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Preface

Structural equation modelling (SEM) has in the past three decades probably been one
of the most often used statistical techniques in the social science research. The main
reason for this is that SEM is a linear modelling technique encompassing all the tradi-
tional statistical techniques (e.g., linear regression, ANOVA) as well as allowing for
estimating complex models including latent variables. In this respect, SEM should
indeed be viewed rather as an overarching statistical framework or even a toolbox
than as a single statistical technique. The popularity of SEM has of course been fa-
cilitated by a continuously growing number of both commercial and open-source
software and packages.

Although the traditional SEM approach, which usually goes under the rubric
of covariance-based SEM (CB-SEM), has received the initial and most attention
from researchers, partial least squares SEM (PLS-SEM) has nevertheless also started
drawing the attention of academics. However, PLS-SEM has met some serious criti-
cisms from applied statisticians/econometricians. As a result, even a hostile attitude
has grown towards PLS-SEM in some social science fields and journals rejecting the
validity of results from PLS-SEM. The main reason for this criticism is the fact that
PLS-SEM should not be used as an alternative to CB-SEM. Some scholars in the
PLS-SEM camp has taken this criticism seriously and accordingly invented new al-
gorithms (i.e., consistent PLS-SEM) making it possible to use PLS-SEM instead of
CB-SEM.

In other words, we have got two versions of PLS-SEM: a traditional one, which
we refer to as PLS-SEM, and a modern one which we refer to PLSc-SEM. The
natural to ask question is “When do we use these two versions of PLS-SEM?”. Our
answer is that you would use PLSc-SEM instead of CB-SEM whenever the latter
fails to converge (we provide detailed motivations in Chapter 1). This suggestion is
also corroborated by recent simulations studies. Further, we suggest that one uses
traditional PLS-SEM when the purpose of the study is to explain as much variance
as possible of the endogenous (dependent) variable. The reason is that PLS-SEM
algorithm seeks parameter estimates that maximize explained variance.

The antagonism between PLS-SEM and CB-SEM does have consequences for
the terminology used in each of these two frameworks. For instance, a construct
will typically be referred to as a latent variable in CB-SEM and as a composite in
PLS-SEM. This distinction may sometimes also lead to some confusion and even
unnecessary strong disagreements among researchers. We have instead adopted a
pragmatic approach not distinguishing between the two terminologies. This choice
is further strengthened by the fact that PLSc-SEM with its algorithm is indeed more
comparable with CB-SEM.

xiii
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This reasoning is also the rationale behind our way of assessing and reporting a
PLS-SEM study as it resembles the criteria used for CB-SEM studies. Our intention
has consistently been not to dwell on the technical or conceptual differences between
PLS-SEM and CB-SEM. Instead, we take a practical approach to explaining and
demonstrating how PLS-SEM can be performed using some powerful user-written
packages that can be accessed in Stata and R.

Software and Material
As it is conveyed in the title, we use and explain Stata and R software for partial
least squares structural equation modelling in this book. We use Stata in the main text
whereas R equivalent codes are provided in the appendices at the end of each chapter.
Both software are given equal priority in that all Stata solutions and estimations are
replicated using R codes in detail as well. As you already may know, Stata and R are
both code-based software. There are thankfully many volunteer academics around
the world who continuously develop and make available packages in these software
for solving a variety of statistical tasks including PLS-SEM. In fact, there are several
alternative packages both in Stata and R for PLS-SEM analysis.

One of these packages is developed and maintained by the authors of this book.
We have named our package plssem, which can readily be installed for free by
those who already have purchased and have access to Stata’s version 15 or above.
There are two ways of installing plssem in Stata. The first and suggested option
(as it provides the most updated version) is to install it from GitHub. To do that, you
need to run the following code directly in Stata:

net install github, from("https://haghish.github.io/github/")

This command installs a package called github, which enables installing Stata
packages from GitHub. Then, to install our plssem package you need to execute
the following code:

github install sergioventurini/plssem

As an alternative to GitHub installation, you can get plssem by typing the fol-
lowing code in Stata:

ssc install plssem

When it comes to packages in R, we have chosen two packages that comple-
ment each other. These are cSEM and plspm. The former is developed by Manuel
E. Rademaker and Florian Schuberth whereas the latter is developed by Gaston

https://haghish.github.io/
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Sanchez. Here too, you can install these two packages in similar ways to those above.
The first option is to install each of these packages directly from GitHub by typing:

install.packages("devtools")

The previous code installs a package called devtools, which enables installing
R packages from GitHub. The following two lines install the packages cSEM and
plspm from the corresponding GitHub repositories into R:

devtools::install_github("M-E-Rademaker/cSEM")
devtools::install_github("gastonstat/plspm")

Alternatively, you could install the currently stable versions of these packages
from the Comprehensive R Archive Network (CRAN) using the following compact
code in R:

install.packages(c("cSEM", "plspm"))

In addition to these packages, we have also programmed some functions for R
users so that we could replicate all the Stata estimations in R as well. As we develop
our plssem package in Stata, we may continue to develop some more functions for
R users. Both existing and possible future functions for R users can be followed and
installed from the book’s GitHub repository available at the following link:

https://github.com/sergioventurini/SEMwPLS

This repository will also contain all the necessary material related to the book includ-
ing:

• Datasets

• R functions and additional Stata packages (if needed)

• R and Stata codes

• Figures

• Errata

• Frequently asked questions regarding installation of plssem and cSEM and
plspm

• Auxiliary chapters

• References to PLS-SEM applications

• Notices regarding new developments in PLS-SEM and software

https://github.com/
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• Suggestions for the next edition of the book

• Other supporting material

Despite our efforts with the above measures to make the reader as independent
of us as possible, if you still would like to reach us with your questions/comments,
we provide here our email addresses:

mehmetm@ntnu.no and sergio.venturini@unito.it.

Overview of Chapters
In Chapter 1, we define partial least squares structural equation modelling
(PLS-SEM) and compare it with covariance-based structural equation modelling
(CB-SEM). Further, we provide guidelines as to when to use PLS-SEM instead of
CB-SEM. In Chapter 2, we treat in detail several multivariate topics (bootstrapping,
principal component analysis, etc.) that are of direct relevance to understanding and
interpreting PLS-SEM estimations in subsequent chapters. Readers with previous
knowledge of multivariate statistics can, if preferred, readily jump to the next chap-
ter. In Chapter 3, we explain thoroughly the PLS-SEM algorithm using an example
application based on a real dataset. Subsequently, the plssem Stata package (R’s
cSEM and plspm in chapter appendices) is presented with all its options. In so
doing, several salient modelling issues (e.g., bootstrap, missing data) and types of
models (e.g., higher order, mediation) are treated in detail as well. This chapter does
also present both the algorithm and package for the newly emerged technique called
consistent PLS-SEM. The foregoing chapters in tandem lay down a solid basis for
assessing PLS-SEM models coming next.

In Chapter 4, we elucidate all the concepts (e.g., convergent validity) and criteria
(e.g., average variance extracted) to be used in the assessment of measurement and
structural parts of PLS-SEM models. Instead of providing a series of different models
to show different aspects and cases of PLS-SEM models, we specify and estimate a
complex model encompassing different aspects (formative, single item, higher order,
reflective, etc.) of PLS-SEM models. In assessing this complex model, readers will
readily pick up and adopt the adequate criteria necessary for assessing their own
PLS-SEM models.

In Chapter 5, we explain what mediation analysis is and present the commonly
known Barron-Kenny approach and its alternative approach to testing mediational
hypotheses using PLS-SEM. In so doing, several examples are provided. Chapter 6
goes through another important topic, namely moderation/interaction analysis. Here,
we explain thoroughly three different procedures used to test interactions effects with
relevant examples using PLS-SEM. These are product-indicator approach, two-stage
approach and multi-sample approach (also called multi-group analysis). As it is a

mailto:mehmetm@ntnu.no
mailto:sergio.venturini@unito.it
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prerequisite prior to sample/group comparisons, we also show how to examine mea-
surement model invariance.

In Chapter 7, we present two specific approaches to detecting latent classes in
the data based on a PLS-SEM model. These are response-based unit segmentation
(REBUS) and finite mixture (FIMIX) partial least squares approaches. Chapter 8
provides a standard template for writing up a PLS-SEM based research. To do so, an
actual published work of one of the authors is used as a framework to show how to
structure and present each section of a typical PLS-SEM publication.

As we already remarked, in all chapters Stata codes are provided in the main
text whereas corresponding R codes are provided at the end of each chapter. We
have also tried to include as little mathematical details as possible in the main text.
Most of these details are often included in some technical appendices. Every chapter
is nevertheless written in such a way that readers (not interested in mathematical
details) will still be able to understand and use PLS-SEM with the chosen software
without any difficulty. Finally, to make the book self-contained we also added an
appendix which presents more basic material about correlation and linear regression.
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1
Framing Structural Equation Modelling

In this chapter we will describe what structural equation modelling (SEM) is by first
relating it to traditional single-equation techniques such as regression analysis. We
then present the two main approaches to doing SEM analysis, namely covariance-
based SEM and partial least squares SEM. Although we assume that the reader has
already made her/his decision to use PLS-SEM, we still in a compact manner provide
suggestions (mainly based on existing simulation studies) as to when to use PLS-
SEM. In so doing, we also present consistent PLS-SEM as a valid method to match
CB-SEM. For the reading of this chapter, we also assume that the reader has a sound
background in linear regression analysis1.

1.1 What Is Structural Equation Modelling?
Let us start this section by first defining what a structural equation is. Intuitively
put, a structural equation refers to a statistical association whereby one variable (X)
influences another one (Y ). When there is only one dependent variable predicted by
one (or several) independent variables in our statistical model2, then the structural
equation is univariate and it can be expressed as follows3:

Yi = β0 +β1 ·Xi + εi. (1.1)

Based on your previous statistics knowledge, you will easily recognize equa-
tion (1.1). It represents a simple regression model including two variables (X and Y ).
The significance testing of β1 will provide the empirical evidence as to whether X
(e.g., education level) influences Y (e.g., hourly wage) or not. Incidentally, if X is
a dichotomous variable (e.g., gender) or a polytomous variable (e.g., types of occu-
pation), equation (1.1) will then correspond to an independent t-test and analysis of
variance (ANOVA) respectively. Extending our regression model in equation (1.1)

1Appendix A provides a brief review of the linear regression model, while Section 2.2 summarizes
the basics of principal component analysis.

2A model represents the hypothesized relationships between a set of variables.
3In this book we will frequently use letters taken from the Greek alphabet. For your convenience, we

provide it on page xxxvii.

3
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TABLE 1.1: Examples of univariate and multivariate statistical techniques.

Univariate Multivariate
Multiple regression
Logistic regression
Multinomial logistic regression
Discriminant (function) analysis
Survival analysis
Poisson regression
Log-linear analysis
Independent t-test
Analysis of variance
Multilevel regression

Multivariate regression
Seemingly unrelated regression
Path analysis (also called simulta-
neous equation models)
Structural equation modelling

with one more independent variable will turn it into a multiple regression (or AN-
COVA4 or two-way ANOVA5 for that matter).

Increasing the number of independent variables does turn our model into a mul-
tivariable one. However, it corresponds still to a univariate model in that we still
have just one dependent variable to predict. Examples of such models including only
one dependent variable are listed in Table 1.1. Even when we view Table 1.1 at a
glance, we will notice that the univariate modelling techniques (e.g., linear regres-
sion, logistic regression) are clearly the ones that have been used most commonly in
quantitative research regardless of social or natural sciences.

Nonetheless, the need to be able to estimate models including more than one
dependent variable has also led to the invention of some useful multivariate mod-
elling techniques in quantitative research (see Table 1.1). One of these techniques is
multivariate regression (MVREG), which corresponds to a multiple regression facil-
itating more than one dependent variable. The advantage of this technique is that it
allows for cross-equation comparisons. Two limitations of MVREG are that all the
dependent variables must be predicted by the same set of predictors, and that the cor-
relations among the residuals are not taken into consideration. Seemingly unrelated
regression (SUR) does readily surmount these limitations. These features make SUR
a simultaneous6 multivariate modelling technique.

Although SUR (and MVREG for that matter) has helped quantitative researchers
solve some demanding research questions, its limitation is that it allows for estimat-
ing only direct effects. Path analysis (PA) however allows to estimate both direct
and indirect effects, making it a technique for estimating complicated models. The
fact that PA estimates indirect effects allows researchers test mediational hypotheses.
As such, PA cannot only include multiple dependent variables, but it can also allow
a variable to be both a dependent and an independent variable in the same model.

4ANCOVA is basically an ANOVA with an additional continuous independent variable in the model.
5Two-way ANOVA is an ANOVA with an additional categorical independent variable in the model.
6Simultaneous means that a series of equations are estimated at the same time.
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B4

FIGURE 1.1: Graphical representation of a structural equation model. In particular,
this diagram represents an example of covariance-based SEM. However, without the
indicator error variances, it can be used for partial least squares SEM as well (see the
next section).

One limitation of PA is that it works only with observed variables (i.e., single-item
questions).

Structural equation modelling (SEM) overcomes the above-mentioned limita-
tions effectively. Consequently, we can define SEM as a simultaneous multivariate
technique that can be used to estimate complex7 models including observed and la-
tent variables. We illustrate all these features of SEM through a hypothetical example
in Figure 1.1. In this model, it is not necessary, but if needed, you could also correlate
the error terms (i.e., ζ1 and ζ2) to serve the same purposes as SUR does.

SEM being a simultaneous multivariate technique makes all the statistical tech-
niques listed in Table 1.1 redundant. That is, SEM can easily be used for the same
purposes that the traditional univariate (e.g., regression) and multivariate (e.g., seem-
ingly unrelated regression) techniques are used for. This specific feature lifts SEM
from being a routine statistical technique up to an overarching framework for statis-
tical modelling. Yet, this is not the novel contribution of SEM. What makes SEM a
special statistical technique is the fact that it can handle latent variables.

A latent variable is a hypothetical or an unobservable concept8 (e.g., happiness)
that we measure using a set of observable variables (e.g., satisfaction with work, fam-
ily, goals achieved). The main reason why we want to use latent variables is that many

7Complex means that we have for instance a form of a path model (e.g., mediation analysis).
8We note that some authors in the social science literature typically distinguish between the concept

(i.e., the theoretical entity) one wants to investigate, and a corresponding latent variable (i.e., the statistical
entity), which is used to model the concept itself (Henseler, 2017; Benitez et al., 2020). Even if we agree
that this distinction is useful from a theoretical point of view, in this book we adopt a more pragmatic
perspective and so we will not pursue it any longer.
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concepts like happiness are multifaceted and cannot just be represented by a single
indicator (item or question) as they encompass more than one aspect. Researchers
have traditionally used different types of factor analytic procedures to discover one
or more number of latent variables among a set of indicators. Whereas the traditional
approaches to factor analysis are of exploratory nature, the SEM technique addresses
the factor analysis in a confirmatory fashion.

Exploratory factor analysis (EFA) assumes that all the indicators correlate with
all the latent variables, while confirmatory factory analysis (CFA) lets the researcher
decide which indicators to correlate with which latent variables. Earlier we men-
tioned that SEM can replace all the traditional regression techniques, and now we
can add that SEM can also replace the traditional factor analytic techniques. It fol-
lows from the above that SEM is a technique that can be used either for doing re-
gression/path analysis or doing CFA, or doing a combination of these two analyses
in one operation (see Figure 1.1).

1.2 Two Approaches to Estimating SEM Models
Before the invention of SEM, researchers would first perform a factor analysis to
ascertain which items represent which latent variables. They would then compute an
index/sum score for these latent variables (e.g., extraversion, neuroticism). Finally,
they would use these index/sum scores as independent/dependent variables in a re-
gression analysis in line with their hypotheses (e.g., extraversion related to dining
out)9. Due to the demonstrated drawbacks10 of this rather crude statistical approach
(Hsiao et al., 2018; Steinmetz, 2013), quantitative researchers would directly use
structural equation modelling technique.

1.2.1 Covariance-based SEM

The most common structural equation modelling approach is the one based on
covariance matrices estimating accordingly model parameters by only using com-
mon variance (Hair et al., 2018b). This confirmatory approach is widely known as
covariance-based structural equation modelling11 (CB-SEM) and it has been de-
veloped by Jöreskog (1969). The fact that CB-SEM uses common variance means
that measurement error (i.e., unreliability) of indicators is taken into account during
the model estimation (Mehmetoglu and Jakobsen, 2016). This specific feature makes
CB-SEM model estimates less biased compared to techniques (e.g., index/sum score)
assuming no measurement error at all (Harlow, 2014).

9In Section 2.5 we provide a summary of the most popular approaches for computing sum scores.
10In addition to the fact that estimates are subject to bias, we cannot easily perform path analysis

including mediational analysis.
11The fact that the standard estimation method of SEM is maximum likelihood (ML), this type of SEM

goes also under the name of ML-SEM or ML-CBSEM.
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PLS-SEM
ü exploratory
ü predict	and	explain
ü use	component	scores

CB-SEM
ü confirmatory
ü compare	models	
ü correlate	error	terms	
ü estimate	non-recursive	relations

PLS-SEM	instead	of	CB-SEM
ü identification	problems
ü small	samples
ü too	many	or	too	few	indicators
ü complex	models
ü formative	measurement	models

C
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FIGURE 1.2: When to use PLS-SEM and CB-SEM.

The main purpose (and advantage) of CB-SEM is to statistically test theories
(hypothesized models) in their entirety. One way to assess the adherence of the
model’s estimates to the data is through goodness-of-fit measures. These fit measures
are obtained by computing the discrepancy between the estimated model-implied
variance–covariance matrix (Σ̂ΣΣ) and the sample variance–covariance matrix (SSS). The
smaller the difference between Σ̂ΣΣ and SSS, the better the theoretical model fits the data
(Mehmetoglu and Jakobsen, 2016). Therefore, the CB-SEM algorithm seeks to find
the set of parameter estimates (loadings and coefficients) that minimize the difference
between Σ̂ΣΣ and SSS (Chin, 2010).

The fact that CB-SEM makes use of omnibus fit measures makes it an appropriate
technique to statistically compare alternative models. These measures will then find
out which of the competing models fits the data best. Moreover, as far as the model
set up is concerned, CB-SEM allows for correlating error terms as well as specifying
non-recursive structural relations (Grace, 2006). The above-mentioned features (in
italic) of CB-SEM are the reasons for the increasing popularity and application of
CB-SEM techniques in social science publications.

Despite the invaluable novel features of CB-SEM, it does often suffer from
non-convergent and improper solutions (Bagozzi and Yi, 1994; Rindskopf, 1984).
Solutions are non-convergent when an estimation method’s algorithm is unable to
arrive at values that meet predefined termination criteria, whereas solutions are im-
proper when the values for one or more parameter estimates are not feasible (An-
derson and Gerbing, 1988; Gerbing and Anderson, 1987). Nonconvergent/improper
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solutions may be caused by small sample size12 (Anderson and Gerbing, 1988), com-
plex models (many structural relations) (Chin, 2010), too few indicators13 (Hoyle,
2011), too many indicators (Deng et al., 2018) or formative measurement models14

(Sarstedt et al., 2016).
A further limitation of CB-SEM is that it produces latent variable predictions,

so called factor scores, that are not unique. This issue has to do with factor indeter-
minacy (Bollen, 1989; Ringdon, 2012), which refers to the fact that in factor-based
models an infinite number of different sets of values can be obtained for the factor
scores which will fit the model equally well (for a detailed technical explanation of
this problem we suggest to see Mulaik, 2010, in particular Chapter 13).

1.2.2 Partial least squares SEM

The second approach gaining popularity is that of partial least squares structural
equation modelling (PLS-SEM) developed by Wold (1975) 15. PLS-SEM is referred
to as variance-based structural equation modelling as it uses the total variance to
estimate model parameters (Hair et al., 2018b). The fact that PLS-SEM uses total
variance means that measurement error of indicators is ignored in model estimation,
which is the reason why PLS-SEM produces biased parameters when mimicking
CB-SEM (Aguirre-Urreta and Rönkkö, 2018). This is however an expected outcome
since PLS-SEM is more orientated towards optimizing predictions (i.e., explained
variance) than statistical accuracy of the estimates (Esposito Vinzi et al., 2010)16.

Unlike its confirmatory counterpart CB-SEM, PLS-SEM is mainly an ex-
ploratory technique (Hair et al., 2012). PLS-SEM should accordingly be used when
the phenomenon in question is relatively new or changing and theoretical model or
measures are not well formed (Chin and Newsted, 1999; Reinartz et al., 2009). In
fact, PLS-SEM should further be used instead of CB-SEM when the researcher uses
it in an exploratory manner (revising the model based on modification indices) to get
a better model fit (see Chin, 1998a and Chin, 2010, pp. 658–659). It follows from the
above that PLS-SEM and CB-SEM are complementary (see Figure 1.2) rather than
competitive techniques as stated also by Wold himself (Barroso et al., 2010, p. 432).

Due to the nature of its algorithm, PLS-SEM is able to avoid non-convergent
and improper solutions that often occur in CB-SEM (Sirohi et al., 1998). Thus, PLS-
SEM is suggested to be used when working with small samples17 including less
than 250 observations (Chin and Newsted, 1999; Reinartz et al., 2009). PLS-SEM is

12There is a general consensus that a small sample includes less than 250 observations.
13As widely suggested in CB-SEM, a latent variable must have at least three indicators.
14In a formative measurement model, indicators are causing the latent variable.
15For a historical overview of the development of PLS-SEM we suggest to read the appendix of

Sanchez (2013) as well as the corresponding expanded book-length version of Sanchez (2020).
16Note that CB-SEM also provides an “R-squared” index as part of the output. For example, Stata calls

it the “coefficient of determination” and reports it among the model’s goodness-of-fit measures. However,
in the case of CB-SEM the index has a different aim and can’t be interpreted as the amount of explained
variance.

17Researchers should still follow some formal procedures to decide the exact required sample size
(Hair et al., 2017; Kock and Hadaya, 2018).
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further recommended to be used to estimate complex models including large num-
ber of indicators (Haenlein and Kaplan, 2004), large number of latent variables, as
well as large number of structural relations among latent variables (Chin, 2010).
Relatedly, PLS-SEM can also handle few indicators (less than three) per latent vari-
able. Moreover, PLS-SEM should be the clear choice to estimate formative models
as the MIMIC approach in CB-SEM imposes constraints that often contradict the
theoretical assumptions (Hair et al., 2018b; Sarstedt et al., 2016). Finally, PLS-SEM
produces scores that can be readily used for predictive purposes in subsequent analy-
ses if needed (Chin, 2010). More specifically, a critical difference between CB-SEM
and PLS-SEM regards how the two methods conceive the notion of latent variables.
CB-SEM considers constructs (i.e., the representation of a concept within a given
statistical model) as common factors, which are assumed to explain the association
between the corresponding indicators. Differently, in PLS-SEM constructs are repre-
sented as composites, that is as weighted sums of the indicators. As such, CB-SEM
is also referred to as a factor-based while PLS-SEM as a composite-based SEM
method.

1.2.3 Consistent partial least squares SEM

The fact that the PLS-SEM algorithm does not take into account measurement er-
ror leading to inconsistent and biased estimates, makes it an inferior alternative to
CB-SEM from a statistical point of view. Recognizing this limitation, Dijkstra and
Henseler (2015b) developed a new version of PLS-SEM based on disattenuated cor-
relation matrix of the composites. They named this new method as consistent PLS
(PLSc-SEM)18. Moreover, the simulations run by Dijkstra and Henseler (2015b)
showed that PLSc-SEM has advantages when using non-normally distributed data
as well as non-linear models (Dijkstra and Schermelleh-Engel, 2014).

Aguirre-Urreta and Rönkkö (2018) provide simulation-based evidence support-
ing the use of PLSc-SEM with common factor models. In the same study, they stress
the importance of employing bootstrap confidence intervals in conjunction with
PLSc-SEM. These findings contribute to making PLSc-SEM a much-needed flexi-
ble alternative to CB-SEM. PLSc-SEM can then readily be used instead of CB-SEM
whenever CB-SEM suffers from the known issues of non-convergence and improper
solutions (see Figure 1.2). In so doing, the researcher mimics CB-SEM successfully
as well as benefiting from the previously mentioned advantages (small sample, for-
mative measures, etc.) of the traditional PLS-SEM. PLSc-SEM is nonetheless closer
to CB-SEM than the traditional PLS-SEM.

18Another PLS technique, referred to as PLSF, that accounts for measurement error has recently been
developed by Kock (2019). The technique estimates factors which are subsequently used in the estimation
of parameters.
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1.3 What Analyses Can PLS-SEM Do?
PLS-SEM, as opposed to CB-SEM, found its way into the toolbox of researchers
rather late. The main reason for this is that there was no easily available software
for PLS-SEM until about 10 years ago. Due to the increasing number of both com-
mercial software (SmartPLS, WarpPLS, XLSTAT, ADANCO, etc.) and open-source
packages (cSEM, plspm, semPLS and matrixpls in R, and plssem in Stata19)
in the past decade, PLS-SEM has finally gained the deserved growing attention from
academic scholars. The technique appears to have been used in disciplines/fields
such as marketing, psychology, management, political science, information systems,
medicine/health, tourism and hospitality, and education. This trend is confirmed by
ample applications of PLS-SEM in research published in international journals.

PLS-SEM is a composite-based modelling technique. However, as we already
stated previously, it can readily be used with observed variables. It can thus be used
instead of many of the traditional techniques shown in Table 1.1. What analyses
PLS-SEM can do depends, to a larger degree, on the analytic options offered by
different software. Most of the software for PLS-SEM will however have the options
to perform the following analyses:

• Regression analysis (RA)
It can estimate linear regression models including one or more than one depen-
dent variable and continuous or/and categorical independent variables.

• Analysis of variance (ANOVA)
It can compare means of two or more than two groups – also by controlling for
categorical or/and continuous variables as well as testing interactions effects.

• Path analysis (PA)
It can estimate models including at least one chain-relationship in which X fa-
cilitates M, which then influences Y – by allowing for decomposing direct and
indirect effects.

• Latent structural analysis (LSA)
It can estimate full SEM models including one or more than one latent dependent
variable, and one or more than one latent independent variable.

• Latent mediation analysis (MED)
It can estimate mediation models including indirect relationships (effects) be-
tween latent variables.

• Latent moderation analysis (MOD)
It can estimate moderation models including a latent variable influencing the
effect of a latent independent variable on a latent dependent variable.

19The book that you hold in your hands is based on the plssem package for Stata and the
cSEM/plspm packages for R. Similar to R and all its packages, the plssem Stata package is open-source
and thus freely available.
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• Multi-group SEM analysis (MG-SEM)
It can estimate latent variable means of two or more than two groups – also by
controlling for categorical or/and continuous variables as well as testing interac-
tions effects.

• Higher order latent analysis (HLA)
It can estimate higher order latent variable models including latent variables ex-
pressed by first-order observed indicators and higher order (second, third, etc.)
latent variables that subsumes these (see for instance Wetzels et al., 2009).

• Latent class analysis (LCA)
It can detect latent classes based on the size, sign, and significance of regression
coefficients (relationships) in an estimated latent variable model (see for instance
Mehmetoglu, 2011).

As you already might have figured it out from the above, LSA, MED, MOD, MG-
SEM and LCA can all be done with observed variables or combination of observed
and latent variables.

