quadratic trends (or higher order shapes if one's theory justifies such an examination),
and whether these trends differ for subgroups.

Multilevel regression analyses of longitudinal data (Section 15.4) have goals similar to
those of the repeated measure ANOVA but they expand the investigation of effects to include
not only the "fixed" variables considered in the ANOVA but also the coefficients of individual
subjects' equations predicting Y as "random" IVs. Research questions: A very wide range
of questions may be asked from the straightforward tests of curve components of change
to effects of stable or changing individual differences between subjects on levels or rates of
change in the dependent variable. Data structure: Computer programs now available offer
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tremendous flexibility with regard to the data requirements, with variations in numbers and
timing of assessments for different subjects manageable when certain assumptions are justified
or testable. The independent variables in these analyses have the full flexibility of the regression
procedures discussed in this book, and in addition they allow analyses to test the fit of the data
to models with different error structures and link functions.

Latent growth models (Section 15.5) have a similar goal to that of the polynomial curve
tests in repeated measure ANOVA. However, they estimate changes in latent true scores rather
than observed scores and include provision for individual differences in levels and slopes. In
addition, the explicit SEM specification of observed, true, and error variables enhances the
potential informational yield of the analyses. Research questions: What is our estimate of
average error-free change in means over time or age? What function best characterizes these
changes? Data structure: A scaled dependent variable measured at multiple time points for a
set of subjects.

Section 15.6 addresses analyses with time-varying covariates (IVs). Research questions:
What are the associations between changes in Y over time and one or more IVs that also
change? Do these associations differ for subpopulations? Data structure: Scaled dependent
and independent variables at multiple (not necessarily the same) time points for multiple
subjects who may be further distinguished on variables that are not time dependent. These
may be carried out by multilevel regression, SEM, or survival analysis computer programs.

Survival analyses are designed to analyze the time duration to change in a dichotomous
dependent variable (Section 15.7). Research questions: How much time does it take to attain
some change in status? Do the time curves differ for different subgroups of subjects charac-
terized by other variables? Data structure: Information on the time to some specified change
in state (e.g., death, recovery, marriage, divorce) or, if the change has not occurred, the time
until loss to follow-up on each of a number of subjects. Elaborations of this method include
time-varying predictors and potential re-entry into the risk status. Event-history analysis is a
variation on this technique for multiple category outcomes.

Time series analysis is taken up in Section 15.8. Research questions: What can we predict
for the future based on current trends in variables? What is the magnitude of the effect of a
change in X on a change in Y? Over how long a period do effects operate, and are there cyclical
effects or inertia in the system? Data structure: Measures of two or more variables at each
of a number of consecutive time points or intervals for a single unit (such as an individual or
an aggregate such as a city). Time series analyses examine the relationships of earlier IVs to
change in Y. Although these analyses provide a very strong case for inferences of effects, they
have traditionally been limited to one case or subject at a time. Newer methods may combine
time series analyses of multiple units.

Dynamic system analysis is briefly described in Section 15.9. Research question: Does one
or another particular model of reciprocal effect describe the patterns of change in two or more
variables over time? Data structure: Two or more scaled variables measured on one or more
subjects over at least several time points. Current applications focus mainly on the examination
of linear reciprocal effects of two variables at a time.

Statistical tests for OLS methods employ standard F tests, for which power analysis
techniques are available elsewhere. More complex power and precision analyses are more
readily carried out using a special computer program. Most of the newer methods use one or
another of the iterative estimation procedures, with likelihood ratio tests for significance of
the model improvement and indices of goodness of fit. One limitation of statistical power to
test more complex models is the number of data points available for each subject. As the mod-
els become increasingly complex they are even more obviously demanding of clearly stated
investigator argument and consideration of plausible alternatives than are the OLS methods
(Section 15.10).
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Data are provided on the accompanying computer disks with appropriate structures for
random regression and growth model techniques. Once again we caution the reader that these
programs will allow alternative models (assumptions that can be made about the structure of
the data) that have substantive implications and should be used with advice and assistance
from experienced statisticians. More information on these models may be found in Bryk and
Raudenbush (1987); Little, Schnabel, and Baumert (2000); MacCallum, Kim, Malarkey, and
Kiecolt-Glaser (1997); Snijders and Bosker (1999); and Wolfinger (1997).



16
Multiple Dependent Variables:
Set Correlation

16.1 INTRODUCTION TO ORDINARY LEAST SQUARES
TREATMENT OF MULTIPLE DEPENDENT VARIABLES

In Chapter 5 and subsequent sections of this book we have discussed the analytic utility of
thinking of independent variables as members of a smaller number of sets. These sets, each
of which may have one or more members, may represent a distinct role in the research, such
as a set of potential confounders (common causes of independent and dependent variables) or
control variables, whose central role is to rule out certain alternative reasons for a relationship
between Y and the IVs of interest. Alternatively, they may represent the multiple facets or
aspects of a research construct, as, for example demographic factors, or treatment features. Or
a set may include the g — 1 variables needed to represent the g groups in a categorical variable.
Or a set may include curvilinear or interactive aspects of one or more variables.

Now, all this refers to the independent variables, the right-hand side of the equation, which
is where the multiplicity of MRC resides. The left-hand side contains the single variable Y.
Only when the singular Y is replaced by a plural set of variables Y whose interrelationships
are taken into account in the analysis does the method properly become multivariate.1

16.1.1 Set Correlation Analysis

Consider the benefits that would accrue from a generalization of MRC such that a set Y
could be related to a set X, either of them partialed, if and as necessary. The possibility of
representing virtually any information, and the use of partialing for control and specification
would now extend to the left-hand side, the dependent variables, as well. The resulting method,
set correlation (SC), is a realization of the general multivariate linear model, and has the
following properties:

1 In this chapter as elsewhere in the book we identify sets of variables with bold italic letters (e.g., Y) and individual
variables within sets by italic letters. In some discussions these sets will be further identified as those of basic interest
(e.g., yB and ATB) and those sets that are partialed from the basic sets (e.g., YP and XP).

608
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1. It is generalization of MRC, a truly multivariate MRC, and can employ the structural
features of MRC (e.g., hierarchical entry of variables) with dependent research factors
of any kind.

2. Set correlation bears the same relationship to the standard OLS multivariate methods
that MRC does to the standard OLS univariate methods. Thus, multivariate analysis of
variance (MANOVA) and covariance (MANCOVA) are special cases of SC.

3. Its generality frees the analysis from the MANOVA requirement of nominal scale
research factors, making possible multivariate analysis of partial variance, multivariate
significance tests, and other novel analytic methods.

4. Set correlation provides a single framework of measures of association, parameter esti-
mation, hypothesis testing, and statistical power analysis that encompasses most of the
standard data-analytic methods.

16.1.2 Canonical Analysis

The traditional multivariate correlation method is Hotelling's (1936) canonical analysis (CA).
Also, the application of CA to variously partialed correlation matrices has been described by
Roy (1957), Hooper (1962), Rao (1975), Timm and Carlson (1976), and others. Yet it is not
an entirely satisfactory general tool for multivariate analysis.

In CA, the strength of the overall relationship between two sets of variables X and Y is mea-
sured by a series of canonical correlations (C), each a product moment correlation between
weighted linear combinations of the kx variables of X and the kY variables of F. These are called
x and y canonical factors (c/s), or canonical variates. The weights are such as to maximize the
correlations between paired c/s subject to the further condition that each cf correlate zero with
all but its paired cf. The number of such cf pairs (and hence of coefficients in C) is the lesser of
the number of variables in the two sets, min(£y, kx), here designated as q. Thus, the X, Y rela-
tionship is efficiently summarized by q correlations between as many pairs of weighted combi-
nations of AT and F, each in turn extracting as much (new) between-set covariance as possible.

In a seminal article, Rozeboom (1965) showed that the strength of relationship between
two sets can be quantified by the degree of overlap of the spaces they span, and the c/s
are covariance-maximizing principal components of the between-set correlations. These are
exactly analogous to the familiar variance-maximizing principal components extracted from
the correlations among the members of a set in factor analysis.2

Two problems arise with the use of CA. First, it provides q Cs where a single measure of the
strength of the overall relationship, some generalization of multiple R2, is desired. The second
is the limited utility of the c/s in the understanding of the nature of the X, Y relationship.
Efforts to interpret these through the weights of factor loadings of the variables frequently
read like laundry lists and are seldom convincing. In light of Rozeboom's demonstrations
that they are principal components of the between-set covariances, this is hardly surprising,
because we have known in factor analysis for many decades that principal components are not
interpretable as functional unities. Thurstone invented rotations to simple structure in order
to achieve substantive meaningfulness. Accordingly, the rotation of c/s to simple structure
has been advocated (Cliff and Krus, 1976). This may occasionally help, but simple structure

2Despite our efforts elsewhere in the book to avoid matrix notation and complex mathematical terms, the presen-
tation in this chapter unavoidably assumes some familiarity with matrix operations and more complex mathematics.
For readers for whom this material is completely unfamiliar we recommend paying attention to the words and taking
the equations more or less on faith. It is also wise to work with these methods under the initial supervision of a more
mathematically sophisticated colleague. Of the larger statistical packages, only SYSTAT provides user-friendly means
of carrying out these analyses.
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in factor analysis is predicated on the employment of many variables so as to provide broad
coverage of some behavioral domain; simple structure merely implements the expectation
that most of the correlations between many variables and several factors representing the
functional unities in a domain will be zero or negligible. However, variables analyzed in CA
are, in general, not so selected, and the simple structure rationale does not obtain. Thus, the q
pairs of cfs, original or rotated, cannot serve as our primary analytic device. Instead, in SC,
we work directly with the original variables, and by means of partialing, we carve out of the
overall association the relationships between substantively meaningful components.

16.1.3 Elements of Set Correlation

The technical literature contains the derivations and proofs of the elements of SC: The most
important sources are Wilks (1932) and Rozeboom (1965), who first gave the derivation and
rationale for whole and partial multivariate R2. Hooper described trace correlation for whole
(1959) and partialed (1962) sets. Roy (1957) and Rao (1975) described the CA of partial cor-
relations, and Timm and Carlson (1976) that of semipartial and bipartial correlations. Van den
Burg and Lewis (1988) published comprehensive descriptions and proofs of the properties of
multivariate R2 and trace correlation for whole and partialed sets.

In what follows, Y and X represent basic sets of variables. Set Y may be a set of dependent
variables Y or a set of dependent variables from which another set Z has been partialed, repre-
sented as Y • Z. Similarly, set X may be a set of independent variables or a set of independent
variables from which another set W has been partialed, X • W. All references to sets Y and
X in subscripts and in the formulas that follow are to be understood to mean the "left-hand"
or dependent variable set and the "right-hand" or independent variable set, whether or not
either is a partialed set. Multivariate relationships, such as multivariate R2, will be indicated
by subscripts indicating the set of dependent variables (F) separated from the set(s) of IVs by
a comma, as Ry^ o^Ryj^wz-

16.2 MEASURES OF MULTIVARIATE ASSOCIATION

It is desirable that a measure of association between sets be a natural generalization of multiple
R2, bounded by 0 and 1, invariant over full rank (nonsingular) linear transformation (e.g.,
rotation) of either or both sets, symmetric (i.e., R2^ = /^y), and not decrease in value when
a variable is added to either side. Of the measures of multivariate association that have been
proposed (Cramer and Nicewander, 1979), three have been found to be particularly useful for
SC; multivariate R2, and the symmetric (T2} and asymmetric (P2) squared trace correlations.

16.2.1 R2
YiX, the Proportion of Generalized Variance

Using determinants of correlation matrices3:

3 |Ry^ | stands for the determinant of the correlation marix Ry^, where there may be multiple variables in either
or both sets.

where RFv¥ is the full correlation matrix of the variables in the Y and X sets,
Rr is the matrix of correlations among the variables of set Y, and
Rx is the matrix of correlations among the variables of set X.
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This equation also holds when variance-covariance or sums of squares-products matrices
replace the correlation matrices.

RYJ may also be written as a function of the q squared canonical correlations (C2) where
q = min (kY, kx\ the number of variables in the smaller of the two basic sets:

Ry^ is a generalization of the simple bivariate r2 and multiple R2 and is properly inter-
preted as the proportion of the generalized variance of set Y accounted for by set X (or vice
versa, because it is symmetric). Generalized variance (Wilks, 1932) is the generalization of the
univariate concept of variance to a set of variables and is defined as the determinant of the
variance-covariance matrix of the variables in the set. One may interpret proportions of gener-
alized variance much as one does proportions of variance of a single variable. RYfX may also be
interpreted geometrically as the degree of overlap of the spaces defined by the two sets, and is
therefore invariant over nonsingular transformations of the two sets, so that, for example, RYfX

does not change with changes in the coding (dummy, effects, or contrast) of nominal scales.
RYJ makes possible a multiplicative decomposition in terms of squared (multivariable)

partial (but not semipartial) correlations. For example, with set X made up of the subsets A, B,
and C, the following relationship holds:

The R2s on the right (except the first) are squared multivariate partial correlations. It is also
the case that the multivariate partial R2 can be written as a function of whole multivariate /?2s:

where R\tXz *s me multivariate R2 between set Y and the combined sets X and Z.
Both these properties of R YfX are proper generalizations from multiple R2, that is, they hold

when set Y is a single variable, Y. However, the following relationship for the semipartial R2

from multiple/?2, RY(X.Z) = #y(;rz)~^rz(Section3.3.2)does not generalize to muluVariate/?2.
Thus, multivariate R2 affords a multiplicative but not an additive decomposition.

16.2.2 T\ x and P\iX, Proportions of Additive Variance

Two other useful measures of multivariate association are based on the trace of the between
set variance-covariance matrix of the basic Y and X matrices,

The eigenstructure of this matrix is basic to CA, and its trace, VY>X, is used in testing multivariate
association (see, e.g., Anderson, 1984, p. 326; Pillai, 1960).

Now, Vyj is symmetrical (VYjc = Vy,yX invariant over nonsingular linear transformation
of either or both sets, and cannot decrease with the addition of variables to either set. But
it cannot serve as a measure of association because it increases indefinitely as the number of
variables increase. It can be shown that it equals the sum of the q squared canonical correlations.
Its maximum, therefore, is q. One way to render a measure of association from VYjX is to divide
it by q. The result,
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the mean of the q squared canonical correlations, is defined as the symmetric squared trace
correlation, because T\^ = TXj. Each canonical factor has unit variance, so the maximum
total canonical variance is q, and T\^ is a proportion of variance measure, that is, the proportion
of the total canonical variance that the sets account for in each other. Equivalently, and more
simply, it is the proportion of the total variance of the smaller set accounted for by the larger.
However, unlike RYtX, increasing the smaller of the two sets increases q and may result in a
drop in TYj.

Tyjt offers an interesting identity. Nominal scales (categorical variables) can be coded as
sets of variables that can then be employed in correlational analysis (Chapter 8); thus it is
possible to analyze contingency tables by means of SC. A two-way frequency table that is
routinely subjected to a x2 test can instead be represented as two sets of variables and analyzed
by SC (with certain advantages, see J. Cohen, 1988). The TYj from the resulting analysis
is demonstrably equal to the Cramer <(> statistic employed as a measure of association for
contingency tables (Srikantan, 1970). In a 2 x k table, therefore, the Cramer $ also equals the
multiple R2 of the dichotomy with the fc-level categorical variable and thus has a proportion of
variance interpretation.

Another way to derive a measure of association from VYj is to divide it by kY, the number
of dependent variables, which produces

defined as the asymmetric squared trace correlation, asymmetric because PYtX ^ PX,Y, but
rather, when set X is dependent, PX>Y = VY^/kx.

In contrast to the multiplicative decomposition in terms of squared multivariate partial
correlations made possible by RYyX, additive decomposition in terms of squared semipartials
can be effected with PYj. It can be shown, for example, that with set X made up of the subsets
A, B and C,

the P2s on the right (except the first) being P2s forX semipartial association (discussed later).
A space may be defined by a set of variables and any nonsingular linear transformation (e.g.,

rotation) of these variables defines the same space. Consider a nonsingular linear transformation
(e.g., a factor-analysis) rotation of the Y variables to any orthogonal position. Find the multiple
R2s of each of the orthogonalized Y variables with the variables in set X. Their sum equals
Vyjr, so the mean of these multiple R2s is PYj(-PYjc ^so permits a proportion of variance
interpretation, but unlike RYtX, the definition of variance is additive, the sum of the unit
variances of the (standardized) Y variables.

When the number of dependent variables does not exceed the number of independent
variables, RYfX = TY>X, but when kY > kx, its maximum is not unity but kx/kY. This is
reasonable—you cannot expect to be able to account for all the variance in five (nonredun-
dant) Y variables by two X variables, but, at most, two-fifths of it. Thus, implicitly, RY^ defines
multivariate association in such a way as to preclude perfect association in these circumstances.
In their analysis of the properties of these measures, Van den Burg and Lewis (1988) argued
that together with RYtX,PYj rather than TYfX is a direct generalization of multiple R2.

They are averages of C2s or multiple /?2s, so there are circumstances where neither TYj
nor PYj seems appropriate. When SC deals with research factor sets that define unitary
entities, for example, religion as a four-category nominal scale or response magnitude (rm)
represented polynomially as rm, rm2, and rm3, averaging proportions of variance over such
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elements distorts the magnitude of their collective association with other sets. Only R\^, which
cumulates association over the elements of the set, seems appropriate in such circumstances.

In the final analysis, however, analysts must be guided by their substantive and method-
ological conceptions of the problem at hand in their choice of a measure of association.

16.3 PARTIALING IN SET CORRELATION

16.3.1 Frequent Reasons for Partialing Variable
Sets From the Basic Sets

The varied uses of partialing (residualization) made familiar in earlier chapters make possible
in SC a functional analysis directly in terms of research factors and their elements. Let the
basic X set (XB) be X • W, a set X from which another set W has been partialed. Then X-W
may be used in any of the following ways:

The statistical control of the research facto r(s) in set W, when relating X to Y.
If the causal model posits a direct effect ofX on Y, the X- W "holds W constant"; were W not
partialed from AT, the effect found for X might be a spurious consequence of the operation of
W. Partialing W also has the effect of reducing the error variance, thus increasing the statistical
power of the test of X when W is not related to X. The analysis of covariance (set X defining
group membership) is a special case of this type of use and the analysis of partial variance (set
X unconstrained) the more general case.

The representation of interaction of any order between research factors of
any kind. For example, the UV interaction set is constructed as a set UV- U, V, where
the UV set consists of the products of each of the variables in research factor U with each of
the variables in research factor V and the partialed set consists of the kY + kx variables of the
combined U and V research factors (see Chapters 8 and 9).

The representation of curve components in polynomial (curvilinear)
regression. For example, for the cubic component of a variable V, V3 and the partialed
set is made up of V and V2 (see Chapter 6).

The representation of a specified contrast within a set of means of the cate-
gories of a nominal scale. Here set X is made up of a single, suitably coded variable
and the partialed set consists of the remaining g — 2 variables containing other contrasts (see
Chapter 8). For example, for dummy coding for three experimental groups and one control
group, one may create three variables, each of which codes one of the experimental groups 1
and the other three groups 0. When one of these variables makes up set X and the other two
sets are partialed, the resulting set X-XP effects a contrast (here a simple difference) between
the Y means of one of the experimental groups and the Y means of the control group.

The "purification" of a variable to its "uniqueness". An example is when X is
one subtest of a battery of correlated measures and one wishes to determine its effects that
are independent of the other subtests. Examples of AT are the digit-symbol subtest score of the
Wechsler Adult Intelligence Scale or the schizophrenia scale of the Minnesota Multiphasic
Personality Inventory, with the partialed set in each case being the remaining subtest or scale
scores of the battery. Similarly, one may assign a subset of scores to X and partial another
subset XP.

The incorporation of missing data as positive information (Section 11.3).
Here, X (or Y) is a research factor whose missing data have been "plugged" with a con-
stant such as the grand mean and the partialed sets are dichotomies distinguishing subjects
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with missing data (scored 1) from those with data present (scored 0). This procedure avoids
the loss of cases, and, of particular importance when missingness is not random, carries it as
a variable whose correlates can be studied.

In SC, these partialing devices may equally be employed for the Y set. Thus, for example,
one may control a dependent variable for age, sex, and socioeconomic status, or represent
curve components, interactions, missingness, or uniqueness of a dependent variable or set of
dependent variables.

16.3.2 The Five Types of Association Between Basic Y and X Sets

Given the option of partialing, there are five types of association possible in SC, shown in
Table 16.3.1. These include the association between two sets X and Y, the association between
two sets X and Y with a third set partialed from both in their association with a set partialed
from either X or Y but not both, and their association with different sets partialed from X and Y.
Formulas for the necessary matrices to compute the measures of association for these five types
are given in J. Cohen (1982, Table 1). These options have been conveniently presented in a
program that is part of the S YSTAT statistical package. Alternatively, they may be programmed
by the user who is familiar with computerized matrix operations. Uses of these types of
association are described in the examples later in this chapter.

Following an SC analysis, further analytic detail is provided by correlational and regression
output for the individual basic X and Y variables, each a single variable in its respective set.
Thus, it is for these variables, partialed or whole depending on the type of association, that the
following are given:

1. The within-set correlations for each set. If the set has been partialed, these are partial
correlations.

2. The rectangular matrix of between set correlations. Depending on the type of association,
these are either "whole" (simple, unpartialed) correlations, partial correlations (when
the partialed sets are the same for X and Y), Y semipartial, X semipartial, or bipartial
correlations (when different sets are partialed from X and Y).

3. A multiple regression analysis for each (partialed) variable in Y on the (partialed) vari-
ables in set X: standardized regression coefficients P and their t test values, and the
multiple R2 and its F test value. Correlations among the regression-predicted variables
in Y may also be provided.

The information provided by the analysis of these individual basic variables serves to
facilitate the interpretation of the SC results of the X and Y sets that they constitute.

TABLE 16.3.1
Types of Association in Set Correlation

Whole
Partial
Y semipartial
X semipartial
Bipartial

Dependent set

y
Y P
Y P
Y

Y P

]

with
with
with
with
with

Independent set

X
X P
X

X P
X M
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16.4 TESTS OF STATISTICAL SIGNIFICANCE
AND STATISTICAL POWER

16.4.1 Testing the Null Hypothesis

For purposes of testing the hypothesis of no association between sets XB and YB, we treat the
basic set FB as the dependent variable set, XE as independent, and employ the fixed model.
Wilks's likelihood ratio A is the ratio of the determinant of the error covariance matrix E to
the determinant of the sum of the error and hypothesis H covariance matrices,

where H is the variance-covariance accounted for in the variables in Y by X,

The definition of E depends on whether the test is to employ Model 1 or Model 2 error.
Model 1 error is defined as

that is, the residual FB variance-covariance matrix when covariance associated with sets X and
YP has been removed.

Model 2 error is employed when there exists a set G, made up of variables in neither X nor
ATP, that can be used to account for additional variance in CyByB and thus reduce E below E{ in
the interest of unbiasedness and increased statistical power. This occurs when, with multiple
research factors, the analyst wishes to use "pure" error, for example, the within cell variance in
a factorial design. In this case, the error-reducing set G is made up of the variables comprising
the research factors ("main effects") and interactions other than the factor or interaction under
test, as is done traditionally in both univariate and multivariate factorial designs.

In whole and Y semipartial association, where XP does not exist, it is dropped from Et and E2.
Formulas for the H and E matrices for the five types of association are given in J. Cohen (1982,
Table 2). The diagonal values of the error matrix employed in a given analysis are used for
the significance tests of the p and multiple R2s of the supplementary analyses of the individual
basic variables.

When Model 1 error (no set G) is used, for the whole and partial types of association, it can
be shown that A = 1 — R\^. Once A is determined for a sample, Rao's F test (1973) may be
applied to test the null hypothesis. As adapted for SC, the test is quite general, covering all five
types of association and both error models. When kY or kx = 1, where multivariate Ry^ spe-
cializes to multiple R2, the Rao F test specializes to the standard null hypothesis F test for MRC.
For this case, and for the case where the smaller set is made up of no more than two variables,
the Rao F test is exact; otherwise, it provides a good approximation (J. Cohen and Nee, 1987).
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except that when kYkx < 4, s = 1. For partial RYfX, set XP = set YP, so k is the number of
variables in the set that is being partialed from both Y and X. kYp,kXp, and kG are zero when
the set does not exist for the type of association or error model in question. The standard F
tables are used (but note that v need not be an integer and that when q > 1, v will be greater
than the sample size, ri). The test assumes that the variables in X are fixed and those in Y are
multivariate normal, but the test is quite robust against assumption failure (J. Cohen and Nee,
1990; Olson, 1976).

As an illustration of the use of the Rao F test, consider the SC analysis of the following
MANOVA design of a research in clinical diagnosis. For n = 97 cases distributed over four
(= g) psychiatric diagnostic groups (set AT), scores on five cognitive measures were obtained. To
control for possible contamination effects of demographic variables, a covariate set CX"P = YP)
made up of the variables sex, years of education, age and age2 was used. The analysis relates
the nominal scale of diagnosis (kx = g — 1 = 3) to the cognitive measures (kY = 5), with the
covariate set partialed from both (kXp = kYp = 4).

The measures of partial association are found to be RYfX = .3016,7^ = .1100, and
PYJ - -0660- The Rao F test's ingredients are found as A = .6984, s = 2.76, with df of
u = 15, v - 235.05. Substituting gives Rao F = 2.176,/> < .05.

16.4.2 Estimators of the Population RyX, T* x, and P* x

The positive bias (overestimation) of the population multiple R2 by its sample value is well
known and discussed in Section 3.5.3. Bias in R2 decreases as n increases, and increases with
kx, the numerator df of the F test. In SC, R\^ and the other measures of association are even
more strongly positively biased. "Shrunken" values for the three measures of association in
SC are given by

where w is the denominator df of the Pillai (1960) F test for 7^, w = q[n — kY — kx —
max(fcyp, kXp) - 1] (J. Cohen and Nee, 1984), and

~ 2 ~ 2
When q — \, both RYj and TYfX specialize to Wherry's (1931) formula for the shrunken
multiple R2, as does PY^ when kY = 1.

The degree of positive bias in these measures also decreases as n increases and increases
with the numerator df of the Rao F test, the product of the numbers of variables in the two
sets (u = kYkx).

In the previous example, (where u = 15, v = 235.1, and s = 2.76), the RYfX of .3016
shrinks to. 1715, the T\^ of. 1100 (for u = 15 and w = 252) shrinks to .0570, and the PYj of
.0660 shrinks to .0342, which are, respectively, 43%, 48%, and 48% shrinkage. Had there been
six diagnostic groups instead of four, u would be 25; v, 309.84; s, 3.72; and w, 410; and the

~ 2 ~ 2 ~ 2
shrunken values are RYfX = .0683, TY^ = .0557, and PYj = .0334, shrinkages respectively
of 77%, 49%, and 49%.

It is instructive to compare this shrinkage with that of MRC. First note that because MRC
is the special case of SC where there is only one dependent variable, RYfX

 = ^\^i = l*\ji =

multiple R2, and the previous formulas specialize to the standard Wherry (1931) shrinkage
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formula. Now for n = 97, with one dependent variable, five independent variables and four
variables in a covariate set, a multiple R2 of .3016 shrinks to .2204, with shrinkage of 27%,
far less than before.

The very large degree of shrinkage in SC with what would be considered a fairly large n
and not very many variables in the two sets is to be expected unless the observed association
is quite strong.

16.4.3 Guarding Against Type I Error Inflation

A multivariate significance test treats the variables in a set simultaneously, that is, it takes
into account the correlations among the variables. Thus, it provides information different from
what is obtained from a series of univariate tests on the individual variables. However, the
multivariate test has the virtue of providing a valid test of the null hypothesis that all the
population multiple R2s of the individual Y variables with set X are zero, or, equivalently
that all the rs between sets are zero. To provide some protection against the inflation of
experiment-wise Type I errors ("probability pyramiding"), it is prudent practice to require
that the multivariate test be significant as a precondition for performing tests on individual
variables.

In SC, in the interest of full exploitation of a data set, one may find oneself performing
many significance tests, both univariate and multivariate (on subsets of variables), with the
attendant risk of Type I errors. Considering only univariate tests, with kY dependent and
kx independent variables, there are kYkx correlation coefficients and the same number of
regression coefficients. Even for such modest set sizes as 3 and 5, that comes to 30 tests, a
considerable number.

This problem does not lend itself to any easy mechanical solution, but some general sug-
gestions may, when combined with the scientific judgement of a competent investigator, serve
to keep the rate of invalid null hypothesis rejections to a tolerable minimum.

1. Avoid the use of more variables or more sets of variables than are needed to frame the
issues—as noted in Chapter 5, "less is more."

2. When possible, combine research factors into (larger) sets and require that the set's
contribution be statistically significant as a condition for testing the former. This employs
the same logic as the Fisher "protected" (LSD) test on pairs of means discussed in
Chapter 5. Set correlation techniques may be particularly useful when the investigator
is testing a variety of possible violations of the assumptions of linearity and absence of
interactions, as we shall see.

3. Distinguish confirmatory (conclusion-seeking) from exploratory research or aspects of
a research problem. Exploratory research, by definition, yields hypotheses to be tested
in future research, so error inflation is subject to correction by replication studies.

16.5 STATISTICAL POWER ANALYSIS IN SET CORRELATION

For SC, and therefore for multivariate methods in general, power analysis is complicated by the
fact that the effect size is not a simple function of a measure of association, for example, Ry^,
but rather is inversely related to the 5th root of the complement of R\^, where s is itself a com-
plex function of ky and kx, and depends also on the type of association and error model. Thus,
power increases as the strength of association increases, but decreases (as shrinkage increases)
with kYkx (= M, the numerator df of the Rao F test of R\ y). As always, power increases with n
and a. A comprehensive treatment of power analysis in SC is therefore well beyond the scope
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TABLE 16.5.1
Power in Set Correlation as a Function of R\iX> n> kY, kx, and a

RYJ

.05

.20

.40

n

50
100
200
500
50
100
200
500
50
100
200
500

2,2

06
19
50
96
52
93
*
*
97
*
*
*

2,4

04
12
35
91
36
84
*
*
90
*
*
*

2,8

03
07
22
79
21
67
99
*
73
*
*
*

2,16

02
04
12
59
09
43
93
*
42
97
*
*

ky,*x

4,4 4,8
a =

03
07
22
79
22
67
99
*
74
*
*
*

.01

02
04
13
60
11
45
93
*
49
97
*
*

4,16

02
03
07
38
05
24
77
*
22
83
*
*

8,8

02
03
07
38
06
25
78
*
26
84
*
*

8,16

01
02
04
21
03
12
52
*
11
56
99
*

16,16

01
02
03
11
02
06
28
96
05
29
90
*

a = .05

.05

.20

.40

50
100
200
500
50
100
200
500
50
100
200
500

20
41
73
99
76
98
*
*
99
*
*
*

15
30
60
97
62
95
*
*
97
*
*
*

11
21
45
92
44
86
*
*
90
*
*
*

08
14
31
80
27
68
98
*
69
99
*
*

11
21
45
92
45
86
*
*
90
*
*
*

09
15
32
80
30
70
98
*
73
99
*
*

07
11
21
63
18
48
92
*
47
95
*
*

07
11
22
63
19
50
92
*
51
95
*
*

06
09
15
44
12
32
75
*
29
79
*
*

06
07
11
29
09
20
53
99
17
54
97
*

* Value > 99.

of this chapter. To actually perform a power analysis, the reader is referred to J. Cohen (1988,
Chapter 10), which is replete with formulas, tables, and many worked examples.

Table 16.5.1 may provide the reader with a feel for the relationship to power of the parameters
that determine it: the significance criterion, sample size, number of variables in the two sets,
and RYJ- The power values in the table hold strictly for whole and partial association. In
keeping with its modest purpose, this table gives power for only a few selected values of the
relevant parameters. The reader is warned not to take the three levels of Ryj as operationally
defining small, medium, and large effect sizes (because R\^ is not an effect size parameter),
or to interpolate between those or between the values of the other parameters. Another warning
must be issues: the R\^ values are population values; the R\^ values found in samples, as we
have seen, are positively biased, so the investigator should think in terms of shrunken R\^ in
setting estimates for power analysis.