1.4 The Language of PLS-SEM
In Figure 1.3 we provide what is commonly known in the literature as LISREL20

notation which can be used to graphically portray and mathematically specify all
types of SEM including PLS-SEM21. The depicted model shows the relationships
between two exogenous (i.e., independent) latent variables22 and two endogenous
(i.e., dependent) latent variables as well as their relationships with their respective
manifest variables, also called indicators23. Figure 1.3 demonstrates in fact a typical
example of a latent structural analysis (LSA).

According to this conventional representation, latent variables are depicted as
ovals while manifest variables are shown by rectangles. One-way arrows (−→) repre-
sent direct effects whereas two-way arrows (←→) represent covariance/correlations.
However, in PLS-SEM covariances between exogenous variables are by default taken
into account in the estimation. This is also the reason why we, in real applications,
rarely see these covariances depicted specifically in the study models. Error and dis-
turbance terms are exhibited by small circles. Error terms representing indicator mea-
surement error are not shown in diagrams that represent PLS-SEM models.

20LISREL (LInear Structural RELationships) is a CB-SEM software developed by Jöreskog and Sör-
bom (1989).

21Since most of the literature is using the LISREL notation, it is useful to get accustomed to it.
22Alternative terms are factor, construct, hypothetical, and unobservable.
23Other alternative terms are observed, and measured variables.
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FIGURE 1.3: PLS-SEM model with LISREL notation. In particular, ξ (ksi) indicates
an exogenous (independent) latent variable, η (eta) indicates an endogenous (depen-
dent) latent variable, x represents an indicator of an exogenous variable, y represents
an indicator of an endogenous variable, φ (phi) indicates the correlation between two
exogenous variables, γ (gamma) indicates the coefficient between an exogenous and
an endogenous variable, β (beta) indicates the coefficient between two endogenous
variables, ζ (zeta) represents the unexplained variance in an endogenous variable,
λ (lambda) indicates the coefficient (or loading) between indicators and latent vari-
ables.
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1.5 Summary
In this chapter, we have reasoned that PLS-SEM should be used for exploratory (i.e.,
contribute to theory-building) and CB-SEM for confirmatory (test theory) purposes.
When you use CB-SEM and slide into the exploratory mode (i.e., revising models
based on modification indices) or/and encounter non-convergent or improper solu-
tions, you should consider using PLS-SEM instead. In that case, you should rather
use consistent PLS-SEM since it is developed as a direct alternative to CB-SEM. By
doing so, you will not only get the model converged but also get as close as possible
to the results that you would have gotten if you had CB-SEM converged. Finally, we
have also shown how PLS-SEM can relate to traditional statistical techniques as well
as its potential to estimate more advanced models.
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2
Multivariate Statistics Prerequisites

In this chapter we present some preparatory material that is not usually covered in
basic statistics courses on which we will build the rest of the book. In particular, we
assume that the reader is already familiar with the basic theory of linear regression,
so that this chapter is dedicated to introduce concepts from multivariate statistics1.
After reviewing the bootstrap method, we introduce principal component analysis,
which provides a simple and intuitive technique for reducing the dimensionality of a
dataset by eliminating the redundancy in the data caused by the correlations among
the variables. Next, we illustrate the most popular statistical approaches for iden-
tifying clusters of observations. Then, we present path analysis, also known as si-
multaneous equation modelling in the economics and econometrics literature, which
is used to describe the interdependencies among a set of manifest variables (path
analysis does not involve unobserved latent variables). Finally, in the last section we
briefly address the common practice of using sum scores in a subsequent analysis
such as linear regression or path analysis. In the chapter we show a number of ex-
amples using both real and simulated data. While these examples will be illustrated
using Stata, in the concluding appendix we will also show how to perform them in R.

2.1 Bootstrapping
What you have learnt in basic statistics courses is that the data you analyse are a
small portion of those available. In other terms, in practice you only have access to
a (random) sample taken from a population of interest. So, the focus of your anal-
ysis typically involves estimating the value of unknown features of the population
(e.g., the average of a certain quantity, the correlation index between two quanti-
ties or the corresponding linear regression coefficients) by “approximating” them
using the sample data. For this reason, you also need to assess the reliability of the
sample estimates. This process is usually referred to as statistical inference. The
classical approach in statistics is to model this problem using probabilities, and the
easiest way to do that is by assuming that the population data are distributed accord-
ing to a normal distribution. The big advantage of the normality assumption is that

1Readers that have no background in linear regression, as well as those that simply need to review it,
can find a brief introduction in Appendix A.

15
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computations are straightforward producing closed-form expressions for standard er-
rors, confidence intervals and test statistics in many useful cases. However, as you
probably already know, reality is not that simple and the assumption that the data in
the population are distributed according to a normal distribution is often inappropri-
ate. Therefore, in these cases we are not allowed to perform inference assuming the
data are normally distributed. If you find yourselves in these situations, you typically
have two options. The first consists in transforming the variables in your analysis
with the hope that the distribution of the transformed variables get close to a normal.
Even if this option is quite popular when dealing with non-normally distributed data,
it suffers from several drawbacks:

• It is not clear a priori which one is the best transformation to use, that is which
transformation allows us to get the closest to the normal distribution2.

• Often, even transforming the quantities of interest doesn’t guarantee to get close
enough to the normal situation.

• Sometimes, transformed variables make the interpretation of the results more
involved and in some cases even useless.

The second option you have in case the normality assumption is unsuitable con-
sists in using a more general approach, called bootstrap. The bootstrap is a tech-
nique for approximating the sampling distribution of an estimator. More practically,
the bootstrap is typically used to compute:

• standard errors for estimators,

• confidence intervals for unknown population parameters,

• p-values for test statistics under a null hypothesis.

The bootstrap, which belongs to the broader class of resampling methods together
with the jackknife, cross-validation and permutation tests3, is particularly important
to us, because PLS-SEM uses it routinely. For this reason, we provide here an intro-
duction to this important topic and we show how it can be used to perform inference
in the linear regression context. In particular, we discuss the most common form of
bootstrap called the non-parametric bootstrap, in which no distributional assump-
tion is posed, while we skip the other version, the so called parametric bootstrap, in
which it is assumed that the data follow a known probability distribution (e.g., the
Gamma distribution), whose parameters are estimated using the bootstrap principles.
In the appendix at the end of this chapter we provide more technical details about the
non-parametric bootstrap, but these can be safely skipped now without compromis-
ing the understanding of the rest of the book.

2Stata provides some commands to find the optimal transformation to normality, namely ladder,
gladder and qladder. Moreover, it also includes the command boxcox which directly looks for the
best transformation and then performs linear regression. The latter command implements the so called
Box-Cox transformation (see for example Fox, 2016, Section 12.5.1).

3For a general presentation of resampling methods you can refer to Good (2006). We provide an
introduction to permutation tests in a technical appendix on page 274.
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TABLE 2.1: Numerical example of the bootstrap method for approximating the sam-
pling distribution of the sample mean. The original sample of size n = 5 is provided
in the second column, while to save space only few of the B = 200 bootstrap samples
are given in the next columns. The last row reports the sample mean corresponding
to each set of data.

Original sample Bootstrap samples (b)
1 2 3 4 5 · · · B = 200

7 1 1 -5 -2 1 7
4 -5 1 4 7 -2 -5
-5 -2 7 1 -5 -5 · · · 4
1 7 -2 -2 7 1 -2
-2 4 -5 1 1 1 1

Sample mean 1 1 0.2 -0.2 1.6 -0.8 · · · 1

The basic idea of the bootstrap is simple but extremely powerful at the same time:
since the sample we collected provides an approximation of the population from
which it was drawn, we can consider it a proxy of the population itself. Then, we can
mimic the standard (i.e., frequentist) inferential reasoning by repeatedly drawing ran-
dom samples from the original sample. These simulated samples are usually called
bootstrap samples, or resamples. For each bootstrap sample we can then compute
the statistic of interest, such as the sample mean. The distribution of the statistic val-
ues obtained from the different resamples is called the bootstrap distribution of the
statistic, and it provides an approximation to its true sampling distribution.

To be more specific, the bootstrap samples are all the same size as the original
sample, that is n, and they must be taken with replacement, which simply means that
after drawing an observation from the original sample, we put it back and proceed by
drawing the next observation. The fact that we draw with replacement implies that a
specific observation may be included more than once in a given bootstrap sample.

Let’s consider now a simple example using the following fictitious data, (y1 =
7,y2 = 4,y3 = −5,y4 = 1,y5 = −2), which are also reported in Table 2.1 under the
column “Original sample”. With the aim of estimating the unknown mean of the
hypothetical population from which the data have been drawn, we use the bootstrap
to get an approximation of the unknown sampling distribution of the sample mean.
We achieve this by sampling with replacement these data 200 times (we explain why
200 in the next paragraphs). To save space, the rest of the table reports only some
of the 200 bootstrap samples, while the last row provides the corresponding means.
Figure 2.1 shows the histogram of the 200 bootstrap means, that is the bootstrap
distribution of the sample mean for these data.

Note that in the example above, because of the very small sample size, we might
have enumerated all the possible 55 = 3125 bootstrap samples. However, in general
this is not feasible because the number of bootstrap samples, nn, grows very quickly
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FIGURE 2.1: Bootstrap distribution of the sample mean for the data shown in Ta-
ble 2.1.

with the sample size4. So, in practice we can only rely on simulation, that is on
drawing randomly a finite number B, called the number of bootstrap replications,
of the possible resamples5. As you can imagine, B is a critical number for the success
of the bootstrap. Even if it is true that larger values of B provide more accurate
estimates of the statistics of interest, there are diminishing returns from increasing
it beyond a certain point, and it has been shown that B = 200 suffices in most cases
(see Efron and Hastie, 2016, Chapter 10). However, we must say that there is no
general consensus in the literature on the value to use for B with other authors that
recommend drawing at least 10000 resamples (Cihara and Hesterberg, 2019, Section
5.9).

Once the bootstrap distribution has been obtained, we can proceed to solve our
inferential problem by computing the necessary quantities. In particular:

• We can estimate the standard error of the statistic of interest through the standard
deviation of the bootstrap distribution.

• We can approximate the 100(1−α)% confidence interval for the statistic of in-
terest by computing the percentiles of order 100α/2 and 100(1−α/2) of the
bootstrap distribution. This approach is known as the percentile method, but

4Try for example calculating this number when n is as small as 20.
5This means that the histogram shown in Figure 2.1 represents an approximation of the “theoretical”

bootstrap distribution which comprises nn values, which in turn approximates the sampling distribution of
the statistic.
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other more accurate methods have also been developed (see the technical ap-
pendix at the end of the chapter for more details).

• We may compute the p-value in a test, but this operation is more complicated
because a p-value requires that the null distribution must be true and thus resam-
pling should be performed assuming that this holds. Since we won’t use bootstrap
for finding p-values, we do not discuss this topic and refer you to the literature
(see for example Boos and Stefanski, 2013, Section 11.6).

Stata implements the bootstrap through the bootstrap prefix. After the latter
has been executed, the estat bootstrap postestimation command displays a
table of confidence intervals for each statistic6.

The bootstrap principles we illustrated so far can be directly applied to the linear
regression model. More specifically, if zi = (yi,x1i,x2i, . . . ,xpi) represents the vector
of response and predictor values for the ith observation, with i= 1, . . . ,n, we just need
to resample with replacement the zis and compute the regression estimates for each
bootstrap sample. Then, the methods we described above to compute standard errors
and confidence intervals can be applied to the bootstrapped regression coefficients7.
Clearly, the bootstrap idea is so general that it can also be used with more complicated
regression models.

In Stata you can use the general bootstrap prefix with a linear regression
problem, but if you only need to use the bootstrap for estimating the coefficients’
standard errors, we suggest to exploit the more convenient vce(bootstrap) op-
tion of the regress command. We show a practical application of these commands
in Section A.2.7.

2.2 Principal Component Analysis
Two variables are strongly correlated when they tend to move together in a system-
atic way. In this case, we can get accurate predictions of one of the variables using
the information coming from the other. Put it differently, when two variables are
strongly correlated, the information they convey is partially “overlapped”. A typical
situation where this may occur and produce undesirable effects is in linear regres-
sion when some of the predictors are strongly linearly associated (for a review see
Section A.2.6). A common solution to get rid of the redundant information in a set
of variables is to preprocess them using a dimensionality reduction technique. One

6For a detailed presentation of the bootstrap in Stata, we suggest to look at Cameron and Trivedi
(2009), Chapter 13.

7This approach to bootstrapping in the regression setting is called random pairs bootstrap and it is
specifically suited when the predictors are assumed to be random, as it is reasonable in most cases in the
social sciences. If predictors are instead assumed to be fixed, as it is common in an experimental setting,
then residual-based bootstrap is usually suggested, in which we resample the residuals from the original
sample and use them to form the bootstrap responses. For more details about this distinction we suggest
to see Fox (2016), Section 21.3.
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of the most popular method for reducing the dimensionality of a set of data is prin-
cipal component analysis (PCA)8. The origin of PCA goes back to the beginning
of the 20th century with the work of Pearson and its first application in psychology
by Hotelling. PCA has recently seen a resurgence of interest because of the rapid
growth of the machine learning field, where it is now included among the feature
engineering tasks. Nonetheless, PCA is a tool that is routinely used in many fields
such as marketing, finance, biology and psychology9.

Starting from a set of correlated variables, PCA combines them producing new
quantities, called principal components (or simply components), that have the fol-
lowing properties:

• they are ordered in terms of their “importance”, with the first component summa-
rizing most of the information from the original variables, the second component
providing the next most informative piece of information, and so on,

• the components are uncorrelated to each other.

The main idea of PCA is thus that of retaining a number of uncorrelated compo-
nents that allow to account for a given portion of the total original information. In this
sense PCA reduces the complexity of the dataset removing the redundant information
shared by the original variables.

More technically, PCA linearly combines the original variables to produce a new
set of orthogonal (i.e., uncorrelated) axis that are orientated towards the directions of
maximal variability in the data. The direction with the largest variance is called the
first principal component, the orthogonal direction with the second largest variance
is called the second principal component, and so on. Figure 2.2 provides a graphical
representation of PCA for a pair of positively correlated variables X1 and X2. The
original data are shown in panel 2.2a, while panel 2.2b shows the corresponding
principal components, that is the orthogonal directions with the greatest variance.
Note that before computing the new axes, the data have been centred thus moving
the origin of the system in correspondence of the averages of the original variables.
In PCA it is always assumed that the variables are mean centred and all software
perform this preliminary operation before finding the new axes.

In panel 2.2c we highlighted one point with a big cross to show that each observa-
tion can be projected onto the new coordinate system to get a new set of coordinates
called the component scores. The scores are typically added as new columns in the
dataset, which can then be used in a subsequent analysis (e.g., as the predictors of a
linear regression model). Panel 2.2d shows the same data but after projecting them
in the new space spanned by the principal components.

8Other widespread dimensionality reduction techniques are multidimensional scaling, Sammon map-
ping, self-organizing maps, projection pursuit, principal curves and kernel principal components. For an
introduction to these topics we suggest to see Hastie et al. (2008), Chapter 14.

9In psychology factor models are more often used than PCA. Factor models are statistical models
whose main purpose is to describe the covariance relationships among the observed variables in terms
of a set of unobservable quantities called factors. For more details on factor models you can look at
Mehmetoglu and Jakobsen (2016, Chapter 11) or at Brown (2015) for a longer treatment.
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normal distribution with means equal to 5
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and linear correlation index equal to 0.7.
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FIGURE 2.2: Geometric interpretation of PCA for some fictitious data on two pos-
itively correlated variables X1 and X2. The corresponding principal components are
denoted as Z1 and Z2.
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It can be shown (see the technical appendix at the end of this chapter for more
details) that the principal components correspond to the so called eigenvectors of the
original covariance matrix, while the component variances correspond to the eigen-
values of the same matrix. Eigenvectors provide the coefficients for the linear com-
binations of the original variables that produce the components. As we said, principal
components are ordered by their variance, that is by their eigenvalues. Moreover, the
sum of the eigenvalues is equal to the sum of the variances of the original variables.
A simple way to assess the relative importance of the components is to compute the
proportion of the total variance accounted for by each component, which can be sim-
ply computed as the ratios of the eigenvalues to their sum (i.e., to the total variance).
For the fictitious data in Figure 2.2, the eigenvalues are equal to 17.285 and 1.864
respectively, so the proportions of the total variance explained by each component
are equal to 17.285/(17.285+1.864) = 0.903 and 1.864/(17.285+1.864) = 0.097.
So, the first component summarizes around 90% of the original information. This is
clearly due to the strong linear association between the two variables.

The previous comment brings in the issue related to the variable scales. More
specifically, if one variable has a greater scale compared to the others, it will domi-
nate in the calculations producing a first principal component that substantially cor-
responds to that variable only. In this case, the other components will inevitably show
much smaller variances. A similar situation may occur when the units of measure of
the original variables are too diverse. In these cases it is a good suggestion to stan-
dardize the variables before performing PCA. The covariances of variables that have
been standardized correspond to their linear correlations (see Section A.1). There-
fore, performing PCA on the covariance matrix of a set of standardized variables is
equivalent to do that on the corresponding correlation matrix. So, unless there is any
specific reason to act differently, we recommend to perform PCA on the correlation
matrix instead of the covariance matrix.

Since PCA is typically used to reduce the dimensionality of a set of data, the hope
in general is that the first few components account for most of the total information
in the original variables. In practice, this principle is put into action by selecting a
small number of components to keep in the analysis, thus discarding the other ones.
The choice of the number of components to retain is tricky and no general answer is
available unless strong assumptions are advanced10. However, the following guide-
lines are frequently used by practitioners:

• Retain a number of components that allow to account for a large percentage of the
total variation of the original variables. Typical values used here are in between
70 and 90%.

• Retain the components whose eigenvalue is larger than the average of the eigen-
values. When PCA is performed on the correlation matrix, this average is equal
to 1.

10A typical assumption used to facilitate the choice of the number of components in PCA is multivari-
ate normality of the original variables. This is an assumption that rarely holds in practice, but if you are
inclined to accept it, a number of tests are available. You can find more details on these tests in Mardia
et al. (1979), Section 8.4.
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• Use the scree plot11, which is a diagram reporting the eigenvalues on the vertical
and the component number on the horizontal axis. According to this criterion, it
is suggested to retain a number of components found as one fewer than that at
which the plot shows an “elbow” (i.e., a sudden change of slope). A more specific
suggestion recommends looking for the point beyond which the curve becomes
nearly flat.

We remind that these criteria are exploratory and often lead to contrasting conclu-
sions.

In Stata we can perform PCA with the pca command. Let’s consider an example
using the data available in the ch2_Rateprof.dta file12. These data include the
summaries of the ratings of 366 instructors (207 male, 159 female) at a large campus
in US collected by the http://www.ratemyprofessors.com website over
the period 1999–2011. Instructors included had 10 or more ratings on the site. Stu-
dents provided ratings on a scale from 1 to 5 on quality, helpfulness, clarity, easiness
of instructor’s courses, and rater-interest in the subject matter covered in the instruc-
tor’s courses. These data originate from the study Bleske-Rechek and Fritsch (2011)
whose aim was to test the assumption that students’ ratings are unreliable. Here, we
use the data merely to illustrate how to perform and interpret PCA with Stata.

We start by inspecting the scatter plot matrix for the five ratings, which is pro-
vided in Figure 2.3. This diagram clearly shows that there is a strong positive as-
sociation between the items quality, helpfulness and clarity, while the
correlations of the other ratings are weaker. So, we expect that the former items will
be combined by PCA in a single component.

We now perform PCA using Stata’s pca command. The command’s default is
to compute PCA on the correlation matrix, but the covariance option allows to
run it on the covariance matrix. In our example all the variables are measured on the
same scale and have approximately the same variability, so it is practically indifferent
to use one or the other. However, we follow our own suggestion and compute PCA
on the correlation matrix (the corresponding results are shown in Figure 2.4):

1 use ch2_Rateprof, clear

2 pca quality-raterinterest
3 screeplot

The first table in the output reports the eigenvalues together with their differences,
the proportion of explained variances and the corresponding cumulative proportions,
while the second table contains the eigenvectors. As you see, the first component ac-
counts for around 72% of the total variance, with an eigenvalue much larger than 1.
The second component accounts for 16% of the total variability, which together with
the first one allows to reach a cumulative proportion of 88%. The third component

11The name comes from its similarity to a cliff with rocky debris at its bottom.
12All data files and code shown in this book are available at https://github.com/

sergioventurini/SEMwPLS.

http://www.ratemyprofessors.com
https://github.com/
https://github.com/
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FIGURE 2.3: Scatter plot matrix for some variables included in the
ch2_Rateprof.dta data file.

Principal components/correlation Number of obs = 366
Number of comp. = 5
Trace = 5

Rotation: (unrotated = principal) Rho = 1.0000

--------------------------------------------------------------------------
Component | Eigenvalue Difference Proportion Cumulative

-------------+------------------------------------------------------------
Comp1 | 3.58011 2.77825 0.7160 0.7160
Comp2 | .801854 .264397 0.1604 0.8764
Comp3 | .537456 .45877 0.1075 0.9839
Comp4 | .0786866 .076788 0.0157 0.9996
Comp5 | .00189859 . 0.0004 1.0000

--------------------------------------------------------------------------

Principal components (eigenvectors)

------------------------------------------------------------------------------
Variable | Comp1 Comp2 Comp3 Comp4 Comp5 | Unexplained

-------------+--------------------------------------------------+-------------
quality | 0.5176 -0.0384 -0.2666 -0.0362 -0.8113 | 0

helpfulness | 0.5090 -0.0436 -0.2451 -0.6977 0.4384 | 0
clarity | 0.5053 -0.0241 -0.2893 0.7148 0.3867 | 0

easiness | 0.3537 -0.5582 0.7498 0.0322 0.0043 | 0
raterinter~t | 0.3042 0.8273 0.4722 0.0042 -0.0004 | 0
------------------------------------------------------------------------------

FIGURE 2.4: Principal component analysis from the correlation matrix of the ratings
quality, helpfulness, clarity, easiness, and raterinterest in the
Rateprof example.



2.2 Principal Component Analysis 25

0
1

2
3

4
Ei

ge
nv

al
ue

s

1 2 3 4 5
Number

Scree plot of eigenvalues after pca

FIGURE 2.5: Scree plot for the PCA of the ratings quality, helpfulness,
clarity, easiness and raterinterest in the Rateprof example.

explains approximately 11% of the total variance, contributing to reach a cumula-
tive proportion of about 98%. Finally, the remaining two components contribute by
explaining a very small portion, that is around 1.6%. According to the guidelines
provided above, we should retain either 1 or 2 components (the scree plot for this
example, obtained with the screeplot postestimation command, is shown in Fig-
ure 2.5).

Then, we execute the pca command again but now adding the option
components(2) (the results are shown in Figure 2.6):

1 pca quality-raterinterest, components(2)

The first table is identical to the previous one, while the second one only contains
the first two columns, that correspond to the requested components to retain. While
these columns report the same numbers as in the previous output, the column labelled
Unexplained now shows that not all of the variance of the original variables has
been accounted for. We see from this column that the amount of unexplained variance
for the easiness rating is 30%, a fairly large value. Therefore, it may be a good
suggestion to override the guidelines above and redo the analysis using 3 components
(Figure 2.7):
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Principal components/correlation Number of obs = 366
Number of comp. = 2
Trace = 5

Rotation: (unrotated = principal) Rho = 0.8764

--------------------------------------------------------------------------
Component | Eigenvalue Difference Proportion Cumulative

-------------+------------------------------------------------------------
Comp1 | 3.58011 2.77825 0.7160 0.7160
Comp2 | .801854 .264397 0.1604 0.8764
Comp3 | .537456 .45877 0.1075 0.9839
Comp4 | .0786866 .076788 0.0157 0.9996
Comp5 | .00189859 . 0.0004 1.0000

--------------------------------------------------------------------------

Principal components (eigenvectors)

------------------------------------------------
Variable | Comp1 Comp2 | Unexplained

-------------+--------------------+-------------
quality | 0.5176 -0.0384 | .03954

helpfulness | 0.5090 -0.0436 | .07094
clarity | 0.5053 -0.0241 | .08545

easiness | 0.3537 -0.5582 | .3022
raterinter~t | 0.3042 0.8273 | .1199
------------------------------------------------

FIGURE 2.6: Principal component analysis from the correlation matrix of the ratings
quality, helpfulness, clarity, easiness, and raterinterest in the
Rateprof example retaining only two components.

1 pca quality-raterinterest, components(3)

To complete the example, we now compute the so called loadings, which provide
a very handy tool to interpret the components. Loadings are computed by appropri-
ately rescaling the eigenvectors13 and they can be interpreted as the correlation of
each component with the original variables. In Stata we can get the loadings through
the estat loadings postestimation command as follows (see Figure 2.8):

1 estat loadings, cnorm(eigen)

The new output shows that the first component is mainly correlated with the
ratings quality, helpfulness and clarity. Therefore, we can interpret the
first component as an index of the overall goodness of the professors as instructors.
The second and third components instead load mainly on the raterinterest and
easiness ratings respectively, and therefore we can interpret them as single-item
components.

Finally, we can save the component scores in the dataset with the predict
command:

13See the technical appendix at the end of this chapter for more details.
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Principal components/correlation Number of obs = 366
Number of comp. = 3
Trace = 5

Rotation: (unrotated = principal) Rho = 0.9839

--------------------------------------------------------------------------
Component | Eigenvalue Difference Proportion Cumulative

-------------+------------------------------------------------------------
Comp1 | 3.58011 2.77825 0.7160 0.7160
Comp2 | .801854 .264397 0.1604 0.8764
Comp3 | .537456 .45877 0.1075 0.9839
Comp4 | .0786866 .076788 0.0157 0.9996
Comp5 | .00189859 . 0.0004 1.0000

--------------------------------------------------------------------------

Principal components (eigenvectors)

----------------------------------------------------------
Variable | Comp1 Comp2 Comp3 | Unexplained

-------------+------------------------------+-------------
quality | 0.5176 -0.0384 -0.2666 | .001353

helpfulness | 0.5090 -0.0436 -0.2451 | .03867
clarity | 0.5053 -0.0241 -0.2893 | .04048

easiness | 0.3537 -0.5582 0.7498 | .00008182
raterinter~t | 0.3042 0.8273 0.4722 | 1.372e-06
----------------------------------------------------------

FIGURE 2.7: Principal component analysis from the correlation matrix of the ratings
quality, helpfulness, clarity, easiness, and raterinterest in the
Rateprof example retaining only three components.

Principal component loadings (unrotated)
component normalization: sum of squares(column) = eigenvalue

--------------------------------------------
| Comp1 Comp2 Comp3

-------------+------------------------------
quality | .9794 -.03434 -.1954

helpfulness | .9631 -.03903 -.1796
clarity | .9561 -.02161 -.2121
easiness | .6692 -.4999 .5497

raterinter~t | .5756 .7408 .3462
--------------------------------------------

FIGURE 2.8: Principal component analysis from the correlation matrix of the ratings
quality, helpfulness, clarity, easiness, and raterinterest in the
Rateprof example retaining only three components.
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1 predict pc*, scores

Before moving to the next topic, we provide a last remark on using PCA to deal
with multicollinearity in linear regression analysis through a procedure called prin-
cipal component regression (PCR). The common practice in this context is to use as
predictors only the components that contribute to explain a sufficiently large portion
of the total variance of the X variables. The fact that not all the components are re-
tained is often justified to avoid reducing too much the number of residual degrees
of freedom. This is critical especially in fields where the number of predictors in the
model can be very large, e.g., in genetics or chemometrics. However, the aim of re-
gression analysis is to predict the response variable and it is not necessarily the case
that the most important components for the predictors are also those with the highest
predictive power. An alternative to PCR is partial least squares (PLS) regression14,
which explicitly aims to find the unobserved components in such a way as to capture
most of the variance in the X variables, while also maximizing the correlation be-
tween the X and the Y variables. For more details on PLS regression see for example
Hastie et al. (2008, Chapter 3).