That said, certain implications may be drawn from the table:

1. At the frequently preferred a = .01 level, a small degree of association is very unlikely
to be detected except for very large n and few variables. Even at a = .05, the situation
is not much improved.
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2. At Ryj = .20, a sample of 100 gives satisfactory power at a = .01 only for problems
with small set sizes; at a = .05, somewhat larger sets (say, up to u = 20) will yield
adequate power.

3. ForRyj = .40, at a = .01, n = 50 will provide adequate power only for small set sizes;
at a = .05, somewhat larger sets (say, up to u = 25) will yield adequate power.

4. The table makes clear the dependence of power on u: Note the close similarity in power
values in each row between the entries for 2, 8 and 4,4 (u = 16), and for 2,16 and 4, 8
(if = 32).

Thus, multivariate or otherwise, the same old principle applies—the fewer variables the
better—less is more.

16.6 COMPARISON OF SET CORRELATION
WITH MULTIVARIATE ANALYSIS OF VARIANCE

Set correlation is both a generalization of the MRC system and a generalization of the other
standard multivariate OLS methods, MANOVA and MANCOVA.4 The latter generalizations
may be accomplished in the same way that MRC generalizes the standard univariate methods,
that is with a single Y replaced by a set F, with multiple (semipartial or partial) R2 replaced
by multivariate (semipartial, partial, or bipartial) Ryj (or T\^ or Pyj) and tested by Rao's F
or one of the other tests (Olson, 1976).

For example, a multivariate analysis of variance (MANOVA) with a single factor ("one-
way") calls for the whole association between a set of dependent variables Y ("scores"), and
a set X ("groups" or "conditions"), an appropriately coded nominal scale. All the advantages
of the MRC system are inherent in this generalization, including measures of strength of
association and the availability of different coding methods (dummy, effects, contrast) for X
to represent the comparisons of interest. The supplementary multiple regressions of each Y
variable on X, which is part of the standard SC output for the overall association, yields the Bs
with their t tests for the individual contrast functions of the group means on the Y variables.
If one wishes the contrasts' effect sizes expressed as proportions of Y variance accounted for,
one can do a series ofX semipartial analyses, where XB is X{ • Xj, where Xj signifies the non-i
subset of AT (see Chapter 8).

For multiple research factors, that is, factorial design MANOVA, the type of SC association
is X semipartial, Y versus X-XP. Any research factor ("main effect") is carried by an appropri-
ately coded set X, and (assuming nonorthogonality) the makeup of XP depends on the causal
model. It may contain one or more or all of the other research factors, or it may be empty and
thus reduce to whole association. For conditional relationships (interactions among factors),
X contains the product set for the factors involved and XP the factors and lower-order products
(if any), exactly as in MRC. It is conventional to use Model 2 ("within cell") error in ANOVA
and ANCOVA, so the analysis for each research factor and interaction would include as the
error-reducing set G all the other research factors and interactions up to the highest order.
Research factors and interactions yielding significant results may be followed up by single df
contrasts in the form X-XP as described earlier. For example, in following up a significant U- V
hi a two-factor (17 by V) design, a single df contrast Ut will have partialed from it not only
the research factor V, but also the other variables in the U research factor. Similarly, a single
interaction contrast UVy will have partialed from it both the other product variables in the UV

4We restrict our attention here to designs with single-error terms, that is, those in which effects are not "multilevel"
(see Chapters 14 and 15).
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set and also factors V and V. Again, these procedures are exactly those employed for single
contrasts in MRC.

Multivariate analysis of covariance versions of any of the aforementioned designs involve
only the addition of a set of covariates partialed from both Y and X. For a one-factor design, the
type of association is the partial, Y • YP with X • XP, where XP = YP is the covariate set. For
multifactor covariance designs, where other factors may need to be partialed in defining XE, the
association type is generally bipartial, with the YP the covariate set and XP the covariate set plus
whatever other research factors are needed. For example, in testing U • V in a two-factor design
with a covariate set C, YB is Y • C and XB is U • VC, with VC being the combined V and C sets
serving as XP. We define this as bipartial because XP does not equal YP. Single df contrasts
expressed as fis and their t test values may be obtained from the supplementary regression
analyses, or, if a proportion of variance metric is desired, by running new SC analyses with
the covariate set included in the partialing of the single variable, that is, XB = Ui • Uj, VC.

As noted in Chapter 14, discriminant function analysis (DFA) is a multivariate procedure
that relates membership in g groups to a set of scores. It solves for sets of weights that yield
linearly weighted composites of the scores that maximally discriminate (in terms of the F ratio
or eta square) among the groups and are mutually orthogonal. Discriminant function analysis
is a special case of CA, and can be accomplished by applying the latter to the scores as one
set of variables and any form of nominal coding of groups membership as the other. The
resulting canonical weights are proportional to (and therefore functionally equivalent with) the
discriminant weights. When there are only two groups, DFA reduces to MRC (because there
is only one variable in one of the sets, the group dichotomy), as does CA.

DFA is employed for "predicting" group membership much as MRC may be employed
in "predicting" a single Y. But it is also frequently used as an aid to understanding group
membership, and here it suffers the inadequacies of its parent, CA, as described earlier. SC
provides a superior alternative, as was suggested in the discussion of MANOVA. Depending
on the investigator's interest or specific hypotheses, a coding method for groups as set X% may
be chosen so as to compare each group with all groups (effects coding), or with a control or
reference group (dummy coding), or to effect other contrasts among group means (contrast
coding, orthogonal polynomials, see Chapter 8). Single df contrasts can be evaluated as
described in the SC approach to MANOVA. Further analytic elaboration of the contrasts may
be obtained by assessing unique contributions of subsets of Y variables or single Y variables
by analyzing partialed Y• YP sets with contrasts represented by Xt -A}, in bipartial analyses
(see the illustrative example later).

16.7 NEW ANALYTIC POSSIBILITIES WITH SET CORRELATION

The SC approach to standard multivariate designs enhances their scope and yields additional
analytic detail, yet its greatest interest lies in the possibilities it affords for analytic innovations.
Prominent among these are analyses that employ YB as a partialed set.

One such possibility is the analysis of unique variance components of a single variable
or subset of variables in a battery of tests. Many studies employ a group of measures or
formal battery of tests as a set of dependent variables that together are designed to cover some
domain such as intelligence, personality, values, or psychiatric status. The variables in the
battery typically are correlated (sometimes substantially so) with one or more common factors
underlying them. The investigator's interest often extends beyond the global construct defined
by the battery to the unique variance of single variables or to common variance of subsets of
the battery. Thus, an investigator of the correlates of educational intervention and demographic
correlates of performance on the subtests of the Wechsler Intelligence Scale for Children may
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well be interested not only in the subtest aggregate but also in components specific to a single
subtest or group of subtests that take the Y • YP form. An example of the former is the Mazes
subtest partialing all other subtests and of the latter the perceptual organization subtests (picture
arrangement, picture completion, block design, and object assembly) again partialing all the
others. Because many such components can be created the reader is reminded of the discussion
of Type I error inflation. Other novel analytic forms are illustrated in the following examples.

16.8 ILLUSTRATIVE EXAMPLES

16.8.1 A Simple Whole Association

In this longitudinal study the relationships between potential environmental risks, measured
at an average age of 5.5 years, and behavioral disorders measured some 8 years later were
assessed.5 The X set included early childhood poverty (POV), single mother (MONLY), mater- CH16EX01

nal age (MAGE), and maternal employment (MWORK), in addition to age and sex. The Y
set included symptom scales for attention deficit/hyperactivity disorder (ADHD), conduct dis-
order (CD), and oppositional/defiant disorder (ODD). The correlations among the variables
are shown in Table 16.8.1, as well as the set correlational and subsequent multiple regression
findings.

TABLE 16.8.1
The Relationship Between Disruptive Behavior Disorder

Symptoms and Earlier Risks in 701 Children

R\,x = -199; RY,X = -178; Rao F = 8.859; (df: u = 18, v = 1957.8); p < .01.

A. Correlations among basic variables

SetyB SetATB

ADHD CD ODD Sex Age MONLY MWORK MAGE

CD
ODD
Sex
Age
MONLY
MWORK
MAGE
Poverty

.53

.62

.19
-.09

.08

.02
-.12

.08

.61

.23

.10

.18

.02
-.10

.15

.03

.10

.12

.03
-.06

.12

-.02
.02
.00

-.02
-.02

.05

.06

.18

.02

.22
-.07

.36
-.01
-.05 -.03

B. Multiple regression findings

R2 Sex Age MONLY MWORK MAGE Poverty

ADHD
CD
ODD

.062*

.113*

.036*

.18*

.23*

.03

-.07
.12*
.11*

.05

.12*

.08

.02
-.01

.01

-.10*
-.11*
-.07

.06

.10*

.09*

*p < .05.

5Data from the Children in the Community study, P. Cohen, P. I. supported by NIMH.
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The SC analysis yields Ry^ = .199, T\^ = P\^ = .07. The shrunken values are given
respectively as .178, .046, and .046. The Rao F = 8.859 for u = 18 and v = 1957.8 df
(p< .01; Table 16.8.1).

With the overall association being significant, we can go on to assess the results of the
supplementary analysis. The multiple R2 for ADHD, CD, and ODD with the X set are .062,
.113, and .036 respectively, all significant at a < .01 on this large sample. Nine of the 18 partial
regression coefficients are statistically significant at a < .05. Note the risk of experiment-wise
Type I error in using the .05 criterion for these tests: Although somewhat protected by the
.01 significance level of the overall test, the risk of identifying a true null or trivial effect
among the PS is rather greater than .05. For example, if 12 of the 18 population PS were 0, the
probability of one or more of these testing significant at the .05 level would be approximately
1 - (.95)12 = 46%.

16.8.2 A Multivariate Analysis of Partial Variance

Conventional ANCOVA and MANCOVA partial out a covariate set in comparing groups on
scores. With MRC this analysis of partial variance (APV) can be generalized to the case where
X is not constrained to be group membership, but can be any kind of research factor, including
one or more quantitative scales. This idea readily generalizes further to the multivariate analysis
of partial variance (MAPV), where the single Y is generalized to the set YE.

In a large-scale study of 755 children at an average age of 13.5,6 data were obtained on per-
sonal qualities the subjects admired and what they thought other children admired (P. Cohen and

CH16EX02 j cohen? 1996). The admired qualities were organized into scales for antisocial, materialis-
tic, and conventional values for the self and also as ascribed to others. In one phase of the
investigation, the researchers addressed the relationship between the self and other values. It
had been found that several of these scales exhibited sex differences, were nonlinearly (specif-
ically quadratically) related to age, or were differently related to age for girls as compared
to boys. For the self-other association to be assessed free of the confounding influence of
age, sex, and their interactions, it was necessary to partial these effects from the associa-
tion. Accordingly, a covariate set was constituted of the variables age, age2, sex (dummy
coded), sex x age, and sex x age2. The type of association is partial, with set X the self
scales (Antiso_s, Mater_s, Conven_s), set Y the other scales (Antiso_o, Mater_o, Conven_o)
and the covariate set being partialed from both (XP and FP). The main results are given in
Table 16.8.2.

The degree of association is substantial, the self scales accounting for 43% of the generalized
variance of the other scales (Ryj) with the curvilinear (quadratic) effects of age, sex, and their
interactions removed. With both these sets partialed by the covariates, all the between- and
within-set correlations are partial correlations coefficients, and it is on these partialed variables
that the multiple regressions are performed. For example, the significant P = .38 for Antiso_s
in estimating Antiso_o is not only partialed by the covariate set, but Antiso_s is further partialed
by Mater_s and Conven_s in the regression equations. Each self scale has a significant P with
its paired other scale and, in addition, the Conven_s's |3 for estimating Mater_o is statistically
significant. Each of the other scales has a significant multiple R2 with the self scales, that for
materialism being the largest.

Note that if the X set had been a categorical variable (mother's marital status, religious
affiliation), the SC analysis would have exactly the same structure and the design identifiable
as a conventional MANOVA. The covariate set employed, however, is hardly of the kind

6These data are also from the Children in the Community study.
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TABLE 16.8.2
Self Versus Other Values in Adolescents, Partialed for
Quadratic Age, Sex, and Their Interactions (n = 755)

R\x = .429; R\j = .422; Rao F = 52.007 (df: u = 9,v = 1810.9).

A. (Partial) correlations among basic variables

Antiso_o
Mater o
Conven_o
Antiso s
Mater_s
Conven_s

Antiso_o

1.0
.20

-.42
.39
.14

-.26

SetrB

Mater_o

1.0
.11
.08
.46
.13

Conven_o

1.0
-.07

.05

.35

Antiso_s

1.0
.21

-.26

set;rB

Mater_s <

1.0
.07

Conven_s

1.0

B. PS and multiple R2s of FB variables on set XB

Antiso o Mater o Conven o

Antiso s
Mater s
Conven s
Multiple R2

.38*

.06
-.02

.157

.03

.45*

.10*

.219

.04

.02

.35*

.122

*p < .05.

encountered in textbook examples and illustrates the flexibility of the method. Not only can one
"adjust" for nonlinearly related variables and interactions, but for missing data and categorical
variables.

16.8.3 A Hierarchical Analysis of a Quantitative Set
and Its Unique Components

Let us return to the set of disruptive behavior indicators examined earlier for relationships with
a set of demographic predictors. In that analysis we saw that the set of predictors was associated
with the Y set, and in follow-up regression analyses, to each of the Y variables (Table 16.8.1).
However, there are several other questions about these data that may usefully be answered by
SC analyses. The first is the question of whether any of the Y variables is uniquely associated
with the X set. Although discriminable, the three scales had intercorrelations of .53, .62, and
.61. When treated as a set representing disruptive behavior they largely reflect their substantial
common factor. When, however, from each of the three the other two are partialed, the resulting
variable is a measure of that which is unique to the scale (including a likely large amount of
measurement error).

In addition, we address two new issues on the X side. The first separates age and sex—which
may be viewed as "control" variables rather than predictors—from the longitudinal predictors,
POV, MAGE, MWORK, and MONLY. The second addresses the question of whether there
are curvilinear components of age and whether any of the predictors (including age) may be
differently related to Y for boys and girls. In order to answer this question we enter three sets of
predictors hierarchically, partialing the previous sets in each analysis. The first set consists of
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TABLE 16.8.3
R2y,xS for the Association of Symptoms of Disruptive Behavior Disorders and Their

Unique Components with Hierarchically Organized Predictors (n = 701)

Unique components of disruptive behavior

*p < .05.

age and sex. The second includes the four prospective risks from which age and sex have been
partialed. The third consists of six variables: age2, age x sex, sex x POV, sex x MAGE, sex x
MONLY, and sex x MWORK, again partialing both previous sets of predictors.7 In including
as many as six predictors in this third set we are following a strategy in which the hierarchical
analysis is used to support a decision—that is, whether these curvilinear or interactive terms
are required. If one had more specific hypotheses about one or two of these it would likely be
more powerful to treat them as a smaller set and then leave the additional "assumption testing"
set as a final set.

A series of SC analysis summarized in Table 16.8.3 addressed the association of the set as
a whole and of its unique components with the hierarchical, cumulatively partialed series of
predictors. Table 16.8.3 presents the Ry^ values for the three-variable set Y (= ADHD, CD,
and ODD) in the first column, and for each unique component in the remaining three columns.
The first three rows constitute a hierarchical series of research factors with each being partialed
by those preceding it in the hierarchy. The final row is for all the predictors combined into a
single set. The unique components of the dependent variables are of course single variables,
so that the Ry,xs given in the last three columns specialize to R2s for single DVs. These DVs,
however, are not the observed variables F but rather the residual for each Y from which the
variance associated with the other variables in the Y set have been partialed. Similarly, except
for the first and last rows the IVs are not observed variables, but rather variables from which
other predictors and other DVs have been partialed.

Examining the first row, we see that age and sex were significantly related to the set and
to each of the individual Y variables in a way that is not entirely reflected in their relationship
with the general factor. We see in the second row that the prospective risks were significantly
related to the set, and also to the unique aspect of conduct disorder symptoms. In the third row
we see that the set of curvilinear and interaction terms did not make a significant contribution

7Note that we do not address the issue here of whether these variables are centered or not—the multivariate tests
will be the same either way. Subsequent interpretation of partial relationships, however, is improved by centering, as
discussed in earlier chapters.

Any disruptive ADHD -CD, CD • ADHD, ODD • ADHD,
ADHD, CD, ODD ODD ODD CD

Age, sex .150*

Poverty, MAGE, MONLY, .056*
MWORK, • (age, sex)

Age2, age x sex, sex x MAGE, .033
sex x POV, sex x MONLY,
SEX x MWORK •
(age, sex, Poverty, MAGE,
MONLY, MWORK)

All predictors .225*

.068* .063* .058*

.004 .023* .002

.006 .011 .004

.078* .097* .063*
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to the multivariate R2, and thus the assumption that these terms are not needed may be deemed
tenable. The reader is invited to examine the SC analyses in detail, since the R\^ values tell only
a small part of the total story. In particular, the reader will note that in the analysis reported
in the first column, the interaction (assumption testing) set makes a statistically significant
contribution to the unpartialed CD. In examining which of these predictors accounts for this
contribution, the research may wish to make a different decision than a blanket rejection of
the need for these variables.

The first column R\^ s in the table are between sets of two or more variables each. The Ry^s
of the second to fourth columns for unique components specialize to multiple R2s, because in
all these cases one (partialed) Y variable is being related to two or more. Thus, the column for
each of the unique components contains the results of a hierarchical multiple R2, and the entries
for the successively partialed research factors are additive; each sum equals the multiple R2 for
that component with all four research factors (within rounding error). However, such is not the
case for the three-variable set in the first column, nor in the general case for multiple variable
increments to Ryj (X semipartials or bipartials), as noted in the earlier discussion of fly^'s
properties: .225 is not the sum of the values above it—they are not cumulative increments to
atotalfly^.

These findings tell us that the relationship between disruptive behavior symptoms and age
and sex differs for the various individual scales. In addition, the risks are related somewhat
differently to conduct disorder symptoms than they are to the general factor reflecting the three
disruptive measures. (The full SC analysis for the partialed CD measure showed that the risk
associated with a single (rather than currently married) mother was greater for CD than it was
for the other variables hi Y.) The magnitude of the prospective risks for ADHD and ODD were
consistent with those for the general disruptive factor. On this evidence neither the interactive
nor the curvilinear age terms are needed for these analyses; see, however, the discussion earlier
about the evidence based on the relationships with the unpartialed CD measure.

16.8.4 Bipartial Association Among Three Sets

The data for the next example were taken from an experiment on the effects of maternal
nutritional supplement during pregnancy on somatic and behavioral characteristics of new-
born infants.8 The subjects were 650 pregnant women coming to a prenatal clinic who were
randomly assigned to three groups (high protein supplement, balanced protein/caloric supple-
ment, routine care control), treated, and followed to term. Their newborns were weighed and
measured at birth and, within 48 to 99 hours after birth, were subjected to a 19-item behav-
ioral examination assessing degree of neurological development via muscle tone and reflexes.
A factor analysis of these items suggested four factors, scores for which were generated by
adding the highly loaded items for each factor.

The major issues addressed were the effects of the two forms of dietary supplement on
(a) the somatic characteristics of the newborns and (b) their behavior as represented by the
four factor scores, and also (c) the relationship between somatic characteristics and behavior.
Various maternal attributes with potential effects on their babies served as a covariate (control)
set. Concretely, the major analysis used the following research factor sets:

1. Treatment (TRT): two dummy variables with the control group as reference.

8We are indebted to David Rush (Tufts University) and Mervyn W. Susser and Zena Stein (Columbia University)
for permission to use these data.



626 16. MULTIPLE DEPENDENT VARIABLES: SET CORRELATION

2. Maternal attribute controls (COV): prepregnant weight, gestation, and weight at time
of clinic registration, parity, and number of previous low-birth-weight babies (five
variables).

3. Newborn somatic characteristics (SOM): birth weight, length, and head circumference.
4. Newborn behavior (BEH): the four factor-analytically-derived scores.
5. Age at examination (in hours) and baby sex.

The physical maturity of the infant at birth, a matter of considerable medical importance,
was assessed by measuring its "age" from conception, using as a reference the date of the
onset of the mother's last menstrual period as reported by her at the time of clinic registration
(during, on average, the 16th week of pregnancy). The accuracy of this datum (gestation) is
suspect, and besides, the theoretical question arises as to whether the "postconceptual age" at
birth provides any relevant information beyond that of the observable somatic characteristics,
or (more simply) given its size, does it matter how "old" the newborn is? This issue was
directly addressed by partialing SOM and sex from gestation and relating it to the suitably
partialed BEH set. Its R\j (a multiple R2) was .014, which is not significant even at a = .05.
When each of the other variables was similarly treated, with gestation included among the
variables that were partialed, the Ry^s for these unique BEH scores were larger and signif-
icant at a = .01. These results suggest that the postconceptual age at birth as determined
from mother's later reported date of last menstruation yields no information relevant to the
newborn's behavior beyond what is available from measuring its weight, length, and head
circumference.

In the main analysis, the three research factors to be related were treatment, newborn
somatic characteristics, and newborn behavior. The maternal attributes were to be statistically
controlled as a covariate set; thus they were partialed from each research factor. Furthermore,
to control for sex differences, it was partialed from both the somatic and behavior research
factors. Because the behavioral examination took place at varying intervals after birth, age at
examination was also partialed from the behavior scores. Thus, the following three factors,
as partialed, were related to each other in the SC analysis: (a) TRT • COV, (b) SOM • COV,
sex, and (c) BEH • COV, sex, age. In addition, preliminary SC were conducted to determine
whether two way interactions between COV and sex, between COV and age, or between age
and sex contributed to the prediction of any of the sets (TRT, SOM, or BEH) net of main
effects.

Table 16.8.4(A) gives the /fy^s for each pair. The partialing sets are not exactly the same
for the three sets, so the type of association is defined as bipartial. Note that the two R\^ s with
TRT • COV summarize a MANOVA, but with additional variables partialed from SOM (sex)
and BEH (sex and age at examination). Clearly, the results provide no evidence to suggest
the existence of treatment effects on either the somatic or behavioral characteristics of the
newborn, the R\^ values being both trivial and, despite the large sample size (n = 650),
nonsignificant by any conventional standard (p > .15).

The association of BEH and SOM, as partialed, constitutes another example of the multi-
variate analysis of partial variance (MAPV). XB here is a set of three quantitative variables
(SOM), but the association is controlled by covariates (COV and sex), with age additionally
partialed from BEH. The association is quite substantial (R\^ = .300) and highly significant.
(The Pyj = T\^ = .108, the average of the three canonical R2s, is also relatively large.)
Thus, although the nutritional intervention had no demonstrable effects on either the new-
boms' physical or behavioral characteristics, there was a material relationship between these
two research factors.
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TABLE 16.8.4
Nutritional Supplementation During Pregnancy and the Somatic

and Behavioral Characteristics of Newborns (n = 650)

A. Association between research factors: bipartial R\j

Partialed SOM scores I H m IV

Birthweight
Length
Head circumference
Multiple R2

.08

.37*
-.03

.160*

.29*
-.16*
-.09

.039*

.20*

.13

.08

.133*

.15
-.02

.18*

.087*

Note: TRT = 2 dummy-coded nutritional supplementation variables; SOM = 3
somatic characteristics of newborns; COV = 5 maternal attribute variables.

*p < .001.

The supplementary analyses provide the multiple R2s and PS relating the three partialed
SOM scores to each of the dependent partialed BEH scores [Table 16.8.4(B)]. It is interesting
to note that despite fairly high (partial) correlations among the SOM measures of .60, .70,
and .46 (available from the SC printout), they give rise to distinctively different patterns of PS
and levels of Ry^s in estimating the four partialed BEH scores.

16.9 SUMMARY

The utility of a multivariate method in which dependent variables as well as independent vari-
ables can be treated as substantive sets is discussed. Canonical correlation analysis is described
and its limitations noted. The elements of set correlation are introduced (Section 16.1).

Measures of multivariate association are reviewed, including the generalization of R2, the
proportion of generalized variance, and proportions of additive variance expressed as the
mean of the canonical correlations, T\^, and the multivariate association for the average
orthogonalized Y variable, P\^ (Section 16.2).

The rationales for partialing sets of variables from the basic X and Y sets are reviewed, and
the five lands of relationships between these sets are noted to depend on the sets being partialed.
These include the relationship between the "whole" unpartialed sets, a partial relationship in
which the influence of the same set is removed from both X and F, semipartial relationships
in which a set is partialed from either X or Y but not both, and bipartial relationships in which
different sets are partialed from sets X and Y (Section 16.3).

Statistical tests of the null hypothesis of no association are reviewed, including Model 1
error, used in most analyses, and Model 2 error, hi which variance from a set G not included
hi the basic analysis is also removed (as in hierarchial set correlation analysis). Estimators of

TRT • COV SOM • COV, sex

SOM • COV, sex .010
BEH • COV, sex, age .018 .300*

B. PS and multiple R2s of BEH • COV, sex, age on SOM • COV, sex

Partialed BEH scores
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the population values of the three measures of effect size are reviewed, and the substantial
shrinkage that may result is noted. Methods for controlling the error inflation associated with
the many significance tests are reviewed (Section 16.4).

Statistical power analysis for set correlation is shown to decline rapidly with increases in the
numbers of variables in the X and Y sets, depending on the level of multivariate relationship
in the population and, of course, n (Section 16.5).

A comparison with MANOVA is made, with a demonstration of the equivalence under
certain conditions shown (Section 16.6).

Set correlation opens up a range of analytic possibilities for sets of DVs comparable to those
shown in earlier chapters for a single Y (Section 16.7). These possibilities are reviewed in a
series of examples (Section 16.8).
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APPENDIX 1
The Mathematical Basis
for Multiple
Regression/Correlation
and Identification of the
Inverse Matrix Elements

The OLS regression model requires the determination of a set of weights for the k independent
variables that, when used in the linear regression equation, minimizes the average squared
deviation of the estimated Y scores from the Y scores. This solution is somewhat simplified
by standardizing all variables. Thus the problem is to find a set of P weights such that

is a minimum, as we have seen. By means of the differential calculus, the partial derivative of
the function with respect to each unknown |J, is found and set to zero. The (i, weights are then
expressed as a system of k normal equations in k unknowns of the form

A computer program may be used directly to solve this set of simultaneous equations. For
those familiar with matrix algebra the problem may be stated usefully in matrix notation. The
set of normal equations may be rearranged as follows:

The right-hand side of this set of equations may be recognized as the product the square,
symmetric matrix of correlation coefficients between independent variables (R,-,) and the vector
of |3K. Thus, the equation set may be restated in matrix form as a single equation,

631
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The solution may then be seen to lie in the premultiplication of the vector of correlations
of IVs with Y, rK, by the inverse of the matrix of correlations among the IVs, RjT1:

Finally, we have seen in Eqs. (3.6.1) and (3.6.2) that this quantity is a necessary part of
the standard errors of partial regression and standardized partial regression coefficients, which
then may be written

The problem, therefore is to invert the correlation matrix, for which many computer pro-
grams have been written. Hand calculation of the inverse matrix is practical when there are no
more than five or six independent variables. A method for doing so is presented in Appendix 2.
Note that once the inverse matrix is determined, it is a relatively easy matter to apply MRC
analysis to a new dependent variable W (for the same IVs), because all one needs to do is
substitute in this equation for the new dependent variable its rwi vector.

Identification of the elements of the inverse matrix will reveal further identities inthe multi-
ple regression/correlation system. Also, because some computer programs provide the inverse
matrix as standard or optional output, coefficients not provided by a given program may be
readily determined as simple functions of these elements. Concrete illustration of the deter-
mination of these coefficients is provided in Appendix 2. The diagonal elements of R(y \ the
inverse of the correlation matrix among the IVs, are

i

where /?? is the squared multiple correlation of the k — 1 remaining independent variables with
Xt. Thus

This quantity is, of course, very useful itself in understanding the system of relationships with
Y, especially in cases of high redundancy among some or all IVs because 1 — /?? equals the
tolerance, that part of an IV that is independent of the other IVs and thus available to relate
independently to F. In addition, r" may be used to determine sr, which may not be provided
in the program output, by

and

respectively.
The off-diagonal elements of R,yl may be identified as
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where (3,y is the standardized partial regression coefficient of X, on X7, other IVs having been
partialed, and fy, is the corresponding coefficient of Xj on X,-. Note that rij = rji and thus, like
the correlation matrix itself, its inverse is symmetrical about the diagonal. In determining the
standard error of a single Y0 predicted from a new observed set of values Xlo, X^, X3o,..., Xto,
as given in Eq. (3.7.1), both diagonal and off-diagonal elements of the inverted matrix are
needed. This equation may be restated as

where pr^ is the correlation between X, and Xj, all other independent variables having been
partialed from each. prtj may be obtained directly by

and this matrix of partial correlations among IVs is provided by some MRC programs.
In most MRC studies in which an original set of validity coefficients and a final set of partial

relationships with Y are provided in the computer output, a means of sorting out the effects
of the independent variables on each other's relationship with Y is needed. It is particularly
difficult to surmise these effects from the zero-order correlation matrix when there are more
than two or three IVs, especially when their intercorrelations are not trivial. It is often useful
to know which of the remaining variables are the source of the redundancy in the relationship
between a given X,- and Y. It is also important to be able to detect and to identify sources of
suppression among the IVs. A means of determining these effects is the hierarchical procedure
for reduced form equations in which one tracks changes in regression coefficients as variables
are entered in the model (Section 12.2.3).

where the first summation is over the diagonal elements and the second is over the k(k — l)/2
off diagonal elements above (or below, because they are symmetrical) the diagonal.

The inverted matrix is used to determine the PK by postmultiplying it by the vector of
validity coefficients. Thus

and so on. Restating the first of these in terms of the equivalents of the inverted matrix elements,

A mathematically equivalent version of the off-diagonal elements is given by
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A1.1 ALTERNATIVE MATRIX METHODS

Some programs or hand calculation methods choose to invert matrices that express the
relationships among the independent variables in raw score form. One such matrix is
the variance-covariance matrix V,-,-, which starts with the sdf in the diagonal and the
coVy (= r^sd^dj) in the off-diagonal positions. The elements of the inverted matrix V^1 are
consequently

where VK is the vector of covariances of the independent variables with Y and BK is the vector
of raw-score regression coefficients.

Yet another matrix frequently employed for this purpose, Py-, is made up of the summed
(over ri) deviation (from mean) squares and cross products, EJC? and EJC,OC,. This matrix differs
from \tj only in that its elements have not been divided by n. When its inverse is postmultiplied
by the vector of summed deviation cross products with Y, pK, it also yields the vector of raw-
score regression coefficients, BK. Similarly, the elements of P^"1 when divided by n equal the
corresponding elements of \^1.

One final matrix inversion method may be mentioned. The entire correlation matrix includ-
ing Y may be inverted and Ry, the prK, and |3H are then directly determined from the row (or
column) corresponding to Y. This method has the disadvantage that the potential analytic uses
of the remaining elements of the inverted matrix are lost, because they include the effects of
Y on the independent variables.

A1.2 DETERMINANTS

Although an understanding of calculus or matrix algebra is not necessary for the intelligent use
of MRC, it is useful to be aware of the characteristics of one numerical value resulting from
this system. Every square matrix can be characterized by a unique number, its determinant,
which is a complicated function of products of its elements. For the correlation matrix Ry- the
determinant |Ry | may take on any value from zero to one. The size of |Ry | is a function of the Rj
values. When it is zero, at least one variable is a perfect linear function of the others, and the
matrix is said to be singular. The inverse of a singular matrix does not exist, and the multiple
regression problem cannot be solved until the (one or more) offending variables are removed.
When |Ry | = 1, the variables all have intercorrelations of zero. As |Ry | approaches zero, the
researcher should be wary for two reasons. The situation is clearly one of high multicollinearity
among two or more variables, with all the attendant problems in sorting out the meaning of
the results. In addition, there will be a serious decrease in the sampling stability (precision) of
coefficients (see Chapter 10).

When Vy rather than Ry is used, the entire matrix equation is

and
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Because the determinant is often provided in MRC output, one additional equation may
prove useful:

that is, the squared multiple correlation of Xl, X2, X3,..., Xk_ l with Xk is equal to one minus the
ratio of the determinant of the matrix including Xk to the determinant of the matrix excluding
Xk. If we let Xk = Y, this gives the standard R\. If we let Xk be the lastentered variable in a
hierarchical sequence, we may determine its R\ with previously entered variables whenever
determinants are provided.



APPENDIX 2
Determination of the Inverse
Matrix and Applications
Thereof

A2.1 HAND CALCULATION OF THE MULTIPLE
REGRESSION/CORRELATION PROBLEM

Although most practitioners of MRC analysis are likely to turn over the necessary work to a
computer program, it is quite possible to perform these operations with a hand calculator. The
major problems in doing so are the many opportunities for error and the amount of time required,
both of which increase rapidly as a function of n and k. Several methods for determining the
MRC solution are available, of which the best known is the Doolittle solution. We prefer the
method that is presented here because it produces the inverse of the correlation matrix among
IVs whose elements provide results that are of analytic interest. Using the correlations among
IVs given in Table 3.5.1, we shall illustrate the computation of this inverse matrix, and of the
various multiple and partial coefficients that its elements yield, and then give the substantive
interpretation of the entire set of results.

The method presented here may be generalized to more than, or fewer than, the illustrated
four IVs. A mathematical understanding of the purpose of the various operations is not neces-
sary for correct determination of the solution. It is, however, useful to have ways of controlling
the error that may creep in. One of these is provided by carrying a sufficient number of decimal
places for each of the original correlation coefficients and the subsequent operations. In this
example we have used five; with more variables more decimal places would be appropriate.
A check against human error is provided by the last column, which, at the points indicated by
check marks, should equal the sum of the other numbers in the row, within at most three units
in the last decimal.

Table A2.1 illustrates the entire procedure for calculation of the inverse. The first column
contains the instructions. The method begins by copying the full correlation matrix among
IVs (R,y) and, to its right, a parallel matrix in which the diagonal elements are all 1 and
off-diagonal elements are 0 (the identity matrix, I) as shown in the table. Each operation is
carried out for every column,1 with the exception that once a left-hand column contains 1,

1 Thus making the computation particularly easy using a spreadsheet program. Rows have been lettered rather than
numbered to facilitate such a means of calculation.
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TABLE A2.1
Computing the Inverse of the IV Correlation Matrix for the Salary Example

Copy A
Exr , 2

B-F
G-rG2

Exr , 3

G x H 3

C-I-J
K/K3

Exr 1 4

G x H 4

K x L 4
D - M - N
P/P4

Line

A
B
C
D

E
F
G
H

I
J
K
L

M
N
O

-O P
Q

R*
r\ r2 r3

1 .65055 .20959
.65055 1 .15875
.20959 .15875 1
.37290 .33339 .14915

1 .65055 .20959
.42322 .13635
.57678 .02240

1 .03884

.04393

.00087

.95520
1

>4

.37290

.33339

.14915
1

.37290

.24259

.09080

.15743

.07816

.00353

.06747

.07063

.13905

.01429

.00477

.84189
1

r!4

1

0
0
0

1
.65055

-.65055
-1.12790

.20959
-.02527
-.18432
-.19297

.37290
-.10242
-.01302
-.25747
-.30582

I

r24

0
1
0
0

0
0
1
1.73376

0
.03884

-.03884
-.04066

0
.15743

-.00274
-.15469
-.18374

r34

0
0
1
0

0
0
0
0

0
0
1
1.04690

0
0

.07063
-.07063
-.08389

r44

0
0
0
1

0
0
0
0

0
0
0
0

0
0
0
1
1.18780

Check

3.23304
3.14269
2.51749
2.85544

3.23304
2.10325
1.03944
1.80214

.67761

.04037
1.79951
1.88390

1.20883
0.16364
0.12710
1.35910
1.61435

V
V

V
V

V
V

From Line L: r33 = 1.0469 - .07063(-.08389) = 1.05283.
r32 = -.04066 - .07063(-.18374) = -.02768.
r31 = -.19297 - .07063(-.30582) = -.17137.

From Line H: r22 = 1.73376 - .15743(-. 18374) - .03884(-.02768) = 1.76376.
r21 = -1.12790 - .15743(-.30582) - .03884(-.17137) = -1.07310.

From Line E: r11 = 1 - .65055(-1.0731) - .20959(-.17137) - .37290(-.30582) = 1.84806.
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no further computations are carried out in that column. Thus, on line F each of the line E
numbers is multiplied by the line E, column r2 value,. On line G these line F values have been
subtracted from the line B numbers. Note that the check sum number 1.03944 equals the sum
of the row values, as well as 3.14269 - 2.10325. On line H the line G numbers are divided by
the left-hand value in line G, and so on through the table. Note that only some rows provide
checks in that the result of the operation performed on the check sum lines equals the row
sum, but in all instances it is the result of the operation, not the row sum, that is entered in the
check sum column. With a little study, the pattern of computation becomes clear and readily
generalized for k TVs. Had there been only three independent variables, column r4 would be
missing. The column headings r14, r24, r34, and r44 would be replaced by r13, r23, and r33, and
the lines would end with line 12. Five independent variables would require an additional row
and column in the R,^ matrix as well as in the I matrix and six more lines of calculation. Each
entry in the next to last line would equal the bottom-row value of the correlation or identity
matrix minus the four values in the lines immediately preceding.

Line Q provides the inverse matrix elements forX4, that is, the r'4 values (see Table A2.2).
From these numbers and working backward, the elements for X3 are determined next by
subtracting from the right-hand figures in line 12 the product of the left-hand figure and the
corresponding r'4. Because r34 = r43 this element is already provided in row Q. Next, the
figures in line H are combined with the previously determined ri4 and ri3 values to determine
r22 and r21. Finally, line E and rfl are used to produce r11.

Some insight into the manner in which the method proceeds to systematically remove
the proportion of the variance accounted for by each of the variables from the others may
be gained by noting some by-products of the method. Looking first at the numbers below
the correlation matrix, we see that the r2 column includes r21,r21, and 1 — r21, in lines E,
F, and G, respectively. In column r3 we find r^, sr*^, and 1 - R\.2l in lines I, J, and K,

respectively. Similarly, in the r4 column we find r^sr^^sr^^i)' ^d 1 ~ ^4-123 *n ̂ nes

13 to 16, respectively. From the numbers under the identity matrix it may be determined
that 1.73376 = 1/(1 - rJ2), 1.0469 = I/O - R\.u}, and 1.1878 = 1/(1 - /?2

123). The
interested reader may determine more such identities by substitution of the appropriate rfj into
the numerical equivalents.

TABLE A2.2
Inverse of IV Correlation Matrix, Validity Coefficients, and PS

Time since Ph.D.

*i
X2

x,
X4

x,

1.84806
-1.07310
-0.17137
-0.30582

D-lKy

Publications
X2

-1.07310
1.76376

-0.02768
-0.18374

Sex
*3

-0.17137
-0.02768

1.05283
-0.08389

Citations
X4

-0.30582
-0.18374
-0.08780

1.18780

rn

.60790

.50615

.20096

.54977

P! = (.37771) = 1.12344 - .54315 - .03444 - .16813 = .37772.

P2 = (.13382) = -.65234 + .89273 - .00556 - .10101 = .13382.

P3 = (.04727) = -.10418 - .01401 + .21158 - .04612 = .04727.

P4 = (.35725) = -.18591 - .09300 - .01764 + .65302 = .35726.
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Table A2.2 reproduces the entire inverse matrix, R^"1, as well as the validity coefficients, rK.
The frs are determined by summing the products of the row elements with the corresponding
validity coefficients, according to Eq. (A1.9), for example,

These products and their sums are given at the bottom of the table.
Finally, it is always useful to have a check against specific accumulated error, or even a

computational blunder. The normal equations (A 1.1) provide us with such a check, because,
for example,

Subtracting |3, from both sides of the equation should yield zero. Checking on the obtained
0!, we find

well within acceptable limits. The reader may confirm that all the PS check well within
acceptable limits.

As we saw in Eq. (Al .3), the proportion of variance in each IV that is shared with the other
IVs may be determined by

Determining this value for each of our variables we find that

^3.124 = -05018, and/?|123 = .15811.
In this rather modest example these R2s may easily be seen to be consistent with the corre-

lation matrix. Thus, the number of years since Ph.D. is fairly substantially associated with two
of the other IVs, especially with the number of publications that in turn is modestly correlated
with number of citations. Sex is relatively independent of the other IVs. The reader may check
the diagonals against the tolerances output by a computer program.

The diagonal elements of the inverse matrix may also be used, together with the p\, to
determine the srf, because by Eqs. (A 1.4) and (3.5.6),



etc.
The partial correlations among independent variables are often of sufficient interest to

warrant significance testing. Because they differ from the off-diagonal elements only by sign
and division by a constant, one can test/?/^ by testing rij:

with df = n — k. For example, the pr between years since Ph.D. and number of publications,
partialing female and number of citations, prl2.34, assuming n = 62, yields

df = 58, (p < .01). Clearly, the substantial relationships these variables bear to salary show
considerable redundancy.

A2.2 TESTING THE DIFFERENCE BETWEEN PARTIAL
ps AND Bs FROM THE SAME SAMPLE

In Section 3.6.3 we described the test for the difference between two independent regression
coefficients, that is, those obtained from two independent samples. Now that we have the
inverse of the correlation matrix for the IVs (Table A2.2), we can address the case where the
two coefficients are for different IVs in the same sample.

The standard error of the difference p^ and P2 is given by

withdf = n — k — 1.
For causal analysis with standardized variables (path analysis) (3, is Xt's direct effect on

the dependent variable. The comparison of effects of causal effects in the same model (in the
absence of otherwise theoretically comparable units) is accomplished via their PS. In the salary
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Similarly, sr2 = .10076, sr3 = -.04607, and sr4 = .3278, all of which agree with Table 3.5.2.
By including the information on the Ms, sds, and n, all of the other coefficients and their
significance tests may be determined by the equations presented in Chapter 3.

If the partial correlations between IVs are desired, they may be determined from the off-
diagonal elements of the inverse matrix. The partial correlations are

hDividing the observed difference by Eq. (A2.6) then gives
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example, do the data suggest a population difference in sizes of the direct effects for time since
Ph.D. (Pt) and number of publications (02)? The standard error of their difference is found by
substituting n = 62, k = 4, R\ = .5032, and elements of the inverse matrix as

foidf = 57,p<.Q5.
Similarly, we can test the significance of the difference between raw regression coefficients

in a regression equation (i.e., of Bt — fiy). The standard error of a partial Bit already given in
Eq. (3.6.1) may also be written as

Substituting./ for /, we have SEB.. Now, the standard error of their difference is given by

fordf = n — k — 1.
Equation (A2.9) can be generalized to provide the standard error of any linear contrast

function over a set of 5s from the same equation, and beyond that, of any linear function of
such a set. Letting a, be the weight attached to B,, a linear function is defined as

where / = 1.2,..., k. When the sum of the a, equals zero, the function is a linear contrast
function, as was described for means in Section 8.5. The standard error of such a linear
function is

where i = 1.2... k, i < j. In Eq. (A2.12), the first summation is over fes and the second over
all k(k — l)/2 distinct Bt, Bj pairs. The test is an ordinary t test.

An alternative approach to the comparison of correlated 5s or PS is given in Rindskopf
(1984). This comparison allows for a wide range of null hypotheses in addition to the preceding
test of equality, including tests for the equality of weights of more than two FVs, or the equality

and then finding from Eq. (A2.7)

where

so
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of a set of B weights with those specified by a particular theory. The test simply compares the
residual from the usual regression estimation with the residual from a regression estimation
in which the predictors being examined have been combined (that is, literally added together)
according to the null hypothesis. Thus, if one were testing the null hypothesis that the (3,-s for four
IVs were equivalent, one would simply add the four standardized predictors together (or not
standardized, depending on one's theory) and uses this combined variable as the predictor of Y.
The residual from this equation will necessarily be larger unless the P,s in this sample were
precisely equal (in which case there wouldn't be much point in the test), since the OLS for
the four variable problem is, by definition, optimal. One then tests the difference between the
original sum of squares for the regression minus the sum of squares for this combined variable
regression, divided by the df (in this case 3, since we have reduced the number of estimates
from 4 to 1). The error mean square can be taken from the original equation, and the resulting
F test will have 3 and n - 4 - 1 df.

This general method allows for a wide range of tests, including those based on the IVs in
their original (rather than standardized) units, when appropriate to the theory.

A2.3 TESTING THE DIFFERENCE BETWEEN 0s FOR DIFFERENT
DEPENDENT VARIABLES FROM A SINGLE SAMPLE

It is sometimes the case that the research question to be answered is whether a set of predictors
have, individually and collectively, a comparable relationship to two or more different DVs in
a single sample. A procedure that is basically similar to the comparison of PS for a single DV
was devised by P. Cohen, Brook, J. Cohen, Velez, & Garcia (1990). The test begins with the
standardization of all variables and the computation of the OLS for one of the DVs of interest,
Zy\ • From this regression analysis the predicted scores zyi are saved, which, of course, consist of
the sum of the p, weighted z, scores. This score is then subtracted from another standardized IV
of interest (e.g., zy2)- This score, Zy2 ~ 2yi >1& men used as the dependent variable in a regression
analysis of the same original standardized IVs. The overall test of the statistical significance of
R2 indicates whether the two DVs have different relationships to the IVs collectively, and the
tests of the individual P(s tell which coefficients differ significantly, and in which direction.



Appendix Tables

TABLE A
t Values for a = .01, .05 (Two Tailed)"

df
6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

a

.01

3.707
3.499
3.355
3.250
3.169

3.106
3.055
3.012
2.977
2.947

2.921
2.898
2.878
2.861
2.845

2.831
2.819
2.807
2.797
2.787

2.779
2.771
2.763
2.756
2.750

2.744
2.738
2.733
2.728
2.724

.05

2.447
2.365
2.306
2.262
2.228

2.201
2.179
2.160
2.145
2.131

2.120
2.110
2.101
2.093
2.086

2.080
2.074
2.069
2.064
2.060

2.056
2.052
2.048
2.045
2.042

2.040
2.037
2.034
2.032
2.030

df

36
37
38
39
40

42
44
46
48
50

52
54
56
58
60

64
68
72
76
80

90
100
120
150
200

300
400
600

1000
00

a

.01

2.720
2.715
2.712
2.708
2.704

2.698
2.692
2.687
2.682
2.678

2.674
2.670
2.666
2.663
2.660

2.655
2.650
2.646
2.642
2.639

2.632
2.626
2.617
2.609
2.601

2.592
2.588
2.584
2.581
2.576

.05

2.028
2.026
2.024
2.023
2.021

2.018
2.015
2.013
2.011
2.009

2.007
2.005
2.003
2.002
2.000

1.998
1.996
1.994
1.992
1.990

1.987
1.984
1.980
1.976
1.972

1.968
1.966
1.964
1.962
1.960

"This table is abridged from Table 2.1 in Owen (1962). (Courtesy
ofAEC.)
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TABLE B
z' Transformation of r

r

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

.27

.28

.29

z'

.000

.010

.020

.030

.040

.050

.060

.070

.080

.090

.100

.110

.121

.131

.141

.151

.161

.172

.182

.192

.203

.213

.224

.234

.245

.255

.266

.277

.288

.299

r

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59

z'

.310

.321

.332

.343

.354

.365

.377

.388

.400

.412

.424

.436

.448

.460

.472

.485

.497

.510

.523

.536

.549

.563

.576

.590

.604

.618

.633

.648

.662

.678

r

.60

.61

.62

.63

.64

.65

.66

.67

.68

.69

.70

.71

.72

.73

.74

.75

.76

.77

.78

.79

.800

.805

.810

.815

.820

.825

.830

.835

.840

.845

z'

.693

.709

.725

.741

.758

.775

.793

.811

.829

.848

.867

.887

.908

.929

.950

.973

.996
1.020
1.045
1.071

1.099
1.113
1.127
1.142
1.157

1.172
1.188
1.204
1.221
1.238

r

.850

.855

.860

.865

.870

.875

.880

.885

.890

.895

.900

.905

.910

.915

.920

.925

.930

.935

.940

.945

.950

.955

.960

.965

.970

.975

.980

.985

.990

.995

z'

1.256
1.274
1.293
1.313
1.333

1.354
1.376
1.398
1.422
1.447

1.472
1.499
1.528
1.557
1.589

1.623
1.658
1.697
1.738
1.783

1.832
1.886
1.946
2.014
2.092

2.185
2.298
2.443
2.647
2.994
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TABLE C
Normal Distribution3

z

.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00
1.05
1.10
1.15
1.20

P

.500

.480

.460

.440

.421

.401

.382

.363

.345

.326

.309

.291

.274

.258

.242

.227

.212

.198

.184

.171

.159

.147

.136

.125

.115

h

.399

.398

.397

.394

.391

.387

.381

.375

.368

.361

.352

.343

.333

.323

.312

.301

.290

.278

.266

.254

.242

.230

.218

.206

.194

z

1.25
1.30
1.35
1.40
1.45

1.50
1.55
1.60
1.65
1.70

1.75
1.80
1.85
1.90
1.95

2.00
2.05
2.10
2.15
2.20

2.25
2.30
2.35
2.40
2.45

P

.106

.097

.089

.081

.074

.067

.061

.055

.049

.045

.040

.036

.032

.029

.026

.023

.020

.018

.016

.014

.012

.011

.009

.008

.007

h

.183

.171

.160

.150

.139

.130

.120

.111

.102

.094

.086

.079

.072

.066

.060

.054

.049

.044

.040

.035

.032

.028

.025

.022

.020

z

2.50
2.55
2.60
2.65
2.70

2.75
2.80
2.85
2.90
2.95

3.00
3.50
4.00
4.50

.253

.431

.524

.674

.842

1.282
1.645
1.960
2.326
2.576

P

.006

.005

.005

.004

.003

.003

.003

.002

.002

.002

.0014

.0002

.0000

.0000

Fractiles

.40

.333

.30

.25

.20

.10

.05

.025

.01

.005

h

.018

.015

.014

.012

.010

.009

.008

.007

.006

.005

.0044

.0009

.0001

.0000

.386

.364

.348

.318

.280

.176

.103

.058

.027

.014

"This table is abridged from Tables 1.1, 1.2, and 1.3 in Owen (1962). (Courtesy
ofAEC.)
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TABLE D.1
F Values for a = .01a

4/nun

4fde!\

15

16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
32
34
36
38

40
42
44
46
48

50
55
60
65
70

80
90
100
120
150

200
300
400
1000
oo

1

8.68
8.53
8.40
8.29
8.18

8.10
8.02
7.95
7.88
7.82

7.77
7.72
7.68
7.64
7.60

7.56
7.50
7.45
7.40
7.35

7.31
7.28
7.25
7.22
7.20

7.17
7.12
7.08
7.04
6.98

6.96
6.93
6.90
6.85
6.81

6.76
6.72
6.70
6.66
6.63

2

6.36
6.23
6.11
6.01
5.93

5.85
5.78
5.72
5.66
5.61

5.57
5.53
5.49
5.45
5.42

5.39
5.34
5.29
5.25
5.21

5.18
5.15
5.12
5.10
5.08

5.06
5.01
4.98
4.95
4.92

4.88
4.85
4.82
4.79
4.75

4.71
4.68
4.66
4.63
4.61

3

5.42
5.29
5.18
5.09
5.01

4.94
4.87
4.82
4.76
4.72

4.68
4.64
4.60
4.57
4.54

4.51
4.46
4.42
4.38
4.34

4.31
4.29
4.26
4.24
4.22

4.20
4.16
4.13
4.10
4.08

4.04
4.01
3.98
3.95
3.92

3.88
3.85
3.83
3.80
3.78

4

4.89
4.77
4.67
4.58
4.50

4.43
4.37
4.31
4.26
4.22

4.18
4.14
4.11
4.07
4.04

4.02
3.97
3.93
3.89
3.86

3.83
3.80
3.78
3.76
3.74

3.72
3.68
3.65
3.62
3.60

3.56
3.54
3.51
3.48
3.45

3.42
3.38
3.37
3.34
3.32

5

4.56
4.44
4.34
4.25
4.17

4.10
4.04
3.99
3.94
3.90

3.86
3.82
3.78
3.75
3.73

3.70
3.65
3.61
3.58
3.54

3.51
3.49
3.47
3.45
3.43

3.41
3.37
3.34
3.31
3.29

3.26
3.23
3.21
3.17
3.14

3.11
3.08
3.06
3.04
3.02

6

4.32
4.20
4.10
4.01
3.94

3.87
3.81
3.76
3.71
3.67

3.63
3.59
3.56
3.53
3.50

3.47
3.43
3.39
3.35
3.32

3.29
3.27
3.24
3.22
3.20

3.19
3.15
3.12
3.09
3.07

3.04
3.01
2.99
2.96
2.93

2.89
2.86
2.85
2.82
2.80

7

4.14
4.03
3.93
3.84
3.77

3.70
3.64
3.59
3.54
3.50

3.46
3.42
3.39
3.36
3.33

3.30
3.26
3.22
3.18
3.15

3.12
3.10
3.08
3.06
3.04

3.02
2.98
2.95
2.93
2.91

2.87
2.85
2.82
2.79
2.76

2.73
2.70
2.69
2.66
2.64

8

4.00
3.89
3.79
3.71
3.63

3.56
3.51
3.45
3.41
3.36

3.32
3.29
3.26
3.23
3.20

3.17
3.13
3.09
3.05
3.02

2.99
2.97
2.95
2.93
2.91

2.89
2.85
2.82
2.80
2.78

2.74
2.72
2.69
2.66
2.63

2.60
2.57
2.56
2.53
2.51

9

3.89
3.78
3.68
3.60
3.52

3.46
3.40
3.35
3.30
3.26

3.22
3.18
3.15
3.12
3.09

3.07
3.02
2.98
2.95
2.92

2.89
2.86
2.84
2.82
2.80

2.79
2.75
2.72
2.69
2.67

2.64
2.61
2.59
2.56
2.53

2.50
2.47
2.45
2.43
2.41

10

3.80
3.69
3.59
3.51
3.43

3.37
3.31
3.26
3.21
3.17

3.13
3.09
3.06
3.03
3.00

2.98
2.93
2.90
2.86
2.83

2.80
2.78
2.75
2.73
2.72

2.70
2.66
2.63
2.61
2.59

2.55
2.53
2.50
2.47
2.44

2.41
2.38
2.37
2.34
2.32

11

3.73
3.62
3.52
3.43
3.36

3.29
3.24
3.18
3.14
3.09

3.06
3.02
2.99
2.96
2.93

2.90
2.86
2.82
2.79
2.75

2.73
2.70
2.68
2.66
2.64

2.63
2.59
2.56
2.53
2.51

2.48
2.45
2.43
2.40
2.37

2.34
2.31
2.29
2.26
2.25

12

3.67
3.55
3.46
3.37
3.30

3.23
3.17
3.12
3.07
3.03

2.99
2.96
2.93
2.90
2.87

2.84
2.80
2.76
2.72
2.69

2.66
2.64
2.62
2.60
2.58

2.56
2.53
2.50
2.47
2.45

2.42
2.39
2.37
2.34
2.31

2.28
2.25
2.23
2.20
2.18

13

3.61
3.50
3.40
3.32
3.24

3.18
3.12
3.07
3.02
2.98

2.94
2.90
2.87
2.84
2.81

2.79
2.74
2.70
2.67
2.64

2.61
2.59
2.56
2.54
2.53

2.51
2.47
2.44
2.42
2.40

2.36
2.33
2.31
2.28
2.25

2.22
2.19
2.17
2.15
2.13
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14

3.56
3.45
3.35
3.27
3.19

3.13
3.07
3.02
2.97
2.93

2.89
2.86
2.82
2.79
2.77

2.74
2.70
2.66
2.62
2.59

15

3.52
3.41
3.31
3.23
3.15

3.09
3.03
2.98
2.93
2.89

2.85
2.82
2.78
2.75
2.73

2.70
2.66
2.62
2.58
2.55

16

3.48
3.37
3.27
3.19
3.12

3.05
2.99
2.94
2.89
2.85

2.81
2.78
2.74
2.72
2.69

2.66
2.62
2.58
2.54
2.51

18

3.42
3.31
3.21
3.13
3.05

2.99
2.93
2.88
2.83
2.79

2.75
2.71
2.68
2.65
2.62

2.60
2.55
2.51
2.48
2.45

20

3.37
3.26
3.16
3.08
3.00

2.94
2.88
2.83
2.78
2.74

2.70
2.66
2.63
2.60
2.57

2.55
2.50
2.46
2.43
2.40

24

3.29
3.18
3.08
3.00
2.92

2.86
2.80
2.75
2.70
2.66

2.62
2.58
2.55
2.52
2.49

2.47
2.42
2.38
2.35
2.32

30

3.21
3.10
3.00
2.92
2.84

2.78
2.72
2.67
2.62
2.58

2.54
2.50
2.47
2.44
2.41

2.39
2.34
2.30
2.26
2.23

40

3.13
3.02
2.92
2.84
2.76

2.69
2.64
2.58
2.54
2.49

2.45
2.42
2.38
2.35
2.33

2.30
2.25
2.21
2.18
2.14

50

3.08
2.97
2.87
2.78
2.71

2.64
2.58
2.53
2.48
2.44

2.40
2.36
2.33
2.30
2.27

2.24
2.20
2.16
2.12
2.09

60

3.05
2.93
2.83
2.75
2.67

2.61
2.55
2.50
2.45
2.40

2.36
2.33
2.29
2.26
2.23

2.21
2.16
2.12
2.08
2.05

80

3.00
2.84
2.79
2.70
2.63

2.56
2.50
2.45
2.40
2.36

2.32
2.28
2.25
2.22
2.19

2.16
2.11
2.07
2.03
2.00

120

2.96
2.84
2.75
2.66
2.58

2.52
2.46
2.40
2.35
2.31

2.27
2.23
2.20
2.17
2.14

2.11
2.06
2.02
1.98
1.95

oo

2.87
2.75
2.65
2.57
2.49

2.42
2.36
2.31
2.26
2.21

2.17
2.13
2.10
2.06
2.03

2.01
1.96
1.91
1.87
1.84

2.56
2.54
2.52
2.50
2.48

2.46
2.42
2.39
2.37
2.35

2.31
2.29
2.26
2.23
2.20

2.17
2.14
2.13
2.10
2.08

2.52
2.50
2.48
2.46
2.44

2.42
2.38
2.35
2.33
2.31

2.27
2.25
2.22
2.19
2.16

2.13
2.10
2.08
2.06
2.04

2.48
2.46
2.44
2.42
2.40

2.38
2.34
2.31
2.29
2.27

2.23
2.21
2.18
2.15
2.12

2.09
2.06
2.04
2.02
2.00

2.42
2.40
2.37
2.35
2.33

2.32
2.28
2.25
2.22
2.20

2.17
2.14
2.12
2.09
2.06

2.02
1.99
1.98
1.95
1.93

2.37
2.34
2.32
2.30
2.28

2.27
2.23
2.20
2.17
2.15

2.12
2.09
2.07
2.03
2.00

1.97
1.94
1.93
1.90
1.88

2.29
2.26
2.24
2.22
2.20

2.18
2.15
2.12
2.09
2.07

2.03
2.01
1.98
1.95
1.92

1.89
1.85
1.84
1.81
1.79

2.20
2.18
2.16
2.14
2.12

2.10
2.06
2.03
2.00
1.98

1.94
1.92
1.89
1.86
1.83

1.79
1.76
1.75
1.72
1.70

2.11
2.09
2.07
2.05
2.03

2.01
1.97
1.94
1.91
1.89

1.85
1.82
1.80
1.76
1.73

1.69
1.66
1.64
1.61
1.59

2.06
2.03
2.01
1.99
1.97

1.95
1.91
1.88
1.85
1.83

1.79
1.76
1.73
1.70
1.66

1.63
1.59
1.57
1.54
1.52

2.02
1.99
1.97
1.95
1.93

1.91
1.87
1.84
1.81
1.78

1.75
1.72
1.69
1.66
1.62

1.58
1.55
1.53
1.49
1.47

1.97
1.94
1.92
1.90
1.87

1.86
1.82

,1.78
1.75
1.73

1.69
1.66
1.63
1.59
1.56

1.52
1.48
1.46
1.42
1.40

1.92
1.89
1.87
1.84
1.82

1.80
1.76
1.73
1.70
1.67

1.63
1.60
1.57
1.53
1.49

1.45
1.41
1.39
1.35
1.32

1.80
1.78
1.75
1.72
1.70

1.68
1.64
1.60
1.57
1.54

1.49
1.45
1.43
1.37
1.33

1.28
1.22
1.19
1.11
1.00

"This table is partly abridged from Table 4.1 in Owen (1962), and partly computed by linear interpolations in
reciprocals of df. (Courtesy of AEC.)

TABLE D.I
(continued)
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TABLE D.2
F Values for a = .05*

^\ dfnum.

dfd\^ 1

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
32
34
36
38

40
42
44
46
48

50
55
60
65
70

80
90
100
120
150

200
300
400
1000
00

4.54
4.49
4.45
4.41
4.38

4.35
4.32
4.30
4.28
4.26

4.24
4.23
4.21
4.20
4.18

4.17
4.15
4.13
4.11
4.10

4.08
4.07
4.06
4.05
4.04

4.03
4.02
4.00
3.99
3.98

3.96
3.95
3.94
3.92
3.90

3.89
3.87
3.86
3.85
3.84

2

3.68
3.63
3.59
3.55
3.52

3.49
3.47
3.44
3.42
3.40

3.39
3.37
3.35
3.34
3.33

3.32
3.30
3.28
3.26
3.24

3.23
3.22
3.21
3.20
3.19

3.18
3.17
3.15
3.14
3.13

3.11
3.10
3.09
3.07
3.06

3.04
3.03
3.02
3.00
3.00

3

3.29
3.24
3.20
3.16
3.13

3.10
3.07
3.05
3.03
3.01

2.99
2.98
2.96
2.95
2.93

2.92
2.90
2.88
2.87
2.85

2.84
2.83
2.82
2.81
2.80

2.79
2.77
2.76
2.75
2.74

2.72
2.71
2.70
2.68
2.67

2.65
2.64
2.63
2.61
2.60

4

3.06
3.01
2.96
2.93
2.90

2.87
2.84
2.82
2.80
2.78

2.76
2.74
2.73
2.71
2.70

2.69
2.67
2.65
2.63
2.62

2.61
2.59
2.58
2.57
2.57

2.56
2.54
2.53
2.51
2.50

2.49
2.47
2.46
2.45
2.43

2.42
2.40
2.39
2.38
2.37

5

2.90
2.85
2.81
2.77
2.74

2.71
2.68
2.66
2.64
2.62

2.60
2.59
2.57
2.56
2.55

2.53
2.51
2.49
2.48
2.46

2.45
2.44
2.43
2.42
2.41

2.40
2.38
2.37
2.36
2.35

2.33
2.32
2.31
2.29
2.27

2.26
2.24
2.23
2.22
2.21

6

2.79
2.74
2.70
2.66
2.63

2.60
2.57
2.55
2.53
2.51

2.49
2.47
2.46
2.45
2.43

2.42
2.40
2.38
2.36
2.35

2.34
2.32
2.31
2.30
2.30

2.29
2.27
2.25
2.24
2.23

2.21
2.20
2.19
2.18
2.16

2.14
2.13
2.12
2.11
2.10

7

2.71
2.66
2.61
2.58
2.54

2.51
2.49
2.46
2.44
2.42

2.40
2.39
2.37
2.36
2.35

2.33
2.31
2.29
2.28
2.26

2.25
2.24
2.23
2.22
2.21

2.20
2.18
2.17
2.15
2.14

2.13
2.11
2.10
2.09
2.07

2.06
2.04
2.03
2.02
2.01

8

2.64
2.59
2.55
2.51
2.48

2.45
2.42
2.40
2.38
2.36

2.34
2.32
2.31
2.29
2.28

2.27
2.24
2.23
2.21
2.19

2.18
2.17
2.16
2.15
2.14

2.13
2.11
2.10
2.08
2.07

2.06
2.04
2.03
2.02
2.00

1.99
1.97
1.96
1.95
1.94

9

2.59
2.54
2.49
2.46
2.42

2.39
2.37
2.34
2.32
2.30

2.28
2.27
2.25
2.24
2.22

2.21
2.19
2.17
2.15
2.14

2.12
2.11
2.10
2.09
2.08

2.07
2.06
2.04
2.03
2.02

2.00
1.99
1.98
1.96
1.94

1.93
1.91
1.90
1.89
1.88

10

2.54
2.49
2.45
2.41
2.38

2.35
2.32
2.30
2.27
2.25

2.24
2.22
2.20
2.19
2.18

2.16
2.14
2.12
2.11
2.09

2.08
2.07
2.05
2.04
2.03

2.03
2.01
1.99
1.98
1.97

1.95
1.94
1.93
1.91
1.89

1.88
1.86
1.85
1.84
1.83

11

2.51
2.46
2.41
2.37
2.34

2.31
2.28
2.26
2.24
2.22

2.20
2.18
2.16
2.15
2.14

2.13
2.10
2.08
2.07
2.05

2.04
2.02
2.01
2.00
1.99

1.99
1.97
1.95
1.94
1.93

1.91
1.90
1.89
1.87
1.85

1.84
1.82
1.81
1.80
1.79

12

2.48
2.42
2.38
2.34
2.31

2.28
2.25
2.23
2.20
2.18

2.16
2.15
2.13
2.12
2.10

2.09
2.07
2.05
2.03
2.02

2.00
1.99
1.98
1.97
1.96

1.95
1.93
1.92
1.90
1.89

1.88
1.86
1.85
1.83
1.82

1.80
1.79
1.78
1.76
1.75

13

2.45
2.40
2.35
2.31
2.28

2.25
2.22
2.20
2.17
2.15

2.14
2.12
2.10
2.09
2.07

2.06
2.04
2.02
2.00
1.99

1.97
1.96
1.95
1.94
1.93

1.92
1.90
1.89
1.87
1.86

1.84
1.83
1.82
1.80
1.79

1. 11
1.75
1.74
1.73
1.72
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TABLE D.2
(Continued)

Vmua.