2.3 Segmentation Methods
Segmentation is the process of dividing the sample cases into meaningful and homo-
geneous subgroups based on various attributes and characteristics. The most popular
application of segmentation methods is in marketing, where companies frequently
need to identify such groups to better understand their customers and build differen-
tiated strategies (Wind, 1978; Wedel and Kamakura, 2000; Kotler and Keller, 2015;
Dolnicar et al., 2018). In the following sections we provide an overview of the seg-
mentation methods that will be used in the rest of the book. In particular, we first
describe distance-based methods, that is methods that use a notion of similarity or
distance between the cases. Then, we move to model-based methods, which instead
are based on a probabilistic assumption on the nature of the segments.

2.3.1 Cluster analysis

Cluster analysis (CA) is one of the most widely applied statistical techniques in
many fields such as marketing, genetics and biology. The aim of CA is to find a
classification in which observations are sorted into a usually small number of ho-
mogeneous and exclusive (i.e., non-overlapping)) groups15. Despite its popularity,

14While sharing a common origin with the main topic of this book, PLS regression implements a
completely different algorithm and has a different aim.

15There exist also many overlapping clustering algorithms in which an observation may belong to
multiple groups, but they are beyond the scope of this review (see Everitt et al., 2011, in particular Section
8.4).
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(a) Separated clusters. (b) No clusters in the data.

(c) Nuisance variable on the vertical axis. (d) Unusually shaped clusters.

FIGURE 2.9: Examples of data structures.

the application of CA can be very subtle in some cases. This may be due to many
reasons. First, when we run a CA, we generally take for granted that the data are
naturally composed of homogeneous groups, but often they are not. An example of
this situation is shown in Figure 2.9b. Since clustering algorithms always produce an
output, we are spontaneously driven to the conclusion that the groups actually exist.
So, it is the responsibility of the researcher to critically validate the results. The sec-
ond reason why CA may provide misleading results is that we don’t know a priori
the variables according to which the groups are defined. For example, in a customer
segmentation we don’t know a priori whether the purchasing habits of the subjects
are different because of their incomes or their education or the perception they have
of the product features. The standard practice is to use as many information are avail-
able for discovering the clusters. However, the inclusion of irrelevant (also called nui-
sance) variables can radically change the interpoint distances and thus undermine the
clustering process. A simple example of such a situation is provided in Figure 2.9c,
where the variable reported on the vertical axis is nuisance since it is irrelevant for
identifying the clusters. Moreover, the grouping structure can be complicated with
oddly shaped clusters, such as those reported in Figure 2.9d. Unfortunately, classi-
cal clustering algorithms are not able to identify these structure types. Finally, each
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clustering algorithm depends on some tuning parameters whose settings may mod-
ify the solution sometimes in a critical way. Again, the researcher should assess the
extent of these differences by comparing the solutions corresponding to different
choices of the parameters.

Classical CA algorithms are usually classified in hierarchical and partitional
algorithms. The main difference between these approaches is that in the former case
the number of clusters must not be chosen in advance. Hierarchical algorithms start
from a solution with n groups each containing a single observation and produce a
hierarchy (i.e., a tree) of solutions where at each iteration the two closest groups
are joined together, until all observations are merged in a single cluster. Partitional
algorithms seek to partition the n cases into a predefined number of groups, usually
denoted K. In this case, the algorithm returns a single solution (no hierarchy), but
clearly one can run them for different values of K.

2.3.1.1 Hierarchical clustering algorithms

Hierarchical clustering techniques are usually subdivided into agglomerative (or
bottom-up) methods, which proceed by a series of successive fusions of the n ob-
servations into groups, and divisive (or top-down) methods, which work the other
way round splitting one of the existing cluster into two new clusters. In both cases, it
is up to the researcher deciding which solution represents the “natural” grouping of
the data. A long list of indexes and tests to assist the researcher in this decision have
been developed in the literature. Since divisive methods are less popular in practice,
in the following we review only the agglomerative ones.

Hierarchical CA algorithms typically return a tree-based visualization of the solu-
tion hierarchy known as dendrogram, which shows the groups merged at each stage
and their reciprocal distances. Central to the illustration of agglomerative algorithms
are the notions of dissimilarity and linkage.

The dissimilarity between two observations is a measure of how much they dif-
fer in terms of the variables used in the analysis. Sometimes dissimilarities are also
referred to as distances, even if there is no perfect match between the two notions16.
All agglomerative algorithms use a symmetric matrix of dissimilarities DDD with non-
negative entries (i.e., the dissimilarity between two cases can only be zero or a pos-
itive number) and zero diagonal elements (i.e., the dissimilarity between an obser-
vation and itself is zero) as input. A large number of dissimilarity measures have
been introduced in the literature depending on the type of the variables (categori-
cal or numerical). It is not our aim here to provide a detailed examination of all these
measures, for which we suggest to see Everitt et al. (2011, Chapter 3)17. The only dis-
similarity measure that we review is the Euclidean distance, because it is the most

16From a purely mathematical point of view, a measure of the diversity between observations is a
distance only if it satisfies a series of technical conditions. However, some dissimilarity measures used in
CA do not fully comply with these requirements, and thus cannot be called distances in the strict sense.
In particular, some dissimilarity measures do not satisfy the so called triangle inequality, which requires
that the distance between x and z must be at most as large as the sum of the distances between x and y and
y and z, or in more technical terms, d(x,z)≤ d(x,y)+d(y,z).

17For a list of the dissimilarity measures available in Stata, type help measure_option.
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FIGURE 2.10: A graphical representation of the Euclidean distance with p = 2 vari-
ables.

popular. Given p variables x1, . . . ,xp measured on each observation, the Euclidean
distance between observations i and j, with i, j = 1, . . . ,n, is defined as

di j =

[
p

∑
k=1

(
xik− x jk

)2

]1/2

, (2.1)

where xik and x jk are the kth variable value for observations i and j respectively. This
dissimilarity measure has the appealing property that it can be interpreted as the phys-
ical distance between the two p-dimensional points (xi1, . . . ,xip) and (x j1, . . . ,x jp) in
the space defined by the variables x1, . . . ,xp (see Figure 2.10 for the case of p = 2
variables).

Once the software has computed the dissimilarities between each pair of obser-
vations, it forms n groups each composed by a single observation. Then, at each step
the distances between all pairs of groups are computed18. Linkage is the term used in
agglomerative CA to refer to the specific way the distances between groups are com-
puted. There are different type of linkage notions which produce potentially different
clustering solutions. The most common linkage measures are:

18We call your attention on the fact that these are the distances between the groups and not between
the individual observations. We remind that the distances between observations are the dissimilarities.
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• single linkage, which computes the distance dAB between two groups A and B as
the smallest distance from each observation in group A to each one in group B.
In technical terms, single linkage calculates

dsingle
AB = min

i∈A, j∈B
(di j).

• complete linkage, which computes the distance between two groups A and B as
the largest distance from each observation in group A to each one in group B,
that is

dcomplete
AB = max

i∈A, j∈B
(di j).

• average linkage, which computes the distance between two groups A and B as
the average of the distances from each observation in group A to each one in
group B, that is

daverage
AB =

1
nAnB

∑
i∈A, j∈B

di j,

where nA and nB are the number of observations in each group.

• Ward’s method, which is different from the previous approaches because it
doesn’t focus directly on distances between groups, but rather it considers the
heterogeneity within the groups. In particular, at each iteration Ward’s method
joins those two groups that contribute to the smallest increase in the total (i.e.,
across groups) within-cluster error sum of squares, defined as

E =
K

∑
g=1

Eg,

where

Eg =
ng

∑
i=1

p

∑
k=1

(
xg

ik− x̄g
k

)2

represents the within-cluster error sum of squares for cluster g, where xg
ik is the

value on the kth variable for the ith observation in cluster g and x̄g
k is the corre-

sponding mean.

A graphical comparison of the single, complete and average linkage methods is
provided in Figure 2.11.

Each agglomerative algorithm has pros and cons, in particular (for a more de-
tailed discussion see Everitt et al., 2011, especially Table 4.1):

• single linkage produces solutions that often present a phenomenon known as
chaining, which refers to the tendency to incorporate intermediate points be-
tween clusters into an existing cluster rather than starting a new one. As a result,
single linkage solutions often contain long “straggly” clusters.
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FIGURE 2.11: A comparison of the single, complete and average linkages for ag-
glomerative clustering.

• complete linkage tends to create cohesive groups with similar diameters (i.e.,
largest distance of the objects in a cluster).

• average linkage tends to merge groups with low internal variance. This method
is a compromise between single and complete linkage and it is more robust to
outliers.

• Ward’s method finds spherical groups with similar size, but it is rather sensitive
to outliers.

As we already mentioned above, the full hierarchy of solutions produced by
agglomerative algorithms is typically represented graphically with a dendrogram,
whose nodes correspond to clusters and the stem lengths represent the distances at
which clusters are joined. Figure 2.12 shows the dendrograms produced by the link-
age methods described above for some fictitious data, whose dissimilarity matrix is
given by

DDD =




1 2 3 4 5

1 0
2 9 0
3 1 7 0
4 6 5 9 0
5 10 11 2 8 0



.

At the bottom of the dendrogram we find the first step of the procedure, where
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(a) Single linkage.
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(b) Complete linkage.
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(c) Average linkage.
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(d) Ward’s method.

FIGURE 2.12: Dendrograms produced by different agglomerative algorithms for
some fictitious data.

each observation has been placed in a separate cluster. Then, the distances between
each pair of groups is computed and the two closest groups are joined to form a
new larger cluster. This process continues until the last iteration where all the ob-
jects are merged together in a single cluster. As we see from the dendrograms in
Figure 2.12, different algorithms produce different solutions. In this simple example
average linkage and Ward’s method provide the same hierarchy, while single and
complete linkage do return different answers.

Since agglomerative hierarchical algorithms provide the entire hierarchy of clus-
tering solutions, the researcher must then choose a criterion for selecting the number
of clusters. Informally, this is achieved by “cutting” a dendrogram at a particular
height. Large changes in fusion levels (i.e., big jumps in the diagram) are usually
taken to indicate the best cut. Formal methods known as stopping rules have been
introduced in the literature (a classic reference is Gordon, 1999, in particular Section
3.5), but they rarely lead to an unambiguous conclusion. Apart from the now dated
study by Milligan and Cooper (1985), which compared a list of 30 methods, there
have been in general only a limited investigation into the properties of these rules
(for a more recent survey for clustering of binary data see Dimitriadou et al., 2002).
Tibshirani et al. (2001) introduced a new procedure for selecting the optimal number
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of clusters based on the so called gap statistic, whose main advantage is to allow the
evaluation of the quality of the single cluster solution. This represents an important
information for the researcher to confirm or not the existence of distinct groups in
the data.

The study by Milligan and Cooper (1985) identified the stopping rules devel-
oped by Caliński and Harabasz (1974) and Duda et al. (2001) among the best ones
to use when clustering numerical data. In both cases, large values of the stopping
rule indexes indicate a distinct cluster structure, so we identify as optimal the solu-
tion corresponding to the largest values of these indexes. The Caliński-Harabasz and
Duda-Hart rules are available in Stata through the cluster stop command, for
which we provide more details in the technical appendix at the end of this chapter.

Once the researcher has identified and validated the stability of the clustering
solution, a CA typically terminates with the profiling of the groups. This proce-
dure allows to interpret the clusters in light of the observed variables (e.g., socio-
demographics) and it typically consists of simple graphical and numerical summaries
for each cluster.

Hierarchical cluster analysis: An example for simulated data using Stata

As an illustrative example of the agglomerative clustering algorithms, we consider
the simulated data available in the file ch2_SimData.dta and shown in Fig-
ure 2.13, from which we see a group structure with three segments19.

Stata allows to perform a CA through the cluster suite of commands.
More specifically, the agglomerative CA algorithms described above are imple-
mented in Stata with the subcommands singlelinkage, completelinkage,
averagelinkage, wardslinkage respectively20. After the algorithm has run,
we can visualize its dendrogram with the command cluster dendrogram.

The code below computes the solutions and the corresponding dendrograms for
the simulated data using the four algorithms illustrated above. Since the variables
involved in the analysis are all numerical, we adopt the Euclidean distance as the
dissimilarity measure, which represents the default in Stata21. The resulting dendro-
grams are reported in Figure 2.14. Note that, we performed the analysis on the stan-
dardized variables to avoid weighting them differently. This operation is not strictly
necessary, but it is a common practice in CA.

1 use ch2_SimData, clear

2 /* the following two lines are useful if you already ran the
3 code; they should be executed before running it again */
4 // capture drop *_std

19These data have been simulated from three four-dimensional multivariate normal distributions with
different mean vectors and variance matrices, whose values can be found in the Stata code available on
the book’s GitHub repository.

20Other agglomerative algorithms are also available in Stata (type help cluster_linkage).
21You can choose a different dissimilarity measure with the option measure().
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FIGURE 2.13: Simulated data used to illustrate different clustering algorithms.

5 // cluster drop _all

6 foreach var of varlist x* {
7 egen `var'_std = std(`var')
8 }

9 cluster singlelinkage *_std, name(single_linkage)
10 cluster dendrogram

11 cluster completelinkage *_std, name(complete_linkage)
12 cluster dendrogram

13 cluster averagelinkage *_std, name(average_linkage)
14 cluster dendrogram

15 cluster wardslinkage *_std, name(ward_linkage)
16 cluster dendrogram

As the previous code shows, the cluster command allows to specify a
name() option under which we store the clustering solution in the Stata’s mem-
ory. This is useful because if we need to use the results later, we can recall them by
their names thus avoiding to rerun the whole algorithm.

Next, for each algorithm we can compare the solutions corresponding to different
group numbers with the command cluster stop. The Caliński-Harabasz and
Duda-Hart stopping rules are available with the options rule(calinski) (the
default) and rule(duda) respectively. The code below applies these rules to our
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(d) Ward’s method.

FIGURE 2.14: Dendrograms produced by different agglomerative algorithms for the
simulated data shown in Figure 2.13.

example using a number of groups from 2 to 8 (see Figures 2.15 and 2.16 for the
results):

1 cluster stop single_linkage, rule(calinski) groups(2/8)
2 cluster stop complete_linkage, rule(calinski) groups(2/8)
3 cluster stop average_linkage, rule(calinski) groups(2/8)
4 cluster stop ward_linkage, rule(calinski) groups(2/8)

5 cluster stop single_linkage, rule(duda) groups(2/8)
6 cluster stop complete_linkage, rule(duda) groups(2/8)
7 cluster stop average_linkage, rule(duda) groups(2/8)
8 cluster stop ward_linkage, rule(duda) groups(2/8)

For all algorithms, the Caliński-Harabasz rule provides the same answer, that is
three groups, which also corresponds to the true number of groups (i.e., the number
of groups we have generated the data from). The results of the Duda-Hart rule are less
easy to be interpreted. A conventional approach for deciding the number of groups
based on the Stata’s Duda-Hart table is to find one of the largest Je(2)/Je(1)
values that corresponds to a low pseudo-T-squared value with much larger
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+---------------------------+
| | Calinski/ |
| Number of | Harabasz |
| clusters | pseudo-F |
|-------------+-------------|
| 2 | 72.89 |
| 3 | 238.51 |
| 4 | 176.21 |
| 5 | 140.78 |
| 6 | 120.85 |
| 7 | 106.48 |
| 8 | 94.44 |
+---------------------------+

(a) Single linkage.

+---------------------------+
| | Calinski/ |
| Number of | Harabasz |
| clusters | pseudo-F |
|-------------+-------------|
| 2 | 95.02 |
| 3 | 238.51 |
| 4 | 193.97 |
| 5 | 164.79 |
| 6 | 143.49 |
| 7 | 132.17 |
| 8 | 130.03 |
+---------------------------+

(b) Complete linkage.

+---------------------------+
| | Calinski/ |
| Number of | Harabasz |
| clusters | pseudo-F |
|-------------+-------------|
| 2 | 95.02 |
| 3 | 238.51 |
| 4 | 176.21 |
| 5 | 146.25 |
| 6 | 124.68 |
| 7 | 112.67 |
| 8 | 113.90 |
+---------------------------+

(c) Average linkage.

+---------------------------+
| | Calinski/ |
| Number of | Harabasz |
| clusters | pseudo-F |
|-------------+-------------|
| 2 | 95.02 |
| 3 | 238.51 |
| 4 | 193.97 |
| 5 | 165.15 |
| 6 | 152.91 |
| 7 | 143.01 |
| 8 | 139.02 |
+---------------------------+

(d) Ward’s method.

FIGURE 2.15: Stata results for the Caliński-Harabasz stopping rule applied to the
simulated data shown in Figure 2.13.

pseudo-T-squared values next to it. According to this approach, again three
is the answer obtained for all algorithms.

Even if both stopping rules arrive at the same conclusion, we are not sure that
the four algorithms provide the same partitioning of the data. To check this, we now
use the cluster generate command that append to the dataset a new column
containing the cluster memberships (i.e., the number of the cluster to which each
observation has been assigned). Then, we compare the classifications using cross
tabulations:

1 cluster generate single3 = groups(3), name(single_linkage)
2 cluster generate complete3 = groups(3), ///
3 name(complete_linkage)
4 cluster generate average3 = groups(3), name(average_linkage)
5 cluster generate ward3 = groups(3), name(ward_linkage)

6 table single3 complete3
7 table single3 average3
8 table single3 ward3
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+-----------------------------------------+
| | Duda/Hart |
| Number of | | pseudo |
| clusters | Je(2)/Je(1) | T-squared |
|-------------+-------------+-------------|
| 2 | 0.1092 | 260.94 |
| 3 | 0.8146 | 3.19 |
| 4 | 0.8571 | 2.17 |
| 5 | 0.7512 | 4.97 |
| 6 | 0.8673 | 1.84 |
| 7 | 0.8944 | 1.30 |
| 8 | 0.7246 | 3.80 |
+-----------------------------------------+

(a) Single linkage.

+-----------------------------------------+
| | Duda/Hart |
| Number of | | pseudo |
| clusters | Je(2)/Je(1) | T-squared |
|-------------+-------------+-------------|
| 2 | 0.2375 | 99.53 |
| 3 | 0.6840 | 6.47 |
| 4 | 0.6834 | 4.17 |
| 5 | 0.7512 | 4.97 |
| 6 | 0.5090 | 4.82 |
| 7 | 0.6036 | 9.19 |
| 8 | 0.3535 | 3.66 |
+-----------------------------------------+

(b) Complete linkage.

+-----------------------------------------+
| | Duda/Hart |
| Number of | | pseudo |
| clusters | Je(2)/Je(1) | T-squared |
|-------------+-------------+-------------|
| 2 | 0.2375 | 99.53 |
| 3 | 0.8146 | 3.19 |
| 4 | 0.7964 | 3.32 |
| 5 | 0.8369 | 2.34 |
| 6 | 0.7512 | 4.97 |
| 7 | 0.6543 | 5.81 |
| 8 | 0.6222 | 4.86 |
+-----------------------------------------+

(c) Average linkage.

+-----------------------------------------+
| | Duda/Hart |
| Number of | | pseudo |
| clusters | Je(2)/Je(1) | T-squared |
|-------------+-------------+-------------|
| 2 | 0.2375 | 99.53 |
| 3 | 0.6840 | 6.47 |
| 4 | 0.6145 | 9.41 |
| 5 | 0.6834 | 4.17 |
| 6 | 0.3450 | 11.39 |
| 7 | 0.5090 | 4.82 |
| 8 | 0.3535 | 3.66 |
+-----------------------------------------+

(d) Ward’s method.

FIGURE 2.16: Stata results for the Duda-Hart stopping rule applied to the simulated
data shown in Figure 2.13.

9 table single3 truegroup

The cross tabulations (not reported here) show that actually the four algorithms
provide the same data partition, which also corresponds to the true grouping structure
(reported in the dataset as the variable labelled truegroup). Figure 2.17 shows the
three clusters.

2.3.1.2 Partitional clustering algorithms

Partitional algorithms seek to partition the n observations into a predefined number
of non-overlapping groups. Therefore, contrary to hierarchical algorithms, they do
not return a tree of solutions, even when they are performed sequentially for a set
of distinct cluster numbers. The most popular partitional algorithm is K-means, an
iterative procedure that looks for the cluster centres that minimize the total within-
cluster variance. More specifically, given an initial set of centres (usually chosen
randomly), the algorithm alternates the following two steps until convergence:

Step 1 – centres update: the cluster centres are calculated using the most recent
allocation,

Step 2 – reallocation: each observation is assigned to the cluster centre to which it
is closest.
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FIGURE 2.17: Simulated data illustrating the agglomerative clustering algorithms
showing the best solution (i.e., three clusters, shown in the scatterplots as 1, 2 and 3).

A graphical illustration of the K-means algorithm for some fictitious data is provided
in Figure 2.18.

Convergence criteria typically used are either cluster stabilization (i.e., all obser-
vations remain in the same group from the previous iteration), or the attainment of a
given number of iterations. Unfortunately, the K-means algorithm does not guarantee
to find the global optimal partition of the data (Everitt and Hothorn, 2011, Section
6.4). Moreover, different choices of the initial cluster centres may lead to different
final partitions of the data corresponding to different local optimal divisions. To re-
duce this risk, it is usually suggested to restart the algorithm a certain number of times
from different initial points to check that it converges to the same final solution.

As for hierarchical algorithms, K-means requires a criterion for choosing the best
number of clusters. Most of the indexes that can be used with hierarchical cluster-
ing algorithms can also be used with K-means (a detailed account of these validity
indexes can be found in Charrad et al., 2014). In particular, the Caliński-Harabasz
stopping rule can also be used with the K-means algorithm22.

22The Duda-Hart rule can’t be used with partitional algorithms because it requires a hierarchical struc-
ture of the clustering solutions. Thus, the Duda-Hart index is local in the sense that it requires only the
information regarding the cluster being split, while Caliński-Harabasz is global because it uses the infor-
mation from each group.



2.3 Segmentation Methods 41

0 2 4 6 8 10

0
5

10
15

x1

x 2

Data

0 2 4 6 8 10

0
5

10
15

x1

x 2

Iteration 0 (initial centres)

0 2 4 6 8 10

0
5

10
15

x1

x 2

Iteration 0 (initial allocation)

0 2 4 6 8 10

0
5

10
15

x1

x 2

Iteration 1 (centres update)

0 2 4 6 8 10

0
5

10
15

x1

x 2

Iteration 1 (reallocation)

0 2 4 6 8 10

0
5

10
15

x1

x 2

Iteration 2 (centres update)

0 2 4 6 8 10

0
5

10
15

x1

x 2

Iteration 2 (reallocation)

FIGURE 2.18: Graphical presentation of the K-means algorithm for some simu-
lated data. The filled markers correspond to current cluster centres, while those grey
shaded indicate the centres from the previous iteration. Grey arrows show the move-
ment of the centres from iteration to iteration. After two iterations the algorithm
converges to a stable solution.
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Partitional cluster analysis: An example with simulated data using Stata

Using the simulated data shown in Figure 2.13, we can perform a K-means analysis in
Stata with the command cluster kmeans23. The following code chunk performs
K-means for a number of clusters from 2 to 8, saving the group memberships in new
columns of the dataset, and then it compares the solutions by computing the Caliński-
Harabasz index values (not reported here).

1 use ch2_SimData, clear

2 capture drop *_std
3 cluster drop _all

4 forvalues g = 2/8 {
5 cluster kmeans *_std, k(`g') start(krandom(301)) ///
6 name(km`g') generate(km`g')
7 }

8 forvalues g = 2/8 {
9 cluster stop km`g'

10 }

An examination of the Caliński-Harabasz indexes allows to conclude that the
correct number of groups (three) is still recovered. Moreover, the partition found by
K-means corresponds to that found by the hierarchical algorithms described above.
Figure 2.19 shows the corresponding solution.

2.3.2 Finite mixture models and model-based clustering

Despite their simplicity, the CA methods described in the previous section are not
based on a formal statistical model. An alternative approach that goes in this direction
is represented by the finite mixture models (FMMs).

In a FMM it is assumed that the whole population consists of a number of sub-
populations (corresponding to the clusters in the data), with each subpopulation that
is assumed to follow a different probability distribution24. The distributions cor-
responding to the subpopulations are called the mixture components. Clustering
approaches that use FMMs as the modelling framework are usually referred to as
model-based clustering (see Banfield and Raftery, 1993; Fraley and Raftery, 2002;
Dolnicar et al., 2018).

A simple example of a FMM is provided in Figure 2.20, where it is assumed

23Stata also includes the cluster kmedians command, that allows to perform the same analysis
but computing the median of the observations assigned to each group instead of the mean. K-medians
algorithm is more robust than K-means towards outliers.

24The probability model used for the subpopulations is usually the same (e.g., the normal distribution)
but each subpopulation is assumed to have its own set of parameter values (for example, different means
and variances).
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FIGURE 2.19: Simulated data illustrating the K-means partitional algorithm showing
the best solution (i.e., three clusters, shown in the scatterplots as 1, 2 and 3).

that the data have been sampled from a population composed of two subpopulations
following a normal distribution centred around the values 10 and 18 respectively.

Even if FMMs can use any probability model, mixtures of (multivariate) normal
distributions are the most common choice used in practice for continuous quantities.
This is because it can be shown that any probability distribution for continuous vari-
ables can be approximated to an arbitrary precision by a mixture of normals with
enough components (see for example Rossi, 2014). Figure 2.21 shows some exam-
ples of the range of possible shapes that can be obtained with a mixture of two normal
distributions in one and two dimensions.

A FMM is formally defined as a weighted average of the components distri-
butions. More technically, a FMM for a p-dimensional vector of variables XXX =
(X1, . . . ,Xp) is defined as

f (xxx) =
K

∑
j=1

π j f j(xxx;θθθ j), (2.2)

where f j(xxx;θθθ j) are the component distributions, each one depending on its own set
of parameters θθθ j, and (π1, . . . ,πK) are the so called mixture weights, which must
satisfy the requirements 0≤ π j ≤ 1 and ∑

K
j=1 π j = 1.

The output of an analysis based on a FMM is represented by the estimates of
the mixture component parameters as well as the estimates of the mixture weights.
Then, using the estimated parameters, the cluster membership are computed. Estima-
tion of all these quantities can be performed using different methods with maximum
likelihood, expectation-maximization (EM) and Bayesian inference being the most
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with the generating populations (dashed lines).

FIGURE 2.20: An example of data originating from a mixture of two subpopulations.

popular (for a more detailed presentation of estimation of FMMs see Everitt et al.,
2011, in particular Chapter 6).

Similar to K-means, FMMs also require the number of clusters K to be fixed
in advance. Popular methods for selecting the best FMM are likelihood ratio tests
(LRTs) and information criteria.

LRTs can be used for testing the null hypothesis that the FMM includes a given
number of components, that is H0 : K = K0, against the alternative hypothesis that it
involves a larger value, that is H1 : K = K1, with K1 > K0

25. The main drawback of
LRTs for FMMs is that, due to technical difficulties in the calculation of the likeli-
hood, they tend to overestimate the actual number of groups K.