14

2.42
2.37
2.33
2.29
2.26

2.23
2.20
2.17
2.15
2.13

2.11
2.09
2.08
2.06
2.05

2.04
2.02
2.00
1.98
1.96

1.95
1.93
1.92
1.91
1.90

1.89
1.88
1.86
1.85
1.84

1.82
1.80
1.79
1.77
1.76

1.74
1.73
1.72
1.70
1.69

15

2.40
2.35
2.31
2.27
2.23

2.20
2.18
2.15
2.13
2.11

2.09
2.07
2.06
2.04
2.03

2.01
1.99
1.97
1.95
1.94

1.92
1.91
1.90
1.89
1.88

1.87
1.85
1.84
1.82
1.81

1.79
1.78
1.77
1.75
1.73

1.72
1.70
1.69
1.68
1.67

16

2.38
2.33
2.29
2.25
2.21

2.18
2.16
2.13
2.11
2.09

2.07
2.05
2.04
2.02
2.01

1.99
1.97
1.95
1.93
1.92

1.90
1.89
1.88
1.87
1.86

1.85
1.83
1.81
1.80
1.79

1.77
1.76
1.74
1.73
1.71

1.69
1.68
1.67
1.65
1.64

18

2.35
2.30
2.26
2.22
2.18

2.15
2.12
2.10
2.07
2.05

2.03
2.02
2.00
1.99
1.97

1.96
1.94
1.92
1.90
1.88

1.87
1.85
1.84
1.83
1.82

1.81
1.79
1.78
1.76
1.75

1.73
1.72
1.71
1.69
1.67

1.65
1.64
1.63
1.61
1.60

20

2.33
2.28
2.23
2.19
2.16

2.12
2.10
2.07
2.05
2.03

2.01
1.99
1.97
1.96
1.94

1.93
1.91
1.89
1.87
1.85

1.84
1.83
1.81
1.80
1.79

1.78
1.76
1.75
1.73
1.72

1.70
1.69
1.68
1.66
1.64

1.62
1.61
1.60
1.58
1.57

24

2.29
2.24
2.19
2.15
2.11

2.08
2.05
2.03
2.00
1.98

1.96
1.95
1.93
1.91
1.90

1.89
1.86
1.84
1.82
1.81

1.79
1.78
1.77
1.76
1.75

1.74
1.72
1.70
1.69
1.67

1.65
1.64
1.63
1.61
1.59

1.57
1.55
1.54
1.53
1.52

30

2.25
2.19
2.15
2.11
2.07

2.04
2.01
1.98
1.96
1.94

1.92
1.90
1.88
1.87
1.85

1.84
1.82
1.80
1.78
1.76

1.74
1.73
1.72
1.71
1.70

1.69
1.67
1.65
1.63
1.62

1.60
1.59
1.57
1.55
1.54

1.52
1.50
1.49
1.47
1.46

40

2.20
2.15
2.10
2.06
2.03

1.99
1.96
1.94
1.91
1.89

1.87
1.85
1.84
1.82
1.81

1.79
1.77
1.75
1.73
1.71

1.69
1.68
1.67
1.65
1.64

1.63
1.61
1.59
1.58
1.56

1.54
1.53
1.52
1.50
1.47

1.45
1.43
1.42
1.41
1.39

50

2.18
2.12
2.08
2.04
2.00

1.97
1.94
1.91
1.88
1.86

1.84
1.82
1.81
1.79
1.77

1.76
1.74
1.71
1.69
1.68

1.66
1.65
1.63
1.62
1.61

1.60
1.58
1.56
1.54
1.53

1.51
1.49
1.48
1.46
1.43

1.41
1.39
1.38
1.36
1.35

60

2.16
2.11
2.06
2.02
1.98

1.95
1.92
1.89
1.86
1.84

1.82
1.80
1.79
1.77
1.75

1.74
1.71
1.69
1.67
1.65

1.64
1.62
1.61
1.60
1.59

1.58
1.55
1.53
1.52
1.50

1.48
1.46
1.45
1.43
1.41

1.38
1.36
1.35
1.33
1.32

80

2.14
2.08
2.03
1.99
1.95

1.92
1.89
1.86
1.84
1.82

1.80
1.78
1.76
1.74
1.73

1.71
1.69
1.66
1.64
1.62

1.61
1.59
1.58
1.57
1.55

1.54
1.52
1.50
1.48
1.47

1.45
1.43
1.41
1.39
1.37

1.34
1.32
1.31
1.28
1.27

120

2.11
2.06
2.01
1.97
1.93

1.90
1.87
1.84
1.81
1.79

1.77
1.75
1.73
1.71
1.70

1.68
1.66
1.63
1.61
1.59

1.58
1.56
1.55
1.53
1.52

1.51
1.49
1.47
1.45
1.44

1.41
1.39
1.37
1.35
1.33

1.30
1.27
1.26
1.24
1.22

oo

2.07
2.01
1.96
1.92
1.88

1.84
1.81
1.78
1.76
1.73

1.71
1.69
1.67
1.65
1.64

1.62
1.59
1.57
1.55
1.53

1.51
1.49
1.48
1.46
1.45

1.44
1.41
1.39
1.37
1.35

1.32
1.30
1.28
1.25
1.22

1.19
1.15
1.13
1.08
1.00

"This table is partly abridged from Table 4.1 in Owen (1962), and partly computed by linear interpolation in
reciprocals of df. (Courtesy of AEC.)



TABLE E.I
L Values for a = .01

\ Power

^ .10

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
18
20
22
24

28
32
36
40
50

60
70
80
90

100

1.67
2.30
2.76
3.15
3.49

3.79
4.08
4.34
4.58
4.82

5.04
5.25
5.45
5.65
5.84

6.02
6.37
6.70
7.02
7.32

7.89
8.42
8.92
9.39

10.48

11.46
12.37
13.22
14.01
14.76

.30

4.21
5.37
6.22
6.92
7.52

8.07
8.57
9.03
9.47
9.88

10.27
10.64
11.00
11.35
11.67

12.00
12.61
13.19
13.74
14.27

15.26
16.19
17.06
17.88
19.77

21.48
23.05
24.51
25.89
27.19

.50

6.64
8.19
9.31

10.23
11.03

11.75
12.41
13.02
13.59
14.13

14.64
15.13
15.59
16.04
16.48

16.90
17.70
18.45
19.17
19.86

21.15
22.35
23.48
24.54
27.00

29.21
31.25
33.15
34.93
36.62

.60

8.00
9.75

11.01
12.04
12.94

13.74
14.47
15.15
15.79
16.39

16.96
17.51
18.03
18.53
19.01

19.48
20.37
21.21
22.01
22.78

24.21
25.55
26.80
27.99
30.72

33.18
35.45
37.55
39.53
41.41

.70

9.61
11.57
12.97
14.12
15.12

16.01
16.83
17.59
18.30
18.97

19.60
20.21
20.78
21.34
21.88

22.40
23.39
24.32
25.21
26.06

27.65
29.13
30.52
31.84
34.86

37.59
40.10
42.43
44.62
46.70

.75

10.57
12.64
14.12
15.34
16.40

17.34
18.20
19.00
19.75
20.46

21.13
21.77
22.38
22.97
23.53

24.08
25.12
26.11
27.05
27.94

29.62
31.19
32.65
34.04
37.23

40.10
42.75
45.21
47.52
49.70

.80

11.68
13.88
15.46
16.75
17.87

18.87
19.79
20.64
21.43
22.18

22.89
23.56
24.21
24.83
25.43

26.01
27.12
28.16
29.15
30.10

31.88
33.53
35.09
36.55
39.92

42.96
45.76
48.36
50.80
53.11

.85

13.05
15.40
17.09
18.47
19.66

20.73
21.71
22.61
23.46
24.25

25.01
25.73
26.42
27.09
27.72

28.34
29.52
30.63
31.69
32.69

34.59
36.35
38.00
39.56
43.14

46.38
49.35
52.11
54.71
57.16

.90

14.88
17.43
19.25
20.74
22.03

23.18
24.24
25.21
26.12
26.98

27.80
28.58
29.32
30.03
30.72

31.39
32.66
33.85
34.99
36.07

38.11
40.01
41.78
43.46
47.31

50.79
53.99
56.96
59.75
62.38

.95

17.81
20.65
22.67
24.33
25.76

27.04
28.21
29.29
30.31
31.26

32.16
33.02
33.85
34.64
35.40

36.14
37.54
38.87
40.12
41.32

43.58
45.67
47.63
49.49
53.74

57.58
61.11
64.39
67.47
70.37

.99

24.03
27.42
29.83
31.80
33.50

35.02
36.41
37.69
38.89
40.02

41.09
42.11
43.09
44.03
44.93

45.80
47.46
49.03
50.51
51.93

54.60
57.07
59.39
61.57
66.59

71.12
75.27
79.13
82.76
86.18

650



TABLE E.2
/.Values for a = .05

\ Power

*B\ .10
1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
18
20
22
24

28
32
36
40
50

60
70
80
90

100

.43

.62

.78

.91
1.03

1.13
1.23
1.32
1.40
1.49

1.56
1.64
1.71
1.78
1.84

1.90
2.03
2.14
2.25
2.36

2.56
2.74
2.91
3.08
3.46

3.80
4.12
4.41
4.69
4.95

.30

2.06
2.78
3.30
3.74
4.12

4.46
4.77
5.06
5.33
5.59

5.83
6.06
6.29
6.50
6.71

6.91
7.29
7.65
8.00
8.33

8.94
9.52

10.06
10.57
11.75

12.81
13.79
14.70
15.56
16.37

.50

3.84
4.96
5.76
6.42
6.99

7.50
7.97
8.41
8.81
9.19

9.56
9.90

10.24
10.55
10.86

11.16
11.73
12.26
12.77
13.02

14.17
15.02
15.82
16.58
18.31

19.88
21.32
22.67
23.93
25.12

.60

4.90
6.21
7.15
7.92
8.59

9.19
9.73

10.24
10.71
11.15

11.58
11.98
12.36
12.73
13.09

13.43
14.09
14.71
15.30
15.87

16.93
17.91
18.84
19.71
21.72

23.53
25.20
26.75
28.21
29.59

.70

6.17
7.70
8.79
9.68

10.45

11.14
11.77
12.35
12.89
13.40

13.89
14.35
14.80
15.22
15.63

16.03
16.78
17.50
18.17
18.82

20.04
21.17
22.23
23.23
25.53

27.61
29.52
31.29
32.96
34.54

.75

6.94
8.59
9.77

10.72
11.55

12.29
12.96
13.59
14.17
14.72

15.24
15.74
16.21
16.67
17.11

17.53
18.34
19.11
19.83
20.53

21.83
23.04
24.18
25.25
27.71

29.94
31.98
33.88
35.67
37.36

.80

7.85
9.64

10.90
11.94
12.83

13.62
14.35
15.02
15.65
16.24

16.80
17.34
17.85
18.34
18.81

19.27
20.14
20.96
21.74
22.49

23.89
25.19
26.41
27.56
30.20

32.59
34.79
36.83
38.75
40.56

.85

8.98
10.92
12.30
13.42
14.39

15.26
16.04
16.77
17.45
18.09

18.70
19.28
19.83
20.36
20.87

21.37
22.31
23.20
24.04
24.85

26.36
27.77
29.09
30.33
33.19

35.77
38.14
40.35
42.14
44.37

.90

10.51
12.65
14.17
15.41
16.47

17.42
18.28
19.08
19.83
20.53

21.20
21.83
22.44
23.02
23.58

24.13
25.16
26.13
27.06
27.94

29.60
31.14
32.58
33.94
37.07

39.89
42.48
44.89
47.16
49.29

.95

13.00
15.44
17.17
18.57
19.78

20.86
21.84
22.74
23.59
24.39

25.14
25.86
26.55
27.20
27.84

28.45
29.62
30.72
31.77
32.76

34.64
36.37
38.00
39.54
43.07

46.25
49.17
51.89
54.44
56.85

.99

18.37
21.40
23.52
25.24
26.73

28.05
29.25
30.36
31.39
32.37

33.29
34.16
35.00
35.11
36.58

37.33
38.76
40.10
41.37
42.59

44.87
46.98
48.96
50.83
55.12

58.98
62.13
65.83
68.92
71.84
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TABLE F.1
Power of Significance Test of r at a = .01 (Two Tailed)*

Population r Population r

n\ .10 .20 .30 .40 .50 .60 .70 .80 .90 n\ .10 .20 .30 .40 .50 .60 .70 .80 .90

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
31
32
33
34

35
36
37
38
39

40
42
44
46
48

01
01
01
01
02

02
02
02
02
02

02
02
02
02
02

02
02
02
02
02

02
02
02
02
02

02
03
03
03
03

03
03
03
04
04

04
04
04
04
05

05
05
06
06
06

06
07
07
07
07

08
08
08
08
09

09
09
10
11
11

06 13
07 14
08 16
08 17
09 19

09 20
10 21
11 23
12 25
12 26

13 28
14 30
14 31
15 33
16 34

17 36
17 37
18 39
19 40
20 42

20 43
21 45
22 47
23 48
24 49

25 50
26 53
28 56
29 58
31 61

25
28
30
33
36

38
41
43
46
49

51
53
55
57
60

62
64
66
67
69

71
72
74
76
77

78
81
83
85
87

44
48
52
56
59

62
66
68
71
74

76
78
80
82
84

85
87
88
89
90

91
92
93
94
95

95
96
97
98
98

68
73
77
80
83

85
88
90
91
93

94
95
96
96
97

98
98
98
99
99

99
99
99
*

90 *
93
95
96
97

98
98
99
99
99

*

50
52
54
56
58

60
64
68
72
76

80
84
88
92
96

100
120
140
160
180

200
250
300
350
400

500
600
700
800
1000

03 12
03 12
03 13
03 14
03 14

03 15
04 16
04 17
04 19
04 20

04 21
05 23
05 24
05 25
05 27

06 29
07 35
08 42
09 49
11 55

12 61
16 73
20 82
24 89
28 93

37 97
45 99
53 *
60
72

33
34
36
38
39

41
44
47
50
53

56
59
61
64
66

69
78
85
90
94

96
99
*

63 89 99 * * *
66 90 99
68 91 99
70 93 99
72 94 *

74 94
77 96
80 97
83 98
85 98

87 99
89 99
91 99
92 *
94

95
98
99
*

Note: Decimal points omitted in power values.
*Power values at and below this point exceed .995.
aSlightly abridged from Table 3.3.4 in Cohen (1977). Reproduced with the permission of the publisher.
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TABLE F.2
Power of Significance Test of r at a = .05 (Two Tailed)*

Population r Population r

n \ .10 .20 .30 .40 .50 .60 .70 .80 .90 n \ .10 .20 .30 .40 .50 .60 .70 .80 .90

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
31
32
33
34

35
36
37
38
39

40
42
44
46
48

06
07
07
07
07

07
07
07
07
07

08
08
08
08
08

08
08
08
09
09

09
09
09
09
09

09
10
10
10
10

11
11
12
12
13

14
14
15
15
16

16
17
17
18
18

19
19
20
20
21

21
22
22
23
23

24
25
26
27
28

19
21
22
23
24

25
27
28
29
30

31
33
34
35
36

37
38
39
40
42

43
44
45
46
47

48
50
52
54
55

32
35
37
39
41

43
45
47
49
51

53
54
56
58
59

61
62
64
65
67

68
69
70
72
73

74
76
78
80
82

50
53
56
59
62

64
66
69
71
73

75
76
78
80
81

83
84
85
86
87

88
89
90
91
91

92
93
94
95
96

70
73
76
79
81

83
85
87
89
90

91
92
93
94
95

95
96
97
97
97

98
98
98
99
99

99
99
99
*

88 98 *
90 98
92 99
94 99
95 99

96 *
96
97
98
98

99
99
99
99
99

*

50
52
54
56
58

60
64
68
72
76

80
84
88
92
96

100
120
140
160
180

200
250
300
350
400

500
600
700
800
1000

11
11
11
11
12

12
12
13
13
14

14
15
15
16
16

17
19
22
24
27

29
35
41
46
52

61
69
76
81
89

29
30
31
32
33

34
36
38
39
41

43
45
47
48
50

52
59
66
72
77

81
89
94
97
98

99
*

57 83 97 * * * *
59 85 97
61 86 98
62 87 98
64 89 98

65 90 99
68 91 99
71 93 99
73 94 *
76 95

78 96
80 97
82 98
83 98
85 98

86 99
92 *
95
97
98

99
*

Note: Decimal points omitted in power values.
*Power values at and below this point exceed .995.
aSlightly abridged from Table 3.3.5 in Cohen (1977). Reproduced with the permission of the publisher.
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TABLE G.1
n* to Detect r by t Test at a = .01 (Two Tailed)3

Desked\

power \ 1Q

.25

.50

.60
2/3

.70

.75

.80

.85

.90

.95

.99

362
662
797
901

957
1052
1163
1299

1480
1790
2390

Population r

.20

90
164
197
222

236
259
286
320

364
440
587

.30

40
71
86
96

102
112
124
138

157
190
253

.40

23
39
47
53

56
61
67
75

85
102
136

.50

15
24
29
32

34
37
41
45

51
62
82

.60

11
16
19
21

23
25
27
30

34
40
52

.70

8
12
13
15

15
17
18
20

22
26
34

.80

6
8
9
10

11
11
12
13

15
17
23

.90

5
6
7
7

7
8
8
9

9
11
13

aReproduced from Table 3.4.1 in Cohen (1977) with permission of the
publisher.

TABLE G.2
n* to Detect r by t Test at a = .05 (Two Tailed)*

Desired\

power \ 1Q

.25

.50

.60
2/3

.70

.75

.80

.85

.90

.95

.99

166
384
489
570

616
692
783
895

1046
1308
1828

Population r

.20

42
95
121
141

152
171
193
221

258
322
449

.30

20
42
53
62

66
74
84
96

112
139
194

.40

12
24
29
34

37
41
46
52

61
75
104

.50

8
15
18
21

23
25
28
32

37
46
63

.60

6
10
12
14

15
17
18
21

24
30
40

.70

5
7
9
10

10
11
12
14

16
19
27

.80

4
6
6
7

7
8
9
10

11
13
18

.90

3
4
5
5

5
6
6
6

7
8

11

"Reproduced from Table 3.4.1 in Cohen (1977) with permission of the
publisher.

654



References

Abelson, R. P. (1995). Statistics as principled argument. Hillsdale, NJ: Erlbaum.
Abelson, R. P. (1997). On the surprising longevity of flogged horses: Why there is a case for significance

tests. Psychological Science, 23, 12-15.
Abelson, R. P., & Prentice, D. A. (1997). Contrast tests of interaction hypotheses. Psychological Methods,

2, 315-328.
Aber, M. S., & McArdle, J. J. (1991). Latent growth curve approaches to modeling the development of

competence. In M. Chandler & M. Chapman (Eds.), Criteria for competence (pp. 231-258). Hillsdale,
NJ: Erlbaum.

Agresti, A. (1990). Categorical data analysis. New York: Wiley.
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury

Park, CA: Sage.
Aiken, L. S., & West, S. G. (2000, August). Probing three-way interactions in multiple regression: Simple

interaction tests. Poster presented at American Psychological Association, Washington, DC.
Aiken, L. S., West, S. G., Woodward, C. K., & Reno, R. R. (1994). Health beliefs and compliance

with mammography-screening recommendations in asymptomatic women. Health Psychology, 13,
122-129.

Aiken, L. S., West, S. G., Woodward, C. K., Reno, R. R., & Reynolds, K. D. (1994). Increasing screening
mammography in asymptomatic women: Evaluation of a second-generation, theory-based program.
Health Psychology, 13, 526-538.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In
B. N. Petrov & F. Csaki (Eds.), Proceedings of the Second International Symposium on Information
Theory (pp. 267-281). Budapest: Akademiai Kiado.

Alastair, S., & Wild, C. (1991). Transformation and R2. American Statistician, 45, 127-129.
Aldrich, J. H., & Nelson, F. D. (1984). Linear probability, logit, andprobit models. Newbury Park, CA:

Sage.
Anderson, R. L., & Houseman, E. E. (1942). Tables oforthogonal polynomialvalues extended to N = 104

(Research Bulletin No. 297). Ames, IA: Agricultural Experiment Station.
Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd ed.). New York: Wiley.
Anscombe, F. J. (1960). Rejection of outliers. Technometrics, 2, 123-147.
Atkinson, A. C. (1985). Plots, transformations and regression: An introduction to graphical methods of

diagnostic regression analysis. Oxford: Clarendon Press.
Atkinson, A. C., & Donev, A. N. (1992). Optimal experimental designs. Oxford: Clarendon Press.

655



656 REFERENCES

Baker, B., Hardyck, C. D., & Petrinovich, L. F. (1966). Weak measurements vs. strong statistics:
An empirical critique of S. S. Steven's proscriptions on statistics. Educational and Psychological
Measurement, 26, 291-309.

Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R.
Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development
(pp. 1-39). New York: Academic Press.

Barcikowski, R. S. (1981). Statistical power with group mean as the units of analysis. Journal of
Educational Statistics, 6, 267-285.

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological
research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social
Psychology, 51, 1173-1182.

Beckman, R. J., & Cook, R. D. (1983). Outliers. Technometrics, 25, 119-163.
Behnken, D. W., & Draper, N. R. (1972). Residuals and their variance patterns. Technometrics, 14,

469^79.
Belsley, D. A. (1984). Demeaning conditioning diagnostics through centering. American Statistician,

38, 73-77.
Belsley, D. A. (1991). Conditioning diagnostics: Collinearity and weak data in regression. New York:

Wiley.
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and

sources of collinearity. New York: Wiley.
Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of

Psychology, 31, 419^456.
Bentler, P.M. (1990). Comparative fit Indexes in structural models. Psychological Bulletin, 107,238-246.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance

structures. Psychological Bulletin, 88, 588-606.
Berk, R. A. (1988). Causal inference for sociological data. In N. H. Smelser (Ed.), Handbook of sociology

(pp. 155-172). Newbury Park, CA: Sage.
Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical

Association, 39, 357-365.
Berkson, J. (1946). Limitations of the application of fourfold table analysis to hospital data. Biometric

Bulletin, 2, 47-53.
Berry, W. D. (1993). Understanding regression assumptions. Newbury Park, CA: Sage.
Blalock, H. M., Jr. (1964). Causal inferences in nonexperimental research. Chapel Hill: University of

North Carolina Press.
Blalock, H. M., Jr. (Ed.). (1971). Causal models in the social sciences. Chicago: Aldine-Atherton.
Blossfeld, H.-P, & Rohwer, G. (2002). Techniques of event history modeling: New approaches to causal

analysis (2nd ed.). Mahway, NJ: Erlbaum.
Bohrnstedt, G. W, & Marwell, G. (1978). The reliability of products of two random variables. In

K. F. Schuessler (Ed.), Sociological methodology (pp. 254-273). San Francisco: Jossey-Bass.
Boker, S. M. ( 2001). Differential structural equation modeling of intraindividual variability. In

L. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 5-27). Washington,
DC: American Psychological Association Press.

Boker, S. M., Schreiber, T, Pompe, B., & Bertenthal, B. I. (1998). Nonlinear analysis of perceptual
motor coupling in the development of postural control. In H. Kantz, J. Kurths, & G. Meyer-Kress
(Eds.), Nonlinear analysis of physiological data (pp. 251-270). Berlin: Springer.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
Bollen, K. A., & Jackman, R. W. (1990). Regression diagnostics: An expository treatment of outliers

and influential cases. In J. Fox & J. S. Long (Eds.), Modern methods of data analysis (pp. 257-291).
Newbury Park, CA: Sage.

Bollen, K. A., & Long, J. S. (Eds.). (1993). Testing structural equation models. Newbury Park, CA:
Sage.

Bollen, K. A., & Ting, K.-F. (2000). A tetrad test for causal indicators. Psychological Methods, 5, 3-22.
Borenstein, M., Rothstein, H., & Cohen, J. (2001). Power and precision. Englewood, NJ: Biostat.



REFERENCES 657

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations (with discussion). Journal of the
Royal Statistical Society, B26, 211-246.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time-series analysis: Forecasting and control
(3rd ed.). Oakland, CA: Holden-Day.

Box, G. E. P., & Tidwell, P. W. (1962). Transformation of the independent variables. Technometrics, 4,
531-550.

Breusch, T., & Pagan, A. (1979). A simple test for heteroscedasticity and random coefficient variation.
Econometrica, 47, 1287-1294.

Brewer, M. (2000). Research design and issues of validity. In H. T. Reis & C. M. Judd (Eds.), Handbook of
research methods in social and personality psychology (pp. 3-16). New York: Cambridge University
Press.

Browne, M., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long
(Eds.), Testing structural equation models (pp. 132-162). Beverly Hills, CA: Sage.

Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change.
Psychological Bulletin, 101, 147-158.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis
methods. Newbury Park, CA: Sage.

Burstein, L. (1980). The analysis of multilevel data in educational research in evaluation. Review of
Research in Education, 8, 158-233.

Busemeyer, J. R., & Jones, L. E. (1983). Analysis of multiplicative combination rules when the causal
variables are measured with error. Psychological Bulletin, 93, 549-562.

Byrne, B. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts,
applications, and programming. Thousand Oaks, CA: Sage.

Byrne, B. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLJS: Basic concepts,
applications, and programming. Mahwah, NJ: Erlbaum.

Byrne, B. (2000). Structural equation modeling with AMOS. Mahwah, NJ: Erlbaum.
Campbell, D. T., & Erlbacher, A. (1970). How regression artifacts in quasi-experimental evaluations

can mistakenly make compensatory education look harmful. In J. Hellmuth (Ed.), The disadvantaged
child: Vol. 3, Compensatory education: A national debate (pp. 185-210). New York: Brunner/Mazel.

Campbell, D. T, & Kenny, D. A. (1999). A primer on regression artifacts. New York: Guilford Press.
Campbell, D. T, & Stanley, J. C. (1966). Experimental and quasi-experimental designs for research.

Boston: Houghton Mifflin.
Carmer, S. G., & Swanson, M. R. (1973). An evaluation often pairwise multiple comparison procedures

by Monte Carlo methods. Journal of the American Statistical Association, 68, 66-74.
Carroll, R. J., & Ruppert, D. (1988). Transformation and weighting in regression. New York: Chapman &

Hall.
Champoux, J. E., & Peters, W. S. (1987). Form, effect size, and power in moderated multiple regression.

Journal of Occupational Psychology, 17, 585-605.
Chaplin W. F. (1991). The next generation of moderator research in personality psychology. Journal of

Personality, 59, 143-178.
Chatfield, C. (1996). The analysis of time series: An introduction (5th ed.). London: Chapman & Hall.
Chatterjee, S., & Hadi, A. S. (1988). Sensitivity analysis in regression. New York: Wiley.
Chatterjee, S., & Price, B. (1991). Regression analysis by example (2nd ed.). New York: Wiley.
Chatterjee, S., & Wiseman, F. (1983). Use of regression diagnostics in political science research.

American Journal of Political Science, 27, 601-613.
Cleary, P. D., & Kessler, R. C. (1982). The estimation and interpretation of modifier effects. Journal of

Health and Social Behavior, 23, 159-169.
Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the

American Statistical Association, 74, 829-836.
Cleveland, W. S. (1993). Visualizing data. Summit, NJ: Hobart Press.
Cleveland, W. S. (1994). The elements of graphing data (2nd ed.). Summit, NJ: Hobart Press.
Cliff, N. (1982). What is and isn't measurement. In G. Keren (Ed.), Statistical and methodological issues

in psychology and social science research (pp. 3-38). Hillsdale, NJ: Erlbaum.



658 REFERENCES

Cliff, N. (1983). Some cautions regarding the applications of causal modeling methods. Multivariate
Behavioral Research, 18, 115-126.

Cliff, N. (1996). Ordinal methods for behavioral data analysis. Mahwah, NJ: Erlbaum.
Cliff, N., & Krus, D. J. (1976). Interpretation of canonical analysis: Rotated versus unrotated solutions.

Psychometrika, 41, 35-42.
Cochran, W. G. (1965). The planning of observational studies of human populations (with discussion).

Journal of the Royal Statistical Society, Series A, 128, 134-155.
Cohen, J. (1962). The statistical power of abnormal-social psychological research. Journal of Abnormal

and Social Psychology, 65, 143-153.
Cohen, J. (1965). Some statistical issues in psychological research. In B. B. Wolman (Ed.), Handbook

of clinical psychology (pp. 95-121). New York: McGraw-Hill.
Cohen, J. (1968a). Multiple regression as a general data-analytic system. Psychological Bulletin, 70,

426-443.
Cohen, J. (1968b). Weighted kappa: Nominal scale agreement with provision for scale disagreement or

partial credit. Psychological Bulletin, 70, 213-220.
Cohen, J. (1978). Partialed products are interactions; partialed powers are curve components.

Psychological Bulletin, 85, 858-866.
Cohen, J. (1980). Trend analysis the easy way. Educational and Psychological Measurement, 40,

565-568.
Cohen, J. (1983). The cost of dichotomization. Applied Psychological Measurement, 7, 249-253.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nded.). Mahwah, NJ: Erlbaum.
Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45, 1304-1312.
Cohen, J. (1993). Set correlation. In G. Keren & C. Lewis (Eds.), A handbook for data analysis in the

behavioral sciences: Statistical issues (pp. 165-198). Mahwah, NJ: Erlbaum.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49, 997-1003.
Cohen, J. (1995). The earth is round (p < .05): Some comments on the comments. American Psychologist,

50, 1103.
Cohen, J., & Cohen, P. (1983). Applied multiple/regression correlation analysis for the behavioral

sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, J., & Nee, J. C. M. (1984). Estimators for two measures of association for set correlation.

Educational and Psychological Measurement, 44, 907-917.
Cohen, J., & Nee, J. C. M. (1987). A comparison of two noncentral F approximations, with applications

to power analysis in set correlation. Multivariate Behavioral Research, 22, 483-490.
Cohen, J., & Nee, J. C. M. (1990). Robustness of Type I error and power in set correlation analysis of

contingency tables. Multivariate Behavioral Research, 25, 341-350.
Cohen, P. (1982). To be or not to be: The control and balancing of type I and type II errors in research.

Evaluation and Program Planning, 5, 247-253.
Cohen, P. (1991). A source of bias in longitudinal investigations of change. In L. Collins & J. Horn (Eds.),

Best methods for the analysis of change (pp. 18-25). Washington, DC: American Psychological
Association.

Cohen, P., Brook, J. S., Cohen, J., Velez, C. N., & Garcia, M. (1990). Common and uncommon pathways
to adolescent psychopathology and problem behavior. In L. Robins & M. Rutter (Eds.), Straight and
devious pathways from childhood to adulthood (pp. 242-258). London: Cambridge University Press.

Cohen, P., Chen, H., Hamagami, R, Gordon, K., & McArdle, J. J. (2000). Multilevel analyses for
predicting sequence effects of financial and employment problems on the probability of arrest. Journal
of Quantitative Criminology, 16, 223-235.

Cohen, P., & Cohen, J. (1984). The clinician's illusion. Archives of General Psychiatry, 41, 1178-1182.
Cohen, P., & Cohen, J. (1996). Life values and adolescent mental health. Mahwah, NJ: Erlbaum.
Cohen, P., Cohen, J., Aiken, L. S., & West, S. G. (1999). The problem of units and the circumstance for

POMP. Multivariate Behavioral Research, 34, 315-346.
Cohen, P., Cohen, J., Teresi, J., Velez, C. N., & Marchi, M. (1990). Problems in the measurement of latent

variable in structural equation causal models. Applied Psychological Measurement, 14, 183-196.
Cohen, S., & Wills, T. A. (1985). Stress, social support, and the buffering hypothesis. Psychological

Bulletin, 98, 310-357.



REFERENCES 659

Coleman, J. S., Hoffer, T., & Kilgore, S. B. (1982). High school achievement: Public, Catholic and other
schools compared. New York: Basic Books.

Collett, D. (1991). Modelling binary data. London: Chapman & Hall.
Collins, L., &Hom, J. (Eds.) (1993). Best methods for the analysis of change. Washington, DC: American

Psychological Association.
Collins, L., & Sayer, A. G. (2001). New methods for the analysis of change. Washington, DC: American

Psychological Association Press.
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies

in modern missing data procedures. Psychological Methods, 6, 330-351.
Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18.
Cook, R. D. (1984). Comment on Belsley (1984). American Statistician, 38, 78-79.
Cook, R. D., Hawkins, D. M., & Weisberg, S. (1992). Comparison of model misspecification diagnostics

using residuals from least mean of squares and least median of squares fits. Journal of the American
Statistical Association, 87, 419-424.

Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman & Hall.
Cook, R. D., & Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression. Biometrika, 70, 1-

10.
Cook, R. D., & Weisberg, S. (1999). Applied regression including computing and graphics. New York:

Wiley.
Cook, T. D. (1993). A quasi-sampling theory of the generalization of causal relationships. New Directions

for Program Evaluation, 37, 39-81.
Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field

settings. Boston: Houghton Mifflin.
Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society, 34,

187-220.
Cox, D. R., & Oakes, D. (1984). Analysis of survival data. New York: Chapman & Hall.
Cox, D. R., & Snell, E. J. (1989). The analysis of binary data (2nd ed.). London: Chapman & Hall.
Cramer, E. M., & Nicewander, W. A. (1979). Some symmetric, invariant measures of set association.

Psychometrika, 44, 43-54.
Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Fort Worth, TX:

Harcourt, Brace, Jovanovich.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,

297-334.
Cronbach, L. J. (1987). Statistical tests for moderator variables: Flaws in analyses recently proposed.

Psychological Bulletin, 102, 414-417.
D'Agostino, R. B. (1986). Tests for the normal distribution. In R. B. D'Agostino & M. D. Stephens

(Eds.), Goodness of fit techniques. New York: Dekker.
Darlington, R. B. (1978). Reduced-variance regression. Psychological Bulletin, 85, 1238-1255.
Darlington, R. B. (1991). Regression and linear models. New York: McGraw-Hill.
Darlington, R. B., & Boyce, C. M. (1982). Ridge and other new varieties of regression. In G. Keren

(Ed.), Statistical and methodological issues inpsychology and social sciences research (pp. 71-100).
Hillsdale, NJ: Erlbaum.

Davidian, M., & Carroll, R. J. (1987). Variance function estimation. Journal of the American Statistical
Association, 82, 1079-1091.

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American
Psychologist, 34, 571-582.

Diaconis, P. (1985). Theories of data analysis: From magical thinking through classical statistics. In
D. C. Hoaglin, F. Mosteller, & J. W. Tukey (Eds.). Exploring data tables, trend, and shapes (pp.
1-36). New York: Wiley.

Dielman, T. E. (1989). Pooled cross-sectional and times series data analysis. New York: Dekker.
Diggle, P. J., Liang, K.-Y, & Zeger, S. L. (1994). Analysis of longitudinal data. New York, Oxford:

Clarendon Press.
Doll, R., & Peto, R. (1981). Causes of cancer. Oxford: Oxford Medical Publications.
Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: Wiley.



660 REFERENCES

Duncan, O. D. (1975). Introduction to structural equation models. New York: Academic Press.
Duncan, T. E., Duncan, S. C, Strycker, L. A., Li, R, & Alpert, A. (1999). An introduction to latent

variable growth curve modeling. Mahwah, NJ: Erlbaum.
Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and development. Philadelphia:

Psychology Press/Taylor & Francis.
Eber, H. W., & Cohen, J. (1987). SETCORAN, a PC program to implement set correlation as a general

multivariate data-analytic method. Atlanta, GA: Psychological Resources.
Edwards, A. E. (1972). Experimental design in psychological research (4th ed.). New York: Holt,

Rinehart, & Winston.
Ehrenberg, A. S. C. (1977). Rudiments of numeracy. Journal of the Royal Statistical Society, Series A,

140, 277-297
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.
England, P., Farkas, G., Kilbourne, B. S., & Dou, T. (1988). Explaining occupational sex segregation

and wages: Findings from a model with fixed effects. American Sociological Review, 53, 544-558.
Estrella, A. (1998). A new measure of fit for equations with dichotomous dependent variables. Journal

of Business and Economic Statistics, 16, 198-205.
Fahrmier, L., & Tutz, G. (1994). Multivariate statistical modeling based on generalized linear models.

New York: Springer-Verlag.
Fechner, G. T. (1860). Elemente der Psychophysik. Leipzig: Brietkopf und Hartel.
Fisher, R. A. (1971). The design of experiments (9th ed.). New York: Hafner.
Fisher, R. A., & Yates, F. (1963). Statistical tables for biological, agricultural and medical research

(6th ed.). New York: Hafner.
Fleiss, J. L. (1981). Statistical methods for rates and proportions. New York: Wiley.
Fox, J. (1990). Describing univariate distributions. In J. Fox & J. S. Long (Eds.), Modern methods of

data analysis (pp. 58-125). Newbury Park, CA: Sage.
Fox, J. (1997). Applied regression analysis, linear models, and related methods. Thousand Oaks, CA:

Sage.
Fox, J. (2000a). Nonparametric simple regression: Smoothing scatterplots. Thousand Oaks, CA: Sage.
Fox, J. (2000b). Multiple and generalized nonparametric regression. Thousand Oaks, CA: Sage.
Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American Statistical

Association, 87, 178-183.
Freeman, M. F, & Tukey, J. W. (1950). Transformations related to the angular and the square root. Annals

of Mathematical Statistics, 21, 607-611.
Friedrich, R. J. (1982). In defense of multiplicative terms in multiple regression equations. American

Journal of Political Science, 26, 797-833.
Fuller, W. A. (1987). Measurement error models. New York: Wiley.
Gaito, J. (1965). Unequal intervals and unequal n in trend analysis. Psychological Bulletin, 63, 125-127.
Games, P. A. (1971). Multiple comparisons of means. American Educational Research Journal, 8,

531-565.
Ganzach, Y. (1997). Misleading interaction and curvilinear terms. Psychological Methods, 2, 235-247.
Gardner, W, Mulvey, E. P., & Shaw, E. C. (1995). Regression analyses of counts and rates: Poisson,

overdispersed Poisson, and negative binomial models. Psychological Bulletin, 118, 392^04.
Gigerenzer, G. (1993). The superego, the ego, and the id in statistical reasoning. In G. Keren & C. Lewis

(Eds.), A handbookfor data analysis in the behavioral sciences: Methodological issues (pp. 311-339).
Hillsdale, NJ: Erlbaum.

Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills,
CA: Sage.

Goldberger, A. S. (1998). Introductory econometrics. Cambridge, MA: Harvard University Press.
Goldberger, A. S., & Duncan, O. D. (Eds.). (1973). Structural equation models in the social sciences.

New York: Seminar Press.
Goldstein, H. (1995). Multilevel statistical models (2nd ed.). London: Edward Arnold.
Goldstein, H., Rabash, J., Plewis, I., Draper, D., Browne, W, Yang, M., Woodhouse, G., & Healey,

M. (1998). A user's guide to MLwiN. London: Multi-Level Models Project, Institute of Education,
University of London.



REFERENCES 661

Gollob, H. R, & Reichardt, C. S. (1991). Interpreting and estimating indirect effects assuming time lags
really matter. In L. Collins & J. Horn (Eds.), Best methods for the analysis of change (pp. 243-259).
Washington, DC: American Psychological Association.

Goodman, L. A., & Kruskal, W. H. (1979). Measures of association for cross classifications. New York:
Springer-Verlag.

Gottman, J. M. (1979). Marital interaction: Experimental investigations. New York: Academic Press.
Gottman, J. M. (1981). Time series analysis: A comprehensive introduction for social scientists. New

York: Cambridge University Press.
Gottman, J. M. (1994). What predicts divorce? The relationship between marital processes and marital

outcomes. Mahwah, NJ: Erlbaum.
Graham, J. W., & Hofer, S. M. (2000). Multiple imputation in multivariate research. In T. D. Little,

K. U. Schnabel & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues,
applied approaches, and specific examples (pp. 201-218). Mahwah, NJ: Erlbaum.

Graham, J., Taylor, B., & Cumsille, P. (2001). Planned missing data designs in analysis of change. In
L. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 335-354). Washington,
DC: American Psychological Association Press.

Gray, J. B., & Woodall, W. H. (1994). The maximum size of the standardized and internally studentized
residuals in regression analysis. American Statistician, 48, 111-113.

Green, B. F., Jr. (1977). Parameter sensitivity in multivariate methods. Multivariate Behavioral Research,
12, 263-288.

Greene, W. H. (1997). Econometric analysis (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
Greenland, S. (1997). Second-stage least squares versus penalized quasi-likelihood for fitting hierarchical

models in epidemiologic analyses. Statistics in Medicine, 16, 515-526.
Greenland, S. (1998). Introduction to regression models. In K. J. Rothman & S. Greenland (Eds.), Modern

epidemiology (2nd ed., pp. 359-399). Philadelphia: Lippincott-Raven.
Granger, C., & Newbold, P. (1986). Forecasting economic time series. New York: Academic

Press.
Gregson, R. A. M. (1983). Time series in psychology. Hillsdale, NJ: Erlbaum.
Hadi, A. S. (1992). Identifying multiple outliers in multivariate data. Journal of the Royal Statistical

Society, Series B, 54, 761-777.
Hadi, A. S. (1994). A modification of a method for the detection of outliers in multivariate samples.

Journal of the Royal Statistical Society, Series B, 56, 393-396.
Hadi, A. S., & Ling, R. F. (1998). Some cautionary notes on the use of principal components regression.

American Statistician, 52, 15-19.
Hadi, A. S., & Simonoff, J. S. (1993). Procedures for the identification of multiple outliers in linear

models. Journal of the American Statistical Association, 88, 1264-1272.
Hagle, T. M. (1995). Basic math for social scientists. Thousand Oaks, CA: Sage.
Hamagami, F., McArdle, J. J., & Cohen, P. (2000). A new approach to modeling bivariate dynamic

relationships applied to evaluation of personality disorder symptoms. In V. J. Molfese & D. L. Molfese
(Eds.), Temperament and personality development across the life span (pp. 253-280). Mahwah, NJ:
Erlbaum.

Hamilton, L. C. (1992). Regression with graphics: A second course in applied statistics. Pacific Grove,
CA: Brooks/Cole.

Hardy, M. A. (1993). Regression with dummy variables. Newbury Park, CA: Sage.
Harlow, L. L., Mulaik, S. A., & Steiger, J. H. (Eds.). (1997). What if there were no significance tests?

Mahwah, NJ: Erlbaum.
Harris, R. J. (2001). A primer of multivariate statistics (3rd ed.). Mahwah, NJ: Erlbaum.
Hastie, T., & Tibshirani, R. (1990). Generalized additive models. London: Chapman & Hall.
Hays, W. L. (1980). Statistics (3rd ed.). New York: Holt, Rinehart, & Winston.
Hays, W. L. (1994). Statistics (5th ed.). Forth Worth, TX: Harcourt Brace.
Heath, R. A. (2000). Nonlinear dynamics: Techniques and applications in psychology. Mahwah, NJ:

Erlbaum.
Heck, R. H., & Thomas, S. L. (2000). An introduction to multilevel modeling techniques. Mahwah, NJ:

Erlbaum.



662 REFERENCES

Hedeker, D., & Gibbons, R. D. (1996). MIXREG: A computer program for mixed-effects regres-
sion analysis with autocorrelated errors. Computer Methods and Programs in Biomedicine, 49,
229-252.

Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press.
Higginbotham, H. N., West, S. G., & Forsyth, D. R. (1988). Psychotherapy and behavior change: Social,

cultural, and methodological perspectives. New York: Pergamon.
Hoaglin, D. C. (1988). Transformations in everyday experience. Chance: New Directions for Statistics

and Computing, 7(4), 40-45.
Hoaglin, D. C., & Velleman, P. F. (1995). A critical look at some analyses of major-league baseball

salaries. American Statistician, 49, 277-285.
Holland, P. W., & Rubin, D. B. (1988). Causal inference in retrospective studies. Evaluation Review, 12,

203-231.
Hooper, J. W. (1959). Simultaneous equations and cannonical correlation theory. Econometrica, 27,

245-256.
Hooper, J. W. (1962). Partial trace correlations. Econometrica, 30, 324-331.
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.
Hotelling, H. (1936). Relations between two sets of variables. Biometrika, 28, 321-377.
Howell, D. C., & McConaughy, S. H. (1982). Nonorthogonal analysis of variance: Putting the question

before the answer. Educational and Psychological Measurement, 42, 9-24.
Hoyle, R. H., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle (Ed.),

Structural equation modeling: Concepts, issues, and applications (pp. 158-176). Thousand Oaks,
CA: Sage.

Huber, P. J. (1981). Robust statistics. New York: Wiley.
Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research

findings. Newbury Park, CA: Sage.
Immer, F. R., Hayes, H. K., & Powers, L. R. (1934). Statistical determination of barley varietal adaption.

Journal of the American Society of Agronomy, 26, 403-419.
Jaccard, J. (2001). Interaction effects in logistic regression. Thousand Oaks, CA: Sage.
Jaccard, J., Turrisi, R., & Wan, C. K. (1990). Interaction effects in multiple regression. Newbury Park,

CA: Sage.
Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between con-

tinuous predictors using multiple regression: Multiple indicators and structural equation approaches.
Psychological Bulletin, 117, 348-357.

Jackson, J. E. (1991). A user's guide to principal components. New York: Wiley.
Jaffe, J., Beebe, B., Feldstein, S., Crown, C., & Jasnow, M. (2001). Rhythms of dialogue in infancy.

Monographs of the Society for Research in Child Development, 66(2), 1-101.
Jams, I. L. (1967). Effects of fear arousal on attitude: Recent developments in theory and research. In

L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 3, pp. 167-222). New York:
Academic Press.

Joiner, B. L. (1981). Lurking variables: Some examples. American Statistician, 35, 227-233.
Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.
Jones, L. V., & Tukey, J. W. (2000). A sensible formulation of the significance test. Psychological

Methods, 5, 411^14.
Jones, R. H. (1993). Longitudinal data with serial correlation: A state-space approach. London:

Chapman & Hall.
Judd, C. M., McClelland, G. H., & Culhane, S. C. (1995). Data analysis: Continuing issues in the

everyday analysis of psychological data. Annual Review of Psychology, 46, 433-465.
Kenny, D. A. (1979). Correlation and causality. New York: Wiley.
Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables.

Psychological Bulletin, 96, 201-210.
Kenny, D. A., & Judd, C. M. (1986). Consequences of violating the independence assumption in analysis

of variance. Psychological Bulletin, 99, 422-431.
Kessler, R. C., & Greenberg, D. F. (1981). Linear panel analysis: Models of quantitative change. New

York: Academic Press.



REFERENCES 663

Kirk, R. E. (1995). Experimental design: Procedures for the behavioral sciences (3rd ed). Pacific Grove,
CA: Brooks/Cole.

Kleinbaum, D. G. (1994). Logistic regression: A self-learning text. New York: Springer-Verlag.
Kleinbaum, D. G., Kupper, L. L., & Muller, K. E. (1988). Applied regression analysis and other

multivariable methods. Belmont, CA: Duxbury Press.
Kraemer, H. C. (1985). The robustness of common measures of 2x2 association to resist bias due to

misclassification. American Statistician, 39, 286-290.
Kraemer, H. C. (1988). Assessment of 2 x 2 associations, generalization of signal detection methodology.

American Statistician, 42, 37-49.
Kraemer, H. C., Kazdin, A. E., Offord, D. R., Kessler, R. C., Jensen, P. S., & Kupfer, D. J. (1999).

Measuring the potency of risk factors for clinical or policy significance. Psychological Methods, 4,
257-271.

Kraemer, H. C., Yesavage, J. A., Taylor, J. L., & Kupfer, D. (2000). How can we learn about devel-
opmental processes from cross-sectional studies, or can we? American Journal of Psychiatry, 157,
163-171.

Krantz, D. H. (1999). The null hypothesis testing controversy in psychology. Journal of the American
Statistical Association, 94, 1372-1381.

Krause, N. (1995). Assessing stress-buffering effects: A cautionary note. Psychology and Aging, 10,
518-526.

Kreft, L, & de Leeuw, J. (1998). Introducing multilevel modeling. London: Sage.
Kreft, L, de Leeuw, J., & Aiken, L. S. (1995). The effect of different forms of centering in hierarchical

linear models. Multivariate Behavioral Research, 30, 1-22.
Kruskal, W. H. (1960). Discussion of the papers of Messrs. Anscombe and Daniel. Technometrics, 2,

257-258.
Kvalseth, T. O. (1985). Cautionary note about R2. American Statistician, 39, 279-285.
Land, K. C., McCall, P. L., & Nagin, D. S. (1996). A comparison of Poisson, negative binomial, and

semiparametric mixed Poisson regression models: With empirical applications to criminal careers
data. Sociological Methods and Research, 24, 387-442.

Lee, J. J., & Tu, Z. N. (1997). A versatile one-dimensional plot: The BliP plot. American Statistician,
51, 353-358.

Lee, V., & Bryk, A. S. (1989). A multilevel model of the social distribution of high school achievement.
Sociology of Education, 62, 172-192.

Lewis, C., & Keren, G. (1977). You can't have your cake and eat it too: Some considerations of the error
term. Psychological Bulletin, 84, 1150-1154.

Lindsey, J. K. (1993). Models for repeated measurements. New York: Oxford University Press.
Littell, R. C., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (1996). SAS system for mixed models.

Gary, NC: SAS Institute.
Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: Wiley.
Little, R. J., & Yau, L. H. Y. (1998). Statistical techniques for analyzing data from prevention trials:

Treatment of no-shows using Rubin's causal model. Psychological Methods, 3, 147-159.
Little, T. D., Schnabel, K. U., & Baumert, J. (Eds.). (2000). Modeling longitudinal and multilevel data:

Practical issues, applied approaches, and specific examples. Mahwah, NJ: Erlbaum.
Loehlin, J. C. (1992). Latent variable models: An introduction to factor, path, and structural analysis

(2nd ed.). Mahwah, NJ: Erlbaum.
Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks,

CA: Sage.
Looney, S. W, & Gulledge, T. R., Jr. (1985). Use of the correlation coefficient with normal probability

plots. American Statistician, 39, 75-79.
Lord, F. M. (1953). On the statistical treatment of football numbers. American Psychologist, 8, 750-751.
Lord, F. M. (1969). Statistical adjustment when comparing preexisting groups. Psychological Bulletin,

72, 336-337.
Lubinski, D., & Humphreys, L. G. (1990). Assessing spurious "moderator effects": Illustrated sub-

stantively with the hypothesized ("synergistic") relation between spatial and mathematical ability.
Psychological Bulletin, 107, 385-393.



664 REFERENCES

Lykken, D. T. (1968). Statistical significance in psychological research. Psychological Bulletin, 70,
151-159.

MacCallum, R. C. (1995). Model specification: Procedures, strategies, and related issues. In R. H. Hoyle
(Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 16-36). Thousand Oaks,
CA: Sage.

MacCallum, R. C., & Browne, M. W. (1993). The use of causal indicators in covariance structure models:
Some practical issues. Psychological Bulletin, 114, 533-541.

MacCallum, R. C., Kim, C., Malarkey, W. B., & Kiecolt-Glaser, J. K. (1997). Studying multivariate
change using multilevel models and latent curve models. Multivariate Behavioral Research, 32,
215-253.

MacCallum, R. C., & Mar, C. M. (1995). Distinguishing between moderator and quadratic effects in
multiple regression. Psychological Bulletin, 118, 405-421.

Maddala, G. S. (1988). Introduction to econometrics (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.
Marks, L. E. (1974). Sensory processes: The new psychophysics. New York: Academic Press.
Marquardt, D. W. (1980). You should standardize the predictor variables in your regression models.

Journal of the American Statistical Association, 75, 87-91.
Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor

analysis: The effect of sample size. Psychological Bulletin, 103, 391-410.
Mauro, R. (1990). Understanding L.O.V.E. (left out variables error): A method for estimating the effects

of omitted variables. Psychological Bulletin, 108, 314-329.
Maxwell, S. E. (2000). Sample size and multiple regression analysis. Psychological Methods, 5,434-458.
Maxwell, S. E., & Delaney, H. D. (1990). Designing experiments and analyzing data: A model

comparison perspective. Pacific Grove, CA: Brooks/Cole.
Maxwell, S. E., & Delaney, H. D. (1993). Bivariate median splits and spurious statistical significance.

Psychological Bulletin, 113, 181-190.
McArdle, J. J. (1998). Modeling longitudinal data by latent growth curve methods. In G. A. Marcoulides

(Ed.), Modern methods for business research (pp. 359-406). Mahwah, NJ: Erlbaum.
McArdle, J. J., & Aber, M. S. (1990). Patterns of change within latent variable structural equation models.

In A. von Eye (Ed.), Statistical methods in longitudinal research: Vol. 1. Principles and methods of
structuring change (pp. 151-223). New York: Academic Press.

McArdle, J. J., & Bell, R. Q. (2000). An introduction to latent growth models for developmental data
analysis. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multi-
level data: Practical issues, applied approaches, and specific examples (pp. 69-107). Mahwah, NJ:
Erlbaum.

McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation
models. Child Development, 58, 110-133.

McArdle, J. J., & Hamagami, F. (1991). Modeling incomplete longitudinal and cross-sectional data
using latent growth structural models. In L. Collins & J. Horn (Eds.), Best methods for the analysis
of change (pp. 276-304). Washington, DC: American Psychological Association.

McArdle, J. J., & Hamagami, F. (1996). Multilevel models from a multiple groups structural equation
perspective. In G. Marcoulides & R. Schumacker (Eds.), Advanced structural equation modeling
techniques (pp. 89-124). Hillsdale, NJ: .Erlbaum.

McArdle, J. J., & Nesselroade, J. R. (1994). Structuring data to study development and change.
In S. H. Cohen & H. W. Reese (Eds.), Life-span developmental psychology: Methodological
contributions (pp. 223-267). Hillsdale, NJ: Erlbaum.

McArdle, J. J., & Woodcock, R. W. (1997). Expanding test-retest designs to include developmental
time-lag components. Psychological Methods, 2, 403-435.

McCleary, R., & Hay, R. A. (1980). Applied time series analysis. Beverly Hills, CA: Sage.
McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator

effects. Psychological Bulletin, 114, 376-390.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London: Chapman & Hall.
McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Erlbaum.
Meehl, P. E. (1967). Theory testing in psychology and physics: A methodological paradox. Philosophy

of Science, 34, 103-115.



REFERENCES 665

Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace significance tests by confidence
intervals and quantify accuracy of risky numerical predictions. In L. L. Harlow, S. A. Mulaik, &
J. H. Steiger (Eds.), What if there were no significance tests? (pp. 393-425). Mahwah, NJ: Erlbaum.

Mehta, P. D., & West, S. G. (2000). Putting the individual back into individual growth curves.
Psychological Methods, 5, 23-43.

Menard, S. (2001). Applied logistic regression analysis (2nd ed.). Newbury Park, CA: Sage.
Meng, X.-L., Rosenthal, R., & Rubin, D. B. (1992). Comparing correlated correlation coefficients.

Psychological Bulletin, 111, 172-175.
Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.
Miller, A. J. (1990). Subset selection in regression. New York: Chapman & Hall.
Miller, R. G., Jr. (1966). Simultaneous statistical inference. New York: McGraw-Hill.
Molenaar, P. C. M. (1994). Dynamic latent variable models in developmental psychology. In A. von Eye &

C. C. Clogg (Eds.), Latent variable analysis: Applications for developmental research (pp. 155-180).
Thousand Oaks, CA: Sage.

Molenaar, P. C. M., Rovine, M. J., & Comeal, S. E. (1999). Dynamic factor analysis of emotional
dispositions of adolescent stepsons towards their stepfathers. In R. K. Silbereisen & A. von Eye
(Eds.), Growing up in times of social change (pp. 261-286). Berlin: DeGruyter.

Mosteller, E, & Tukey, J. W. (1977). Data analysis and regression. Reading, MA: Addison-Wesley.
Murray, D. M., & Wolfinger, R. D. (1994). Analysis issues in the evaluation of community trials:

Progress toward solutions in SAS/STAT MIXED. Journal of Community Psychology, CSAP Special
Issue, 140-154.

Muthe"n, B. (2001). Second generation SEM growth analysis. In L. Collins & A. G. Sayers (Eds.),
New methods for the analysis of change (pp. 291-322). Washington, DC: American Psychological
Association.

Myers, R. H. (1986). Classical and modern regression with applications. Boston: Duxbury Press.
Nagelkerke, N. J. D. (1991). A note on the general definition of the coefficient of determination.

Biometrika, 78, 691-692.
Nagin, D. S. (1999). Analyzing developmental trajectories: A semi-parametric, group-based approach.

Psychological Methods, 4, 139-157.
Nagin, D. S., & Tremblay, R. E. (2001). Analyzing developmental trajectories of distinct but related

behaviors: A group-based method. Psychological Methods, 6, 18-34.
Neale, M. C. (1995). MX: Statistical modeling. Richmond, VA: Department of Human Genetics, Medical

College of Virginia.
Neale, M. C. (2000). Individual fit, heterogeneity, and missing data in multigroup structural equation

modeling. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel
data: Practical issues, applied approaches, and specific examples (pp. 249-281). Mahwah, NJ:
Erlbaum.

Nesselroade, J. R., & Baltes, P. B. (Eds.). (1979). Longitudinal research in the study of behavior and
development. New York: Academic Press.

Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear regression models
(3rd ed.). Chicago: Irwin.

Neter, J., Wasserman, W, & Kutner, M. H. (1989). Applied linear regression models (2nd ed.).
Homewood, EL: Irwin.

NunnaUy, J., & Bernstein, I. H. (1993). Psychometric theory (3rd ed.). New York: McGraw-Hill.
Oakes, M. (1986). Statistical inference: A commentary for the social and behavioral sciences. New York:

Wiley.
Olkin, L, & Finn, J. D. (1995). Correlations redux. Psychological Bulletin, 118, 155-164.
Olson, C. L. (1976). On choosing a test statistical in multivariate analysis of variance. Psychological

Bulletin, 83, 579-586.
Overall, J. E. (1987). Estimating sample size for longitudinal studies of age-related cognitive decline.

Journal of Gerontology, 42, 137-141.
Owen, D. B. (1962). Handbook of statistical tables. Reading, MA: Addison-Wesley.
Pampel, F. C. (2000). Logistic regression: A primer. Thousand Oaks, CA: Sage.
Parmar, M. K. B., & Machin, D. (1995). Survival analysis: A practical approach. New York: Wiley.



666 REFERENCES

Pearl, J. (2000). Causality: Models, reasoning, and inference. New York: Cambridge University Press.
Pearson, E. S., & Hartley, H. O. (Eds.). (1954). Biometrika tables for statisticians (Vol. 1). Cambridge:

Cambridge University Press.
Pedhazur, E. J. (1982). Multiple regression in behavioral research (2nd ed.). New York: Holt, Rinehart &

Winston.
Peixoto, J. L. (1987). Hierarchical variable selection in polynomial regression models. American

Statistician, 41, 311-313.
Piacentini, J. C., Cohen, P., & Cohen, J. (1992). Combining discrepant diagnostic information from

multiple sources. Journal of Abnormal Child Psychology, 20, 51-63.
Pillai, K. C. S. (1960). Statistical tables for tests of multivariate hypotheses. Manila: Statistical Institute,

University of the Philippines.
Pillow, D. R., West, S. G., & Reich, J. W. (1991). Attributional style in relation to self-esteem and

depression: Mediational and attributional models. Journal of Research in Personality, 25, 57-69.
Pitts, S. C., & West, S. G. (2001). Alternative sampling designs to detect interactions in multiple regres-

sion. Unpublished manuscript, Department of Psychology, Arizona State University, Tempe, AZ
85287-1104.

Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705-724.
Press, S. J., & Wilson, S. (1978). Choosing between logistic regression and discriminant analysis. Journal

of the American Statistical Association, 73, 699-705.
Pruzek, R. M., & Fredericks, B. C. (1978). Weighting predictors in linear models: Alternatives to least

squares and limitations of equal weights. Psychological Bulletin, 85, 254-266.
Rahe, R. H., Mahan, J. L., & Arthur, R. J. (1970). Prediction of near-future health change from subjects'

preceding life changes. Journal of Psychosomatic Research, 14, 401-406.
Rao, C. R. (1975). Linear statistical inference and its applications (2nd ed.). New York: Wiley.
Ratkowsky, D. A. (1990). Handbook of nonlinear regression models. New York: Dekker.
Raudenbush, S. W, & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis

methods (2nd ed.). Thousand Oaks, CA: Sage.
Raudenbush, S. W, Bryk, A. S., Cheong, Y. F., & Congdon, R. (2001). HLM5: Hierarchical Linear and

Nonlinear Modeling (2nd ed.). Chicago: Scientific Software International.
Raudenbush, S. W, & Chan, W. (1992). Growth curve analysis in accelerated longitudinal designs.

Journal of Research in Crime and Delinquency, 29, 387-411.
Raudenbush, S. W., & Chan, W. (1993). Application of a hierarchical linear model to the study of

adolescent deviance in an overlapping cohort design. Journal of Consulting and Clinical Psychology,
61, 941-951.

Rawlings, J. O. (1988). Applied regression analysis: A research tool. Pacific Grove, CA: Wadsworth &
Brooks/Cole.