Information criteria are the most common approach for comparing different mix-
ture models. The two criteria predominantly used in mixture modelling are the
Akaike’s information criterion (AIC) and the Bayesian information criterion
(BIC). They both keep into account the lack of fit of the data and the model com-
plexity. The model with the lowest information criteria values is preferred.

Here, we just scratched the surface of FMMs because they can be extended in
many directions such as the possibility to let the component parameters as well as the
mixture weights to depend upon a set of covariates. The technical appendix at the end
of the chapter provides more details about FMMs, but for a complete presentation we
suggest the monographs by McLachlan and Peel (2000) and Dolnicar et al. (2018).

Finite mixture models: An example with simulated data using Stata

Starting from the release 15, Stata allows to fit mixtures models via the prefix fmm. It
is possible to include covariates for both the component distributions and the mixture
weights26. To see the list of available models, type help fmm_estimation. For
example, to fit a mixture of two normal distributions for a single continuous variable

25In practice the LRT approach is usually implemented by adding one component at a time, so that
K1 = K0 +1, and one keeps adding components until the null hypothesis is not rejected.

26Stata’s fmm models the mixture weights using a multinomial logistic regression model.
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FIGURE 2.21: Examples of finite mixtures of two normal distributions.
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---------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC
-----------+---------------------------------------------------------------

fmm2 | 500 . -4696.632 17 9427.264 9498.913
fmm3 | 500 . -3469.94 26 6991.88 7101.46
fmm4 | 500 . -3463.934 35 6997.869 7145.38
fmm5 | 500 . -3452.817 44 6993.633 7179.076
fmm6 | 500 . -3447.038 53 7000.075 7223.449
fmm7 | 500 . -3433.418 62 6990.837 7252.142
fmm8 | 500 . -3434.672 71 7011.344 7310.581

---------------------------------------------------------------------------

FIGURE 2.22: Results for the estimation of the FMMs using Stata’s fmm for simu-
lated data.

y we should use fmm 2: regress y. Similarly, if we are interested in fitting a
mixture of three Bernoulli distributions for a single dichotomous (i.e., 0/1) variable,
we need to run fmm 3: logit y. AIC and BIC values can be retrieved with the
estat ic postestimation command.

Using the same data generating process as in Figure 2.13, but increasing the
sample size to 50027, the following code fits a mixture model for the variables x1-x4
using normal components with K going from 2 to 8. Next, we compute the AIC and
BIC values for each model and compare the results in a summary table, which is
reported in Figure 2.22.

1 use ch2_SimData2, clear

2 forvalues K = 2/8 {
3 quietly fmm `K': regress (x1-x4)
4 estimates store fmm`K'
5 }
6 estimates stats fmm*

Both AIC and BIC indicate K = 3 as the optimal solution. Then, we ask for the
estimates of both the component means28 and the mixture weights using the estat
lcmean and estat lcprob postestimation commands. Finally, we calculate the
so called class posterior probabilities, which provide the estimated probabilities
for each observation to belong to the different groups29. The outputs for the example
above are shown in Figures 2.23 and 2.24.

27This is needed to let the algorithm have enough information to estimate the many parameters of the
model. These data are available in the file ch2_SimData2.dta.

28To get also the variances, type estimates restore fmm3.
29Note that the last code line uses Mata, the advanced matrix language available in Stata (Gould, 2018)

together with the which function that you can get by installing the plssem package described in the
next chapters.
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1 estimates restore fmm3

2 estat lcmean
3 estat lcprob

4 predict classpr*, classposteriorpr
5 generate fmm3 = .
6 mata: st_store(., "fmm3", .,
7 which(st_data(., "classpr*"), "max"))

. estat lcmean

Latent class marginal means Number of obs = 500

------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1 |

x1 | 1.022167 .1091683 9.36 0.000 .8082009 1.236133
x2 | .9221559 .086716 10.63 0.000 .7521957 1.092116
x3 | .9245347 .0932485 9.91 0.000 .741771 1.107298
x4 | 1.091596 .0862536 12.66 0.000 .9225416 1.260649

-------------+----------------------------------------------------------------
2 |

x1 | 7.007023 .0938842 74.63 0.000 6.823014 7.191033
x2 | 4.978933 .0290964 171.12 0.000 4.921906 5.035961
x3 | 6.894333 .0916708 75.21 0.000 6.714661 7.074005
x4 | 5.024879 .0336104 149.50 0.000 4.959004 5.090754

-------------+----------------------------------------------------------------
3 |

x1 | 8.111524 .116786 69.46 0.000 7.882628 8.34042
x2 | 14.93361 .1818318 82.13 0.000 14.57722 15.28999
x3 | 10.1373 .1170033 86.64 0.000 9.90798 10.36662
x4 | 15.01151 .1463245 102.59 0.000 14.72472 15.2983

------------------------------------------------------------------------------

. estat lcprob

Latent class marginal probabilities Number of obs = 500

--------------------------------------------------------------
| Delta-method
| Margin Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
Class |

1 | .214 .0183414 .1802432 .2521344
2 | .498 .0223605 .4543014 .5417292
3 | .288 .0202512 .2499868 .3292559

--------------------------------------------------------------

FIGURE 2.23: Parameter estimates of the FMMs using Stata’s fmm.
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FIGURE 2.24: Simulated data illustrating the fmm command for fitting FMMs. The
allocation for K = 3 groups are indicated in the scatterplots as 1, 2 and 3.

2.3.3 Latent class analysis

Finite mixture modelling can be seen as a form of latent variable analysis where
the latent variable, represented by the cluster indicator, is categorical. Latent vari-
able methods provide an important tool for the analysis of multivariate data and have
become of primary importance in most social sciences. According to some authors,
latent variable models can be unified under a general framework depending on the
nature of the latent and manifest variables involved in the analysis. For example,
when the latent and manifest variables are both numerical, the model is called the
linear factor model, while if the latent variables are numerical but the manifest vari-
ables are categorical, then the model is called latent trait analysis (for a complete
presentation of this unifying framework see Skrondal and Rabe-Hesketh, 2004 and
Bartholomew et al., 2011). A specific approach falling under this general classifica-
tion is latent class analysis (LCA). In LCA both manifest and latent variables are
assumed to be categorical. More specifically, the response is modelled as a multi-
variate categorical variable, as it is the case for example in public opinion surveys or
in consumer behaviour studies, while the latent variable is categorical nominal (i.e.,
unordered) representing the class membership. The additional requirement in LCA is
that, conditionally upon the latent variable value, the manifest variables are assumed
to be statistically independent. This is usually called conditional (or local) indepen-
dence assumption30. Extensions of the basic model allow also for the possibility to

30Technically, the conditional independence assumption implies that the jth component distribution
f j(xxxi;θθθ j) in equation (2.2) can be written as a product over the p response variables.
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include covariates for predicting the class membership. For a book-length treatment
of LCA models we suggest to refer to the monographs by McCutcheon (1987) and
Hagenaars and McCutcheon (2002).

Since LCA is a special type of mixture modelling where the response variables
are assumed to be categorical and conditionally independent from each other given
the class membership (and the class-specific covariates), all the tools we presented
for FMMs (EM algorithm, information criteria, etc.) may be applied directly. Finally,
if you have a software package that is able to fit (general enough) mixture models,
you can also use it to estimate LCA models. Stata allows to perform LCA through
gsem, the powerful command for generalized structural equation modelling, with
the specification of the lclass() option.

2.4 Path Analysis
Classical linear models define a linear relationship between one dependent and one
or more independent variables, which is thus specified through a single equation31. A
potential failure of the linear regression assumptions is represented by the so called
endogeneity issue, that is the situation in which some of the X variables are correlated
with the error term32. Endogeneity may occur as a consequence of at least one of the
following reasons:

• Omitted variables, which takes place when we cannot include in the model one or
more relevant variables usually because of data unavailability or scarce knowl-
edge of the problem. An example of omitted variable bias is when we try to
explain the weekly wage of individuals with their characteristics, such as ability
and years of education. Since ability is typically unobserved, we may choose to
include only education. However, since ability and education are very likely to
be correlated, this originates the bias.

• Measurement error, which occurs when we are not able to measure precisely the
actual values of an independent variable33, but we only collect inexact values. In
other words, the independent variable measures contain a random error. This is
a common situation in practice and a notable example is IQ score as a measure
of ability. The bias in this case comes from the correlation between the observed
(inexact) version of the independent variable (i.e., IQ) and the error term.

• Simultaneity, which happens when one or more independent variables are deter-
mined jointly with the dependent variable. In this case, the equation specifying
the independent variable X j also contains Y as a predictor, and this feedback
effect is at the base of the bias. This situation arises very frequently, but not

31For a review of classical linear regression analysis see Section A.2.
32Endogeneity is the violation of the exogeneity assumption; see Section A.2 for more details.
33Measurement errors may also occur in the dependent variable, but this is not our focus here.
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exclusively, in economics because most common economic quantities (labour,
products, money, etc.) are the result of matching demand and supply in a given
market.

If any of the explanatory variables is endogenous, then OLS estimates are biased
and inconsistent34. In this section we elaborate on the simultaneity issue by gener-
alizing single-equation linear models to the case of multiple equations, that is to the
case where we have more than one dependent variable that may appear both on the
left and right hand sides of the equations. These models are called path analysis
(PA) models in the social sciences and simultaneous equation models in econo-
metrics. For a detailed practical illustration of PA models, we suggest you to see
Schumacker and Lomax (2016), Chapter 5, and Kline (2016), in particular Chap-
ters 6 and 7, while for a technical treatment you can refer to the classic textbook by
Bollen (1989), Chapter 4.

Path models postulate a set of relationships among a set of observed variables. In
PA variables are classified as endogenous or exogenous. The former are determined
within the model (i.e., they appear on the left hand side of the structural equations),
while the latter are predetermined, which means that they are influenced by other
variables not included in the model. On top of these two categories, we also have
random errors which represent the unexplained part of the endogenous variables (as-
sumed to be uncorrelated with the exogenous variables). A common way to represent
graphically the structural relationships in a PA model is through a path diagram. In
these diagrams observed variables are represented using squares or rectangles, en-
dogenous variables have single-headed arrows pointing at them, while double-headed
arrows are used to highlight associations (if any) between exogenous variables. A
further distinction in PA is between recursive and non-recursive models. Recursive
models are those in which the relationships between the endogenous variables are
unidirectional, that is there are no feedback loops, and error terms are uncorrelated.
In non-recursive models, instead, the relationships between the endogenous variables
are bidirectional (i.e., the diagram contains feedback loops) or disturbances may be
correlated. In general, non-recursive models are more difficult to analyse, because
the presence of feedback loops between the endogenous variables implies a dynamic
process that is operating underneath the system of equations. A simple example of a
recursive path diagram for a hypothetical analysis with two endogenous variables, y1
and y2, and three exogenous variables, x1, x2 and x3, is shown in Figure 2.25, while
an example of a non-recursive model is provided in Figure 2.26.

The equations corresponding to the PA model in Figure 2.25 are

y1 = α1 + γ11 x1 +ζ1 (2.3)
y2 = α2 +β21 y1 + γ22 x2 + γ23 x3 +ζ2, (2.4)

where y1 and y2 are the observed endogenous variables, x1, x2 and x3 are the ob-
served exogenous variables, α1 and α2 are the structural intercepts, β21 is the coeffi-
cient relating the endogenous variables, γ11, γ22 and γ23 are the coefficients relating

34We remind that an estimator is said to be consistent if its value gets closer and closer to the parameter
value as the sample size increases indefinitely.
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y1
(Endogenous)

x3
(Exogenous)

y2
(Endogenous)

x2
(Exogenous)

x1
(Exogenous)

FIGURE 2.25: Path diagram for a hypothetical recursive path model with two en-
dogenous variables, y1 and y2, and three exogenous variables, x1, x2 and x3.
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x1
(Exogenous)

FIGURE 2.26: Path diagram for a hypothetical non-recursive path model with two
endogenous variables, y1 and y2, and three exogenous variables, x1, x2 and x3.
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endogenous variables to the exogenous ones and ζ1 and ζ2 are the error terms, that
are independent of the exogenous variables, but may or may not be correlated to each
other. The equations above are said to be in structural form because they represent
the structural relationships encoded by the model. Parameters in PA models can be
broadly distinguished into three classes:

• free parameters, which must be estimated using the sample data; in the example
above, these are α1, γ11, α2, β21, γ22 and γ23.

• fixed parameters, that is parameters set to a predetermined value; the typical case
is to set a parameter value to zero to indicate the absence of the relationship, but
they could be fixed at any other value. In the example above, β11, γ12, γ13 and γ21
are fixed parameters because their values is set to zero (they do not appear in the
equations).

• constrained parameters, when we require some of the coefficients to satisfy a
given set of constraints. For example, we would have constrained parameters if
we force coefficients γ22 and γ23 in the equations above to be the same35.

An alternative approach to describe the same model is with the so called reduced
form, with which we rearrange the equations so that the endogenous variables appear
on the left hand sides only and the exogenous variables on the right hand sides. For
the example above, the reduced form equations correspond to

y1 = α1 + γ11 x1 +ζ1

= π01 +π11 x1 +ζ
∗
1

y2 = (α2 +β21α1)+(β21γ11)x1 + γ22 x2 + γ23 x3 +(β21ζ1 +ζ2),

= π02 +π21 x1 +π22x2 +π23 x3 +ζ
∗
2 ,

where π01 = α1, π11 = γ11, ζ ∗1 = ζ1, π02 = α2 + β21α1, π21 = β21γ11, π22 = γ22,
π23 = γ23 and ζ ∗2 = β21ζ1 + ζ2. The coefficients π01 and π02 are the reduced form
intercepts, π11, π21, π22 and π23 are reduced form slopes, while ζ ∗1 and ζ ∗2 are the
reduced form error terms. As we see, the reduced form equations correspond to a
system of linear regression models with correlated error terms36.

One of the first issue to tackle in PA is checking whether the model is identified.
In general, we say that a model is identified if it is possible to uniquely determine
its parameters from the model structure and the sample data. For example, suppose
that according to our model we know that µ = θ + τ , where µ is the mean of an
observed variable that we can estimate using the sample data. If there are no further
information on θ and τ , there is no way to figure out uniquely their respective values.
In other words, there are infinite many combinations of values for θ and τ that are
all consistent with the model’s structure, and we have no clue about which one to
pick. In this case, we say that the model is non-identified. Identification is a highly

35In this brief presentation we skip the discussion of other parameters of the model, that is the variances
and covariances between the exogenous variables and between the error terms.

36In econometrics these models are known as seemingly unrelated regression (SUR) models.
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desirable property for any statistical model, and so it is important to check that it
holds for PA models as well. However, since identification in PA is a very technical
issue, we do not provide any further detail here and suggest you to see Bollen (1989),
Chapter 4, for a comprehensive treatment.

After checking that the model is identified, we proceed to estimate its param-
eters. PA models in reduced form can be easily estimated using OLS, even if more
efficient estimators are available. However, structural parameters are usually of inter-
est for which OLS provide generally biased and inconsistent estimates37. Therefore,
alternative approaches must be used to fit PA models in structural form. Standard
estimation procedures in PA involve the minimization of the discrepancy between
between sample variances and covariances and those implied by the model (see the
technical appendix at the end of this chapter for more details). Note that this ap-
proach is similar to OLS in regression analysis, with the difference that regression
coefficients are estimated by minimizing the sum of squared residuals, that is the dif-
ferences between observed and predicted responses, while in PA the deviations that
are minimized are those between observed and theoretical variances and covariances.
The two most common discrepancy functions used in PA are38:

• Maximum likelihood (ML), the default method in PA, is based on the assumption
that the endogenous and exogenous variables are jointly normally distributed.
Even if ML estimates may be biased in small samples, they have appealing large
sample properties, in particular they are consistent, asymptotically efficient and
asymptotically normally distributed39. These results allow to compute approxi-
mate confidence intervals and tests based on the familiar normal-based theory.
Finally, ML estimates are both scale invariant and scale free. Scale invariance
means that the ML discrepancy function does not change if we modify the scale
of one or more of the observed variables. Scale freeness is a similarly property
but regarding the parameter estimates (instead of the discrepancy function value).

• Weighted least squares (WLS) focuses on the weighted squared differences be-
tween sample variances and covariances and those implied by the model. Differ-
ent versions are available depending on the type of weights used. In particular, if
the differences are not weighted, we get the so called unweighted least squares
(ULS) estimation, while if the differences are weighted using the sample vari-
ances and covariances, we get the generalized least squares (GLS) approach.

37An exception to this statement is for recursive models with uncorrelated error terms across the dif-
ferent equations in the system.

38In econometrics, estimation methods for simultaneous equation systems are usually divided in
single-equation (or limited information) methods and system (or full information) methods. In single-
equation methods each equation is estimated individually, while in system methods all equations are es-
timated simultaneously. Examples of the former are indirect least squares and two-stage least squares
(2SLS), while maximum likelihood is the most notable example of the latter. For more details about these
estimation approaches see Greene (2018).

39We remind that an “asymptotic” property is one that holds when the sample size is assumed to grow
up to infinity. In practice, infinity does not exist and so it is hard to say how large a sample should be
to consider the property as attained. Usually, a number of observations of at least 50–100 is considered
enough.



54 2 Multivariate Statistics Prerequisites

Even if ULS is a very simple and intuitive approach, it does not provide the most
efficient estimates and moreover it is neither scale invariant nor scale free. On
the other side, under the assumption of multivariate normality, the GLS method
has the same asymptotic properties of ML and it is both scale invariant and scale
free.

The discrepancy functions of both these approaches are complicated non-linear func-
tions of the model’s parameters, for which no closed-form solutions are available.
Thus, they must be minimized using iterative numerical procedures such as the New-
ton–Raphson algorithm. Some care must be put in fixing the tuning parameters of
the algorithm, because in some cases it shows difficulties in achieving converge.

Once the parameter estimates are available, we proceed to interpret them. The
standard terminology used in PA (as well as in SEM) distinguishes between:

• Direct effects, which represent the effect that each endogenous and exogenous
variables exert on the endogenous variables in the model without the mediation
of any intermediate variable. For the model with equations (2.3) and (2.4), β21
represents the direct effect of y1 on y2, γ11 represents the direct effect of x1 on y1,
while γ22 and γ23 provide the direct effects of x2 and x3 on y2 respectively. Since
these are merely coefficients of linear regression models, they can be interpreted
in a similar way, that is as the increase in the average value of the endogenous
variable on the left hand side for a unit increase in the value of the endogenous
or exogenous variable on the right hand side, assuming all the rest is fixed.

• Indirect effects, which represent the effect of an independent variable (endoge-
nous or exogenous) on an endogenous variable that is mediated by the effect of
at least another variable. For our hypothetical example, there is no x1 term in the
second equation for y2, so the direct effect of x1 on y2 is zero. However, x1 has
an indirect effect on y2 through the mediation of y1. Indirect effects are typically
computed as products of direct effects. Indeed, in our example the indirect effect
of x1 on y2 is given by (β21× γ11)

40.

• Total effects, that correspond to the sum of the direct and indirect effects.

The easiest way to fit PA models in Stata is using the powerful sem command,
which provides a general tool for estimating structural equation models. It is not
our intention to provide here a detailed presentation of sem, but we illustrate its ba-
sic features through a simple example we downloaded from the Stata portal of the
UCLA Institute for Digital Research and Education41. These data, available in the
ch2_hsb2.dta file accompanying this book, come from a national representative
survey of high school seniors called High School and Beyond conducted by the Na-
tional Center for Education Statistics (NCES)42. The data are a random sample of 200

40Total effects of exogenous variables correspond to the reduced-form coefficients (see the technical
appendix for more details). Therefore, since in the example there is no direct effect of x1 on y2, the indirect
effect is equal to the corresponding reduced-form coefficient.

41https://stats.idre.ucla.edu/stata/.
42https://nces.ed.gov/surveys/hsb/.

https://stats.idre.ucla.edu/
https://nces.ed.gov/
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read
(Exogenous)

write
(Exogenous)

science
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FIGURE 2.27: Path diagram for the path model described in the text that uses the
HSB2 dataset.

students from the original dataset and contain information on student achievements
in reading, writing, math, science and social sciences. The PA model we consider
here is

math = α1 + γ11read+ γ12write+ζ1

science = α1 +β21math+ γ21read+ γ22write+ζ2,

whose path diagram is shown in Figure 2.27. This is a recursive model, so identifica-
tion is not an issue. We estimate it using ML, the default in sem43.

The syntax for sem requires to specify the individual equations by enclosing each
within parentheses:

1 use ch2_hsb2, clear

2 sem (math <- read write) (science <- math read write)

Results, reported in Figure 2.28, show that reading and writing scores have a
significant positive direct effect on both math and science achievement, with the
latter being smaller than the former (we are allowed here to compare the coeffi-
cients because all scores are on the same scale). Similarly, the math score exerts
a significant positive effect on science achievement. Equation-level goodness-of-fit
statistics are available with the estat eqgof postestimation command (results not
reported here), which provides an R-squared of approximately 0.52 and 0.5 for the

43Other estimation methods are available through the method option. Alternatively, the reg3 com-
mand with option sure would provide the same results. reg3 is a general interface available in Stata
for fitting systems of equations. The command you should run here is reg3 (math read write)
(science math read write), sure.
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Endogenous variables

Observed: math science

Exogenous variables

Observed: read write

Fitting target model:

Iteration 0: log likelihood = -2768.7045
Iteration 1: log likelihood = -2768.7045

Structural equation model Number of obs = 200
Estimation method = ml
Log likelihood = -2768.7045

-------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------------+----------------------------------------------------------------
Structural |

math |
read | .4169486 .0560586 7.44 0.000 .3070759 .5268214

write | .3411219 .0606382 5.63 0.000 .2222731 .4599706
_cons | 12.86507 2.800378 4.59 0.000 7.376428 18.35371

------------+----------------------------------------------------------------
science |

math | .3190094 .0759047 4.20 0.000 .170239 .4677798
read | .3015317 .0679912 4.43 0.000 .1682715 .434792

write | .2065257 .0700532 2.95 0.003 .0692239 .3438274
_cons | 8.407353 3.160709 2.66 0.008 2.212476 14.60223

--------------+----------------------------------------------------------------
var(e.math)| 42.32758 4.232758 34.79391 51.49245

var(e.science)| 48.77421 4.877421 40.09314 59.33492
-------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 = .

FIGURE 2.28: Path analysis for the model shown in Figure 2.27 fitted using the sem
command in Stata.

two equations respectively. Finally, we can get the direct, indirect and total effects
with the estat teffects postestimation command, whose values are reported
in Figure 2.29. For more details on how to use Stata’s sem for fitting PA models, we
suggest you to read Chapter 2 of Acock (2013).

2.5 Getting to Partial Least Squares Structural Equation Mod-
elling

A common situation in social and behavioural sciences is to collect data by admin-
istering a questionnaire to individuals. Typically, items in the questionnaire are de-
signed to measure a set of concepts that cannot be observed directly because of their
complicated and intangible nature (the most notable example in psychology is intel-
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Direct effects
------------------------------------------------------------------------------

| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Structural |

math |
read | .4169486 .0560586 7.44 0.000 .3070759 .5268214

write | .3411219 .0606382 5.63 0.000 .2222731 .4599706
-----------+----------------------------------------------------------------
science |

math | .3190094 .0759047 4.20 0.000 .170239 .4677798
read | .3015317 .0679912 4.43 0.000 .1682715 .434792

write | .2065257 .0700532 2.95 0.003 .0692239 .3438274
------------------------------------------------------------------------------

Indirect effects
------------------------------------------------------------------------------

| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Structural |

math |
read | 0 (no path)

write | 0 (no path)
-----------+----------------------------------------------------------------
science |

math | 0 (no path)
read | .1330105 .0363514 3.66 0.000 .061763 .204258

write | .1088211 .0323207 3.37 0.001 .0454736 .1721686
------------------------------------------------------------------------------

Total effects
------------------------------------------------------------------------------

| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Structural |

math |
read | .4169486 .0560586 7.44 0.000 .3070759 .5268214

write | .3411219 .0606382 5.63 0.000 .2222731 .4599706
-----------+----------------------------------------------------------------
science |

math | .3190094 .0759047 4.20 0.000 .170239 .4677798
read | .4345423 .0627773 6.92 0.000 .311501 .5575836

write | .3153468 .0679059 4.64 0.000 .1822536 .4484399
------------------------------------------------------------------------------

FIGURE 2.29: Estimated direct, indirect and total effects for the path model shown
in Figure 2.27.
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ligence). In principle, the easiest and most desirable case is when each concept is
measured by a single item. However, often this is not possible in practice because
the latent feature we are trying to quantify involves several dimensions. A popular
approach consists in performing an exploratory factor analysis (EFA) on the items
and choose an appropriate number of factors to represent the information underly-
ing the original items. Then, the researcher computes so called factor scores, which
represent the projection of the item values for each individual on the factor space
identified from the EFA. These scores may be used as individual measures in applied
settings or they can be included in subsequent analyses such as regression or path
analysis. However, different approaches are available to compute the scores, each
one with its own pros and cons. In this section we provide a brief summary of these
approaches. More information can be found in Grice (2001); DiStefano et al. (2009)
and Hair et al. (2018a).

Factor score computation methods are usually classified in two categories: non-
refined (or coarse) and refined. The former are simple procedures that are easy to
compute and interpret, while the latter are more complex but they also provide more
accurate results. The most frequently used non-refined methods are:

• Sum scores by factor, also known as summated scale, involves summing or aver-
aging items with high loadings44 from the factor analysis. Sometimes items with
a negative loading are included with a reversed sign. This process is known as re-
verse scoring and its aim is to prevent the values of the items to cancel out when
they are summed. The average is usually preferred over the sum of the items
because it preserves the scale of the items. Moreover, the average allows to get
more consistent values across the sample in presence of missing values unless
these are first imputed. Despite their simplicity, sum scores present a series of
drawbacks. In particular, they assign the same weight45 to all items and they do
not account for the correlation among the items themselves. Finally, sum scores
are not necessarily orthogonal (i.e., uncorrelated) and they should undergo an
extensive assessment of their reliability and validity.

• Sum scores using a cut-off value, which include only items with loading values
above a given threshold. This approach allows to consider an item’s relationship
to the factor, but it clearly wastes a lot of information and still suffers from the
other drawbacks of the raw sum score. In addition, the cut-off value to use is
subjective and no clear guidance is available in the literature.

• Weighted sum scores, which involves weighting the item values with the corre-
sponding loading. One advantage of this method is that items with the highest
loadings will have the largest impact on the factor score. However, due to the
subjective choice of extraction model and rotation method, factor loadings may
not be an accurate representation of the differences among factors.

44We remind that in factor analysis, as in PCA, loadings provide the correlation of the different items
with each of the extracted factors.

45This concept is known as τ-equivalence.
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Refined methods are more sophisticated and generate scores that are standardized
(i.e., having mean zero e unit standard deviation). Different approaches are available
in this case too, all of which compute the scores as linear combinations of the item
values. Moreover, they respect the choice made in the EFA regarding the relation-
ships between factors, that is they are uncorrelated when the solution uses orthogonal
factors, or correlated when the solution is oblique. The most common refined method
for computing scores after an EFA is the regression (or Thompson) method, which
computes the factor scores using a linear regression model where the independent
variables are the standardized item values and the dependent variables are the factor
scores. It can be shown (see for example Johnson and Wichern, 2014, Section 9.5)
that the regression coefficients are computed taking into account both the correlation
between factors and items (through loadings), but also the item correlations.