Reichardt, C. S. (1979). The statistical analysis of data from nonequivalent group designs. In T. D.
Cook and D. T. Campbell, Quasi-experimentation: Design and analysis issues for field settings
(pp. 147-205). Boston: Houghton Mifflin.

Rindskopf, D. (1984). Linear equality restrictions in regression and loglinear models. Psychological
Bulletin, 96, 597-603.

Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. Sociological Review,
15, 351-357.

Rogosa, D., & Willett, J. B. (1985). Understanding correlates of change by modeling individual
differences in growth. Psychometrika, 50, 203-228.

Rosenthal, R. (1991). Meta-analysis procedures for social research. Newbury Park, CA: Sage.
Rosenthal, R., & Rosnow, R. L. (1985). Contrast analysis: Focused comparisons in the analysis of

variance. New York: Cambridge University Press.
Rosnow, R. L., & Rosenthal, R. (1999). Beginning behavioral research: A conceptual primer (3rd ed.).

Upper Saddle River, NJ: Prentice Hall.
Rousseeuw, P. J. (1998). Robust estimation and identifying outliers. In H. M. Wadsworth (Ed.), Handbook

of statistical methods for engineers and scientists (2nd ed., pp. 17.1-17.26). New York: McGraw-Hill.
Rousseeuw, P. J., & Leroy, A. (1987). Robust regression and outlier detection. New York: Wiley.



REFERENCES 667

Rousseeuw, P. J., Van Aelst, S., & Hubert, M. (1999). Rejoinder to regression depth. Journal of the
American Statistical Association, 94, 419-445.

Roy, S. N. (1957). Some aspects of multivariate analysis. New York: Wiley.
Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test. Psychological Bulletin,

37, 416-428.
Rozeboom, W. W. (1965). Linear correlations between sets of variables. Psychometrika, 30, 57-71.
Rozeboom, W. W. (1979). Sensitivity of linear composites of predictor items to differential item

weighting. Psychometrika, 44, 289-296.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
Rutter, M. (1989). Pathways from childhood to adult life. Journal of Child Psychology and Psychiatry,

30, 23-51.
Ryan, T. P. (1997). Modern regression methods. New York: Wiley.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological

Methods, 7, 147-177.
Schaie, K. W. (1965). General model for the study of developmental problems. Psychological Bulletin,

64, 92-107.
Schaie, K. W. (1986). Beyond calendar definitions of age, time, and cohort: The general developmental

model revisited. Developmental Review, 6, 252-277.
Schemes, R., Spirtes, P., Glymour, C, Meek, C., & Richardson, T. (1998). The TETRAD Project:

Constraint based aids to causal model specification. Multivariate Behavioral Research, 33,65-117.
Schmidt, F. (1996). Statistical significance testing and cumulative knowledge in psychology: Implications

for the training of researchers. Psychological Methods, 1, 115-129.
Seber, G. A. R, & Wild, C. J. (1989). Nonlinear regression. New York: Wiley.
Serlin, R. C., & Levin, J. R. (1985). Teaching how to derive directly interpretable coding schemes for

multiple regression analysis. Journal of Educational Statistics, 10, 223-238.
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs

for generalized causal inference. Boston: Houghton-Mifflin.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples).

Biometrika, 52, 591-611.
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.

Psychological Bulletin, 86, 420-428.
Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall.
Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and

individual growth models. Journal of Educational and Behavioral Statistics, 24(4), 322-354.
Singer, J. D., & Willett, J. B. (1991). Modeling the days of our lives: Using survival analysis when

designing and analyzing longitudinal studies and the timing of events. Psychological Bulletin, 110,
268-290.

Snijders, T, & Bosker, R. (1999). Multilevel analysis: An introduction to basic and advanced multilevel
modeling. London: Sage.

Srikantan, K. S. (1970). Canonical association between nominal measurements. Journal of the American
Statistical Association, 65, 284-292.

Staudte, R. J., & Sheather, S. J. (1990). Robust estimation and testing. New York: Wiley.
Stevens, J. P. (1984). Outliers and influential data points in regression analysis. Psychological Bulletin,

95, 334-344.
Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In S. S. Stevens (Ed.), Handbook

of experimental psychology (pp. 1-49). New York: Wiley.
Stevens, S. S. (1958). Measurement and man. Science, 127, 383-389.
Stevens, S. S. (1961). The psychophysics of sensory function. In W. A. Rosenblith (Ed.), Sensory

communication (pp. 1-33). New York: Wiley.
Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before 1900. Cambridge,

MA: Belnap Press.
Stoolmiller, M. (1995). Using latent growth curve models to study developmental processes. In

J. M. Gottman (Ed.), The analysis of change (pp. 103-138). Mahwah, NJ: Erlbaum.



668 REFERENCES

Stouthammer-Loeber, M, & van Kammen, W. B. (1995). Data collection and management: A practical
guide. Thousand Oaks, CA: Sage.

Suits, D. B. (1984). Dummy variables: Mechanics v. interpretation. Review of Economics and Statistics,
66, 177-180.

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston: Allyn & Bacon.
Tatsuoka, M. M. (1975). The general linear model: A "new" trend in analysis of variance. Champaign,

IL: Institute for Personality and Ability Testing.
Tatsuoka, M. M. (1988). Multivariate analysis: Techniques for educational and psychological research.

New York: Macmillan.
Tatsuoka, M. (1993). Elements of the general linear model. In G. Keren & C. Lewis (Eds.), A handbook

for data analysis in the behavioral sciences: Statistical issues (pp. 3-41). Mahwah, NJ: Erlbaum.
Thompson, B. (1994). The pivotal role of replication in psychological research: Empirically evaluating

the replicability of sample results. Journal of Personality, 62, 157-176.
Timm, N. H., & Carlson, J. E. (1976). Part and bipartial canonical correlation analysis. Psychometrika,

41, 159-176.
Toothaker, L. E. (1991). Multiple comparisons for researchers. Newbury Park, CA: Sage.
Tukey, J. W. (1954). Causation, regression, and path analysis. In O. K. Kempthorne, T. A. Bancroft,

J. W. Gowen, & J. L. Lush (Eds.), Statistics and mathematics in biology (pp. 35-66). Ames, IA: Iowa
State College Press.

Tukey, J. W. (1962). The future of data analysis. Annals of Mathematical Statistics, 33, 1-67.
Tukey, J. W. (1969). Analyzing data: Sanctification or detective work. American Psychologist, 24, 83-91.
Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
Tukey, J. W. (1993). Where should multiple comparisons go next? In F. M. Hoppe (Ed.), Multiple

comparisons: Selection and applications in biometry (pp. 187-208). New York: Dekker.
Tzelgov, J., & Henik, A. (1991). Suppression situations in psychological research: Definitions,

implications, and applications. Psychological Bulletin, 109, 524-536.
Van den Burg, W, & Lewis, C. (1988). Some properties of two measures of multivariate aasociation.

Psychometrika, 53, 109-122.
Van den Burg, W, & Lewis, C. (1990). Testing multivariate partial, semipartial, and bipartial correlation

coefficients. Multivariate Behavioral Research, 25, 335-340.
Velicer, W. F., & Colby, S. M. (1997). Time series analysis of prevention and treatment research. In

K. Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances
from alcohol and substance abuse research (pp. 211-250). Washington, DC: American Psychological
Association.

Wainer, H. (1976). Estimating coefficients in linear models: It don't make no never mind. Psychological
Bulletin, 83, 213-217.

Wainer, H. (1978). On the sensitivity of regression and regressors. Psychological Bulletin, 85,
267-273.

Wainer, H. (2000). The centercept: An estimable and meaningful regression parameter. Psychological
Science, 11, 434-436.

Wallston, K. A., Wallston, B. S., & DeVein's, R. (1978). Development of the multidimensional health
locus of control (MHLC) scale. Health Education Monographs, 6, 161-170.

Ware, J. (1985). Linear models for the analysis of longitudinal studies. American Statistician, 39, 95-101.
Weisberg, S. (1985). Applied linear regression (2nd ed.). New York: Wiley.
Welsch, R. E. (1980). Regression sensitivity analysis and bounded-influence estimation. In J. Kmenta &

J. B. Ramsey (Eds.), Evaluation of econometric models (pp. 153-167). New York: Academic Press.
West, S. G., Aiken, L. S., & Krull, J. L. (1996). Experimental personality designs: Analyzing categorical

by continuous variable interactions. Journal of Personality, 64, 1-48.
West, S. G, Biesanz, J., & Pitts, S. C. (2000). Causal inference in field settings: Experimental and quasi-

experimental designs. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social
psychology (pp. 40-84). New York: Cambridge University Press.

West, S. G., Finch, J. F, & Curran, P. J. (1995). Structural equation models with non-normal variables:
Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and
applications (pp. 56-75). Thousand Oaks, CA: Sage.



REFERENCES 669

West, S. G., & Sagarin, B. (2000). Subject selection and loss in randomized experiments. In L. Bickman
(Ed.), Contributions to research design: Donald Campbell's legacy (Vol. 2, pp. 117-154). Thousand
Oaks, CA: Sage.

Wherry, R. J. (1931). The mean and second moment coefficient of the multiple correlation coefficient in
samples from a normal population. Biometrika, 22, 353-361.

White, H. (1980). A heteroscedasticity-consistent covariance matrix estimator and a direct test for
heteroscedasticity. Econometrica, 48, 817-838.

Wilcox, R. R. (1997). Introduction to robust estimation and hypothesis testing. San Diego, CA: Academic
Press.

Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods?
American Psychologist, 53, 300-314.

Wilkinson, L., & the APA Task Force on Statistical Inference. (1999). Statistical methods in psychology
journals: Guidelines and explanations. American Psychologist, 54, 594-604.

Wilkinson, L., Blank, G., & Gruber, C. (1996). Desktop data analysis with SYSTAT. Upper Saddle River,
NJ: Prentice Hall.

Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika, 24, 471-494.
Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors

of individual change over time. Psychological Bulletin, 116, 363-381.
Willett, J. B., & Sayer, A. G. (1996). Cross-domain analyses of change over time: Combining growth

modeling and covariance structure analysis. In G. A. Marcoulides & R. E. Schumacher (Eds.),
Advanced structural equation modeling: Issues and techniques (pp. 125-157). Mahwah, NJ: Erlbaum.

Willett, J. B., & Singer, J. D. (1995a). It's deja vu all over again: Using multiple-spell discrete-time
survival analysis. Journal of Educational and Behavioral Statistics, 20, 41-67.

Willett, J. B., & Singer, J. D. (1995b). The times of our lives: Methodological issues when using survival
analysis in research. In J. M. Gottman (Ed.), The analysis of change. Hillsdale, NJ: Erlbaum.

Winer, B. J. (1971). Statistical principles in experimental design (2nd ed.). New York: McGraw-Hill.
Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design

(3rd ed.). New York: McGraw-Hill.
Winship, C., & Radbill, L. (1994). Sampling weights and regression analysis. Sociological Methods and

Research, 23, 230-257.
Wolfinger, R. D. (1997). An example of using mixed models and PROC MIXED for longitudinal data.

Journal of Pharmaceutical Statistics, 7, 481-500.
Won, E. Y. T. (1982). Incomplete corrections for regressor unreliabilities. Sociological Methods and

Research, 10, 271-284.
Wong, G. Y, & Mason, W. M. (1985). The hierarchical logistic regression model for multilevel analysis.

Journal of the American Statistical Association, 80, 513-524.
Wood, P., & Brown, D. (1994). The study of intraindividual differences by means of dynamic factor

models: Rationale, implementation, and interpretation. Psychological Bulletin, 116, 166-186.
Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557-585.
Yates, F. (1951). The influence of Statistical Methods for Research Workers on the development of the

science of statistics. Journal of the American Statistical Association, 46, 19-34.
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation.

Journal of Comparative Neurology and Psychology, 18, 459-482.
Yule, G. U. (1911). An introduction to the theory of statistics. London: Charles Griffin; Philadelphia:

Lippincott.
Zevon, M. A., & Tellegen, A. (1982). The structure of mood change: An idiographic/nomothetic analysis.

Journal of Personality and Social Psychology, 43, 111-122.
Zwick, R., & Cramer, E. M. (1986). A multivariate perspective on the analysis of categorical data.

Applied Psychological Measurement, 10, 141-145.



This page intentionally left blank 



Glossary

In this section we present a brief definition of technical terms as used repeatedly in this text.
The intent is to provide a conceptual reminder about the term, rather than a replacement of the
more complete presentation or discussion presented in the chapters. For named statistics and
for text sections discussing each term consult the subject index.

Additivity Indicating that the regression of Y on X is constant over the values of other
predictors.

Augmentation (or synergy) Interactions in which the effect of an IV on Y is larger for high
values of another IV.

Autocorrelation In longitudinal data, correlations among observations at adjacent or nearly
adjacent time points; also used in time series analysis to refer to correlations among
measures on a single variable on a single case over time.

Autoregressive models Analytic models in which values of variables measured at earlier
time points are used to predict values of the same variables at later points.

Balanced designs In ANOVA or regression with categorical variables, a design with equal
or proportional numbers of cases at each combination of research factors.

Ballantine A diagrammatic representation of the overlap or correlation between variables
or sets of variables with respect to a dependent variable Y. It is modeled after the Venn
diagram used in set theory, but cannot be taken as mathematically equivalent to it.

Beta coefficient (0) For consistency with the field, this symbol is used in two different ways
in this book: To represent Type n error (concluding that the population value is not
different from the null hypothesis when it is different) and the standardized regression
coefficient.

Binomial distribution In a population in which P is the proportion having some charac-
teristic, the binomial distribution is the distribution of the number of persons with that
characteristic across samples of a given size drawn from that population.

Buffering interaction An interaction in which the regression of Y on one IV is lower for
high values of another IV than for lower values.

Build-up procedure See Stepwise regression and Hierarchical (regression) analysis.
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Bulging rule A method for examining the shape of a relationship between two variables X
and Y to suggest an appropriate form from among the power transformations to linearize
their relationship.

Canonical analysis (CA) Analysis in which the relationship between two sets of variables
is assessed by means of maximally correlating linear combinations of each set, where
each combination is subject to zero correlations with all other linear combinations of the
same set.

Case statistics A statistic that varies for each participant (case) in the sample; case statistics
include predicted values, residuals, and regression diagnostics. See also Regression
diagnostics.

Censored variable A variable whose value is not observed if it exceeds (or is less than)
a specified value. Censored variables commonly occur in survival analysis in which
the central interest is in the time until an event occurs (e.g., relapse following treat-
ment) and the event may not occur for all participants by the end of the observation
period.

Centering Subtracting the sample mean on a variable X from each subject's score on X.
Coefficient of alienation, coefficient of noncorrelation The proportion of sdY remaining

after the linear influence of the predictor(s) has been removed.
Conditional effect In a regression equation containing higher order terms such as X2 or XZ,

the value of a regression coefficient is conditional if it holds only at a specific value of
other predictors in the regression equation, typically the value zero.

Confidence interval (Cl) The interval within which the population value of the statistic is
expected to lie with a specified confidence (1 — a). If repeated samples were taken
from the population and a confidence interval for the mean were constructed from each
sample, (1 — a) of them would contain the population mean.

Confidence limits (CL) The outer boundaries of the confidence interval of a statistic, defined
by the statistic ± the margin of error.

Confirmatory analysis An analysis in which the fit of the data to a prespecified theoretical
model is assessed.

Confounders Variables that contribute to the variance of both Y and one or more predictors
of Y: common causes or correlates of common causes, including correlated measurement
error.

Contingent effect See Conditional effect.
Contrast coding A method of coding a set of g groups that examines g — 1 successive

contrasts of group means or combinations of means of substantive interest.
Controlling, controlling for Including certain variables in the equation in order to assess

the relationship of other variables to Y independent of the effects of these controlled
variables.

Covariance The average of the products of deviations from the means of two variables
expressed in the original units.

Crossed interaction See Disordinal interaction.
Cross-lagged analysis In longitudinal designs with two measurement periods, the value of

each variable at Time 2 is regressed on its value at Time 1 and the value of other variables
at Time 1.

Cross-level interaction In clustered data, the interaction effect of FVs that are measured
at different levels of cluster; e.g., a characteristic of schools and a characteristic of
individual students such as school size by gender.

Cross-sectional data Data gathered at a single point in time for each subject.
Cubic function The effect of an independent variable taken to its third power.
Cumulative /?2 Total R2 as predictors are added to the equation.
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Curvilinear relationship Any relationship between two variables that is not well described
by a straight line.

Dichotomies, dichotomous variables Variables that can take on only two values, such as
Yes or No, Alive or Not alive. Synonymously, binary variables.

Disordinal interaction In regression analysis with continuous predictors X and Z, an
interaction in which the simple regression lines of Y on X at particular values of
Z cross within the meaningful range of the variable X. In ANOVA or regression
analysis with coded variables for individual groups, interactions in which the order
of means of groups on one variable changes as a function of the level of the other
variable.

Dummy variables Representation of a variable consisting of g categories by creating g — I
variables for which each of g — 1 categories is coded 1 on a single variable while the
remaining categories are coded 0 on these variables.

Effect size (ES) A measure of the magnitude of a relationship, either in the units of the
original measures such as Byx or mean differences, or in standardized units such as
r, r2, R, (3, or R2 (as contrasted to measures of the confidence of its exceeding some null
value, i.e., its statistical significance).

Effects codes A method of coding categorical variables in which each group is compared to
the (weighted or unweighted) mean of all the groups.

Efficient estimator A statistic that estimates its population parameter with the smallest
possible standard error.

Empirical Bayes estimate (EB) In general, a parameter estimate that combines information
from a sample with information from the population. In mixed models, an estimate of
a parameter for a meaningful subset of data in a larger data set that is a combination of
the estimate derived from only that subset of data and another estimate derived from the
full complement of cases.

Endogenous variables Variables in a structural (causal) model that are posited to depend,
in part, on other variables in the model. See also Exogenous variables.

Essential mufticollinearity The correlation between a predictor and a higher order function
of the predictor (e.g., X and X2) that is due to the asymmetry of the distribution of the
predictor and that cannot be eliminated by centering the predictor.

Exact collinearity The circumstance in which one variable is a perfect function of (is perfectly
predicted by) one or more other variables.

Exogenous variables Variables in a structural equation model that are posited not to be
caused by any other variables in the model. See also Endogenous variables.

Exploratory analysis Any analysis in which a fully specified a priori model is not tested.
The emphasis is on discovering relationships that may exist in the data. The results of
such analyses should ideally be replicated.

Exponential growth, exponential relationships Change in Y over the X scale that is an
exponential function of the X values.

First differences In time-sequenced data, the differences in values of a variable between
adjacent time points for each of the subjects.

First-order effects versus higher order effects First-order effects refer to the effects of
individual variables in a regression equation such as the effects of predictor X or predictor
Z, while higher order effects refer to effects of functions of the original variables such
as the effects of X2, XZ, or X2Z with all lower order terms partialed out.

Fit index (goodness-of-fit index) Measure of the goodness of fit of a model to the
observed data, including R2, the squared multiple correlation in multiple regression,
analogs to R2 in other regression models, and indices of fit in structural equation
modeling.
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Fixed linear regression model The assumption that the values of the IVs to which the
investigator wishes to generalize have been specified, selected, or created in advance.
This assumption is required in the derivation of the statistical tests that characterize most
of the regression models in this text.

F ratio The ratio of two variance estimates, the numerator representing variance due to the
effect under investigation and the denominator representing only random error variance,
used to test the statistical significance of the effect.

General linear model The special case of the generalized linear model in which the link
function is the identity function (untransformed Y), of which OLS regression is an
example.

Generalized linear model A class of regression models that relates a transformation of the
dependent variable Y linearly to the IVs. The function that transforms Y is the link
function. The generalized linear model subsumes logistic and Poisson regression.

Goodness-of-fit test In structural equation modeling, a statistical test that provides a test
of the null hypothesis that the model accounts for all of the systematic relationships
in the data. Such tests can only be performed for overidentified models. In structural
equation models the goodness-of-fit test is often supplemented by fit indices that provide
information about the degree of fit of the model to data. See also Fit index.

Growth models In longitudinal data, models that represent individual trajectories over age
or time. A common form of growth trajectory (e.g., linear) is specified for all individuals,
but individuals may vary in the parameters that characterize the growth (e.g., slope and
intercept for linear growth).

Hierarchical analysis A regression analysis in which variables or sets of variables are entered
into the equation sequentially in an order designed to answer empirical or theoretical
questions.

Hierarchical linear models (multilevel models) Regression analysis models that contain
predictors measured at more than one level of aggregation of the data (e.g., measures on
individuals within a group and measures on the whole group) and that take into account
the clustering in the data in the estimation of error variance.

Hierarchically structured data Data in which sampling occurs at multiple levels: e.g., groups
and then individuals in those groups, or individuals and then multiple time points for
those individuals, or combinations thereof.

Homoscedasticity The circumstance in which the distribution of the residuals or errors of
prediction have equal variance for all predicted values of Y in the population.

Identification The condition in which there are sufficient constraints in the model to
permit estimates of parameters. See also Just-identified models, Overidentification, and
Underidentification.

Identification error Bias in the estimate of a population parameter attributable to specifica-
tion error, sampling error, or because certain relationships are too small to be the basis
of such estimates.

Imputation The estimation of one or more values for missing raw data points based on other
information or measures on other variables.

Index plot A variable plotted against the ID or other indicator of the sequence or setting in
which data were gathered.

Influence An index of the effect of a single case on the estimate of B, on the regression
equation as a whole, or on the predicted value of Y.

Interaction The circumstance in which the impact of one variable on Y is conditional on
(varies across) the values of another predictor.

Intraclass correlation A measure of the within-class or group resemblance as a fraction of
the total variance.
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Intrinsic nonlinearity Nonlinearity of a regression model that cannot be eliminated by
transformation of the model to a form that can be analyzed with linear regression.

Jittering Adding small random variation to a case's scores on one or more of the variables
so that points having the same value are not plotted on top of each other on the graph.

Just-identified models A model, such as a single regression equation, in which there is just
enough information to produce a single estimate of each effect (e.g., Byx)-

Lagged variable In longitudinal data, the values of a predictor at one or more previous time
points used to predict later values of Y.

Latent variable models In structural equation modeling, models in which each theoretical
construct is assessed by several different indicators. The latent variable underlies the
indicators and represents what they have in common. Latent variables are theoretically
free of measurement error. The model specifies relationships among the latent variables.

Level of measurement The properties of the scale: categorical (without general meaning
of the numerical values assigned), ordinal (increases in numbers represent ordered but
not necessarily equal increases in the property being assessed), interval (increases in
numbers represent equal increases in the property being assessed), and ratio (interval
scales for which zero means none of the property).

Leverage An index of a case's extremity on the IVs.
Likelihood The probability that a score or set of scores (sample) could occur, given the

values of a set of parameters in a specific model; the highest probability possible is the
maximum likelihood.

Likelihood ratio The ratio of the maximum likelihood under one model to the maximum
likelihood under a more complete model; used in testing the goodness fit of a model
relative to models with fewer or more parameters. See also Likelihood and Maximum
likelihood.

Likert-type scales A variable for which responses are made on an ordered multiple-option
scale such as " never, occasionally, often" or "1 (completely false), 2,3,4,5 (completely
true)." Such scales are used to make finer distinctions than can be made on a 2-point
Yes/No or True/False item.

Linear by linear interaction An interaction XZ between two predictors that is linear in both
predictors; that is, the regression of Y on X is linear at all values of Z and the regression
of Y on Z is linear at all values of X.

Linear in the coefficients, linear in the parameters A regression model in which the pre-
dicted score is the sum of the products of each predictor multiplied by its corresponding
regression coefficient, as in the standard form of OLS regression employed throughout
most of this book.

Linear in the variables Indicating that a straight line well describes the relationship between
variables; no additional variables are required to represent nonlinearity.

Linear transformations Transformations in which the relationships among differences
between observations are not altered (e.g., the difference between Subject 2 and Sub-
ject 3 remains twice the difference between Subject 1 and Subject 4). These are created
by adding or subtracting the same value from every observation and/or multiplying or
dividing every observation by the same value.

Link function In the generalized linear model, the transformation that relates the predicted
outcome to the observed Y. In OLS, the link function is the identity function; hi logistic
regression, the logit; in Poisson regression, the logarithm.

Listwise deletion A data-analytic option in which only those cases having no missing values
are included.

Logistic regression model A regression model in which the observed dependent vari-
able is binary or comprised of ordered categories (ordinal logistic regression); a
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form of the generalized linear model in which the link function is the logit, and the
regression parameters are expressed as log odds associated with unit increases in the
predictors.

Lowess (or Loess) Curve Acronym for locally weighted scatterplot .smoother. A nonpara-
metric method that produces a smooth regression line or curve that describes the trend
of the X-Y relationship in a scatterplot. No assumptions are made about the form of the
relationship.

Main effect Arising from ANOVA terminology, the effect of an independent variable on Y
averaged across the (main or interaction) effects of other independent variables.

Margin of error (me) The potential error in an estimated statistic as compared to the
population value, expressed in the units of the statistic under investigation.

Maximum likelihood (ML) A method for the estimation of population parameters and their
standard errors based on the principle of maximizing the likelihood of the sample, given
the estimates of the population parameters; an alternative to OLS estimation. See also
Likelihood ratio.

Mean substitution Using the mean of a variable as an estimate of the value of missing data.
Measurement error Error in the employed values of variables due to the presence of distort-

ing influences on the assessment, such as momentary distractions, errors in recording or
understanding, influences of other variables on responses to particular items. These are
uncorrelated with the " true scores" by definition and treated as " random."

Mediators Variables that stand causally between a predictor and some variable on which it
has an effect, and that account, in whole or in part, for that effect.

Missing at random (MAR) Any bias due to missing data is accounted for by the values of
other measured variables in the model.

Missing completely at random (MCAR) Missing data on one or more variables are unbiased
and do not depend on measured or unmeasured variables.

Mixed model equation In hierarchical linear modeling, a random coefficient regression
equation that contains predictors measured at different levels of aggregation (e.g., char-
acteristics of individuals in a group and characteristics of the whole group), referred to
as the mixed model because it "mixes" the levels of aggregation in analysis. See also
Hierarchical linear model.

Model 2 error A regression model in which the error term is taken from a model with
additional predictors (usually the final model in a hierarchical sequence).

Moderation, moderator An IV that interacts with another IV in predicting 7. The effect of
each can be said to be conditional on the other.

Monotonic relationship, monotonic transform A rescaling in which the rank order of
variable values is retained without necessarily retaining the relative spacing of the scores:
thus, 1,5,6,11,28 is a monotonic transform of 1,2,3,4,5, and so is 20,21,22,23,24.

Moving average A weighted or unweighted average value of Y that corresponds to a fixed
range onX in cross-sectional data or a fixed number of adjacent locations in data collected
over time. For example, in data measured over time, the moving average of three adjacent
time points would be the average of Ylt Y2, and F3 for Time 2; the average of Y2, Y3, and
74 for Time 3, and the average of Y3,Y4, and Y5 for Time 4.

Multicollinearity Very high multiple correlations among some or all of the predictors in an
equation.

Multilevel models See Hierarchical linear models.
Multiple correlation (/? and /?2) The correlation between observed Y and the value of Y

estimated from a set of predictors (=/?); the proportion of Y variance associated with a
set of predictors (=R2).

Multiple episode data In survival analysis, inclusion of re-entry into the at-risk status.
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Multiplicative error Error in a regression model such that Y is a multiplicative function of
the regression model and the error.

Muhivariate ft2 The analog to R2 in analyses with multiple dependent variables as well as
independent variables.

Nested models In ANOVA, models with a hierarchical structure in which only a limited
number of possible combinations of the levels of each of the factors occur. In contrast,
crossed designs include all possible combinations of the levels of the factors. In multiple
regression and structural equation analysis, two models in which one is a more restricted
version of the other. The most common restriction is to set one or more of the parameters
(e.g., regression coefficients) equal to 0.

Nil hypothesis The null hypothesis that the value of some population parameter is zero.
Nonessential multicollinearity Multicollinearity between a variable and a higher order func-

tion of the same variable (e.g., X and X2) that can be eliminated by centering the original
variable X.

Nonlinear transformations Rescaling of a variable in which the order of the values may
be changed (nonmonotonic) or remain the same (monotonic) but in which the spacing
among the scores is changed.

Nonparametric Not requiring assumptions about the shape of the population distribution,
such as normality, or the shape of the relationship between variables, such as linearity.

Nonparametric regression An approach to discerning the pattern of relationship of a pre-
dictor X (or set of predictors) to Y through the use of data-driven smoothing functions
(e.g., lowess) rather than through a regression model.

Nonrecursive model A structural equation model including reciprocal causation or feed-
back.

Normal equations The set of simultaneous equations that are solved to determine the
estimated regression coefficients in OLS analysis.

Normality Having a distribution of values that follows the "bell shaped" curve in the popu-
lation. The formula for the normal curve itself is fairly complex, and its particular utility
lies in the fact that the distribution of various sample statistics tends to be normal if the
samples are large.

Null hypothesis significance tests (NHST) Tests of the significance of the difference
between the observed value of a statistic and some value that has been a priori specified,
typically zero (the "nil" hypothesis).

Odds, odds ratio The odds of some event is the probability of the event divided by 1 minus
its probability. The odds ratio is the odds of the outcome for a particular value of the IV,
divided by the odds for the IV value that is one unit lower.

Omitted variable A variable that distorts the relationship between Y and some other variable
when it is not included in the equation.

Ordinal logistic regression Logistic regression in which Y has more than two ordered values.
Ordinary least squares (OLS) Statistical methods based on the minimization of the squared

differences between the observed and predicted values of Y.
Orthogonal When describing variables or sets of variables orthogonal means uncorrelated.

When describing code systems for categorical or group variables orthogonal indicates
that the codes used to produce the FVs are not linearly correlated, although the variables
resulting from their application to the data will be correlated if the numbers of cases in
categories are not equal or proportional.

Orthogonal polynomials A set of orthogonally coded variables that assess linear, quadratic,
cubic, etc., relationships with Y for an X consisting of equally spaced ordered categories.

Outliers Atypical data points that do not fit with the rest of the data and appear to come from
another population.
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Overcontrol Employing FVs in a regression model that includes not only appropriate potential
predictors and confounders but also variables that may be mediators, or correlates of
mediators of the predictors of primary interest or alternative measures of Y.

Overidentification A structural equation model estimate that may be determined uniquely
by each of two or more equations in the same model.

Pain/vise deletion The management of missing data by estimation of correlations or other
coefficients based on all sample members who have the data needed for that particular
coefficient.

Partial correlation coefficients The correlation between two variables when each has had
the variance attributable to the same set of one or more other variables subtracted
from it.

Partial redundancy Variables whose prediction of Y partly overlaps, so that the sum of their
individual predictions is greater than their combined prediction.

Partial regression coefficients Regression coefficients when there are other predictors in
the equation.

Path coefficients Regression coefficients in path models, typically standardized.
Path model, path analysis A structural equation model involving only measured variables,

typically standardized. Path analysis is the statistical procedure of estimating a path
model.

Pearson product moment correlation (r) The least squares correlation coefficient presented
in this book, devised by Karl Pearson; a function of the products of the first moments
(the means and the variances) of the two variables.

Percent of maximum possible score (POMP) A linear transformation of an otherwise arbi-
trarily scaled score in which the lowest possible score is zero and the maximum possible
score is 100.

Phi coefficient The product moment correlation between two dichotomous variables.
Point biserial The product moment correlation between a dichotomous variable and a scaled

(continuous) variable.
Point of inflection A point where the rate of acceleration of a curve changes from positive

to negative or negative to positive.
Poisson distribution A probability distribution associated with counts of the number of rare

events that occur in a particular time; the distribution of residuals expected in Poisson
regression.

Poisson regression A regression model suitable when Y consists of counts of rare
phenomena.

Polynomial regression Employing power functions of predictors (x,x2,x3, etc.) in a
regression equation to model curvilinear relationships.