Refined methods are generally preferable for computing scores both from the
theoretical and practical point of views. Moreover, simulation studies have shown
that non-refined methods perform poorly especially in presence of missing values
(see for example Estabrook and Neale, 2013).

To conclude, refined methods provide a more reliable and theoretical grounded
approach to generate factor scores. EFA represents the most popular choice for com-
puting such scores, but other multivariate statistical techniques can be used. A more
structured approach for computing scores is provided by so called composite vari-
ables, which are obtained as a weighted sum of indicators. As we already stated in
Chapter 1, one of the most popular method that is based on the notion of composite
variables is partial least squares structural equation modelling, that we introduce in
the next chapter.

2.6 Summary
In this chapter we reviewed some building blocks that will be needed in the rest
of the book. In particular, the bootstrap, PCA, cluster analysis and mixture models,
together with correlation and linear regression analysis reviewed in Appendix A, are
at the core of the methods we will present in the next chapters.

Appendix: R Commands
The aim of the R appendices is to show you how to perform the same analyses we
discussed in the chapter using the R software. In this book we assume that you already
have a basic familiarity with R. In particular, we take for granted that you know
the main data structures available in R (i.e., vectors, factors, matrices, lists and data
frames) and the basics of working with functions. In case you do not possess such
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skills, you can find tons of free material online if you simply type “learn R” in a
search engine. One very handy introduction to R we feel to suggest is the manual
by Grolemund (2014), a free online version of which is available at https://
rstudio-education.github.io/hopr/. For a complete list of resources
you can also look at https://education.rstudio.com/learn/.

The bootstrap

The basic implementation of non-parametric bootstrap is an easy exercise, since it
involves the few steps summarized in Algorithm 2.1.

Algorithm 2.1 The basic bootstrap pseudo-code.

1: Given data for n observations, xxx = (x1,x2, . . . ,xn). Specify the statistic θ̂ to re-
sample. Set the number of bootstrap replications B.

2: for b← 1, B do
3: Draw a random sample of size n, xxx∗b = (x∗b1 ,x∗b2 , . . . ,x∗bn ), with replacement

from the original sample xxx.
4: Using the sampled data xxx∗b, compute the statistic’s bootstrap replicate θ̂ ∗b.
5: end for

As an example, consider the simple situation we discussed in Section 2.1, that
is the estimation of the mean of a population using the sample data (x1 = 7,x2 =
4,x3 = −5,x4 = 1,x5 = −2). The R code for computing the bootstrap distribution
(not reported here) of the sample mean using B = 200 replications is shown in the
code below46:

1 set.seed(123)

2 x <- c(7, 4, -5, 1, -2)

3 B <- 200
4 mean_boot <- numeric(B)
5 for (b in 1:B) {
6 x_b <- x[sample(1:length(x), replace = TRUE)]
7 mean_boot[b] <- mean(x_b)
8 }

46The set.seed() function sets the random number generator seed. We set it every time to allow
you reproducing the same results we report here. However, notice that in April 2019 R 3.6.0 changed
the way it generates random numbers. Since we prepared most of the examples using the previous ver-
sion of the random number generator, to recover the numbers shown here you need to run the com-
mand RNGversion("3.5.0") beforehand. If you’re curious about the reason for the change, see the
discussion at https://stat.ethz.ch/pipermail/r-devel/2018-September/076817.
html.

https://rstudio-education.github.io/
https://rstudio-education.github.io/
https://education.rstudio.com/
https://stat.ethz.ch/
https://stat.ethz.ch/
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9 hist(mean_boot, col = gray(0.5, 0.3))

Nonetheless, it is a well-known fact that loops in R are inefficient, so that a faster
and more convenient approach to the bootstrap is often desirable. One of the most
complete implementations of the bootstrap in R is provided by the boot package
(Canty and Ripley, 2019), which also includes many other resampling plans (Davison
and Hinkley, 1997). The main function in the package is boot() and it requires the
following mandatory arguments:

• data, the data to resample (either a numeric vector or matrix, or a data frame),

• R, the number of bootstrap replications,

• statistic, the function implementing the calculations for the statistic of in-
terest.

Optionally, you can also set other arguments, such as the type of resampling and
whether the computation should rely on parallel computing, that are not described
here (for more details see the boot documentation). A particularly tricky part is
represented by the statistic argument, which must be a function with two argu-
ments, the first corresponding to the data to use in the computation of the statistic,
and the second being a vector of indices (or frequencies or weights) which define the
bootstrap sample. The following code implements the same non-parametric bootstrap
procedure described above but exploiting the boot() function47:

1 if (!require(boot, quietly = TRUE)) install.packages("boot")
2 library(boot)

3 set.seed(123)

4 mean_w <- function(x, i) mean(x[i])
5 mean_boot <- boot(data = x, statistic = mean_w, R = 200)

6 plot(mean_boot)

The corresponding output is as follows:

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = x, statistic = mean_w, R = 200)

Bootstrap Statistics :

47The first line in the code checks if the boot package is available on your computer, and if it isn’t, it
installs the package from the internet.
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original bias std. error
t1* 1 -0.006 1.811511

In the code above, the statistic argument is set equal to the mean_w()
function, which simply redefines the mean() function with the addition of a second
argument, here called i, representing the indexes of the resampled data that will be
used to compute the mean value in each replication.

Another advantage from using the boot() function is the possibility to use its
output to perform further calculations. For example, we may compute the bootstrap
confidence intervals by running the boot.ci() function48:

1 boot.ci(mean_boot, conf = 0.95,
2 type = c("norm", "basic", "perc", "bca"))

The corresponding output is given by:

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 200 bootstrap replicates

CALL :
boot.ci(boot.out = mean_boot, conf = 0.95,

type = c("norm", "basic", "perc", "bca"))

Intervals :
Level Normal Basic
95% (-2.5445, 4.5565 ) (-2.5838, 4.5838 )

Level Percentile BCa
95% (-2.5838, 4.5838 ) (-3.5331, 3.4000 )
Calculations and Intervals on Original Scale

Principal component analysis

Different packages in R include interfaces for performing principal component analy-
sis (PCA), but the most popular functions are princomp() and prcomp() avail-
able in the basic R installation. The former uses the spectral decomposition, while
prcomp() is based on the so called singular value decomposition (SVD), a gen-
eral type of matrix decomposition that applies also to rectangular (i.e., non-square)
matrices49. Generally, the two functions provide the same results, but prcomp()
should be preferred because the SVD guarantees a higher numerical accuracy. Both
functions include the following methods:

• print, which prints the results in a nice format; for princomp() it returns
only the standard deviations of the components (i.e., the square root of the

48For more details on the bootstrap confidence intervals, see the discussion in the technical appendix
at the end of the chapter.

49For the more math-inclined readers, a good introduction to SVD is available at https://en.
wikipedia.org/wiki/Singular_value_decomposition.

https://en.wikipedia.org/
https://en.wikipedia.org/
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eigenvalues), while for prcomp() it also produces the matrix of the (unnor-
malized) eigenvectors.

• summary, which prints a table with the component standard deviations, the pro-
portion of variance explained by each component and the corresponding cumu-
lative proportions.

• plot, which produces the screeplot using either a bar or a line chart (the same
plot can also be obtained with the screeplot() function).

• predict, which returns a numerical matrix containing the component scores.

• biplot, which produces the so called biplot, a plot that aims to represent both
the observations and the variables on a single diagram by projecting the corre-
sponding values onto a plane defined by two of the extracted components (for
more details see for example Gower and Hand, 1996).

Additionally, princomp() has a loadings method, that produces an object of
class loadings containing the (unnormalized) eigenvectors. A nice feature of
the loadings objects is that they have their own print method that includes a
cut-off argument, which allows to blank out the loadings below a given threshold.
This simple trick permits to focus the attention on the patterns with larger loadings.
Furthermore, to ease the components interpretation, some authors suggest to rotate
them, but the correctness of this procedure is still debated (see Rencher and Chris-
tensen, 2012, Chapter 12). This can be achieved in R by using the varimax() or
promax() functions directly on the output returned by loadings(). To perform
the same analysis using the output of the prcomp() function, you first need to ex-
tract the eigenvectors from the output (see the next paragraph) and change its class
to loadings.

The princomp() and prcomp() functions both outputs the results in the form
of a list object whose elements can be directly accessed using the standard R list
subsetting feature (i.e., either $ or [[]]). However, the naming of these elements
is not consistent in the two cases. In particular, the princomp() returns a list with
the following elements:

• sdev, the standard deviations of the principal components,

• loadings, the matrix whose columns contain the eigenvectors,

• center, the vector of means that have been subtracted from the variables before
performing PCA,

• scale, the vector of scaling measures applied to the variables before performing
PCA,

• n.obs, the number of observations,

• scores, the matrix containing the component scores,

• call, the function call.
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The list returned by prcomp() contains the following elements, instead:

• sdev, the standard deviations of the principal components,

• rotation, the matrix whose columns contain the eigenvectors,

• center, the vector of means that have been subtracted from the variables before
performing PCA,

• scale, the vector of scaling measures applied to the variables before performing
PCA,

• x, the matrix containing the component scores.

Finally, in prcomp() the variances are computed with the usual divisor n−1, while
princomp() uses n.

Another package that we consider worth mentioning here is FactoMineR,
which is completely dedicated to multivariate analysis and contains functions to per-
form PCA, exploratory factor analysis, simple and multiple correspondence analysis
and clustering (for a full documentation see Husson et al., 2017). The same authors
also developed a web-interface for the package called Factoshiny50. A further
related package is factoextra51, that provides ggplot2-based visualizations of
the results produced by FactoMineR.

We now apply the prcomp() function to the Rateprof data presented in Sec-
tion 2.2, which are available in the alr4 package. The code below performs PCA
on the correlation matrix for the variables quality, helpfulness, clarity,
easiness and raterInterest by setting to TRUE both the center and
scale. arguments and prints the results52:

1 if (!require(alr4, quietly = TRUE)) install.packages("alr4")
2 data(Rateprof, package = "alr4")
3 vars <- c("quality", "helpfulness", "clarity",
4 "easiness", "raterInterest")

5 prcomp_res <- prcomp(x = Rateprof[, vars], center = TRUE,
6 scale. = TRUE)
7 print(prcomp_res, digits = 5)

50http://factominer.free.fr/graphs/factoshiny.html.
51https://rpkgs.datanovia.com/factoextra/index.html.
52Note that for this example the results produced by prcomp() differ from those reported by Stata

(see Figure 2.4) as for the signs of the eigenvectors, which are all inverted. Sign indeterminacy of the
components is a well-known issue of PCA, which practically consists in the direction (sign) of principal
components being arbitrary. Some software (e.g., Stata, but not R) return components signed so that the
sum of each eigenvector’s elements is strictly positive.

http://factominer.free.fr/
https://rpkgs.datanovia.com/
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Standard deviations (1, .., p=5):
[1] 1.892117 0.895463 0.733114 0.280511 0.043573

Rotation (n x k) = (5 x 5):
PC1 PC2 PC3 PC4 PC5

quality -0.51764 -0.038352 0.26656 -0.0361564 0.81130917
helpfulness -0.50900 -0.043583 0.24505 -0.6976809 -0.43841916
clarity -0.50529 -0.024135 0.28926 0.7147568 -0.38671397
easiness -0.35369 -0.558242 -0.74981 0.0322385 -0.00427060
raterInterest -0.30422 0.827293 -0.47225 0.0041753 0.00035095

Next, the following code produces the screeplot, the scatterplot matrix of the com-
ponent scores (both not reported here) and computes the loadings multiplying the
matrix of eigenvectors by the diagonal matrix with the component standard devia-
tions on the main diagonal (see equation (2.9) on page 84):

1 plot(prcomp_res, type = "lines") # not shown
2 pairs(predict(prcomp_res)) # not shown
3 prcomp_res$rotation %*% diag(prcomp_res$sdev)

[,1] [,2] [,3] [,4] [,5]
quality -0.9794289 -0.03434260 0.1954152 -0.010142277 0.0353510543
helpfulness -0.9630870 -0.03902658 0.1796500 -0.195707371 -0.0191031732
clarity -0.9560757 -0.02161203 0.2120591 0.200497360 -0.0168502307
easiness -0.6692316 -0.49988458 -0.5496932 0.009043261 -0.0001860820
raterInterest -0.5756178 0.74080993 -0.3462129 0.001171206 0.0000152917

We conclude this section with a quick mention to a couple of packages, namely
pls (Mevik et al., 2019; Wehrens, 2011) and mixOmics (Rohart et al., 2017),
both of which provide fairly general interfaces to perform a wide range of mul-
tivariate regression analyses including principal component regression (PCR) and
partial least squares regression (PLSR). In particular, pls provides the functions
pcr() and plsr() that also implement model selection through cross-validation.
The mixOmics package provides functions for the same purposes but with addi-
tional functionalities to deal with large sparse datasets.

Segmentation methods

The packages available in R to perform segmentation are so many that it is impos-
sible to provide a comprehensive description here. Therefore, we present a selection
of those we consider essential and invite you to visit the cluster CRAN task view
at https://cran.r-project.org/web/views/Cluster.html for the
complete list.

Cluster analysis

All the standard agglomerative hierarchical clustering algorithms are implemented in
R through the hclust() function . hclust() requires in input the distance ma-
trix, that can be computed through the dist() function, and the linkage measure,

https://cran.r-project.org/
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which is specified with the method argument. The hclust() function returns an
object of class hclust whose plot method produces the corresponding dendro-
gram. After importing the data from the ch2_SimData.dta Stata file using the
read.dta() function from the foreign package, the following code compares
the four standard hierarchical clustering algorithms (i.e., single linkage, complete
linkage, average linkage, and the Ward’s method) on the same simulated data de-
scribed in Section 2.3.1.1:

1 if (!require(foreign, quietly = TRUE)) install.packages("alr4")
2 library(foreign)
3 path_data <- "" # write here the path for your data
4 simdata <- read.dta(file.path(path_data, "ch2_SimData.dta"))
5 simdata <- simdata[, 1:5]
6 pairs(simdata[, -1], pch = 19, col = gray(.5, .3)) # not shown

7 simdata_std <- scale(simdata[, -1]) # data standardization

8 simdata_dist <- dist(simdata_std, method = "euclidean")
9 single_linkage <- hclust(simdata_dist, method = "single")

10 complete_linkage <- hclust(simdata_dist, method = "complete")
11 average_linkage <- hclust(simdata_dist, method = "average")
12 ward_linkage <- hclust(simdata_dist, method = "ward.D2")
13 par(mfrow = c(2, 2)) # not shown
14 plot(single_linkage, main = "Single linkage", cex = .4)
15 plot(complete_linkage, main = "Complete linkage", cex = .4)
16 plot(average_linkage, main = "Average linkage", cex = .4)
17 plot(ward_linkage, main = "Ward method", cex = .4)

Two further functions that are useful after plotting a dendrogram are
rect.hclust() and cutree(), which allow to “cut” the tree at a given height
(with the argument h) or in correspondence of a given number of groups (with the ar-
gument k). More specifically, the former draws rectangles on the dendrogram around
the selected groups, while the latter returns the corresponding group memberships.
The code below generates the same comparison of the dendrograms as in the previ-
ous code but with the rectangles drawn for k = 3 groups, together with the group
memberships from the Ward’s method:

1 par(mfrow = c(2, 2)) # not shown
2 plot(single_linkage, main = "Single linkage", cex = .4)
3 rect.hclust(single_linkage, k = 3)
4 plot(complete_linkage, main = "Complete linkage", cex = .4)
5 rect.hclust(complete_linkage, k = 3)
6 plot(average_linkage, main = "Average linkage", cex = .4)
7 rect.hclust(average_linkage, k = 3)
8 plot(ward_linkage, main = "Ward method", cex = .4)
9 rect.hclust(ward_linkage, k = 3)

10 ward_gm <- cutree(ward_linkage, k = 3) # not reported
11 table(ward_gm, simdata[, 1])

A more flexible interface that implements many agglomerative hierarchical algo-
rithms is agnes() (agglomerative nesting) from the cluster package (Maechler
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et al., 2019). Compared to hclust(), agnes() allows to specify directly the data
in input, the distance measure to use, the clustering method and whether to standard-
ize or not the data. The package also defines the corresponding summary and plot
methods. The code reported below performs the analysis with the Ward’s method on
the same simulated data:

1 if (!require(cluster, quietly = TRUE)) install.packages("cluster")
2 library(cluster)
3 # agglomerative nesting (hierarchical clustering)
4 res_agnes <- agnes(x = simdata[, 2:5], # data matrix
5 stand = TRUE, # standardize the data
6 metric = "euclidean", # distance measure
7 method = "ward" # linkage method
8 )
9 plot(res_agnes, main = "Ward method", which.plots = 2) # not shown

The factoextra package includes some functions to create nice ggplot2-
based visualizations of the results. With regards to hierarchical clustering, the func-
tion fviz_dend() provides many arguments to format the final appearance of a
dendrogram. The following code provides an example:

1 if (!require(factoextra, quietly = TRUE))
2 install.packages("factoextra")
3 library(factoextra)
4 fviz_dend(res_agnes, # not shown
5 k = 3, # cut in three groups
6 cex = 0.5, # label size
7 color_labels_by_k = TRUE, # color labels by groups
8 rect = TRUE # add rectangles around groups
9 )

Another package that provides additional functionalities to represent dendro-
gram objects is dendextend. Finally, the cluster package also includes the
diana() function that implements a divisive hierarchical algorithm. More details
can be found in Kaufman and Rousseeuw (1990).

For what regards partitional clustering algorithms, the kmeans() function im-
plements the standard K-means algorithm we discussed in Section 2.3.1.2. The
kmeans() function requires in input the data matrix (x argument) and the number
of clusters to look for (centers argument). Optionally, one may provide a vector
of user-defined cluster centres (still with the centers argument), the maximum
number of iterations (iter.max, which defaults to 10) and the number of algo-
rithm restarts (nstart) to increase the chances of convergence towards the global
optimal solution (it is suggested to set it at least to 10). The kmeans() function re-
turns a kmeans object, a list that includes components such as withinss, a vector
containing the within-cluster sum of squares for each cluster, and tot.withinss,
the total within-cluster sum of squares . The latter can be useful to compare solu-
tions with different values of K. Another useful component of a kmeans object is
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cluster, the vector of cluster memberships. The following code performs a K-
means analysis for the same simulated data as above using a number of clusters from
1 (i.e., no cluster structure) to 10 and produces a graph (not reported here) that shows
how the corresponding total within-cluster sum of squares decreases with K:

1 set.seed(101) # for reproducibility
2 wss <- numeric(10) # allocate memory for TWSS
3 for (k in 1:10) { # loop over different K
4 res_k <- kmeans(x = simdata[, 2:5], # data matrix
5 centers = k, # number of clusters
6 iter.max = 100, # max num. of iterations
7 nstart = 10 # number of restarts
8 )
9 wss[k] <- res_k$tot.withinss # stores TWSS for given K

10 }
11 plot(wss, type = "b", lwd = 2, pch = 20, # not shown
12 xlab = "K", ylab = "Total within-cluster sum of squares")

The plot of the total within-cluster sum of squares shows that there is a clear
“elbow” in correspondence of K = 3, which corresponds to the actual number of
groups used to simulate the data and to the same groups identified by the hierarchical
algorithms.

The cluster package includes two functions that perform partitional cluster-
ing, that is pam() (acronym for partitioning around medoids) and clara() (which
stands for clustering large applications), with the latter being a specialized version
of the former that is particularly efficient for large datasets. These methods are fully
described in Kaufman and Rousseeuw (1990).

Another package that is focused on partitional methods is flexclust (Leisch,
2006), which together with K-means also implements more flexible algorithms like
hard competitive learning, neural gas and the possibility to perform “bagged cluster-
ing”, which consists in running repeatedly the specified method on bootstrap samples
from the original data and combining the resulting cluster centres using hierarchical
clustering. The main function in flexclust is kcca(), which returns richer ob-
jects compared to kmeans() whose contents can be subsequently analysed using
many accessory functions. A detailed description of the methods and features avail-
able in the flexclust package is provided by Dolnicar et al. (2018).

Finally, a lot of functions for identifying a suitable number of clusters and for
validating a cluster solution are spread in different packages. To mention a few of
these alternatives, the NbClust() function in the same package (Charrad et al.,
2014) is particularly useful since it implements 30 different indexes for supporting
the user to select the optimal number of clusters. Among these you can find the
Caliński-Harabasz pseudo F and Duda-Hart pseudo t2 indexes (see page 84), the gap
statistic and the silhouette method. The following code computes the indexes with the
NbClust() function for the simulated data we described above using the complete
linkage method:
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1 if (!require(NbClust, quietly = TRUE)) install.packages("NbClust")
2 library(NBClust)
3 res <- NbClust(data = simdata_std, # data matrix
4 distance = "euclidean", # distance measure
5 min.nc = 2, # minimum num. of clusters
6 max.nc = 8, # maximum num. of clusters
7 method = "complete", # clustering algorithm
8 index = "alllong") # compute all indexes

The corresponding results (with the exception of the plot) are reported below:

*******************************************************************
* Among all indices:

* 2 proposed 2 as the best number of clusters

* 23 proposed 3 as the best number of clusters

* 1 proposed 5 as the best number of clusters

* 1 proposed 8 as the best number of clusters

***** Conclusion *****

* According to the majority rule, the best number of clusters is 3

*******************************************************************

So, in this example 23 of the indexes computed by the NbClust() function agree in
indicating that K = 3 is the best number of clusters for these data. To get the detailed
results for each index, you can look inside the list object returned by the function.

We conclude this section with a brief mention to the clValid (Brock et al.,
2008) and fpc (Hennig, 2020) packages, which provide tools for validating a clus-
ter solution, that is for evaluating the goodness of the clustering results with respect
to the compactness, connectedness, separation and stability of the cluster partitions.
In particular, the cqcluster.stats() function from the fpc package provides
a quite long list of validation statistics, while clusterboot() assesses the clus-
terwise stability of a clustering solution by resampling the data.

Finite mixture models

Finite mixtures (FMMs) are popular tools with applications in different fields. This
fact is also confirmed by the existence of many R packages that implement a wide
range of FMMs. Here, we briefly present the most acknowledged of these packages,
that is flexmix, mclust and mixtools.

We start from mclust, the most popular package in R for finite mixture mod-
elling (Scrucca et al., 2016). Even if it only implements mixtures of Gaussian distri-
butions, it provides a fairly broad set of tools for summarizing and visualizing the re-
sults. The main function, Mclust() (note the capitalization), requires the raw data
as the only mandatory argument. The number of clusters to consider in the analysis
is chosen through the argument G, which is set by default to 1:9 (i.e., the function
computes all the solutions with number of clusters from 1 to 9). The Mclust()
function implements a list of 14 different Gaussian mixture models53 that differ in

53The mclust package also includes features for performing classification through discriminant anal-
ysis based on Gaussian finite mixture modelling.
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terms of their geometric characteristics. In the package these models are referred to
with the acronyms shown in the first column of Table 2.2. The following code loads
the package, fits the Gaussian mixtures to the simulated data we have been using so
far and reports a summary of the results:

1 if (!require(mclust, quietly = TRUE)) install.packages("mclust")
2 library(mclust)
3 res_mclust <- Mclust(simdata_std, G = 1:8)
4 summary(res_mclust)

----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust VVI (diagonal, varying volume and shape) model with 3
components:

log-likelihood n df BIC ICL
-45.12921 50 26 -191.971 -191.971

Clustering table:
1 2 3
17 17 16

The summary shows that the best model (i.e., the model with the largest value of the
BIC index54) is the VVI model with 3 components, which corresponds to the actual
model we used to generate the data from.

The Mclust() function returns an object of class Mclust corresponding to
a list containing the detailed results, for which the package includes plot and
predict methods. The former produces different visualizations of the results,
while the latter returns the class posterior probabilities based on which each observa-
tion is assigned to one of the groups. The visualizations available through the plot
method are: (1) the plot of the BIC values for all the models as a function of the
number of components, (2) the classification plot, that is the plot showing the cluster
memberships for each observation, (3) the uncertainty plot, which shows the degree
of uncertainty for the classification of each data point and (4) a plot of the estimated
densities. The uncertainty plot for the previous fit is produced by the code below and
it is shown in Figure 2.30.

1 plot(res_mclust, what = "uncertainty")

The plot shows that there is one datum, observation number 40, with an apparently
uncertain classification. However, we must highlight that the actual uncertainty val-
ues are all very small with the largest one, associated with the observation above,
being equal to 2.65×10−8.

54Note that the BIC index in the mclust package is implemented with an opposite sign with respect
to the definition we provide in equation (2.22).
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TABLE 2.2: Characteristics of the models available for clustering in the mclust
package.

Model Distribution Volume Shape Orientation
EII Spherical Equal Equal –
VII Spherical Equal Variable –
EEI Diagonal Equal Equal Coordinate axes
VEI Diagonal Equal Variable Coordinate axes
EVI Diagonal Variable Equal Coordinate axes
VVI Diagonal Variable Variable Coordinate axes
EEE Ellipsoidal Equal Equal Equal
EVE Ellipsoidal Variable Equal Equal
VEE Ellipsoidal Equal Variable Equal
VVE Ellipsoidal Variable Variable Equal
EEV Ellipsoidal Equal Equal Variable
VEV Ellipsoidal Equal Variable Variable
EVV Ellipsoidal Variable Equal Variable
VVV Ellipsoidal Variable Variable Variable

The flexmix package (Leisch, 2004) provides a general framework for finite
mixture modelling, including mixtures with non-Gaussian components and mixtures
of regression models (see Dolnicar et al., 2018, Chapter 7). Parameter estimation is
performed through the EM algorithm (see Section 2.6 for a brief introduction). The
main function in the package is flexmix(), which requires the following manda-
tory arguments:

• formula, the symbolic description of the model to fit

• data, the data frame containing the variables used in the model

• k, the number of clusters to use

• model, an object of FLXM providing the model family specification; this is the
argument through which you can specify whether you want to use Gaussian or
other types of components

As usual, other optional arguments are available to fine tune the performance of
the EM algorithm. The flexmix() function returns an object of class flexmix
which contains different components55. The following code fits a mixture of K = 3
multivariate Gaussian distributions to our simulated data and produces a plot showing
the corresponding classification (see Figure 2.31):

55The flexmix package is implemented using the so called S4 system (Wickham, 2019). The com-
ponents of S4 objects, called “slots”, are extracted using the @ operator instead of the $ operator used for
standard list objects. If you want to get the full list of slots available in a given S4 object, you can use the
slotNames() function.
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FIGURE 2.30: Uncertainty plot for the Gaussian mixture model fitted using the
Mclust() function on simulated data.

1 if (!require(flexmix, quietly = TRUE)) install.packages("flexmix")
2 library(flexmix)

3 set.seed(301) # for reproducibility
4 res_flexmix <- flexmix(formula = simdata_std ~ 1,
5 data = data.frame(simdata_std), k = 3,
6 model = FLXMCmvnorm())

7 par(mfrow = c(3, 2), mar = c(4, 4, 1, 1) + .1)
8 for (i in 1:(ncol(simdata_std) - 1)) {
9 for (j in (i + 1):ncol(simdata_std)) {

10 plotEll(res_flexmix, data = data.frame(simdata_std),
11 which = c(i, j))
12 }
13 }

As you can see, the specification of the model through the formula argument
is not straightforward, because it has been developed to be as general as possible



2.6 Summary 73

−3 −2 −1 0 1 2 3

−
1
.0

0
.0

1
.0

2
.0

x1

x
2

●1

●2

●3

−3 −2 −1 0 1 2 3

−
1

0
1

2

x1

x
3

●1

●2

●3

−3 −2 −1 0 1 2

−
1
.0

0
.0

1
.0

2
.0

x1

x
4

●1

●2

●3

−2 −1 0 1 2 3

−
1

0
1

2

x2

x
3

●1

●2

●3

−2 −1 0 1 2 3

−
1
.0

0
.0

1
.0

2
.0

x2

x
4

●1

●2

●3

−2 −1 0 1 2 3

−
1
.0

0
.0

1
.0

2
.0

x3

x
4

●1

●2

●3

FIGURE 2.31: Classification produced by fitting a multivariate Gaussian mixture
model using the flexmix() function on simulated data.

especially to fit mixtures of complex regression models. The FLXMCmvnorm()
function represents the interface for fitting mixtures of multivariate Gaussian dis-
tributions, but others are available or can be provided directly by the user (see the
documentation for more details).

The selection of the best model is performed using the standard informa-
tion criteria AIC and BIC. To this end, the flexmix package also provides the
stepFlexmix() function that allows to specify a range of values for the number
of clusters to fit. The code below fits a mixture of multivariate Gaussian distribu-
tions to the same data using a number of components from 1 to 8, whose results are
reported next:

1 set.seed(301) # for reproducibility
2 res_flexmix_all <- stepFlexmix(formula = simdata_std ~ 1,
3 data = data.frame(simdata_std), k = 1:8,
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4 model = FLXMCmvnorm())
5 print(res_flexmix_all)

Call:
stepFlexmix(formula = simdata_std ~ 1,

data = data.frame(simdata_std),
model = FLXMCmvnorm(), k = 1:8)

iter converged k k0 logLik AIC BIC ICL
1 2 TRUE 1 1 -281.78771 579.5754 594.8716 594.8716
2 9 TRUE 2 2 -139.73969 313.4794 345.9838 345.9838
3 8 TRUE 3 3 -45.31692 142.6338 192.3464 192.3464
4 30 TRUE 4 4 -36.49883 142.9977 209.9185 211.2668
5 28 TRUE 4 5 -36.49883 142.9977 209.9185 211.2668
6 14 TRUE 3 6 -45.31692 142.6338 192.3464 192.3464
7 33 TRUE 4 7 -37.12521 144.2504 211.1712 211.2719
8 40 TRUE 5 8 -29.82160 147.6432 231.7722 236.6819

We conclude with a brief mention to the mixtools package (Benaglia et al.,
2009). Similar to flexmix, mixtools includes functions for fitting finite mixtures
of Gaussian and non-Gaussian distributions as well as of more general regression
models. In addition, mixtools also provides interfaces for fitting non-parametric
mixtures, that is mixture models where the component distributions are left unspeci-
fied. We refer you to the package documentation for more details and examples.

Latent class analysis

As we already noted in Section 2.3.3, latent class analysis is a special type of finite
mixtures where both the observed and latent (i.e., the cluster membership) variables
are categorical. This implies that you can fit LCA models in R using the packages
we discussed above, that is either flexmix or mixtools (mclust only allows
for Gaussian components), specifying discrete distributions for the manifest vari-
ables. In addition to these general packages for FMMs, you may also use the poLCA
package (Linzer and Lewis, 2011), which is entirely dedicated to LCA models. The
poLCA package is fairly simple since it essentially consists of only one function,
the poLCA() function, through which the model is specified, fitted and assessed by
inspecting the results that are automatically printed.

Path analysis

Path models, known in econometrics as simultaneous equation models, can be esti-
mated using a range of different methods depending on the structural and stochastic
assumptions for the variables involved in the model (see for example Greene, 2018,
Chapter 10). Some of these methods are implemented in the systemfit pack-
age (Henningsen and Hamann, 2007). The main function, systemfit(), requires
the specification of the equations in the system as a list of formula objects. Op-
tional arguments include the estimation method (method), the specification of the
restrictions to impose on the model’s coefficients (restrict.matrix) and a list
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of further control parameters (control). The systemfit() function returns an
object of class systemfit, which is a list containing 10 different components with
the detailed results of the analysis. The package includes different methods for sum-
marizing and extracting portion of the results. The code snippet below installs the
package and estimates the path model shown in Figure 2.27 using the data in the
ch2_hsb2.dta file:

1 if (!require(foreign, quietly = TRUE)) install.packages("foreign")
2 library(foreign)
3 path_data <- "" # write here the path for your data
4 hsb2 <- read.dta(file.path(path_data, "ch2_hsb2.dta"))

5 if (!require(systemfit, quietly = TRUE))
6 install.packages("systemfit")
7 library(systemfit)
8 eq_math <- math ~ read + write
9 eq_science <- science ~ math + read + write

10 eqs <- list(math = eq_math, science = eq_science)
11 res_systemfit <- systemfit(eqs, data = hsb2)
12 summary(res_systemfit)

systemfit results
method: OLS

N DF SSR detRCov OLS-R2 McElroy-R2
system 400 393 18220.4 2138.71 0.507202 0.507766

N DF SSR MSE RMSE R2 Adj R2
math 200 197 8465.52 42.9722 6.55532 0.515309 0.510388
science 200 196 9754.84 49.7696 7.05476 0.499944 0.492290

The covariance matrix of the residuals
math science

math 4.29722e+01 1.54256e-13
science 1.54256e-13 4.97696e+01

The correlations of the residuals
math science

math 1.00000e+00 3.33784e-15
science 3.33784e-15 1.00000e+00

OLS estimates for 'math' (equation 1)
Model Formula: math ~ read + write

Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.8650676 2.8216198 4.55946 8.9956e-06 ***
read 0.4169486 0.0564838 7.38174 4.2886e-12 ***
write 0.3411219 0.0610982 5.58317 7.7567e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.555315 on 197 degrees of freedom
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Number of observations: 200 Degrees of Freedom: 197
SSR: 8465.515734 MSE: 42.972161 Root MSE: 6.555315
Multiple R-Squared: 0.515309 Adjusted R-Squared: 0.510388

OLS estimates for 'science' (equation 2)
Model Formula: science ~ math + read + write

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.4073530 3.1927987 2.63322 0.0091325 **
math 0.3190094 0.0766753 4.16053 0.000047488 ***
read 0.3015317 0.0686815 4.39029 0.000018495 ***
write 0.2065257 0.0707644 2.91850 0.0039285 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.054757 on 196 degrees of freedom
Number of observations: 200 Degrees of Freedom: 196
SSR: 9754.841936 MSE: 49.769602 Root MSE: 7.054757
Multiple R-Squared: 0.499944 Adjusted R-Squared: 0.49229

The coefficient estimates are the same we got with Stata (see Figure 2.28).

As we showed in Section 2.4 using Stata, path models may also be fitted using
structural equation modelling software. One of the most popular choice in R is rep-
resented by the sem package (Fox et al., 2017), but other options are available (e.g.,
the OpenMx package; Boker et al., 2020). Here, we dedicate some space to another
alternative, the lavaan package (Rosseel, 2012), which is increasingly gaining pop-
ularity among social scientists (for book-length presentations of lavaan see Beau-
jean, 2014; Finch and French, 2015; Gana and Broc, 2019). We choose to present
lavaan because we will use its syntax also in other chapters of this book. The main
function of the package is lavaan(), but other wrappers for more specific analyses
(e.g., cfa() for confirmatory factor analysis or sem() for structural equation mod-
elling) are also available. Model specification in lavaan must follow a set of strict
rules which are summarized in Table 2.3 (you can find a more detailed presentation
by executing the command ?model.syntax).

The specification of the model is supplied to lavaan() through the model ar-
gument, which must be a text string enclosed within double (") or single (') quotes
with each line corresponding to one equation in the path model. Optionally, the co-
efficients can be tagged with user-defined labels. As an example, the following code
shows the specification of the path model described above for the HSB survey data
where we name the coefficients as in Section 2.4:

1 hsb2_mod <- "
2 math ~ alpha_1*1 + gamma_11*read + gamma_12*write
3 science ~ alpha_2*1 + beta_21*math + gamma_21*read + gamma_22*write
4 math ~~ s2_math*math
5 science ~~ s2_science*science
6 "

The last two lines in the code above specify the variances of the endogenous
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TABLE 2.3: Main syntax rules used by the lavaan package for the specification of
a model.

Syntax Description Example
~ Regression onto Regress Y onto X: Y ~ X
~~ Variance or covariance between

two variables
Variance of Y: Y ~~ Y

Covariance between Y and X: Y
~~ X

~ 1 Constant term/intercept to in-
clude in an equation

Regress Y onto X including a con-
stant: Y ~ 1 + X

* Labelling of a parameter Label the coefficients in the re-
gression of Y onto X: Y ~
beta_0*1 + beta_1*X
Label the variance of the variable
Y: Y ~~ s2_Y*Y

:= Defining a non-model parameter Define beta_1_sq to be the
square of the beta_1 coefficient
of an already defined equation:
beta_1_sq := beta_1^2

variables math and science. These are optional because the lavaan() func-
tion automatically creates an error term for each endogenous variable, but we added
them because we wanted to provide labels for the two variances (i.e., s2_math and
s2_science). Then, we can fit the model with the following command:

1 if (!require(lavaan, quietly = TRUE))
2 install.packages("lavaan")
3 library(lavaan)
4 res_lavann <- lavaan(model = hsb2_mod, data = hsb2)

The lavaan() function returns an object of class lavaan for which sev-
eral methods are available, including a summary method, which accepts many
optional arguments for printing additional results (for more information about the
methods defined for lavaan objects, see the documentation with the command
?"lavaan-class"):

1 summary(res_lavann, fit.measures = TRUE, ci = TRUE,
2 rsquare = TRUE, nd = 3L)

lavaan 0.6-5 ended normally after 22 iterations

Estimator ML
Optimization method NLMINB
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Number of free parameters 9

Number of observations 200

Model Test User Model:

Test statistic 0.000
Degrees of freedom 0

Model Test Baseline Model:

Test statistic 283.456
Degrees of freedom 5
P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.000

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -1330.839
Loglikelihood unrestricted model (H1) -1330.839

Akaike (AIC) 2679.679
Bayesian (BIC) 2709.364
Sample-size adjusted Bayesian (BIC) 2680.851

Root Mean Square Error of Approximation:

RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.000
P-value RMSEA <= 0.05 NA

Standardized Root Mean Square Residual:

SRMR 0.000

Parameter Estimates:

Information Expected
Information saturated (h1) model Structured
Standard errors Standard

Regressions:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper

math ~
read (g_11) 0.417 0.056 7.438 0.000 0.307 0.527
write (g_12) 0.341 0.061 5.626 0.000 0.222 0.460

science ~
math (b_21) 0.319 0.076 4.203 0.000 0.170 0.468
read (g_21) 0.302 0.068 4.435 0.000 0.168 0.435
write (g_22) 0.207 0.070 2.948 0.003 0.069 0.344

Intercepts:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper

.math (al_1) 12.865 2.800 4.594 0.000 7.376 18.354

.science (al_2) 8.407 3.161 2.660 0.008 2.212 14.602

Variances:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper

.math (s2_m) 42.328 4.233 10.000 0.000 34.032 50.624

.science (s2_s) 48.774 4.877 10.000 0.000 39.215 58.334
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R-Square:
Estimate

math 0.515
science 0.500

It is possible to draw the path diagram using the semPaths() function in the
semPlot package, but we do not provide here the details56. Rather, we focus now
on the calculation of the indirect effects. As we already discussed in the chapter, an
indirect effect represents the effect of an independent variable (endogenous or exoge-
nous) on an endogenous variable that is mediated by at least another variable. Indirect
effects are typically computed as products of direct effects. In our HSB data example,
the read variable exerts an indirect effect on the science variable that is com-
puted as beta_21*gamma_11, while the indirect effect of write on science
is given by the product beta_21*gamma_12 (there are no indirect effects of these
two variables on math). To compute these effects with the lavaan() function,
you need to explicitly define them within the model using the := operator. To this
end, it is necessary that you already labelled the model’s coefficients because you
need to refer to them in the definition of the indirect effects. Similarly, you can also
define the total effects as the sum of the direct and indirect effects. The code below
modifies the previous model specification by adding the indirect and total effects of
the read and write variables on science. The corresponding summary output
reports the same results we showed above with the addition of the estimation of the
new parameters:

1 hsb2_indirect <- "
2 math ~ alpha_1*1 + gamma_11*read + gamma_12*write
3 science ~ alpha_2*1 + beta_21*math + gamma_21*read + gamma_22*write
4 math ~~ s2_math*math
5 science ~~ s2_science*science
6 sc_read_ind := beta_21*gamma_11
7 sc_write_ind := beta_21*gamma_12
8 sc_read_tot := sc_read_ind + gamma_21
9 sc_write_tot := sc_write_ind + gamma_22

10 "
11 res_indirect <- lavaan(model = hsb2_indirect, data = hsb2)
12 summary(res_indirect, fit.measures = TRUE, ci = TRUE,
13 rsquare = TRUE, nd = 3L)

lavaan 0.6-5 ended normally after 22 iterations

# <Omitted output>

Defined Parameters:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper

sc_read_ind 0.133 0.036 3.659 0.000 0.062 0.204
sc_write_ind 0.109 0.032 3.367 0.001 0.045 0.172
sc_read_tot 0.435 0.063 6.922 0.000 0.312 0.558
sc_write_tot 0.315 0.068 4.644 0.000 0.182 0.448

56Other alternatives to create path diagrams in R are represented by the dagitty package (http://
dagitty.net) together with its ggplot2 front-end ggdag (https://ggdag.netlify.app).

http://dagitty.net
http://dagitty.net
https://ggdag.netlify.app
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Appendix: Technical Details
More insights on the bootstrap

Suppose we are interested in estimating the unknown value of a parameter θ

for a population with distribution F . To do that, we draw a random sample xxx =
(x1,x2, . . . ,xn) from F and compute the estimate θ̂ (e.g., the sample mean). A critical
issue in statistics is that of assessing the accuracy of θ̂ . This problem is typically
solved by computing the standard error SE of the estimate. Ideally, the standard error
is the standard deviation we would observe by drawing an infinite number of random
samples of size n from the population and for each computing the estimate θ̂ . Clearly,
this procedure is impossible to implement in practice, so we must rely on a differ-
ent strategy. One possibility is to derive an analytical formula for the standard error.
This is what is done in basic statistics courses for simple cases where the algebra
is easy. For example, you know that the standard error of the sample mean is given
by σ2/n, where σ2 is the variance of the population. Unfortunately, this approach
is not available in most of the interesting cases because the algebra is too difficult.
The bootstrap represents a general approach for calculating standard errors and con-
fidence intervals. To perform the bootstrap we need to consider the original sample
as if it were the population, and we then mimic the repeated sampling idea by draw-
ing B different “bootstrap samples” from the observed sample. More specifically, the
bth bootstrap sample xxx∗b = (x∗b1 ,x∗b2 , . . . ,x∗bn ) is formed by randomly drawing n ob-
servations with equal probability and with replacement from the original sample xxx.
Then, for each bootstrap sample we compute the corresponding bootstrap replicate
θ̂ ∗b, for b = 1,2, . . . ,B. The bootstrap estimate of the standard error for θ̂ is hence
given by

SEboot =

[
1

B−1

B

∑
b=1

(
θ̂
∗b−θ

∗)2
]1/2

(2.5)

where θ
∗
= 1/n∑

B
b=1 θ̂ ∗b is the mean of the bootstrap replicates.

The collection of bootstrap replicates forms the bootstrap distribution of the
statistic θ̂ . The bootstrap distribution is not centred around the true unknown param-
eter value θ like the sampling distribution of θ̂ (assuming the statistics is unbiased),
but it is approximately centred around the estimate θ̂ itself. This is the reason why
the bootstrap is not used to get better parameter estimates, rather it is useful to quan-
tify the uncertainty of the same estimate. The bias of a statistic θ̂ is defined as the
difference between the average value of the statistic and the parameter value, that is

Bias = E[θ̂ ]−θ .

A statistic is unbiased if its bias is zero. Apart from simple cases, like the sample
mean or the sample variance, the bias is generally unknown. However, thanks to the
idea that the bootstrap “replaces” the population with the original sample, we can get
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a bootstrap estimate of the bias as

Biasboot = θ
∗− θ̂ , (2.6)

the difference between the mean of the bootstrap distribution and the statistic com-
puted for the original sample.

Together with standard errors and biases, the bootstrap distribution is also typi-
cally used to find more accurate confidence intervals than those based on the normal
distribution assumption. There are different methods available, the most popular be-
ing:

• normal-based intervals,

• percentile intervals,

• bias-corrected percentile intervals.

Standard normal-based intervals are given by

θ̂ ± z α
2
·SE,

and provide an approximate 100(1−α)% coverage. This formula depends on the
asymptotic normality of the statistic sampling distribution and on a reliable estimate
of its standard error. As we know, both these conditions are not often met in practice,
so we can rely on bootstrap to refine this calculation.

A first refinement can be easily obtained by replacing the statistic standard error
with its bootstrap estimate SEboot as we defined it in (2.5), thus getting the first type
of bootstrap confidence intervals listed above:

θ̂ ± z α
2
·SEboot. (2.7)

A further refinement can be achieved by noting that, unless the sample size n is
large enough, asymptotic normality of the sampling distribution is often not attained
in practice. The percentile method allows to overcome this problem because it uses
the bootstrap distribution and calculates the interval as

(θ̂ ∗α
2
, θ̂ ∗1− α

2
), (2.8)

where the notation θ̂ ∗` indicates the 100`th percentile of the bootstrap distribution.
Another refinement is provided by the so called bias-corrected (BC) percentile

method, which also takes into account the fact that the bootstrap distribution is often
not exactly centred around the statistic value θ̂ , that is the bootstrap estimate θ

∗

is usually a biased estimator of θ as measured by equation (2.6). The BC method
provides an algorithm to correct for this bias. The algorithm is given below (for a
justification see Section 11.3 in Efron and Hastie, 2016):

1. compute p0 = #
{

θ
∗b ≤ θ

}/
B, that is the proportion of bootstrap replicates

lower than or equal to θ
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2. find z0 = Φ−1(p0), where Φ−1 denotes the inverse function of the standard nor-
mal cumulative distribution function

3. compute the quantities
pα/2 = Φ

(
2z0 + zα/2

)

and
p1−α/2 = Φ

(
2z0 + z1−α/2

)
.

Then, the BC percentile interval corresponds to the 100pα/2th and 100p1−α/2th per-
centiles of the bootstrap distribution. Note that if p0 = 0.5 the bootstrap distribution
is symmetric and z0 = 0, so that the BC percentile interval reduces to percentile in-
terval.

Finally, an even more accurate bootstrap interval is available, the so called bias-
corrected and accelerated (BCa) percentile interval, whose definition is more in-
volved, so we invite you to refer to the references for more details57. In Stata you can
get it by adding the bca option to the bootstrap command.

The algebra of principal components analysis

Suppose that XXX is an (n× p) data matrix consisting of n observations over the p
variables X1,X2, . . . ,Xp. We denote the generic value of the jth variable on the ith
observation as xi j, while SSS and RRR indicate the corresponding sample covariance and
correlation matrices, respectively. We now illustrate the derivation of PCA from the
covariance matrix, but a similar development applies to the correlation matrix.

The first principal component for the ith observation, zi1, is defined as the linear
combination

zi1 = a11xi1 +a12xi2 + . . .a1pxip

with the largest sample variance among the linear combinations for which the sum of
squared coefficients ∑

p
j=1 a2

1 j is equal to one. The last restriction is needed because
otherwise the variance of the first principal component can be increased without limit
by increasing the values of the coefficients (a11,a12, . . . ,a1p).

The second principal component for the ith observation is defined as the linear
combination

zi2 = a21xi1 +a22xi2 + . . .a2pxip

with the largest variance subject to the conditions that the sum of squares of the co-
efficients (a21,a22, . . . ,a2p), that is ∑

p
j=1 a2

2 j, is equal to one and the inner product of
the coefficients of the first and second components, that is ∑

p
j=1 a1 ja2 j, is equal zero.

The last requirement implies that the first two components must be uncorrelated.
Similarly, the generic kth principal component, for the ith observation is defined

as the linear combination

zik = ak1xi1 +ak2xi2 + . . .akpxip

57The BCa method requires the calculation of quantities that involve the jackknife approach. Hence,
BCa is more computationally demanding.
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with the largest variance subject to the same conditions as above, that is the sum of
squared coefficients equal to one and no correlation with the previous components.

The coefficients that define the principal components are thus found by solving
a series of constrained optimization problems (i.e., maximizing the variances subject
to the conditions described above). It is possible to show that the solutions of these
problems correspond to the eigenvectors of the sample covariance matrix SSS. In par-
ticular, the kth set of coefficients (ak1,ak2, . . . ,akp) corresponds to the eigenvector
of SSS associated with its kth largest eigenvalue λk. We remind that eigenvalues and
eigenvectors define what is known in mathematics as the spectral decomposition of
a square matrix defined as

SSS = LLLΛΛΛLLL′,

where ΛΛΛ is a diagonal matrix containing the eigenvalues in decreasing order, while LLL
is the matrix whose columns are the (normalized) eigenvectors58.

The variance of the kth principal component is given by the kth largest eigen-
value λk. The total variance of the p principal components is equal to the sum of the
variances of the original variables, that is

p

∑
k=1

λk = tr(SSS),

where on the right hand side we used the trace operator defined as the sum of the
elements on the main diagonal of SSS, that is the variances. So, the proportion of the
total variance explained by the kth component is given by

Pk =
λk

tr(SSS)
.

The covariance of the jth observed variable X j with the kth principal component
Zh is given by

Cov(X j,Zk) = λkak j.

It then follows that the corresponding linear correlation index is

rX jZk =
Cov(X j,Zk)

sX j · sZk

=
λk ak j

s1/2
j j

√
λk

=

√
λk ak j

s1/2
j j

,

where s j j is the jth element on the main diagonal of SSS. Clearly, if the original vari-
ables are standardized, that is we perform PCA on the correlation matrix, the previous

58A more general decomposition of a generic matrix (i.e., not necessarily squared) is the singular
value decomposition, which is used by many software to perform PCA (see for example Rencher and
Christensen, 2012, Chapter 2.)
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expression reduces to
rX jZk =

√
λk ak j. (2.9)

Finally, the component score for the kth principal component of the ith observa-
tion is computed as

zik = ak1 (xi1− x1)+ak2 (xi2− x2)+ . . .akp (xip− xp) ,

where x j denotes the sample mean of the jth observed variable.

Clustering stopping rules

Given an (n× p) data matrix XXX , where n denotes the number of observations and p
the number of continuous variables, we first define the total dispersion matrix as

TTT =
K

∑
g=1

ng

∑
i=1

(xxxgi− x̄xx)(xxxgi− x̄xx)>, (2.10)

where xxxgi represents the p-dimensional vector of variable values for the ith observa-
tion in the gth cluster and x̄xx corresponds to the p-dimensional vector containing the
overall sample means for each variable59. The TTT matrix contains the overall sum of
squares and cross-products for the p variables in XXX . It is possible to show that the
total dispersion matrix TTT can be decomposed into

TTT =WWW +BBB,

where W denotes the within-cluster dispersion matrix defined as

WWW =
K

∑
g=1

ng

∑
i=1

(xxxgi− x̄xxg)(xxxgi− x̄xxg)
>, (2.11)

and B indicates the between-cluster dispersion matrix defined as

BBB =
K

∑
g=1

ng (x̄xxg− x̄xx)(x̄xxg− x̄xx)>, (2.12)

where x̄xxg represents the p-dimensional vector containing the group-specific sample
means for the gth cluster.

For a fixed number of clusters g, the Caliński-Harabasz stopping rule is based on
the following quantity, known as the pseudo F index,

CHg =
tr(BBB)/(g−1)
tr(WWW )/(n−g)

. (2.13)

Then, the optimal number of clusters is chosen as that with the maximum value of
CHg.

59Note that the quantity TTT defined here is a matrix, while the E quantity defined in Section 2.3.1.1 is
a scalar. The two expressions provide the same result only for univariate data, that is when p = 1.
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The Duda-Hart stopping rule provides a criterion for deciding whether to split
a given cluster Cm into two subclusters Cm1 and Cm2 (so that Cm = Cm1 ∪Cm2 ) by
computing the index

DHm =
J2(m)

J1(m)
, (2.14)

where J2(m) is the sum of within-cluster sum of squared distances between the ob-
servations and the cluster centre when the data are partitioned into clusters Cm1 and
Cm2 , while J1(m) is the within-cluster sum of squared distances when Cm1 and Cm2
are merged together. More technically,

J1(m) = Sm

and
J2(m) = Sm1 +Sm2 ,

where, for a generic cluster C`, S` is defined as

S` = ∑
i∈C`

(xxxi− x̄xx`)
>(xxxi− x̄xx`).

Large values of the Duda-Hart index (2.14) indicate that moving one step ahead in the
dendrogram hierarchy (i.e., splitting one of the clusters in two subclusters) will pro-
duce a similar clustering solution, and so we should not go with it. A formal testing
procedure for choosing the optimal number of clusters is provided by Gordon (1999),
which consists in rejecting the null hypothesis that cluster Cm is homogeneous if

DHm < DHcrit
m = 1− 2

π p
− zα

√
2(1−8/π2 p)

nm p
, (2.15)

where zα is the standard normal score for a significance level equal to α . Practically,
we choose as optimal the smallest number of clusters such that (2.15) is not satisfied
(i.e., the first one for which we do not reject the null hypothesis).

Duda et al. (2001) also propose a pseudo t2 index defined as

t2
m =

(1−DHm)

DHm
(nm1 +nm2 −2), (2.16)

also reported by Stata. In this case, small values of t2
m indicate that there is no need to

proceed further in splitting the clusters. The corresponding testing procedure consists
in rejecting the null hypothesis that cluster Cm is homogeneous if

t2
m >

(
1−DHcrit

m

DHcrit
m

)
(nm1 +nm2 −2). (2.17)

So, according to this procedure, we choose as the optimal number of clusters the
smallest value such that (2.17) is not satisfied. For a review of cluster validation
measures we suggest to look at Chapter 17 of Zaki and Meira (2020).
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Finite mixture models estimation and selection

Suppose our sample is made of n independent observations xxx1, . . . ,xxxn, where the
generic observation xxxi = (xi1, . . . ,xip) includes the values of p different variables.
We assume that the xxxis follow a FMM whose density function60 is defined as

f (xxxi) =
K

∑
j=1

π j f j(xxxi;θθθ j). (2.18)

Then, the likelihood function for these data can be written as

L(ΘΘΘ,πππ|xxx1, . . . ,xxxn) =
n

∏
i=1

K

∑
j=1

π j f j(xxxi;θθθ j), (2.19)

where ΘΘΘ = (θθθ 1, . . . ,θθθ K) and πππ = (π1, . . . ,πK−1). The corresponding log-likelihood
function is given by

`(ΘΘΘ,πππ|xxx1, . . . ,xxxn) = logL(ΘΘΘ,πππ|xxx1, . . . ,xxxn)

=
n

∑
i=1

log

(
K

∑
j=1

π j f j(xxxi;θθθ j)

)
. (2.20)

Note that this is a rather complicated expression, since the logarithm is not acting
directly on the mixture component densities.