Power, power analysis The probability of rejecting a null hypothesis that is false to a
specified degree for a given sample size, Type I error rate, and effect size. Power analysis
is the process of estimating the power of a proposed or completed study.

Power polynomials See Polynomial regression.
Precision (of estimates) The area within the confidence limits: upper and lower boundaries

for a statistic based on sample data.
Product moment r See Pearson product moment correlation.
Protected tests The requirement that an overall omnibus test (e.g., an F test) be statistically

significant prior to conducting subsequent tests of individual parameters (e.g., regression
coefficients) or pairs of means (multiple comparisons) included in the omnibus test.

Quadratic function The effect of X on Y that is represented by the contribution of x2.
Random effects In hierarchically structured data (mixed regression), variance associated

with differences in parameter estimates between aggregated units, such as differences
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in regression coefficients and regression constants between groups of cases within a
clustered data set, or individual changes over time in longitudinal data.

Random error In OLS regression, random error is that portion of the dependent variable Y
that is unrelated to the set of IVs.

Rectilinear See Linear in the variables.
Recursive Models without causal reciprocal effects or loops.
Reduced model A regression model developed from a more extensive regression model from

which IVs, interactions, or power terms that did not contribute significantly were removed
from the equation to yield a reduced regression equation containing fewer predictors.

Regression diagnostics Specialized statistics that help identify cases that are extreme on
the IVs, that are discrepant from the value predicted by the model, or that substantially
change the results of the regression analysis.

Regression toward the mean The mathematical necessity that the predicted value of ZY

must be closer to zero than is zx unless rXY = 1.0.
Reliability Defined in most psychometric approaches as the squared correlation of the true

score with the observed (measured) score.
Respecification A change in the variables, direction of effects, or form of effects in a

structural equation model as a consequence of data-based findings.
Ridge regression An estimation method, used when there is substantial multicollinearity,

for obtaining slightly biased estimates of regression coefficients with smaller standard
errors than OLS regression.

"Rise over the run" The linear regression B. See also Slope.
Robustness The extent to which a statistical estimate and its significance test are likely to

be relatively unbiased by failure of the statistical model's assumptions.
Scatterplot matrix (SPLOM) The array of all the bivariate scatterplots.
Semipartial correlation coefficients Also called part correlations, the unique relationship

of a variable with Y: the square root of its unique contribution to R2.
Sensitivity analysis Determination of the expected changes in statistical estimates associated

with plausible alternative models or assumptions.
Serial dependency See Autocorrelation.
Set correlation analysis (SC) Analysis in the OLS framework with sets of dependent

variables rather than a single dependent variable.
Shrunken R2 The estimate of R2 in the population.
Simple slope, simple regression The regression of Y on X at a particular value of X (in

curvilinear regression) or at a particular value of another predictor with whichX interacts;
analogous to a simple effect in ANOVA.

Simplex structure A pattern of correlations or covariance in which values systematically
decrease as a function of the separation of the variables in time or space.

Slope The regression coefficient, the increase in Y per unit increase in X.
Smoothing Using a function of some or all of the data to describe the XY relationship,

especially in a scatterplot.
Spearman rank order correlation (rs) The product moment correlation between the

rankings within two sets of ranked observations.
Specification error Fitting an incorrect model to the data. This problem may occur because

(a) the form of one or more X-Y relationships is not correct, (b) interactions of IVs are
not included, (c) IVs are omitted from the model that should have been included, (d) IVs
are mistakenly included in the model, or (e) the IVs are unreliable.

Standard deviation (sd) In a sample, the square root of the average squared deviations from
the mean. As a population estimate, the sum of the squared deviations is divided by n — 1;
this estimate is routinely provided by most computer programs.



680 GLOSSARY

Standardized scores Scores linearly transformed by subtracting the mean and dividing by
the standard deviation for each observation, z scores.

Stem and leaf displays A univariate plot closely related to the histogram that also includes
the specific numerical values of each score.

Stepwise regression A sequence of regression analyses in which variables are entered auto-
matically in order of magnitude of contribution to R2, with or without other constraints.
An alternative (step-down or tear-down) is to start with all possible predictors and have
them automatically removed sequentially as they fail to contribute to R2.

Structural equation modeling (SEM) SEM is a set of statistical procedures for estimating
the relationship between underlying constructs (latent variables) and measured variables
(the measurement model), and among both measured variables and latent variables them-
selves (the structural model). Path analysis is a special case of the structural model that
includes only measured variables. Specialized computer programs (e.g., AMOS, EQS,
LISREL, M-Plus) simultaneously estimate the measurement and structural models.

Structural sets Sets of IVs grouped because they represent aspects of nominal scales or of
the shape of a variable's relationship to Y rather than a common substantive or theoretical
role.

Suppression In regression, the circumstance that adding a predictor to the equation increases
or changes the sign of the B of another predictor, or causes the standardized regression
coefficient for another predictor to become larger than the correlation of that predictor
with the criterion.

Synergistic interactions See Augmentation.
Tear-down procedure See Stepwise regression.
Tetrachoric correlation (rt) An estimate of r between two normally distributed variables

from data in which the two variables were measured as artificial dichotomies.
Time series data Longitudinal data in which the variables are collected at equally spaced

points in time. Typical applications include the effect of one series on another (concomi-
tant time series) or the effect of an intervention that occurs during the series. The typical
focus is on a single unit (e.g., an individual) so that n = the number of time points.

Tolerance One minus the squared multiple correlation of a given IV from other IVs in the
equation.

Tracing rule In path models, determination of the effects of a predictor by summing the
products of coefficients along paths from the IV to the DV.

Type I error Believing that some zero population effect is nonzero on the basis of a test of
statistical significance.

Type II error Believing that some nonzero population effect is zero on the basis of a test of
statistical significance.

Uncrossed interaction In regression analysis with continuous predictors X and Z, an inter-
action in which the simple regression lines of Y on X at particular values of Z do not
cross within the observed range of X. In ANOVA with interacting factors, the rank order
of means of one factor is constant across all levels of the other factor. See also Disordinal
interaction.

Underidentification Having too little information (variance, covariance, or predictors) to
produce a unique estimate of some statistic.

Unweighted effects, unweighted codes Codes of categorical independent variables in
which the groups contribute equally to the estimates, regardless of their /is.

Variance The squared standard deviation.
Variance function The form of the expected distribution of residuals in the generalized

linear model (e.g., normal in OLS, binomial in logistic regression, Poisson hi Poisson
regression).
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Variance-stabilizing transformations Transformations of a variable in a regression equation
that serve to decrease the heteroscedasticity of residuals (i.e., to decrease or eliminate
the relationship between values of the predicted scores and the variance of the residuals
associated with that predicted score).

Weighted effects Methods of effects coding categorical (group) independent variables in
which the groups contribute to estimates proportionately to their numbers. See also
Unweighted effects.

z scores, z transformation See Standardized scores.
Zero-order correlation The bivariate product moment correlation.
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Statistical Symbols
and Abbreviations

A Set of IVs A: Capital letters in bold italic type generally indicate sets of
variables.

A Arcsine transformation
Adj. Adjusted
AIC Akaike information criterion
ANCOVA Analysis of covariance
ANOVA Analysis of variance
B0 Regression intercept
B Regression coefficient of Y on an IV in measured or "raw" units
BG Between groups
BIC Bayesian information criterion
c Number of cells in a multiple categorical IV analysis
C Matrix of sums of squares and cross products among the IVs: Capital

letters in bold roman type generally indicate matrices.
C Code variable
C, Component i (principal components)
CA Canonical analysis
cf Canonical factor
C7 Confidence interval
CL Confidence limit
COV Variance-covariance matrix of the IVs
Cov Covariance
D Deviance, lack of model fit (logistic regression); Durbin-Watson statistic;

difference score
D, Cook's distance (global influence of a single case 0
d Bandwidth distance (kernel density estimation)
dt Deviance residual for case i (logistic regression); deleted residual for

case /, which is the difference between the observed Y for case / and
its predicted value with case / deleted from the data set (regression
diagnostics)
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df
DP

DFFITSi

DFBETASij

DV
e
EM
ES
/
F

G
g
GLS
GM
h
H
hu
hi
ICC
IV
k
L
LI
LAD
In
log
LTS
M
Mv

Mw
MY\X
Max
Mdn
me
M-estimation

Min
ML
MLE
MR
MRC
MS
n
n*
OLS
P
P

Degrees of freedom
Standardized change in regression coefficient Bj when case / is included

in versus deleted from the regression analysis
Standardized change in the predicted score for case i when case / is

included in versus deleted from the regression analysis
Dependent variable, Y
Regression residual or error in prediction
Expectation-maximization algorithm
Effect size
Frequency
Statistic used for multiple 4f numerator and denominator

significance tests
Amount of total deviance accounted for by IVs in logistic regression
Number of groups or categories in a nominal scale
Generalized least squares
Generalized M-estimators
Number of variable sets
Hat matrix (leverage values and diagonal)
Leverage for case /, in regression diagnostics
Centered leverage for case /, in regression diagnostics
Intraclass correlation
Independent variable
Number of variables or number of independent variables
Logit transformation
Least absolute deviation
Least absolute deviation
Natural logarithm, to the base e
Logarithm
Least trimmed squares
Mean
Unweighted mean
Weighted mean
Conditional mean of Y at a specified value of X
Maximum
Median
Margin of error
A robust estimation procedure in which more extreme observations are

given lower or 0 weight
Minimum
Maximum likelihood
Maximum likelihood estimation
Multiple regression
Multiple regression/correlation
Mean square
Number of subjects (cases)
Number of cases required to produce the desired statistical power
Ordinary least squares
Probability
Proportion of sample or subsample (usually of cases coded 1)
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Pi Predicted probability of membership in the "case" group for
a binary outcome

PrYi23 Partial correlation (of Y with Xl, partialing X2 and X3)
PR Probit transformation
q Lesser number of variables in the DV and IV sets in set correlation
Q 1 minus the proportion
Qi First quartile: the score corresponding to the n/4th case from the bottom

value
Q3 Third quartile
q-q Quantile-quantile plots
r Pearson product moment correlation coefficient
rb Biserial correlation coefficient
r, Residual for case i; Pearson residual for case i (logistic regression);

level 1 residual in random coefficient regression
rli, 1$ Elements of the inverted correlation matrix of IVs
rpb Point biserial correlation coefficient
rs Spearman's rank order correlation coefficient
rt Tetrachoric correlation coefficient
r^ Sample estimate of the reliability of variable X
rx Y Correlation between true scores of X and YA, 11

r Estimated value of r under some change in sample values
or in a new sample

RY.123 Multiple correlation of a single DV, Y, estimated from IVs X}, X2, and X3

Ry AB Multivariate squared correlation of IV set Y estimated from DV
sets A and B

R2 Shrunken R2; unbiased population estimate of R2

R2
L Index of fit in logistic regression

RYAB Squared multiple correlation from sets A plus B of predictors
RYBA Squared partial correlation of set B with Y with set A held

constant (partialed)
Ry Matrix of correlations among the IVs
RC Random coefficient regression
SB Covariance matrix of the regression coefficients
sd Standard deviation (generally the sample-based population estimate

using n — 1 in the denominator)
sdyo-YQ Standard error of the prediction of Y from IVs hi a newly observed case
SE Standard error (subscript indicates for which statistic)
SEY_Y Standard error of estimate
SIQR Semi-interquartile range
sr Semipartial (or part) correlation (implicitly with all other variables

partialed); srl.2^ indicates sr of Y with Xlt partialing X2 and X3

SS Sum of squares
t Student's t test statistic; time
T Number of equally spaced observations
ti Externally studentized residual for case i
u Number of categories of a categorical variable
My- Level 2 residual in random coefficient regression
VIF Variance inflation factor
V Matrix of variances and covariances among the IVs
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W An IV in its original units; or a weight for a variable in an equation
WM Value of W at the minimum or maximum of a polynomial function
WG Within groups
WLS Weighted least squares
x A centered (mean subtracted from each score) IV
X An IV in its original units, various italicized letters or numerically

subscripted X are used for different FVs
X A raw data matrix of predictors
-Across Value of X at which two simple regression lines cross
XM Value of X at the minimum or maximum of a polynomial function
X* Transformed value of X
XZ Cross product of two predictors X and Z
Y Dependent variable
y123 Regression-estimated DV, Y, predicted from variables Xi, X2, and X3

YM Maximum or minimum value of predicted score in a polynomial equation
T! Fisher transformation of r
z Standardized variable: variable from which the sample mean has been

subtracted and the result divided by the sample sd
Zcross Value of Z at which two simple regression lines cross

Greek Letters

a Alpha: Type I error rate; Also used to refer to internal consistency reliability of a
variable (Cronbach's a); also, smoothing parameter in lowess.

P Beta: Type II error rate; also, standardized regression coefficient.
P* Unstandardized regression coefficient in population, corresponding to B in sample
y Gamma: fixed effects parameter in random coefficient regression
e, Epsilon: random error in prediction for case i in the population
e2 Epsilon squared: adjusted proportion of variation accounted for
T]2 Eta squared: proportion of variation accounted for
K Kappa: condition number
X Lambda: eigenvalue; exponent in power transformation
|i Mu: population mean; rate parameter in Poisson regression
liyix Mu: conditional population mean of Y at a specified value of X
TT, Pi: probability of membership in the "case" group for a binary outcome variable
p Rho: correlation in the population; population multiple correlation
Pxx Rho: reliability of X in the population
Pxz,xz Rh°: reliability of cross-product term XZ in the population
a Sigma: standard deviation in the population
OY\Y Sigma: conditional population variance of the residuals, given Y
T Tau: variance component in random coefficient regression
(|> Phi coefficient (product moment correlation between two dichotomies)
X2 Chi-square distribution; statistic used for goodness-of-fit testing testing
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nominal scale, 375-388
with nominal scales, 388-389

categorical with nonlinear effects of
scaled independent variables,
383-386

centering and, 375
contrast coding and, 379-380
dummy-variable coding and,

375-378
of groups, simple slope estimates

of, 380-383
unweighted effects codes and,

378-379
weighted effects codes and,

378-379
numerical example, 275-280
ordinal vs. disordinal, 286-290
as partialed effects, 284-285
patterns

buffering, 285-286
interference or antagonism, 286
synergistic or enhancing, 285

plotting, 269
post hoc probing, 272-282

confidence intervals around simple
slopes, 274

equation dependence of simple
slopes, 273

first-order coefficients, 281-282
interpretation, 282
numerical example, 275-280
range of data, 282
significance testing, 273
standard error of simple slopes,

272-273
uncentered equation, 281

power to detect, 297
regression coefficient, 270-271
regression equations, simple, 267-272
of sets, 295-296
simple, 291
simple slopes (See Simple slopes, with

continuous variable interactions)
standardized estimates, 282-284
three-predictor, 290-291
variable reliability, 297
vs. additive effects, 256-259
vs. curvilinear effects, 299-300

Contrast coding, 332-341, 353
Bi

confidence intervals, 339
significance tests, 339

choice of codes, power and,
340-341

construction of, 333-337
for missing data in nominal scales, 436
nominal scale interactions and, 358,

359, 379-380
Orthogonal polynomials, 214
partial correlations, 339
partial regression coefficients,

337-339
R2 and R2, 337
selection considerations, 332-333
semipartial correlations, 339
statistical power, 340-341
vs. other coding schemes, 352-353

Cook's Di, 402-404, 409, 410
Cook-Weisberg test (homoscedasticity),

133
Correct rejections (classification), 516
Correlation coefficients

multiple, for two independent
variables, 69-71

partial, 74-75, 85
product moment (See Pearson product

moment correlation coefficient)
statistical inference with, 41-50

assumptions, 41-42
confidence interval estimations,

42-47
Correlation matrix, 115-116
Counts, 240, 245
Count dependent variables, 481-482,

525-532
relation to predictors, 481-482
regression models for, 525-532

Covariance, 29, 549. See also Analysis
of covariance

Cox and Snell index, 502, 504
Crossed interaction, 286, 355
Crossing points, of simple regression

lines, 288-290
Cross-level interaction, 544, 553,

554-555
interpreting, 558
simple slopes, 558-559

Cross-product, of z-scores, 282-284
Cross-validation, of prediction, 97-98
Cubic equation, 207-210
Cubic relationship, 197
Curvilinear by linear interactions,

292-295
Curvilinear effects, vs. interactions,

299-300
Curvilinear regression, 613
Curvilinear relationships, 194

detecting through graphical displays,
198

examining, approaches for, 195-196
monotonic nonlinear

transformations, 195
nonlinear regression, 195, 251-252,

254
nonlinear transformations (See

Nonlinear transformations)
nonparametric regression, 195,

252-253, 254
polynomial regression (See

Polynomial regression)
negative, 21-22
plots of, 205
positive, 21-22
prediction, 194
size of r and, 61

D
Data. See also Data analysis

clustered
analysis with ordinary least squares,

539-543
analysis with random coefficient

regression model, 550-553
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Data (Cont.)
level 1 or micro-level, 545
level 2 or macro-level, 545
meaningful aspect of, 553

counted
linear regression, 525-526
models for (See Poisson regression)

four-time-point, 573
hierarchically structured, 545
longitudinal, in causal models,

476-477
missing, 450-451

incorporation as positive
information, 613-614

minimizing, 431-432
in nominal scales, 434-442
in quantitative scales, 440-450
traditional approaches for, 433-435
types of, 432-433
variable timing and, 587-588

multilevel
experimental design as, 555-556
random coefficient regression

model and, 544-550
structural equation model

representation of (See Latent
growth models)

multiple episode, 599-600
observed, within the range of,

287-288
repeated measures, multilevel

modeling for, 566
sets (See Sets)
sparseness, 506, 516
three-time-point, 573
two-time-point

analyses of, 569-573
purposes in gathering, 569

unbalanced, 587-588
Data analysis

of data sets (See Sets)
hierarchical (See Hierarchical

analysis)
statistical inference strategy, 182-190,

192
adaptation of Fisher's protected t

test, 187-190
controlling/balancing type I and n

errors, 182-185
"least is last" principle, 186-187
"less is more" principle,

185-186
vs. statistical analysis, 12-13

Dependence of residuals
characteristics of, 134-137
correction of, 147-149

Dependent variables
continuous, 19-477, 536-627
counts, 481-482, 525-532
dichotomous, 482-516
ordered categories, 519-525
multiple (See set correlation)
nature of, 1
patterns of association with two IVs,

75-79
Deviance measures, 499-502

model deviance, 502

null deviance, 501
test of model deviance, 505

Deviance residuals, in logistic
regression, 513-514, 515

Deviation scores, 29
DFBETASij, 404-406

guidelines for identifying outliers,
405-406

DFFITi, 402
DFFITSi, 402-404, 409-410

guidelines for identifying outliers, 404
Dichotomous outcomes, 482-519

(See also Logistic Regression, Profit
Regression) relation to predictor,
481-482

Dichotomy
Phi coefficient and, 30-31
z scores, 29-30

Difference score. See Change
Direct effects, between Y and two

independent variables, 75-77
causal models without reciprocal

causation, 460-464
Disaggregated analysis, of clustered

data, 539-543
Discrepancy (residuals), 398-402

high values, guidelines for identifying
outliers, 401-402

residuals
externally studentized, 399-401,

402, 410
test of largest residual, 401-402

internally studentized, 398-399,
402, 410

Discriminant analysis, 484-485
assumptions 485
discriminant function coefficients, 484
discriminant function scores, 484
linear discriminant function 484

Disordinal interactions, 286-290
Dispersion parameter, 530-531
Distance. See Discrepancy
Distribution of variables, bivariate,

53-54
Dk (model deviance), 502
Dnull (null deviance), 501
Dummy-variable coding. See also

Dummy variables
for disaggregated analysis of clustered

data, 539-540, 543
in groups, 303-307, 353

continuous variable interactions
and, 375-378

without mutual exclusiveness, 320
for missing data in nominal scales, 436
nominal scale interactions and,

358-359
Pearson correlations with Y, 308-311
vs. other coding schemes, 352
reference group, choice of, 303-304

Dummy-variable-like coding systems,
319

Dummy variables, 303-320
clustering and, 148
correlations among, 311
multiple regression/correlation,

317-319

one-way analysis of variance, 317-319
partial correlation, 316
regression coefficients, 312-316

confidence intervals, 314-316
graphical displays, 313-314
significance tests, 314-316
standardized, 316

semipartial correlation, 316-317
sets, multiple correlations with Y,

311-312
Duncan test, Type I error risks, 183
Durbin-Watson test, 136-137
Dynamic system analysis, 602-604

E
Ecological fallacy, 539
Educational policy, hypothesis testing,

2-3
Effects coding, 298, 320-332,436

interactions with, 378
Unweighted effects coding, 320-328
Weighted effects, 328-332 (See also

Unweighted effects coding;
Weighted effects coding)

Effect size (ES), 5, 182. See also Power
Efficiency, 124
Effort attribution, 368
Elasticity, 155-156
EM algorithm, for estimating missing

datas, 440-442
Empirical Bayes estimates, 560-563,

583, 588
Endogenous variables, 458-459
Epsilon squared (e2), 319
Error. See Measurement error

causing outliers, 411-415
identification, in causal models,

475-476
margin of, 43-44, 87, 274
measurement, correction in

independent variables, 144-145
model 2 estimate of, 174-176
multiple terms in repeated measure

analysis of variance, 574-575
standard (See Standard error)

of estimate, 45
structure

for multilevel regression of
individual changes over time,
584-586

of ordinary least squares regression,
480

Poisson regression analysis, 533
type I, 182-185, 617
typeH, 182-185
variance, of estimate, 39

ES (effect size), 5, 182
Essential multicollinearity, 202-203, 264
Estimation. See also Maximum

Likelihood Estimation
Ordinary least squares estimation, 124

Eta squared (n2), 319
Event-history analysis, 600
Experimental design, as multilevel data

structure, 555-556
Experimental psychology, hypothesis

testing, 2-3
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Experiments, orthogonal polynomial
usage for, 220

Exponential decay, 230
Exponential growth model relationships,

229-231
Exponentiate the doubled coefficient,

511
Exponents, for nonlinear

transformations, 223-225
Externally studentized residuals,

399-401

F
Factorial design

2 by 2, 354-361
4 by 3, 365-366

First-order effects
conditional, continuous variable

interactions and, 259-260
patterns, 285-290

buffering, 285-286
in equations with interactions, 281

interference or antagonistic, 286
synergist or enhancing, 285

vs. higher order effects, 259-260
Fisher's protected t test, 90, 184,

187-190
Fisher % transformation of r, 49-50, 240,

310, 644
Fit indices

likelihoods and, 504
significance testing, 504-519

Fixed effects
multilevel data and, 544
in multilevel modeling, 560

statistical tests, 563
regression analysis, 541
variance components, 549-550
vs. random coefficient model, 565-566

Fixed effects regression, 41-42,
544-545. See Ordinary least
squares regression

Fixed linear regression model, 41-42,
544-545. See Ordinary least
squares regression

Fixed parameters, 468
Fixed variables, multilevel data and,

544-545
Form of the relationship

between independent and dependent
variables, 117-119

nonlinear, 142-143
of IV and DV, 142
between IV and DV and

heteroscedasticity, 143
between IV and DV and

homoscedasticity, 142
between IVs, 142

theoretical predicted, 142
violations

remedial actions, 141-143
detection .of, 125-126

Free parameters, 468
Frequency histograms, 103-104
F test

alternative, 174-176
in hierarchial analysis, 172-173

for linear probability model, 484-485
on multiple and partial coefficients,

88-90
power analysis, 176-179
for sets, 171
in simultaneous analysis, 173-174

Functional sets, 163-164
F values, 646-649

G
Generalized linear model, 4, 479-481,

532-535
link function, 534-535
logistic regression, 479, 532-533
Poisson regression, 479, 532-533
relationship of dichotomous and count

dependent variables Y to a
predictor, 481-482

variance function, 534
for variance stabilization, 244

Generalized M-estimation, 418
Generalized variance, proportion of

(R2
Yj), 610-611, 616-617

General relationships, in behavioral
science, 9-10

Global measures of influence
DFBETASfj, 404-406, 409, 410
DFFITSi or Cook's D,, 402-404, 409,

410
Goodman and Kruskal's X, 518
Goodness-of-fit tests

hierarchical logistic regression and,
508-509

for latent variable models, 472-473
Graphical displays

bivariate, 110-116
correlation matrix, 115-116
curvilinear relationship detection, 198
of misspecification of form of

relationship, 125-126
of regression coefficients for dummy

variables, 313-314
of regression diagnostics in logistic

regression, 514
of relationships, 19-23, 101, 102
scatterplot matrix, 115-116
univariate, 103-110

boxplot, 108
comparison with normal

distribution, 110
frequency histograms, 103-104
smoothing, 105-108
stem and leaf display, 104-105

Greek letters, 686
Groups

dummy-variable coding in, 303-307
simple slopes of, interactions coded to

estimate, 380-383

H
fcji (leverage), 394-394
h*{ (centered leverage), 396-397
Hand calculation, of multiple

regression/correlation problem,
636-642

Hazard function, 598
Health sciences, hypothesis testing, 2-3

Heteroscedasticity
correction, 145-147

weighted least-squares for, 146-147
definition of, 120
elimination, nonlinear transformations

for, 221
nonlinear relationship between IV and

DV and, 143
in Poisson regression analysis, 530
of residuals, 130-132, 530
treatment alternatives, 244-247

Hierarchical analysis
causal models without reciprocal

causation, 465-466
of quantitative set, 623-625
of sets

characteristics of, 164-166, 191,
466-467

F tests, 172-173
variables, 158-162

advantages, 158-159
Hierarchical linear models, 148, 158,

537, 544
Hierarchical regression, 158
Hierarchically structured data, 545

micro-level, 545
macro-level, 545

Higher order effects, vs. first-order
effects, 259-260

Higher order variables, 494
Highest order term, 195, 204, 266
Hits (in classification), 516
Homoscedasticity. See also

Heteroscedasticity
definition of, 119-120
detection, 130-132, 145-147
nonlinear relationship between IV and

DV and, 142
ordinary least squares regression and,

480
transformation to achieve, 221-223,

244-246
weighted least squares and, 140-147

Hosmer and Lemeshow goodness of fit
statistic, 506

Hot deck imputation, 444-445
Hyperbolic relationship, 231
Hypothesis testing

ANOVA/ANCOVA and, 5
examples, 2-3
MRCA and, 5

I
ICC. See Intraclass correlation
Identification error, causal models,

475-476
Imputation

hot deck, 444-445
multiple, 445
by ordinary least squares, 445-447

Increment in prediction (See Semipartial
R2)

Independence of residuals, 120
Independent variables (IVs)

categorical or nominal, 302-303
correct specification in regression

model, 119, 143-149
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Independent variables (FVs) (Cont.)
dummy-variable coding (See

Dummy-variable coding)
exogenous, 65
k, number of predictors, 79

multiple regression/correlation
with, 79-86

statistical inference with, 86-90
measurement error in, correction of,

144-145
nature of, 1
no measurement error in, 119
omitted, 127-129, 143-144
relevant, inclusion of, 143-144
sets (See Sets)
time-varying, 595-596, 599
two

measures of association, 69-75
patterns of association with one

dependent variable, 75-79
regression with, 66-69

Index of linear correlation, between two
variables, 23-28

Index plots (casewise plots), of residuals,
134-136

Index variables, size of r and, 60-61
Indirect effects, between Y and two

independent variables, 75-79
causal models without reciprocal

causation, 460-464
Influence (See Outliers)

in multiple regression, 402-406
in logistic regression, 514

Interactions
among continuous variables (See

Continuous variable interactions)
among sets of variables, 295-296
with categorical variables (See

Categorical variable interactions)
definition of, 10, 255, 257
logistic regression and, 494
patterns of interactions, 285
versus additive effects, 256
between nominal variables, 388-389

beta coefficient and, 374
in multiple sets, 361-366
mutual exclusiveness and, 373-374
pr and, 374
recommendations for, 374-375
with three nominal scales, 366-372
2 by 2 design, 354-361
variance proportions and, 374
in which not all combinations are

considered, 372-373
Interference, continuous variable

interactions and, 286
Internally studentized residuals, 398-399
Interrater reliability, 129-130
Interval scales, 8
Intraclass correlation (ICC)

clustering and, 537
estimating, 538
unconditional cell means model and,

551-552
Intraclass correlation coefficient, 134
Intrinsically linearizable, 226
Intrinsically nonlinear, 226

Inverse polynomial model, 231
Isolation of effects, establishing,

alternative methods for, 455-456
Item response alternatives, as scale, 156
Iteration, 498
Iterative solutions, 251
IV. See Independent variables

J
Jittering, 111
Joint effect, 355-357

K
Kaplan-Meier function, 598

Kappa, measure of agreement, 517
Kernel density estimate, 106-108, 111

L
LAD (least absolute deviation), 417
Ladder of re-expression, 233-234, 251
LaGrange multiplier test, 506
Latent growth models, 588-595

estimation of changes in true scores,
589

representation in structural equation
model diagrams, 589-594

Latent variable models. See also
Structural equation models

correction for attenuation, 473-474
data sets, 474
estimation

fixed, 472
free, 472
methods for, 471-472

example of, 469-471
goodness-of-fit tests for, 472-473

Latent variables, 473-474
Least absolute deviation (LAD), 417
"Least is last" principle, 186-187
Least square criterion, 498
Least trimmed squares (LTS), 417-418
"Less is more" principle, 185-186, 190
Levene's t* test, 133
Leverage

in data checking, 398
in detecting outliers, 394-398, 410
high values, guidelines for identifying

outliers, 397-398
in logistic regression, 513
Mahalanobis distance and, 398
centered values, 396-397

Likelihood, 498, 500
Likelihood ratio, 501
Likelihood ratio test, 500, 501, 504-505,

507
individual predictor in logistic

regression, 507
set of predictors in logistic regression,

508
0-line, 126
Linear by linear interaction, 271-272
Linear combination of predictors, 193
Linear conversion rule, 33
Linear discriminant function, 484
Linear in the coefficients, 480

Linear in the parameters, 193, 195, 480,
534

Linear in the variables, 118, 194-195
Linearization of relationships, 225-244

with correlations, 240
for counts and proportions, 240-244
intrinsically linear versus nonlinear

relationships, 226
nonlinear transformations for, 222

Linear probability model, 483-484
Linear regression

characteristics, 117-124, 193-195
for counted data, 525-526
formula, 193-194

Linear relationships, 8-9, 193, 194
negative, 20-21, 62
positive, 19-20, 62
weak positive, 22-23

Linear transformations, 25, 222
Link functions

for generalized linear model, 534-535
for predicting Y from time, 586-587

Listwise deletion, 433
LL, log likelihood, 500
Logarithmic transformation, 227-228,

232, 245
Logarithms

linearizing relationships based on,
227-228, 232

for nonlinear transformations,
223-225

Logistic function, 485
Logistic regression, 244, 486, 535

classification of cases, 516-519
confidence intervals, 497-498
data sparseness, 516
dichotomous, 520-522
equation, 486-491
equation forms, 487-488, 532
estimation procedures, 533
form of observed Y vs. predicted

score, 533
hierarchical, 508-509
higher order variables, 494
indices of overall fit, 499-502
influence in, 514
interactions and, 494
interpretation of coefficients, 533
leverage in, 513
logit, 490-491
multiple, 493-494

numerical example, 494-496
significance testing of single

predictor, 507-508
multiple R2 analogs, 502-504
nested dichotomous, 520-522

vs. ordinal logistic regression, 524
odds 490

odds ratio, 492-193, 497-498
ordinal, 522-525
parallels with Poisson regression,

532-533
polytomous, 519-520
predicted score, 490-491

logit, 490
odds, 490
probability, 490
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predictor, coefficients, for, 492-493
regression coefficients, 497
regression diagnostics in, 512-513
residuals in, 513-514, 515
scaling predictors, 510-512
significance tests, 504-508, 533

individual predictors, 507
model fit, 504
sets of predictors, 508

standardized coefficients, 512
Logistic transformation, 485-486
Logit transformations, 240, 243-244,

650-651
Longitudinal regression analysis

methods, 605-607
power analysis in, 604-605
research questions, 605-607

Lower order term, 195, 217
Lowess lines, 111-114, 198, 207

and nonparametric regression, 252
LTS (least trimmed squares), 417-418
"Lurking variables," 134

M
Mahalanobis distance, 398
Main effect

in 2 by 2 design, 355-356
with three nominal scales, 367-371

MANCOVA (multivariate analysis of
covariance), 609

Manifest variables, 470
MANOVA (multivariate analysis of

variance), 609
MAPV (multivariate analysis of partial

variance), 622-623
Margin of error (me), 43-44, 87, 274.