The maximum likelihood estimates of the parameters ΘΘΘ and πππ are found by maxi-
mizing the log-likelihood function (2.20). This requires setting its derivatives to zero
and solving the corresponding system of equations. Unfortunately, given the com-
plexity of the problem, this procedure doesn’t produce a closed-form solution and
we must rely on numerical evaluations.

An elegant and powerful approach for finding the maximum likelihood estimates
is the expectation-maximization (EM) algorithm. The EM algorithm is a two-stage
iterative optimization technique that is guaranteed to improve the log-likelihood at
each passage. Starting from some initial parameter values, at each iteration the al-
gorithm involves two stages called expectation step (E-step) and maximization step
(M-step). In the E-step, a lower bound of the log-likelihood function for the current
parameter values is computed, which takes the same value as the log-likelihood itself.
Moreover, the lower bound is defined to have the same slope as the log-likelihood.
Then, the M-step entails finding new parameter values by maximizing the lower
bound. This process is iterated until the maximum value of the log-likelihood is
reached. Figure 2.32 provides a simplified graphical representation of what happens
at each iteration of the EM algorithm.

The information criteria AIC and BIC are defined as

AIC =−2`(Θ̂ΘΘ, π̂ππ|xxx1, . . . ,xxxn)+2d (2.21)

60For simplicity here we refer only to the case of continuous variables, but the same discussion also
applies to the discrete case.
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`
⇣
✓(t)
⌘

= q
⇣
✓(t)|✓(t)

⌘
<latexit sha1_base64="RCVJ+wsbGWhCZ96f4tMBqTz8bdg=">AAACK3icbVBNS0JBFJ1nX2ZfVss2QxLoRt6LoFoEopuWBpmCz2TeeNXBeR/N3BfIyx/Upr8SRIuMtv2Pxo9FaQcGDuecy517vEgKjbY9tlIrq2vrG+nNzNb2zu5edv/gToex4lDjoQxVw2MapAighgIlNCIFzPck1L1BZeLXH0FpEQa3OIyg5bNeILqCMzRSO1txQUq3LHp5F/uA7D7JY2E0EQr0ij4sOfSJLgXb2ZxdtKegy8SZkxyZo9rOvrmdkMc+BMgl07rp2BG2EqZQcAmjjBtriBgfsB40DQ2YD7qVTI8d0ROjdGg3VOYFSKfq74mE+VoPfc8kfYZ9vehNxP+8Zozdi1YigihGCPhsUTeWFEM6aY52hAKOcmgI40qYv1LeZ4pxNP1mTAnO4snLpHZavCw6N2e5UnneRpockWOSJw45JyVyTaqkRjh5Jq/kg4ytF+vd+rS+ZtGUNZ85JH9gff8A5VSmYQ==</latexit><latexit sha1_base64="RCVJ+wsbGWhCZ96f4tMBqTz8bdg=">AAACK3icbVBNS0JBFJ1nX2ZfVss2QxLoRt6LoFoEopuWBpmCz2TeeNXBeR/N3BfIyx/Upr8SRIuMtv2Pxo9FaQcGDuecy517vEgKjbY9tlIrq2vrG+nNzNb2zu5edv/gToex4lDjoQxVw2MapAighgIlNCIFzPck1L1BZeLXH0FpEQa3OIyg5bNeILqCMzRSO1txQUq3LHp5F/uA7D7JY2E0EQr0ij4sOfSJLgXb2ZxdtKegy8SZkxyZo9rOvrmdkMc+BMgl07rp2BG2EqZQcAmjjBtriBgfsB40DQ2YD7qVTI8d0ROjdGg3VOYFSKfq74mE+VoPfc8kfYZ9vehNxP+8Zozdi1YigihGCPhsUTeWFEM6aY52hAKOcmgI40qYv1LeZ4pxNP1mTAnO4snLpHZavCw6N2e5UnneRpockWOSJw45JyVyTaqkRjh5Jq/kg4ytF+vd+rS+ZtGUNZ85JH9gff8A5VSmYQ==</latexit><latexit sha1_base64="RCVJ+wsbGWhCZ96f4tMBqTz8bdg=">AAACK3icbVBNS0JBFJ1nX2ZfVss2QxLoRt6LoFoEopuWBpmCz2TeeNXBeR/N3BfIyx/Upr8SRIuMtv2Pxo9FaQcGDuecy517vEgKjbY9tlIrq2vrG+nNzNb2zu5edv/gToex4lDjoQxVw2MapAighgIlNCIFzPck1L1BZeLXH0FpEQa3OIyg5bNeILqCMzRSO1txQUq3LHp5F/uA7D7JY2E0EQr0ij4sOfSJLgXb2ZxdtKegy8SZkxyZo9rOvrmdkMc+BMgl07rp2BG2EqZQcAmjjBtriBgfsB40DQ2YD7qVTI8d0ROjdGg3VOYFSKfq74mE+VoPfc8kfYZ9vehNxP+8Zozdi1YigihGCPhsUTeWFEM6aY52hAKOcmgI40qYv1LeZ4pxNP1mTAnO4snLpHZavCw6N2e5UnneRpockWOSJw45JyVyTaqkRjh5Jq/kg4ytF+vd+rS+ZtGUNZ85JH9gff8A5VSmYQ==</latexit><latexit sha1_base64="RCVJ+wsbGWhCZ96f4tMBqTz8bdg=">AAACK3icbVBNS0JBFJ1nX2ZfVss2QxLoRt6LoFoEopuWBpmCz2TeeNXBeR/N3BfIyx/Upr8SRIuMtv2Pxo9FaQcGDuecy517vEgKjbY9tlIrq2vrG+nNzNb2zu5edv/gToex4lDjoQxVw2MapAighgIlNCIFzPck1L1BZeLXH0FpEQa3OIyg5bNeILqCMzRSO1txQUq3LHp5F/uA7D7JY2E0EQr0ij4sOfSJLgXb2ZxdtKegy8SZkxyZo9rOvrmdkMc+BMgl07rp2BG2EqZQcAmjjBtriBgfsB40DQ2YD7qVTI8d0ROjdGg3VOYFSKfq74mE+VoPfc8kfYZ9vehNxP+8Zozdi1YigihGCPhsUTeWFEM6aY52hAKOcmgI40qYv1LeZ4pxNP1mTAnO4snLpHZavCw6N2e5UnneRpockWOSJw45JyVyTaqkRjh5Jq/kg4ytF+vd+rS+ZtGUNZ85JH9gff8A5VSmYQ==</latexit>

q
⇣
✓(t+1)|✓(t)

⌘
<latexit sha1_base64="PIbalgO8g3hz34yezOQdiOVh7r0=">AAACEHicbVDLSgMxFM3UV62vUZdugkWYIpQZEdRdqRuXFRxb6NSSSdM2NPMwuSOUsb/gxl9x40LFrUt3/o1pO6C2HggczjmXm3v8WHAFtv1l5BYWl5ZX8quFtfWNzS1ze+daRYmkzKWRiGTDJ4oJHjIXOAjWiCUjgS9Y3R+cj/36HZOKR+EVDGPWCkgv5F1OCWipbVq3XpX3LA/6DMhNasGhUxrhe/wjlEbjRKltFu2yPQGeJ05GiihDrW1+ep2IJgELgQqiVNOxY2ilRAKngo0KXqJYTOiA9FhT05AETLXSyUUjfKCVDu5GUr8Q8ET9PZGSQKlh4OtkQKCvZr2x+J/XTKB72kp5GCfAQjpd1E0EhgiP68EdLhkFMdSEUMn1XzHtE0ko6BILugRn9uR54h6Vz8rO5XGxUs3ayKM9tI8s5KATVEEXqIZcRNEDekIv6NV4NJ6NN+N9Gs0Z2cwu+gPj4xuyKZvf</latexit><latexit sha1_base64="PIbalgO8g3hz34yezOQdiOVh7r0=">AAACEHicbVDLSgMxFM3UV62vUZdugkWYIpQZEdRdqRuXFRxb6NSSSdM2NPMwuSOUsb/gxl9x40LFrUt3/o1pO6C2HggczjmXm3v8WHAFtv1l5BYWl5ZX8quFtfWNzS1ze+daRYmkzKWRiGTDJ4oJHjIXOAjWiCUjgS9Y3R+cj/36HZOKR+EVDGPWCkgv5F1OCWipbVq3XpX3LA/6DMhNasGhUxrhe/wjlEbjRKltFu2yPQGeJ05GiihDrW1+ep2IJgELgQqiVNOxY2ilRAKngo0KXqJYTOiA9FhT05AETLXSyUUjfKCVDu5GUr8Q8ET9PZGSQKlh4OtkQKCvZr2x+J/XTKB72kp5GCfAQjpd1E0EhgiP68EdLhkFMdSEUMn1XzHtE0ko6BILugRn9uR54h6Vz8rO5XGxUs3ayKM9tI8s5KATVEEXqIZcRNEDekIv6NV4NJ6NN+N9Gs0Z2cwu+gPj4xuyKZvf</latexit><latexit sha1_base64="PIbalgO8g3hz34yezOQdiOVh7r0=">AAACEHicbVDLSgMxFM3UV62vUZdugkWYIpQZEdRdqRuXFRxb6NSSSdM2NPMwuSOUsb/gxl9x40LFrUt3/o1pO6C2HggczjmXm3v8WHAFtv1l5BYWl5ZX8quFtfWNzS1ze+daRYmkzKWRiGTDJ4oJHjIXOAjWiCUjgS9Y3R+cj/36HZOKR+EVDGPWCkgv5F1OCWipbVq3XpX3LA/6DMhNasGhUxrhe/wjlEbjRKltFu2yPQGeJ05GiihDrW1+ep2IJgELgQqiVNOxY2ilRAKngo0KXqJYTOiA9FhT05AETLXSyUUjfKCVDu5GUr8Q8ET9PZGSQKlh4OtkQKCvZr2x+J/XTKB72kp5GCfAQjpd1E0EhgiP68EdLhkFMdSEUMn1XzHtE0ko6BILugRn9uR54h6Vz8rO5XGxUs3ayKM9tI8s5KATVEEXqIZcRNEDekIv6NV4NJ6NN+N9Gs0Z2cwu+gPj4xuyKZvf</latexit><latexit sha1_base64="PIbalgO8g3hz34yezOQdiOVh7r0=">AAACEHicbVDLSgMxFM3UV62vUZdugkWYIpQZEdRdqRuXFRxb6NSSSdM2NPMwuSOUsb/gxl9x40LFrUt3/o1pO6C2HggczjmXm3v8WHAFtv1l5BYWl5ZX8quFtfWNzS1ze+daRYmkzKWRiGTDJ4oJHjIXOAjWiCUjgS9Y3R+cj/36HZOKR+EVDGPWCkgv5F1OCWipbVq3XpX3LA/6DMhNasGhUxrhe/wjlEbjRKltFu2yPQGeJ05GiihDrW1+ep2IJgELgQqiVNOxY2ilRAKngo0KXqJYTOiA9FhT05AETLXSyUUjfKCVDu5GUr8Q8ET9PZGSQKlh4OtkQKCvZr2x+J/XTKB72kp5GCfAQjpd1E0EhgiP68EdLhkFMdSEUMn1XzHtE0ko6BILugRn9uR54h6Vz8rO5XGxUs3ayKM9tI8s5KATVEEXqIZcRNEDekIv6NV4NJ6NN+N9Gs0Z2cwu+gPj4xuyKZvf</latexit>

`(✓) (log-likelihood)
<latexit sha1_base64="fTBowlq48QzV4ze0050152Bf4yw=">AAACDXicbVA9SwNBEN2LXzF+RS1tFkMgKQx3Iqhd0MYygjFCLoS9zSRZsnd77M6J4cgvsPGv2Fio2Nrb+W/cfBSa+GDg8d7M7swLYikMuu63k1laXlldy67nNja3tnfyu3u3RiWaQ50rqfRdwAxIEUEdBUq4izWwMJDQCAaXY79xD9oIFd3gMIZWyHqR6ArO0ErtfNEHKUs+9gFZmfphoB5SWpKqdyTFwL7aV6pTHrXzBbfiTkAXiTcjBTJDrZ3/8juKJyFEyCUzpum5MbZSplFwCaOcnxiIGR+wHjQtjVgIppVOzhnRolU6tKu0rQjpRP09kbLQmGEY2M6QYd/Me2PxP6+ZYPeslYooThAiPv2om0iKio6zoR2hgaMcWsK4FnZXyvtMM442wZwNwZs/eZHUjyvnFe/6pFC9mKWRJQfkkJSIR05JlVyRGqkTTh7JM3klb86T8+K8Ox/T1owzm9knf+B8/gC3dZt7</latexit><latexit sha1_base64="fTBowlq48QzV4ze0050152Bf4yw=">AAACDXicbVA9SwNBEN2LXzF+RS1tFkMgKQx3Iqhd0MYygjFCLoS9zSRZsnd77M6J4cgvsPGv2Fio2Nrb+W/cfBSa+GDg8d7M7swLYikMuu63k1laXlldy67nNja3tnfyu3u3RiWaQ50rqfRdwAxIEUEdBUq4izWwMJDQCAaXY79xD9oIFd3gMIZWyHqR6ArO0ErtfNEHKUs+9gFZmfphoB5SWpKqdyTFwL7aV6pTHrXzBbfiTkAXiTcjBTJDrZ3/8juKJyFEyCUzpum5MbZSplFwCaOcnxiIGR+wHjQtjVgIppVOzhnRolU6tKu0rQjpRP09kbLQmGEY2M6QYd/Me2PxP6+ZYPeslYooThAiPv2om0iKio6zoR2hgaMcWsK4FnZXyvtMM442wZwNwZs/eZHUjyvnFe/6pFC9mKWRJQfkkJSIR05JlVyRGqkTTh7JM3klb86T8+K8Ox/T1owzm9knf+B8/gC3dZt7</latexit><latexit sha1_base64="fTBowlq48QzV4ze0050152Bf4yw=">AAACDXicbVA9SwNBEN2LXzF+RS1tFkMgKQx3Iqhd0MYygjFCLoS9zSRZsnd77M6J4cgvsPGv2Fio2Nrb+W/cfBSa+GDg8d7M7swLYikMuu63k1laXlldy67nNja3tnfyu3u3RiWaQ50rqfRdwAxIEUEdBUq4izWwMJDQCAaXY79xD9oIFd3gMIZWyHqR6ArO0ErtfNEHKUs+9gFZmfphoB5SWpKqdyTFwL7aV6pTHrXzBbfiTkAXiTcjBTJDrZ3/8juKJyFEyCUzpum5MbZSplFwCaOcnxiIGR+wHjQtjVgIppVOzhnRolU6tKu0rQjpRP09kbLQmGEY2M6QYd/Me2PxP6+ZYPeslYooThAiPv2om0iKio6zoR2hgaMcWsK4FnZXyvtMM442wZwNwZs/eZHUjyvnFe/6pFC9mKWRJQfkkJSIR05JlVyRGqkTTh7JM3klb86T8+K8Ox/T1owzm9knf+B8/gC3dZt7</latexit><latexit sha1_base64="fTBowlq48QzV4ze0050152Bf4yw=">AAACDXicbVA9SwNBEN2LXzF+RS1tFkMgKQx3Iqhd0MYygjFCLoS9zSRZsnd77M6J4cgvsPGv2Fio2Nrb+W/cfBSa+GDg8d7M7swLYikMuu63k1laXlldy67nNja3tnfyu3u3RiWaQ50rqfRdwAxIEUEdBUq4izWwMJDQCAaXY79xD9oIFd3gMIZWyHqR6ArO0ErtfNEHKUs+9gFZmfphoB5SWpKqdyTFwL7aV6pTHrXzBbfiTkAXiTcjBTJDrZ3/8juKJyFEyCUzpum5MbZSplFwCaOcnxiIGR+wHjQtjVgIppVOzhnRolU6tKu0rQjpRP09kbLQmGEY2M6QYd/Me2PxP6+ZYPeslYooThAiPv2om0iKio6zoR2hgaMcWsK4FnZXyvtMM442wZwNwZs/eZHUjyvnFe/6pFC9mKWRJQfkkJSIR05JlVyRGqkTTh7JM3klb86T8+K8Ox/T1owzm9knf+B8/gC3dZt7</latexit>

q
⇣
✓|✓(t)

⌘
(lower bound)

<latexit sha1_base64="n1wk7TwmBQ9hvBagafPy39pNDDo=">AAACHnicbZDLSgMxFIYz3q23qks3wSK0mzIj4mVXdONSwarQqSWTnrbBTDImZ9Qy9k3c+CpuXKgIrvRtTC8LbwcCH/9/DifnjxIpLPr+pzc2PjE5NT0zm5ubX1hcyi+vnFqdGg5VrqU25xGzIIWCKgqUcJ4YYHEk4Sy6POj7Z9dgrNDqBLsJ1GPWVqIlOEMnNfLbV+G+aBdD7AAyekeHcJEVsdTrOyUaxpG+zWhR6hswNNKpapZ6jXzBL/uDon8hGEGBjOqokX8Pm5qnMSjkkllbC/wE6xkzKLiEXi5MLSSMX7I21BwqFoOtZ4P7enTDKU3a0sY9hXSgfp/IWGxtN45cZ8ywY397ffE/r5Zia7eeCZWkCIoPF7VSSVHTfli0KQxwlF0HjBvh/kp5hxnG0UWacyEEv0/+C9XN8l45ON4qVPZHacyQNbJOiiQgO6RCDskRqRJO7skjeSYv3oP35L16b8PWMW80s0p+lPfxBQMhofA=</latexit><latexit sha1_base64="n1wk7TwmBQ9hvBagafPy39pNDDo=">AAACHnicbZDLSgMxFIYz3q23qks3wSK0mzIj4mVXdONSwarQqSWTnrbBTDImZ9Qy9k3c+CpuXKgIrvRtTC8LbwcCH/9/DifnjxIpLPr+pzc2PjE5NT0zm5ubX1hcyi+vnFqdGg5VrqU25xGzIIWCKgqUcJ4YYHEk4Sy6POj7Z9dgrNDqBLsJ1GPWVqIlOEMnNfLbV+G+aBdD7AAyekeHcJEVsdTrOyUaxpG+zWhR6hswNNKpapZ6jXzBL/uDon8hGEGBjOqokX8Pm5qnMSjkkllbC/wE6xkzKLiEXi5MLSSMX7I21BwqFoOtZ4P7enTDKU3a0sY9hXSgfp/IWGxtN45cZ8ywY397ffE/r5Zia7eeCZWkCIoPF7VSSVHTfli0KQxwlF0HjBvh/kp5hxnG0UWacyEEv0/+C9XN8l45ON4qVPZHacyQNbJOiiQgO6RCDskRqRJO7skjeSYv3oP35L16b8PWMW80s0p+lPfxBQMhofA=</latexit><latexit sha1_base64="n1wk7TwmBQ9hvBagafPy39pNDDo=">AAACHnicbZDLSgMxFIYz3q23qks3wSK0mzIj4mVXdONSwarQqSWTnrbBTDImZ9Qy9k3c+CpuXKgIrvRtTC8LbwcCH/9/DifnjxIpLPr+pzc2PjE5NT0zm5ubX1hcyi+vnFqdGg5VrqU25xGzIIWCKgqUcJ4YYHEk4Sy6POj7Z9dgrNDqBLsJ1GPWVqIlOEMnNfLbV+G+aBdD7AAyekeHcJEVsdTrOyUaxpG+zWhR6hswNNKpapZ6jXzBL/uDon8hGEGBjOqokX8Pm5qnMSjkkllbC/wE6xkzKLiEXi5MLSSMX7I21BwqFoOtZ4P7enTDKU3a0sY9hXSgfp/IWGxtN45cZ8ywY397ffE/r5Zia7eeCZWkCIoPF7VSSVHTfli0KQxwlF0HjBvh/kp5hxnG0UWacyEEv0/+C9XN8l45ON4qVPZHacyQNbJOiiQgO6RCDskRqRJO7skjeSYv3oP35L16b8PWMW80s0p+lPfxBQMhofA=</latexit><latexit sha1_base64="n1wk7TwmBQ9hvBagafPy39pNDDo=">AAACHnicbZDLSgMxFIYz3q23qks3wSK0mzIj4mVXdONSwarQqSWTnrbBTDImZ9Qy9k3c+CpuXKgIrvRtTC8LbwcCH/9/DifnjxIpLPr+pzc2PjE5NT0zm5ubX1hcyi+vnFqdGg5VrqU25xGzIIWCKgqUcJ4YYHEk4Sy6POj7Z9dgrNDqBLsJ1GPWVqIlOEMnNfLbV+G+aBdD7AAyekeHcJEVsdTrOyUaxpG+zWhR6hswNNKpapZ6jXzBL/uDon8hGEGBjOqokX8Pm5qnMSjkkllbC/wE6xkzKLiEXi5MLSSMX7I21BwqFoOtZ4P7enTDKU3a0sY9hXSgfp/IWGxtN45cZ8ywY397ffE/r5Zia7eeCZWkCIoPF7VSSVHTfli0KQxwlF0HjBvh/kp5hxnG0UWacyEEv0/+C9XN8l45ON4qVPZHacyQNbJOiiQgO6RCDskRqRJO7skjeSYv3oP35L16b8PWMW80s0p+lPfxBQMhofA=</latexit>

FIGURE 2.32: Graphical interpretation of a single iteration for the EM algorithm.

and
BIC =−2`(Θ̂ΘΘ, π̂ππ|xxx1, . . . ,xxxn)+d log(n), (2.22)

respectively. In the expressions above, the log-likelihood function is evaluated at the
estimated parameter values, while d denotes the total number of parameters in the
model. In both cases, the first term represents the lack of fit of the data, while the
second one corresponds to a penalty for the complexity of the model. So, AIC and
BIC only differ for the penalization of model’s complexity. There is still no consensus
in the literature about which one between AIC an BIC provides the best approach for
model selection. Therefore, several authors suggest using multiple indicators as well
as problem-specific considerations.

Path analysis using matrices

We provide here more technical details about PA. We indicate with p the number of
endogenous variables and with q the number of exogenous variables in the model.
The structural form of a general PA model is usually denoted as

yyy = ααα +BBByyy+ΓΓΓxxx+ζζζ , (2.23)

where yyy is the (p× 1) vector of endogenous variables, xxx is the (q× 1) vector of
exogenous variables, ααα is the (p×1) vector of structural intercepts, BBB is the (p× p)
matrix that contains the coefficients relating the endogenous variables to each other,
ΓΓΓ is the (p× q) matrix of the coefficients relating the exogenous variables to the
endogenous variables and ζζζ is the (p×1) vector of error terms. Moreover, we denote
with ΨΨΨ the (p× p) covariance matrix of the error terms, while the corresponding
means are assumed to be zero, and with ΦΦΦ the (q× q) covariance matrix of the
exogenous variables. Therefore, the whole list of model’s parameters is given by
θθθ = (BBB,ΓΓΓ,ΨΨΨ,ΦΦΦ), some of which will be fixed (most of the times set to zero), while
the remaining ones are free and must be estimated.



88 2 Multivariate Statistics Prerequisites

The reduced form of the model is obtained by first rewriting (2.23) as

(III−BBB)yyy = ααα +ΓΓΓxxx+ζζζ ,

and then, after checking that the matrix (III−BBB) is non-singular, by rearranging to
obtain

yyy = (III−BBB)−1
ααα +(III−BBB)−1

ΓΓΓxxx+(III−BBB)−1
ζζζ

= ΠΠΠ0 +ΠΠΠ1xxx+ζζζ
∗
, (2.24)

where ΠΠΠ0 = (III−BBB)−1
ααα is the (p× 1) vector of reduced form intercepts, ΠΠΠ1 =

(III−BBB)−1
ΓΓΓ is the (p× q) matrix of reduced form slopes and ζζζ

∗
= (III−BBB)−1

ζζζ is
the (p×1) vector of reduced form error terms (III denotes the p-dimensional identity
matrix).

Using the rules of matrix algebra, we can show that the model-implied covariance
matrix for the endogenous and exogenous variables is given by

ΣΣΣ(θθθ) =

[
ΣΣΣyyyyyy ΣΣΣyyyxxx
ΣΣΣxxxyyy ΣΣΣxxxxxx

]

=

[
E(yyyyyy′) E(yyyxxx′)
E(xxxyyy′) E(xxxxxx′)

]

=

[
(III−BBB)−1 (

ΓΓΓΦΦΦΓΓΓ
′+ΨΨΨ

)
(III−BBB)−1 ′ (III−BBB)−1

ΓΓΓΦΦΦ

ΦΦΦΓΓΓ
′ (III−BBB)−1 ′

ΦΦΦ

]
. (2.25)

As we described in Section 2.4, to estimate the parameters we can use ML or
WLS. The corresponding discrepancy functions are given by

FML = log |ΣΣΣ(θθθ)|+ tr
[
SSSΣΣΣ
−1(θθθ)

]
− log |SSS|− (p+q) (2.26)

FWLS = [SSS−ΣΣΣ(θθθ)]′WWW−1 [SSS−ΣΣΣ(θθθ)] , (2.27)

where |AAA| and tr(AAA) denote the determinant and the trace of a square matrix AAA respec-
tively, while WWW−1 is a weight matrix for the differences SSS−ΣΣΣ(θθθ). ULS corresponds
to the case where WWW = III, the identity matrix, while the most common choice for GLS
corresponds to the choice WWW = SSS, the sample covariance matrix of all variables.

According to the matrix representation above, one can show that the direct, indi-
rect and total effects are given by the expressions reported in the following table (see
Bollen, 1989):

Effect Exogenous to Endogenous Endogenous to Endogenous
Direct ΓΓΓ BBB
Indirect (III−BBB)−1

ΓΓΓ−ΓΓΓ (III−BBB)−1− III−BBB
Total (III−BBB)−1

ΓΓΓ (III−BBB)−1− III



3
PLS Structural Equation Modelling:
Specification and Estimation

In this chapter we introduce the main topic of the book, the partial least squares struc-
tural equation modelling (PLS-SEM) methodology1. We anticipate that this chapter
is longer than the other ones because our aim is to provide a comprehensive intro-
duction to the subject. The formulas we show in the chapter are not strictly necessary
to understand the overall logic, and so you can safely skip them at a first reading
without compromising your understanding. For completeness, we place the more
technical details in an appendix at the end of the chapter. What we instead suggest
not to skip are the algorithmic details of the PLS-SEM approach, because they will
allow you to better grasp the core ideas of the methodology.

3.1 Introduction
In Section 2.4 we reviewed path analysis, which represents an approach for estimat-
ing the relationships between a set of observed variables described by a system of
equations. One of the underlying assumptions of path analysis is that we are able to
accurately measure the quantities we need to study. However, often this is not easy in
practice because, due to their complex nature, the quantities involved in the study are
not directly observable. A classic example from marketing is brand image, that is the
collective consumer perception of what a company’s products or services represent.
Brand image is a “concept” that can’t be measured directly, but instead it must be
assessed indirectly using instruments like customer surveys or social media listen-
ing tools. An equivalent way to refer to the same issue is that in path analysis, as
well as in linear regression, principal components and the other more traditional sta-
tistical analyses, it is assumed that the study quantities are measured without error.
Measurement error is usually defined as the difference between a measured quan-
tity and its true value. Measurement error can originate from many different sources,
the most common being poor wording in survey items, misunderstanding of scales

1An alternative terminology for PLS-SEM is partial least squares path modelling (PLS-PM). Both the
terms are used in the literature and it is mainly a matter of personal preferences which one to opt for. In
this book we adopt the PLS-SEM parlance because we think it better signals the fact that this methodology
falls within the realm of SEM.