See Confidence intervals
Mathematical basis, for multiple

regression/correlation, 631-635
Mathematical procedures, 11
Maximum Likelihood, 500
Maximum likelihood estimation,

468-469, 498-499, 500-501
of X, 238
linearization and, 238
method, 468-469, 498-499
of regression model, 498-499

Means
simple comparisons between, 183-184
unweighted vs weighted, 320-321

Mean substitution, for missing data in
nominal scales, 437-439

Measurement
error, 129-130

correction, in independent
variables, 144-145

effects in two-predictor regression,
121-124

model, for latent variables, 471-472
scores with zero and maximum

defined, 156
units, comparable, standard scoring

and, 23-26
Measurement units, with conventionally

shared meaning, 155
Measures of association

multivariate, 610-613
with two independent variables, 69-75

Mediators, 457
M-estimation, 418
Missed-data correlation matrix, 433-434
Misspecification, 119-120, 125-130. See

also Specification error
Mixed model equation, 545, 548
Mixed model regression, 555-556
Mixed Poisson models, 531
Model adequacy tests, 506
Model deviance (Dk), 502
Model deviance test, 505-506
Model 2 error estimate, in significance

testing, 174-176
Model fit

assessment of, 231
measuring and comparing, nonlinear

transformation for, 248
Moderators, 269, 458
Modified Levene test, 133
Monotonic nonlinear transformations,

195
MRC. See Multiple

regression/correlation analysis
Multicollinearity

definition of, 390-391
measures of, 422-425
essential vs. nonessential, 202-203

continuous variable interactions
and, 264

exact collinearity and, 419-420
interpretation, 98-99, 420-422
numerical illustration, 420-422
remedies for, 425-430

collection of additional data, 427
model respecification, 426-427
principal components regression,

428-429
ridge regression, 427-428

sampling stability and, 99, 420-422
Multilevel data, 544
Multilevel models for clustered data,

148, 537, 544
centering, 564-565
empirical Bayes estimates, 560-563
level 1 equation, 546
level 2 equation, 547

intercept, 547
slope, 547

mixed model equation, 548
numerical example, 556-560
parameters of model, 550
parameter estimation, 560-563
with predictor at level 2, 553-555
random effects, 560
random intercept model, 550
for repeated measures data, 566
same variable at two levels, 564
sources on, 566
specification issues, 564-565
statistical power of, 565
statistical tests, 552-553, 560
unconditional cell means model, 551
variance components, 548-549, 555,

560, 563
Multilevel models of individual changes

over time, 578-588
centering, 580

Empirical Bayes estimates, 583
adding other fixed predictors in, 582
alternative developmental models,

584-586
alternative link functions for

predicting Y from time, 586-587
error structures, 584-586
individual differences in variation

around individual slopes,
583-584

patterns in, 578-582
unbalanced data and, 587-588

vs. structural equation model analysis
of change, 594-595

Multinomial logistic regression, 519
Multiple analysis of variance

(MANOVA), set correlation
analysis, 619-620

Multiple correlation coefficients, for two
independent variables, 69-71

Multiple imputation, 445
Multiple linear regression, assumptions,

149-150
correction of violations, 141-149
description of, 117-124
detection of violations, 125-141

Multiple logistic regression, 493-496
Multiple R, 69-71, 82-83
Multiple regression/correlation analysis

(MRC). See also Specific
applications

dummy-variable, 317-319
hierarchical analysis variables,

158-162
historical background, 4-5
with k independent variables, 79-86
models, theories and, 454-456
with nominal independent variables,

350-351
overview, 1-2
statistical inference strategy, 182-190
with two or more independent

variables, causal analysis, 64-65
vs. analysis of variance approaches,

4-5
Multivariate analysis of covariance

(MANCOVA), 609
Multivariate analysis of partial variance

(MAPV), 622-623
Multivariate analysis of variance

(MANOVA), 609
Multivariate association measures,

610-613

N
n*

determination for F test, 177-179
different, reconciliation of,

180-181
setting power for, 180

n (number of subjects), power as
function of, 181

Nagelkerke index, 503
Natural logarithms, 224
Natural polynomials, 216
Negative binomial regression model,

531
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Nested dichotomies
logistic regression, 520-522
versus ordinal logistic regression, 524
versus OLS regression, 524

Net regression method, 157
Newman-Keuls test, Type I error risks,

183
NHSTs. See Null hypothesis significance

tests
Nominal scales, 8, 302-303

categories, representation of specified
contrast in, 613

by continuous variable interactions,
375-388

interactions (See Interactions, between
nominal variables)

with continuous variables (See
Continuous variable interactions,
with nominal scales)

missing data in, 434-442
coding for, 434-439
estimation using EM algorithm,

440-442
on two dichotomies, 439-440

three, coded by alternative methods,
367-371

Nominal variables. See also Categorical
variables

coding schemes, 351-353
comparison of, 352
in context of other continuous

variables, 342-351
contrast (See Contrast coding)
dummy-variable (See

Dummy-variable coding)
unweighted effects (See Unweighted

effects coding)
weighted effects (See Weighted effects

coding)
groups, dummy-variable coding in,

303-307
independent

ANCOVA, 350-351
calculating adjusted means for,

343-344
multiple regression/correlation,

350-351
with quantitative variables,

calculating adjusted means for,
344-348

interactions, 354-366
nonsense coding, 341-342
2 by 2 design, 354-361
unweighted effects coding (See

Unweighted effects coding)
weighted effects coding, 328-332

Nonconstant variance, statistical tests of,
133, 145-147 (See also
Homoscedasticity,
Heteroscedasticity)

Nonessential multicollinearity, 202-203
continuous variable interactions and,

264
Nonindependence of residuals

characteristics, 134-137
correction of, 147-149

Nonlinear probability model, 485

Nonlinear regression, 195, 226, 251, 254
Nonlinear relationships, multiple

regression approaches, 8-9, 193,
195-196

detection of, 125-127
monotonic nonlinear transformations,

195, 222
nonlinear regression, 195
nonparametric regression, 195
polynomial regression, 195

Nonlinear transformations, 195, 253
arcine, 240, 241
Box-Cox procedure, 236-238
Box-Tidwell procedure, 239
choice of, 249-251
conceptual basis, 223
diagnostics, 247
empirically driven

in absence of strong or weak
models, 233

for linearization, 233-240
exponents, 223-225
indications for, 249-251
for correlations, 240
for linearizing relationships, 225, 244

based on strong theoretical models,
227-231

based on weak theoretical models,
231

intrinsically linearizable
relationship, 225-227

logarithms, 223-225
logit, 240, 243-244
model checking, 223
model fit, measuring and comparing,

231, 248
monotonic, 195, 222
nature of, 221-223
to normalize variables, 246-247
one-bend, linearizing, 234, 235
power, 235
from predictor to predicted scores,

485-486
probit, 240, 241-243
for proportions, 240-244
proportional relationships, 223-225
purposes of, 221-223
in regression, sources on, 251
two-bend, 240
variable range, 235
for variance stabilization, 244—246
when to transform, 223, 249

Nonorthogonal comparisons, 184-185
Nonparametric regression, 195,

252-253, 254
Nonsense coding, 341-342, 352, 353
Normal distribution, 46, 110, 645
Normality of residuals, 120, 137-141,

222
tests of 137-141

Normalization, of ranks, 247
Normalizing transformations of

proportions (probit
transformations), 240, 241-243

Notation, 17
Null deviance (Dnull), 501

Null hypothesis significance tests
(NHSTs), 5, 15, 47-50

for B0, 49
forflyx, 48
confidence limits and, 50
for difference between two

correlations with Y, 49-50
parameters, 52
power of, 51-53
research goals and, 90-91
for rXY, 49
in set correlation analysis, 615-616
for sets, 171

Number of cases required to produce the
desired statistic, 654

Number of subjects (n)
power as function of, 181
unequal, orthogonal polynomials and,

220-221
Numerical results, 14-15

o
Observations, independence of, 532
Odds, 486, 490
Odds ratio, 492-493

interpretation, 509-512
logistic regression, 497-498

OLS. See Ordinary least squares
regression

Omitted independent variable, 127-129
remedies 143-144

One-bend transformations, 234, 235
Optimal design, power to detect

interactions and, 298-299
Ordered category methods, vs. ordinary

least squares regression, 524-525
Ordered variance partitioning procedure,

158-159
Ordinal interactions, 286-290, 355
Ordinal logistic regression, 522-525
Ordinal scales, 8
Ordinary least squares regression (OLS),

37, 40, 124-125, 474, 479, 535,
567

analysis of clustered data, 539-543
assumptions, 117
characteristics of, 479-480
data clustering in, 537
estimation, 124
imputation by, 445-447
link function, 534
multilevel data and, 544
variance components, 549-550
vs. ordered category methods,

524-525
vs. set correlation analysis, 609

Orthogonal comparisons, 184
Orthogonal polynomials, 214-222, 253

applications, 215-216, 220-221
approaches, selection of, 219
characteristics, 214-215
cubic example, 216-219

confidence intervals, 216-218
tests of significance, 216-218

intervals, unequal, 219-220
power, 218
residual variance, 218
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trend analysis in ANOVA, 219
unequal n, 219-220

Outliers, 102, 110, 391-419, 430
contaminated observations, 411-412
definition of, 390
detection, 394-411, 409-411,

415-417
by diagnostic statistics, 406-409,

411
in interaction or polynomial terms,

410-411
of clumps of outliers, 415-417
of extremity on dependent variable,

398
of extremity on independent

variable, 394-398
by global measures of influence,

402-406, 409, 410
illustration of measures, 212, 391, 394
measures

discrepancy (distance), 398
Influence, 402
leverage, 394

rare cases, 412-413
remedial actions for, 415-419

respecification and transformation,
417

robust approaches, 417-419
sources, 411-415
suggestions for detecting, 409-411

Overdispersion, 530-531
dispersion parameter, 530
overdispersed Poisson model, 531
negative binomial regression, 531

Overdispersed Poisson model, 531
Overplotting, 108

P
Pair-wise deletion, 433-434
Parallel regression, 523
Parameters, 42

dispersion, 530-531
fixed, 468
free, 468
linearity in, 195
of random coefficient regression

model, 550
Partial coefficients

correlation, 74-75, 85, 153, 316
regression, 66-69, 80-82, 169
regression with interactions, 284-285
R2, 168-169

Partial correlation, 153, 316
Partial correlation coefficients, 74-75, 85
Partialing, in set correlation, 613-614
Partial R2, 168-169
Partial regression coefficients, 66-69,

493
causal effects indicated by, 154
for highest order predictor in full

polynomial equation, 203
for k independent variables, 80-82
standardized, 82

Partial regression leverage plot (added
variable plot), 127-129

Partial relationships, in behavioral
science, 7

Partialing
meaning of, 7, 85-86, 154
in hierarchical regression analysis,

158-160
in polynomial regression, 200
of main effects for interaction terms,

284-285
in set correlation, 613-614

Part-whole correlations, size of r and,
59-60

Path analysis, causal models without
reciprocal causation, 464-465

Path coefficients, causal models without
reciprocal causation, 464-465

Patterns of association, between one
dependent and two independent
variables

direct effects, 75-76
indirect effects, 75-76, 78-79
partial redundancy, 76-77
spurious effects, 78-79
suppression in regression models,

77-78
Pearson product moment correlation

coefficient (r)
formulas

as average product of z scores, 28,
62

as function of differences between z
scores, 28

Phi coefficient, 30-31
point biserial, 29-30
rank correlation, 31-32
for raw score, 29

properties of, 28
size, factors affecting, 53-62,63

curvilinear relationships, 61
distribution of X and Y, 53-55
part-whole correlations, 59-60
ratio or index variables, 60-61
reliability of variables, 55-57
restriction of range, 57-59

Pearson residuals, in logistic regression,
515

Pearson x2, 506
Percent of maximum possible scores

(POMP scores), 156
Phi coefficient (o), 30-31
Point biserial r formulas, 29-30
Point estimate, 50
Poisson probability distribution, 526-528

rate parameter, 526
Poisson regression analysis, 244,

528-530, 535
error structure, 533
estimation procedures, 533
form of observed Y vs. predicted

score, 533
interpretation of coefficients, 533
overdispersed, 531
parallels with logistic regression,

532-533
significance tests, 533
sources on, 532
vs. transformed Y, 526

Polynomial regression, 194, 195
equations, 195, 198

build-up procedure, 210-211
centering predictors in, 201-204
change in R2, 211-212
complex, 213-214
conditional effects, 200-201
instability, 212-213
optimal design, 213
outlier impact on stability, 212-213
predictors, centering of, 204
quadratic (See Quadratic equations)
sampling impact on stability,

212-213
simple slopes, 206-207, 210
statistical significance
structuring, 200, 210
tear-down procedure, 210-211

examples
cubic fit, 207-209
quadratic fit, 198-201

extrapolation, 207
interpretation of results, 205-207

warnings about, 207
limitations, 209-213
maximum

for cubic equation, 210
for quadratic equation, 205-206

minimum
for cubic equation, 210
for quadratic equation, 205-206

order, 209-213
orthogonal (See Orthogonal

polynomials)
power polynomials, 195-214, 253

method, 195-198
order of, 197-198

quadratic fit, 198-199
second-order, 248-249
strategy, 209-213

Polytomous logistic regression, 519-520
Pooled within-class regression

coefficient, 540-541
Populations R2 values, estimating,

179-180
Post hoc comparisons, 184-185
Power

analysis, 15
in longitudinal analysis, 604-605
partial coefficients, 94-95
R2, 92-93
in set correlation analysis, 617-619
for sets, 176-182
of significance test, 652-653
tactics of, 182

of contrast coding scheme, 340-341
to detect interactions, 297

optimal design and, 298-299
as function of n, 181
linearizing relationships based on,

228-229
of multilevel modeling, 565
of orthogonal polynomials, 218

Power functions, 234
Power polynomials, 196-214
Power relationships, 228
Power transformations, 233-240,

245-246
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pr, nominal scale interaction variables
and, 374

pr2, for k independent variables, 85
Precision, 91. See also Confidence

internal, Power,
of estimation, 50-51
partial coefficients, 93-94
R2, 91-92

Predicted probability, 486
Predicted score, forms of, 490-491
Prediction

cross-validation of, 97-98
equation, 79-80
models, 3
multicollinearity, 98-99, 425
net contributions, 152
using multiple regression equations in,

95-99
utility, comparisons of, 152-153
values, correlation with individual

variables, 96
weighted composites in, 97-98
of Y for new observation, 95-96

Predictors
centering in polynomial regression

equations, 201-204
continuous, scaling, treachery in,

511-512
dichotomous, scaling of, 510-511

Principal components regression,
428-429

Probability, 15
Probit function, 485
Probit regression, 486
Probit transformations, 240, 241-243,

485-486
Product moment correlation, 26-28. See

also Pearson product moment
correlation coefficient

Proportional odds model, 523
Proportions, 240

for nonlinear transformations,
223-225

variance stabilization of, 246
Protected t test. See Fisher's protected

t test
Protective factors, 285
Pseudo-R2's, 502
PY y (proportion of additive variance),

611-613, 616-617

Q
q-qplot, normal, 137-141, 314
Quadratic equations

centered, 204
maximum for, 205-206
minimum for, 205-206

Quantitative independent variables. See
Categorical variables, Nominal
variables.

Quantitative independent variables with
nominal variables, calculating
adjusted means for, 344-348

Quantitative scales, 163, 193
linear (See Linear relationships)
missing data in, 440-450

alternative methods, illustration of,
447-450

available alternatives, 440-444
imputation of values for missing

cases, 444-447
modeling solutions for, 447
rules of thumb for, 450

nonlinear (See Nonlinear
relationships)

types, 7-8
Quasi-likelihood models, 531

R
r. See Pearson product moment

correlation coefficient
R2, 69-71

confidence intervals, 88
increments to, 72-74
for k independent variables, 82-83
partial, 168-169
power analysis, 92-93
precision, 91-92
semipartial, 167-168

Random coefficient regression model,
148, 537, 543-544

analysis of clustered data, 550-553
fixed effects, 550
fixed part, testing of, 552-553
level 1 equations, 546-547
level 2 equations, 547
mixed equations, 548
multilevel data structure and, 544-550
random effects, 550
random part, testing of, 552-553
variance components, 548-549
vs. fixed effects model, 565-566

Random effects, 550
Random intercept model, 550
Random variables, multilevel data and,

544-545
Range restriction, size of r and, 57-59
Rank correlation, product moment

correlation formula, 31-32
Ranks, normalization of, 247
Rate variables

size of r and, 57-59
reciprocal transformation and rates,

232
Ratio scales, 7-8
Ratio variables, size of r and, 60-61
Raw score formulas, for r, 29
Reciprocal effects, 157
Reciprocal transformation, 245

linearizing relationships and, 232
Rectilinear relationships. See Linear

relationships
Redundancy

complete, 79
two-variable, 76-77

Re-expression. See Linear
transformations, Nonlinear
transformations

Regressed change, vs. change, 570-571
Regression coefficients

causal effects indicated by, 154, 459
in centered equations, 262

in centered vs. uncentered polynomial
regressions, 204

continuous variable interactions,
270-271

difference between Bxyv — Bxyw,
confidence interval for, 46—47

for dummy variables, 312-316
confidence intervals, 314-316
graphical displays, 313-314
significance tests, 314-316
standardized, 316

logistic regression, 497
standardized, 512
statistical inference with, 41-50

assumptions, 41-42
confidence interval estimations,

42-47
in uncentered equations, 262
in unweighted effects coding, 325-327
of Y on independent variable. See B

coefficient
ofYon X, 32-36, 41, 63

alternative approaches in making
sustantively meaningful, 154-157

confidence interval, 42-44, 48
estimation, precision of, 51
null hypothesis test, 48
sampling distribution, 42
standard error, 42

Regression diagnostics. See Outliers
in logistic regression, 512-515
in multiple regression, 394-410
leverage, 394
discrepancy (distance), 398
influence, 402
location of outliers and, 406-409
suggestions for interpretation,

409-411
Regression equations

centered (See Centering, of regression
equations)

with interactions
building, 284-285
standardized solution for, 282-284

simple, with continuous variable
interactions, 267-272

Regression intercept. See B0

Regression lines, crossing points of,
288-290

Regression models
alternative

for four-time-point data, 573
for three-time-point data, 573
for two-time-point data, 571-573

as causal models, 459-460
correct specification of independent

variables in, 119
estimation, by maximum likelihood,

498-499
suppression in, 77-78

Regression plane, 118, 257-259
Regression residuals, 40
Regression toward the mean, 36-37
Relationships. See also Specific

relationships
linearization of

with correlations, 240
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for counts and proportions, 240-244
nonlinear transformations for, 222

simplifying, nonlinear transformations
for, 221

Reliability. See Measurement error
measure of, 129-130
of variables (rxx), 55-57

Repeated measure analysis of variance,
573-578

multiple error terms in, 574-575
trend analysis, 575-576
in which time is not the issue, 576-578

Reporting, 14-15
Representation of uncertainty, 445
Research

factors, 162-163
correlation among, 6-7
interactions, 613
significance tests, 362-363
statistical control of, 613

goals, null hypothesis and, 90-91
questions

answered by B or p, 154-157, 191
answered by correlations and their

squares, 151-154, 191
for longitudinal regression analysis,

605-607
relevance, 160

Residual Scatterplot, 126-127, 130-132
Residuals, 45

with one independent variable, 39-40
with k independent variables, 79
casewise plots, 134-136
constant variance of, 119-120
dependence

characteristics of, 134-137
correction of, 147-149

deviance residuals, 513-515
externally studentized, 399-401, 402,

410, 514
heteroscedasticity of, 130-132
homoscedasticity of, 130-132
independence of, 120
index plots of, 134-136
internally studentized, 398-399, 402,

410
in logistic regression, 513-514, 515
nonconstant variance

correction of, 145-147
magnitude, determination of, 146

normality of, 120, 137-141, 222-223
normalizing, nonlinear

transformations for, 221-222
Pearson residuals, 513-515
scatterplots of, 198

Residual variance, 39, 218
Ridge regression, 421-428
Right censoring, 597-598
Risk factors, 285
Robust regression methods, 417-418

recommendations, 418-419
Robustness, 41
Rounding, 14-15
R2s, two independent, differences

between, confidence intervals for,
88

rs (Spearman rank correlation), 31-32

Running average, 105-106
r* , 422-423
r .̂ (reliability of variables), 55-57
V41

confidence interval, 45-46
null hypothesis test, 49

R^ (proportion of generalized
variance), 610-611, 616-617

S
Sampling

from continuum, orthogonal
polynomial usage for, 220

designs, to enhance power to detect
interaction, 298-299

distribution, 42
stability, multicollinearity and, 99

Scaled variable, correlation with
dichotomous variable, 29-30

Scales
interval, 8
nominal (See Nominal scales)
quantitative (See Quantitative scales)
with true zero, 155-156
using item response alternatives as,

156
using sample's standard deviation as,

156-157
Scaling IVs, 154-157. See also

Transformations, Centering
Scatterplot matrix, 96, 115-116
Scatterplots, 19-21, 110-114, 125-126,

198
of residuals, 125-126, 198
detecting heteroscedasticity, 130-132

Scheffe" test, 184-185
Score test, 506

of parallel slopes, 524
of proportional odds, 524

Scores
true, estimation of changes in, 589
with zero and maximum defined, 156

Semi-inter quartile range (SIQR), 108
Semi-parametric mixed Poisson

regression, 531
Semipartial coefficients, interpretation,

example of, 85-86
Semipartial correlation, for dummy

variables, 316-317
Semipartial correlation coefficient (sr),

for k independent variables,
84-85

Semipartial correlation coefficients,
72-74

Semipartial R2, 167-168, 205
Sensitivity, 516
Sensitivity analysis, 144
Serial data without replication,

orthogonal polynomial usage for,
221

Serial dependency, 134, 148, 537
Set correlation analysis, 627-628

canonical analysis and, 609-610
elements of, 610
illustrative examples, 621-627

bipartial association between three
sets, 625-627

hierarchical analysis of quantitative
set, 623-625

multivariate analysis of partial
variance, 622-623

whole association, 621-622
new analytical possibilities with,

620-621
partialing in, 613-614
power analysis in, 617-619
properties, 608-609
statistical significance tests

estimators of population R2yx, Tyj,
and P^, 616-617

guarding against type I error
inflation, 617

null hypothesis, 615-616
types of associations in, 614
vs. multiple analysis of variance,

619-620
Sets, 101

alternative hierarchical sequences, 160
ballantine for, 166, 192
clustering in, 536-538
difference of effects on two different

outcomes, 157
graphical displays, 101, 102-116
hierarchical analysis of, 164-166, 192,

466-467
interactions of, 295-296
of multiple nominal variables with

more than two categories,
regression analyses of, 361-366

power analysis, 176-182
significance testing for, 171-176, 192
simultaneous analysis of, 164-166,

192
types of, 162-164
unweighted, regression coefficients in,

325-327
variables in, B and p coefficients for,

169-170
variance proportions, 166-169

Shape of relationship, 8-9
Shrinkage estimates, 561 (See empirical

Bayes, estimates)
Shrunken or adjusted R2, for k

independent variables, 83-84,
312

Significance tests, 5, 15. See also
Specific significance tests

for bivariate r, 310-311
of highest order coefficient and gain in

prediction, 204-205
logistic regression, 533
in nominal scale interactions, coding

scheme and, 359
of polynomial terms, 204-205
for orthogonal polynomials, 216-218
of overall model fit, 504-519
Poisson regression, 533
for regression coefficients of dummy

variables, 314-316
of research factors, 362-363
sample size, 176
for semipartial R2, 171-173, 211
for sets, 171-176, 192, 508
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Significance tests (Cont.)
for simple slopes in simple regression

equations, 267-272
of single predictor, in multiple logistic

regression, 507-508
Simple interactions, 291
Simple regression line, 268
Simple slopes, 206-207, 270-271,

380-383
confidence interval, 279
with continuous variable interactions,

270-271
equation dependence of, 273
significance testing, 273-277
standard errors, 272-273, 277

with cross-level interactions in
multilevel models, 587-588

cubic equation, 210
of groups, interactions coded to

estimate, 380-383
polynomial equation, 206-207, 210
quadratic equation, 206

Simultaneous analysis of sets
F tests, 173-174
method, 164-166, 191

Skew
changes in, 234
elimination, transformations for,

246-247
Slope of regression line, 34
Smoothing, 105-108
Smoothing window, 106, 108
Sociology, hypothesis testing, 2-3
Sparseness of data, 506, 516
Spearman rank correlation (rs), 31-32,

62
Specification error, 13, 475. See also

Misspecification
and non-normality, 119
and measurement error, 119
and residual non-normality, 120
and systematic residual variation,

125-126
Specification of Models. See also

Misspecification
of models with interactions, 257,

284-285, 290-295
linear by linear interactions,

271-272
three-way interactions, 291-292
curvilinear by linear interactions,

295-298
of polynomial regression models, 197,

200, 209-214
of models with nominal variable

interactions, 354-361, 363-366
of models with nominal by continuous

variable interactions, 375-382
Specificity, 516
Spurious relationship, of variable, 463
Squared correlations, 154
Square root transformation, 245
sr2, for k independent variables, 84-85
Standard deviation, 24-25, 26, 156-157
Standard error. See also Confidence

interval
of B, univariate regression, 42

of BQ, univariate regression, 44
of B, multiple regression, 86
of estimate, 37-41, 45, 63
of r, 45
of r2, 88
of simple slopes
of simple slopes (linear by linear

interaction), 272-273
of difference between Bs, 46
of difference between rs, 47
of difference between independent R2,

88
Standard scores. See z-scores
Started logs, 235
Started powers, 235
State dependence, 532
Statistic, 42
Statistical classification, of cases, in

logistic regression, 516-519
Statistical inference, 604-605

with k independent variables, 86-90
with regression and correlation

coefficients, 41-50, 63
assumptions, 41-42
confidence interval estimations,

42-47
null hypothesis significance tests,

47-50
stage of scientific investigation and,

190
strategy, 182-190, 192

adaptation of Fisher's protected t
test, 187-190

controlling/balancing type I and II
errors, 182-185

"least is last" principle, 186-187
"less is more" principle, 185-186

Statistical power. See Power
Statistical precision. See Precision
Statistical significance, 52, 174
Statistical software, 14
Statistical tables, 15, 643-654
Statistical tests

on multiple and partial coefficients,
with k independent variables,
88-90

of nonconstant variance, 133
Stem and leaf display, 104-105
Stepwise regression, 161-162
Strength of association, measures of,

37-40
Structural equation model analysis

of change, vs. multilevel regression,
594-595

diagrams, of latent growth models,
589-594

Structural equation models
of causal effects, 474
of latent growth, 589-595
with latent variables, 471-474

Structural sets, 162-163
Student's t test statistic, 90, 643

for bivariate f, 310
Sturgis' rule, 104n
Subjects

dropping, 433-434
multiple, time series analysis of, 602

Sums of squares
type I, 362-363
type II, 362-363
type m, 362-363

Suppression, in regression models,
77-78, 457-458

Survival analysis, 596-600
Survival function, 598
Symbols, 683-686
Synergy (augmentation), 10, 255, 257,

285

T
Tabular representations of relationships,

19-23
Test-retest reliability, 129
Tetrachoric r, 56
Three-predictor interactions, 290-291
Time

dependence of residuals and, 134
effects, in time series analysis, 602
individual changes in See Multilevel

regression, of individual changes
over time

regression analysis, until outcome,
596-599

Time series analysis, 149, 321, 600-602
applications, 601-602
extension to multiple units or subjects,

602
time effects in, 602
units of observation, 601

Time-varying independent variables,
595-596, 599

Tolerance, 423-424
Total regression coefficient, 539
Trait attribution, 368
Transformations, 25-26, 141-143, 149,

221-251, 417 (See Linear
transformations, nonlinear
transformations)

to linearize relationships 233-240
to produce normal residuals 246-247
to stabilize variances 244-246

Trend analysis and polynomial
regression, 219

Transformed Y, vs. Poisson regression,
526

Trend analysis, in repeated measure
analysis of variance, 575-576

Two-bend transformations, 240
2 by 2 design, 354-361
Type I errors of inference, 387

and protected t tests, 90
and shrunken R2, 84
balancing, controlling, 182-185
in stepwise regression, 161
in clustered data, 537
in set correlation, 617
rate of, 296, 537

Type n errors of inference. See also
Power

balancing, controlling, 182-185
Tyj (proportion of additive variance),

611-613, 616-617
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U
Uncentered regression equations, 281

highest order interactions in, 266
simple slopes from, 271

Unconditional cell means model,
551-552

Unconditioned relationships, in
behavioral science, 9-10

Unequal ns and polynomial regression,
219

weighted versus unweighted effects
coded, 321, 378

Unit weighting, 97-98
Unweighted effects coding, 320-328,

353

Bi
confidence intervals for, 326-327
significance tests for, 326-327

construction of, 321-324
for nominal scale interactions with

continuous variables, 378-379
partial correlations, 328
Pearson correlations, 325
R2 and R2, 324-325
regression coefficients, 325-327
semipartial correlations, 328
vs. other coding schemes, 352
vs. weighted effects coding, 320-321,

328

V
Validity, 55, 152
Variables. See also Dependent variables;

Independent variables
confounding (See Confounders)
continuous, 54 See also Continuous

variable interactions
controlling statistical or partialing, 13
dependent See Dependent variables
dichotomous, correlation with scaled

variable, 29-30
dropping, 433
dummy, 148

endogenous, 458-459
exogenous, 458
linearity in, 194-195
manifest, 470
mediators, 457
moderator, 269, 458
normalizing, nonlinear

transformations for, 246-247
number of

"least is last" principle, 186-187
"less is more" principle, 185-186,

190
"purification" to its "uniqueness," 613
quantitative or scaled, 54
reliability of, 55-57
scaled, correlation with dichotomous

variable, 29-30
sets of (See Sets)
spurious relationship of, 463
suppressor, 457-458
third, attribution, in XY relationship,

153
two, reciprocal effects of, 157

Variable scaling, treachery in, 509-512
Variance components, 545, 555

in multilevel modeling, 560
statistical tests, 563

in ordinary least squares regression,
549-550

in random coefficient regression
model, 545, 548-549

Variance error of estimate, 39
Variance function, for generalized linear

model, 534
Variance inflation factor, 423
Variance proportions

for independent variable sets, 166-169
nominal scale interaction variables

and, 374
Variance stabilization

Box-Cox transformation and, 246
X estimation, 245-246

of proportions, 246
transformation for, 244—245

weighted least squares regression for,
246

Venn diagrams, 38

W
Wald tests; 506, 507-508
Weighted effects coding, 328-332, 353

Bt
confidence intervals, 331-332
significance tests for, 331-332

construction of, 328-330
for nominal scale interactions with

continuous variables,
378-379

R2 and R2, 330
regression coefficient, 331
selection considerations, 328
vs. other coding schemes, 352
vs. unweighted effects coding,

320-321
Weighted least-squares regression (WLS)

for heteroscedasticity, 146-147
for variance stabilization, 244, 246
to adjust for group size, 309n
in lowess, 114

"Within the range of the observed data,"
287-288

WLS. See Weighted least-squares
regression

X-Y
XY relationship

third variable attribution, 153
variables, variance proportions of, 153

z
Zero-order coefficients, 66, 68
z prime (rj transformation of r, 45-47
z-scores, 23-26, 156-157

average product of, 28
cross-product, 282-284
differences between, 26-28

z transformation of scores, 25