89
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and misinterpretation of the questions as they were conceived by the researcher. The
consequences of measurement error are potentially biased and inaccurate coefficient
estimates. As a first example, let’s consider the simple situation of two observed
variables x and y both of which are measured with error, that is

x = λ1ξ +δ (3.1)

and
y = λ2η + ε. (3.2)

In the equations above, ξ and η represent the unobserved true scores of which x and y
are only imprecise measurements, while δ and ε are the corresponding measurement
errors. For simplicity, we assume that λ1 and λ2 are both equal to one2. We are
interested in estimating the structural relationship between ξ and η described by the
following equation

η = γξ +ζ . (3.3)

Suppose that to estimate γ (the slope coefficient between η and ξ ) we fit the model

y = γ
∗x+ζ

∗, (3.4)

thus disregarding the fact that x and y are both measured with error. Under suitable
conditions on the different error terms, it can be shown (see Bollen, 1989, Chapter 5)
that

γ
∗ =

Cov(x,y)
Var(x)

= γ

[
Var(ξ )
Var(x)

]
, (3.5)

where the quantity within brackets, called the reliability coefficient of x, represents
the proportion of total variability of x that is accounted for by ξ ; therefore it is a
number in between zero and one. The consequence of the last equation is that, in
presence of measurement error in the predictor variable x, the slope coefficient γ∗

underestimates the actual association between the unobserved true scores3. The only
case where this effect doesn’t occur is when x is measured without error (i.e., when
x = ξ , or equivalently when δ = 0), so that the reliability of x is equal to one (i.e., x is
perfectly reliable as a measurement of ξ ). If an estimate of the reliability coefficient
of x is available, we may correct (or “disattenuate”) the estimated value of γ∗ by
reversing equation (3.5). Otherwise, one should at least assess the sensitivity of the
estimate to different hypothetical values of the x reliability. In presence of several
covariates, the effects of measurement error are less clear cut, but they still apply.
The same issue produces an even more critical consequence, that is the bias does
not vanish if one increases the sample size, a situation that in statistics is known as
inconsistency.

2When λ1 and λ2 take values different from one, the calculations are more involved, but the final
conclusion still holds. Note also that we are assuming mean-centred variables since we didn’t include
intercepts in the equations.

3Another terminology that is often used in this context is that the slope coefficient γ is attenuated.
Also notice that for the conclusion to hold, it must be that x is measured with error, but the response does
not necessarily be. Therefore, if y only is measured with error, this doesn’t imply any bias in the assessment
of the association between y and x, but only an increased uncertainty in the estimate variability.
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The main methodological innovation introduced by the structural equation mod-
elling (SEM) framework is allowing for the possibility that the observed variables
are measured with error. Within this approach, in fact, it is assumed that the observed
variables are imprecise measurements of the concepts we are actually interested in
studying. Observed variables are usually referred to as manifest variables or indica-
tors, while the unobserved ones are called latent variables, constructs or sometimes
simply proxies. So, every SEM model is composed of two parts, one that regards
the relationships between the manifest and latent variables, which is called the mea-
surement or outer model, and the other that represents the relationships between
the latent variables, the so called structural or inner model.

As we introduced in the first chapter, there are fundamentally two different ap-
proaches for SEM, the more traditional covariance-based SEM (CB-SEM) intro-
duced by Jöreskog (1969), and the variance-based or partial least squares SEM
(PLS-SEM) approach proposed by Wold (1975)4. Both these methodologies share a
common terminology and the general aim, that is assessing the association between
(unobserved) quantities described by a set of simultaneous structural equations while
accounting for the fact that these quantities are measured by imprecise instruments.
The main difference between the two approaches consists in the estimation process.
CB-SEM is typically based on maximum likelihood. In CB-SEM the idea is to look
for parameter values that provide (model-implied) covariances between the manifest
variables which reproduce as closely as possible those actually observed. PLS-SEM,
instead, estimates the parameters by maximizing the explained variance of the exoge-
nous latent variables. Moreover, in CB-SEM, multi-item variables are incorporated
into the model using the factor analytic technique5. In PLS-SEM instead multi-item
variables are used to directly generate weighted composites6.

As we already discussed in Chapter 1, even if the two approaches appeared ap-
proximately at the same time in the literature, CB-SEM has seen a more rapid and
wide diffusion compared to PLS-SEM. One of the motivations for the increased pop-
ularity of CB-SEM can be certainly attributed to the early availability of software
packages, in particular the highly popular LISREL package7 (Jöreskog et al., 2016).
Other software for CB-SEM analysis that contributed to the spread of the method are
AMOS8, EQS9 and Mplus10. More recently, Stata also introduced its own CB-SEM
toolset with the sem and gsem commands. Similarly, SAS provides the compre-
hensive CALIS procedure. On the side of open-source implementations, the only
platform that currently includes functions for CB-SEM is R with the comprehensive

4There are also other approaches to SEM that have been developed so far in the literature, such as
generalized structured component analysis (Hwang and Takane, 2014), but currently they are less popular
so we do not describe them here.

5A SEM model including only the measurement model part is usually referred to as confirmatory
factor analysis.

6As a consequence of this difference, it is also said that CB-SEM is a factor-based method, while
PLS-SEM is composite-based.

7https://ssicentral.com/index.php/products/lisrel/.
8https://www.ibm.com/products/structural-equation-modeling-sem.
9http://www.mvsoft.com/eqs60.htm.

10https://www.statmodel.com.

https://ssicentral.com/
https://www.ibm.com/
http://www.mvsoft.com/
https://www.statmodel.com


92 3 PLS Structural Equation Modelling: Specification and Estimation

lavaan, OpenMx and sem packages. For what regards PLS-SEM, the first avail-
able software, LVPLS, has been introduced in 1984 by Lohmöller, more than 10
years later than the first release of LISREL. Then, other tools like PLS-Graph and
PLS-GUI appeared, but they are no longer available or maintained. Currently, the
most popular commercial software packages for PLS-SEM are ADANCO11, Smart-
PLS12, WarpPLS13 and XLSTAT-PLSPM14. For what regards open-source imple-
mentations, the following R packages are available: cSEM (Rademaker and Schu-
berth, 2020), matrixpls (Rönkkö, 2020), plspm (Sanchez, 2013) and semPLS
(Monecke and Leisch, 2012). Recently, we developed our own open-source imple-
mentation for Stata, the plssem package (Venturini and Mehmetoglu, 2019). As we
will describe in the following, plssem is able to perform all the analyses illustrated
in this book.

In the next sections we present the basics of PLS-SEM, and in particular we
provide the details on how to specify and estimate a PLS-SEM model. Before pro-
ceeding, let us spend some words about notation: in this book we adopt the standard
PLS-SEM notation (e.g., Esposito Vinzi et al., 2010). This notation is similar but
not perfectly overlapped with that used in LISREL. In particular, we do not explic-
itly distinguish between exogenous and endogenous variables. We are aware that this
may be a little uncomfortable for those who are accustomed to LISREL, but we think
that it allows moving back and forth from the literature more easily. Nonetheless, we
may occasionally modify the notation later in the book whenever this simplifies our
discussion.

3.2 Model Specification
Figure 3.1 shows the path diagram for a hypothetical model that involves nine mani-
fest variables x11,x21, . . . ,x33 and three constructs ξ1, ξ2 and ξ3. The diagram shows
that the constructs form blocks with the manifest variables they are connected to,
which are represented as dashed boxes in the picture. In particular, ξ1 is connected
to the three indicators x11, x21 and x31, ξ2 to x12, x22 and x32, and ξ3 forms a block
with the x13, x23 and x33 variables. However, we can see a difference between ξ2 and
the other two constructs, because the arrows in the ξ2 block point towards the latent
variable instead of outwards, while for ξ1 and ξ3 we have the opposite situation.

As for classical CB-SEM, PLS-SEM models too are typically specified starting
from a theoretical model that is either already established in the scientific literature or
in the common practice of a specific field, or it corresponds to a new set of hypotheses
regarding the relationships between the quantities involved in the phenomenon under

11https://www.composite-modeling.com.
12https://www.smartpls.com.
13http://warppls.com.
14https://www.xlstat.com/en/solutions/features/pls-path-modelling.

https://www.composite-modeling.com
https://www.smartpls.com
http://warppls.com
https://www.xlstat.com/
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FIGURE 3.1: Path diagram for an hypothetical model with nine manifest variables,
x11 to x33, and three constructs, ξ1, ξ2 and ξ3.

investigation. Indeed, we remark that a PLS-SEM model is only the analytic step that
comes after the theoretical model has been carefully devised.

3.2.1 Outer (measurement) model

The outer model is the part of a PLS-SEM model establishing the relationships be-
tween each construct and the corresponding manifest variables. Figure 3.2 shows the
outer model for the hypothetical example we introduced above, represented in the
diagram by the set of connections in the shaded boxes.

The first step in defining the outer model is the conceptualization of the con-
struct variables. As already stated, these are unobserved quantities which refer to
concepts representing intangible but real phenomena (e.g., intelligence, happiness,
perceptions, behaviours). Without delving into the details of measurement theory
and scale development15, here it suffices to say that the design of valid and reliable
measures is a time-consuming but critical premise for any SEM analysis. In prac-
tice, researchers typically rely on scales published and already validated by others16,
or developed directly on their own. Since PLS-SEM is based on the estimation of
variances, it works best with continuous (i.e., metric) data.

There are two different approaches to specify blocks in the measurement
model17, the reflective and the formative models. In a reflective block, indicators

15For a book-length technical treatment of these topics you can see Bandalos (2018) and the classic
Nunnally and Bernstein (1994).

16An example for marketing studies is Bearden et al. (2011).
17In the literature you also find a third type of measurement model, the so called multiple indica-
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FIGURE 3.2: Path diagram for an hypothetical model with nine manifest variables,
x11 to x33, and three constructs, ξ1, ξ2 and ξ3. The inner and outer models are high-
lighted with dark and light-shaded boxes respectively.

related to a given construct are assumed to measure a common underlying concept.
More technically, in a reflective model the observed variability of a block of indica-
tors is assumed to be fully explained by means of a single unobserved measure (i.e.,
the construct) and the indicator-specific error terms. From the definition, it follows
that the indicators in a given reflective block are expected to be strongly linearly cor-
related with each other. For this reason, reflective measures should be checked for
homogeneity and unidimensionality (more on these assessments will be provided in
Chapter 4). In path diagrams reflective blocks are represented with arrows originating
from the construct and pointing towards the corresponding manifest variables.

In the formative model, instead, each manifest variable represents a different
dimension of the underlying concept. Therefore, unlike the reflective model, the for-
mative model assumes neither homogeneity nor unidimensionality of the block. For
this reason, the formative approach does not impose any restriction on the covari-
ances between the indicators of the same construct. In other words, the formative
model doesn’t assume the existence of a common factor explaining the association
between indicators in the block18. In path diagrams formative blocks are represented
with arrows going from the indicators towards the construct. The technical appendix

tors and multiple indicator causes (MIMIC) model, which corresponds to a mixture of the reflective and
formative approaches within the same block. Since MIMIC is not frequently used in practice, we don’t
provide further details here (see for example Tenenhaus et al., 2005).

18In reality, the correlation between the indicators for a formative construct may become a problem.
As we will see later, this issue is related to multicollinearity (see Section A.2.6).
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FIGURE 3.3: Path diagram for an hypothetical model with nine manifest variables,
x11 to x33, and three constructs, ξ1, ξ2 and ξ3. The reflective and formative approaches
are highlighted with light and dark-shaded boxes respectively.

at the end of the chapter provides a more formal definition of the different measure-
ment frameworks. Figure 3.3 shows the same hypothetical model introduced above
but highlighting that the constructs ξ1 and ξ3 are measured using a reflective ap-
proach, while the ξ2 block involves a formative measurement model.

The choice of the model for measuring a given latent variable, either reflectively
or formatively, is a modelling decision and there is no clear answer as to when to use
one or the other. In general, we can say that formative measures should be used when
the indicators precede in time the construct itself. Moreover, in the formative case, the
indicators should provide the full list of motivations for the construct to vary. In some
cases, it is possible that a single construct can be conceptualized both as reflective
and formative. In these contexts it is the research objective that should guide you
in the selection of the appropriate representation. Hair et al. (2017) provide some
guidelines for choosing the measurement model for each construct (see in particular
Exhibit 2.9 on page 52).

As it was implicit in our discussion, every latent variable must have indicators
connected to it. A situation that occurs quite frequently is when researchers measure
a construct using a single indicator (so called single-item measures). For this kind
of construct, it does not matter the distinction between reflective and formative, since
there is a substantial overlap between the “cause” and the “effect” in this case. Single-
item measures are appealing because they require less efforts in the design and less
money in the data collection. However, unless it is strictly necessary or requested by
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the theoretical model we want to estimate, we discourage measuring constructs in
this way.

3.2.2 Inner (structural) model

In SEM analyses the interest usually lies in the association between constructs. In
this regard, latent variables are normally distinguished as exogenous and endoge-
nous. Exogenous latent variables are those assumed not to be determined by other
quantities in the model, while endogenous variables are those that instead are the
result of the influence of exogenous, and maybe some other endogenous, constructs.
Using the same terminology as in regression analysis, exogenous constructs are the
independent variables while endogenous are the dependent ones. So, endogenous
variables are those predicted inside the model, while exogenous variables are predic-
tors of some endogenous constructs, but they are not predicted themselves. Figure 3.4
shows through a different shading that in our simple model ξ1 and ξ2 are exogenous
while ξ3 is the only endogenous variable. In more complex models, it is very often
the case that a latent variable is exogenous in a given relationship, but it becomes en-
dogenous in another one. An example is provided in Figure 3.5, where we modified
the previous diagram by adding the path from ξ1 to ξ2. Note that now ξ2 is endoge-
nous in the ξ2 versus ξ1 relationship, while it becomes exogenous when we focus
on the relationship between ξ3 and ξ2. In this last example, we are assuming that ξ2
is acting as a mediator of the association between ξ1 and ξ3. Briefly speaking, this
means that ξ1 has a direct effect on ξ3, represented by the arrow connecting these two
circles in the diagram. However, we also see that there is another path with which
ξ1 influences ξ3, the path that goes through ξ2. This further “compound” interven-
tion corresponds to the indirect effect of ξ1 on ξ3, that is the effect that is mediated
by the ξ2 construct. So, the total effect of ξ1 on ξ3 is given by sum of the direct
and indirect effects. Mediating effects can be very complicated and they can span
a sequence of more than one direct path between two latent variables. Chapter 5 is
dedicated to discuss the nuts and bolts of mediation analysis. Chapter 6 will instead
introduce moderation, which corresponds to the situation where a third variable can
directly intervene on the relationship between exogenous and endogenous variables
modifying the strength or even the direction of the corresponding association.

The specification of the structural relationships is dictated by the theoretical
model we intend to investigate. As we already mentioned, a study typically involves
the formulation of a new theory for a given phenomenon or the modification of an
existing one. The theory establishes a set of implications, that technically correspond
to associations between the concepts involved in the study. In practice, most pub-
lished studies include a collection of research questions regarding the relationships
between the variables, which represent the source of the structural part specification.
Since a model is nothing else than a simplification of a complex real phenomenon,
to be useful it should be “parsimonious”, in the sense that it shouldn’t be too much
detailed. In other terms, the model should include the least number of connections
that allows answering the research questions. The overparameterization of a model,
that is the inclusion of too many connections, implies a more complicated interpre-
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FIGURE 3.4: Path diagram for an hypothetical model with nine manifest variables,
x11 to x33, and three constructs, ξ1, ξ2 and ξ3. Exogenous variables ξ1 and ξ2 are high-
lighted with light-shaded boxes, while the only endogenous variable, ξ3, is shown
using a darker shading.

tation of the findings, and it also requires the collection of a larger sample to reliably
estimate the parameters in the model.

Even if the inner model is theoretically distinct from the outer model, they do not
represent two independent parts of the analysis. This means that the practical rele-
vance and the implications one can get from the structural model would be useless
without a valid and reliable measurement model. In Chapter 4 we will provide a sys-
tematic strategy for assessing the goodness of both the measurement and structural
parts of a PLS-SEM model.

3.2.3 Application: Tourists satisfaction

In this section we introduce an example taken from the first author’s research agenda.
We will refer to this application throughout the book. In particular we start here con-
sidering a simple model, whose aim is basically to serve as a practical implementa-
tion of the concepts we are introducing. The data for this application are contained in
the ch3_MotivesActivity.dta file that is available on the GitHub repository
of the book. This dataset is the result of a survey on a sample of 1000 domestic and
international tourists visiting a destination in Norway in the summer of 2010. The
respondents were asked to indicate:

• how important each of the following reasons/motives was for choosing to travel
to the current destination using an ordinal scale from 1 (not important) to 5 (very
important),

– to gain new energy (spm1_6)
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FIGURE 3.5: Path diagram for an hypothetical model with nine manifest variables,
x11 to x33, and three constructs, ξ1, ξ2 and ξ3. ξ1, the only exogenous variable here,
is highlighted with a light-shaded box, while the endogenous ones, ξ2 and ξ3, are
shown using a darker shading. In this model, ξ2 is both exogenous and endogenous.

– to get away from everyday life (spm1_7)

– to avoid boredom (spm1_8)

– to experience excitement (spm1_9)

• whether they had participated in the following activities during their stay in the
current destination using a nominal scale, 0 (no) or 1 (yes),

– to visit amusement/theme/family parks (spm3_2)

– to visit the town (spm3_6)

– to be in and see nature (spm3_8)

– to catch fish (spm3_12)

• the respondents were also asked to indicate to what extent they agreed with
the following statements regarding the current destination using an ordinal scale
from 1 (totally disagree) to 5 (totally agree),

– “overall I am satisfied with my holiday here” (spm15_7)

– “my holiday here exceeded my expectations” (spm15_8)

– “I am going to recommend my friends to spend a holiday here”
(spm15_3).

The dataset contains some missing data that we ignore for the moment, that is we
only use observations for which values on all variables are available. We will discuss
different approaches to deal with missing values in Section 3.6.
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variable | N mean p50 sd p25 p75
-------------+------------------------------------------------------------

energy | 983 3.343845 3 1.263534 3 4
getaway | 997 3.985958 4 1.112093 3 5
boredom | 993 2.897281 3 1.418314 2 4
exciting | 991 3.123108 3 1.250851 2 4
entertain | 991 .3733602 0 .4839408 0 1
visittown | 991 .6377397 1 .4808962 0 1

nature | 991 .5590313 1 .4967538 0 1
fishing | 991 .1150353 0 .3192257 0 0

recommend | 934 3.891863 4 .9668005 3 5
satisf | 928 4.15625 4 .7843835 4 5
expecta | 919 3.314472 3 .981372 3 4

--------------------------------------------------------------------------

FIGURE 3.6: Tourists satisfaction application. Summary statistics for the manifest
variables in the model shown in Figure 3.7.

With the following code, we first load the data and rename the columns to get
more informative outputs. Then, to start getting familiar with the data we compute
some summary statistics, that are reported in Figure 3.6:

1 use ch3_MotivesActivity, clear

2 rename spm1_6 energy
3 rename spm1_7 getaway
4 rename spm1_8 boredom
5 rename spm1_9 exciting
6 rename spm3_2 entertain
7 rename spm3_6 visittown
8 rename spm3_8 nature
9 rename spm3_12 fishing

10 rename spm15_3 recommend
11 rename spm15_7 satisf
12 rename spm15_8 expecta

13 tabstat energy getaway boredom exciting entertain visittown ///
14 nature fishing recommend satisf expecta, ///
15 statistics(n mean median sd p25 p75) columns(statistics)

The first example we present is shown in Figure 3.7. According to the diagram,
the structural model involves three constructs, namely SATISFACTION, MOTIVES
and ACTIVITY. These represent respectively the overall satisfaction, the extent of
motivation and experience intensity of the visit. SATISFACTION is assumed to be
endogenous with its values that are predicted by the exogenous constructs MOTIVES
and ACTIVITY. For what regards the measurement model, MOTIVES is modelled
as reflective with indicators energy, getaway, boredom and exciting. For
ACTIVITY it is assumed instead a formative model with indicators entertain,
visittown, nature and fishing. Finally, SATISFACTION is reflective with
indicators recommend, satisf and expecta. A couple of remarks are needed
here. We note that in this example ACTIVITY is correctly modelled as formative
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FIGURE 3.7: Tourists satisfaction application. The path diagram shows the as-
sumed measurement and structural models for the first model we discuss in this
chapter. SATISFACTION is the only endogenous latent variable, while ACTIV-
ITY and MOTIVES are the two exogenous constructs that are assumed to predict
the unobserved tourists satisfaction. MOTIVES is a reflective construct measured
by the four indicators energy (originally called spm1_6), getaway (spm1_7),
boredom (spm1_8) and exciting (spm1_9), while ACTIVITY is modelled
as a formative measure using the observed variables entertain (spm3_2),
visittown (spm3_6), nature (spm3_8) and fishing (spm3_12). SATIS-
FACTION forms a reflective block with the indicators recommend (spm15_3),
satisf (spm15_7) and expecta (spm15_8).

both because the indicators precede in time the construct itself and because they
represent the possible explanations for the values taken by the construct itself. Mod-
elling ACTIVITY as reflective here would therefore be mistaken. On the other side, it
is appropriate to measure MOTIVES and SATISFACTION as reflective substantially
for the opposite reasons: these are unobserved cognitive constructs that are assumed
to originate the observed values for the indicators they are linked to. As such, the
indicators of MOTIVES and SATISFACTION are expected to be strongly correlated
among themselves.

The full description of the model is provided by the following equations19:

SATISFACTIONi = β03 +β13 MOTIVESi +β23 ACTIVITYi +ζi (3.6)

19The notation we use in this example appears to be overly complicated, but it follows the conventions
described in the technical appendix at the end of this chapter.



3.3 Model Estimation 101

for the structural part, and

ACTIVITYi = π11 entertaini+π21 visittowni+

π31 naturei +π41 fishingi +δi
(3.7)

energyi = λ120 +λ12 MOTIVESi + εi12 (3.8)
getawayi = λ220 +λ22 MOTIVESi + εi22 (3.9)
boredomi = λ320 +λ32 MOTIVESi + εi32 (3.10)

excitingi = λ420 +λ42 MOTIVESi + εi42 (3.11)

recommendi = λ130 +λ13 SATISFACTIONi + εi13 (3.12)
satisfi = λ230 +λ23 SATISFACTIONi + εi23 (3.13)
expectai = λ330 +λ33 SATISFACTIONi + εi33 (3.14)

for the measurement part.

3.3 Model Estimation
In this section we provide a detailed presentation of the PLS-SEM estimation process
using the tourist satisfaction data. The tools for assessing the goodness of the mea-
surement and structural parts will be the subject of Chapter 4 instead. The quantities
that need to be estimated in a PLS-SEM model are:

1. the outer model parameters,

2. the inner model parameters,

3. the latent variable scores.

Before illustrating the steps for estimation, we introduce additional notation that will
be useful later. The measurement model can be described by an adjacency matrix
MMM whose entries mpq take value 1 if indicator xp belongs to the block that defines
the qth latent variable ξξξ q, and 0 otherwise, with p = 1, . . . ,P and q = 1, . . . ,Q. The
adjacency matrix of the measurement model for the example in Figure 3.7 is provided
in Table 3.1. Note that the matrix MMM does not convey any information about whether
a construct is measured in a reflective or formative way.

Similarly, the structural model can be summarized by an adjacency matrix SSS
whose entries skq take value 1 if the latent variable ξξξ k is a predecessor of the la-
tent variable ξξξ q in the model, and 0 otherwise, with k,q = 1, . . . ,Q. The adjacency
matrix of the structural model for the example in Figure 3.7 is reported in Table 3.2.
Note that matrix SSS allows to recover the information about whether a latent variable
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TABLE 3.1: Measurement model adjacency matrix MMM for the example shown in Fig-
ure 3.7. The generic element mpq of the matrix is set to 1 if indicator xxxp belongs to
the block that defines latent variable ξξξ q, and 0 otherwise.

ACTIVITY MOTIVES SATISFACTION
entertain 1 0 0
visittown 1 0 0
nature 1 0 0
fishing 1 0 0
energy 0 1 0
getaway 0 1 0
boredom 0 1 0
exciting 0 1 0
recommend 0 0 1
satisf 0 0 1
expecta 0 0 1

is exogenous or endogenous. More specifically, if the column corresponding to the
latent variable ξξξ q contains only zeros, that indicates that ξξξ q is exogenous. In other
words, contrary to the matrix MMM for the measurement model, SSS accounts for the di-
rectionality of the relationships among the latent variables.

TABLE 3.2: Structural model adjacency matrix SSS for the example shown in Fig-
ure 3.7. The generic element skq of the matrix is set to 1 if the latent variable ξξξ k is a
predecessor of the latent variable ξξξ q in the model, and 0 otherwise.

ACTIVITY MOTIVES SATISFACTION
ACTIVITY 0 0 1
MOTIVES 0 0 1
SATISFACTION 0 0 0

3.3.1 The PLS-SEM algorithm

The basic PLS-SEM algorithm (Lohmöller, 1989) involves the estimation of the so
called outer weights by means of an iterative procedure in which the latent vari-
able scores are obtained by alternating the outer and inner estimation steps. More
specifically, the estimation algorithm consists of three sequential stages. In the first
stage, latent variable scores are iteratively estimated for each case in the sample. Us-
ing these scores, in the second stage measurement model parameters (so called outer
coefficients and outer loadings) are computed. In the same manner, in the third stage
structural parameters (also called path coefficients) are finally estimated. The first
stage is what makes PLS-SEM a novel method in that the second and third stages are
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FIGURE 3.8: Diagrammatic representation of the basic PLS-SEM estimation algo-
rithm stages (adapted from Rigdon (2013); LV means latent variables).

about conducting a series of standard OLS regressions20. To help grasping the whole
process, we summarize it in Figure 3.8. We now provide more details on each stage.

3.3.2 Stage I: Iterative estimation of latent variable scores

The first stage of the algorithm involves an iterative procedure consisting of the fol-
lowing steps, whose aim is the estimation of the latent variable scores:

Step 0: Initialization of the latent variable scores

Step 1: Estimation of the inner weights

Step 2: Inner approximation of the latent variable scores

Step 3: Estimation of the outer weights

Step 4: Outer approximation of the latent variable scores

Step 5: Convergence checking

The basic idea behind these steps is as follows:

• after the latent variable scores have been initialized, the information flows from
the “outside” to the “inside” by using the outer model information,

20The algorithm that we describe in this section allows to fit only recursive models. To estimate non-
recursive models, you should use other estimation methods such as two-stage least squares (see Dijkstra
and Henseler, 2015a,b).
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• then, the latent scores are revised taking into account the association between the
latent variables in the inner model,

• the information is then propagated back to the “outside” updating the outer
weight values.

This process is iterated till convergence. The algorithm’s steps involve only simple
and multiple linear regressions using the local information available at each node of
the path diagram. We now describe these steps in more details.

We denote the data matrix with all indicators as XXX and the block of indicators
measuring the qth latent variable ξξξ q as XXXq. Similarly, we indicate with ΞΞΞ the matrix
of all latent variable scores. A common preprocessing step in PLS-SEM is to stan-
dardize all the indicators to have zero mean and unit variance. This transformation
permits to disregard the scale differences among the manifest variables. Additionally,
after each step the latent variables are scaled likewise.

Step 0: Initialization of the latent variable scores. In general we estimate the latent
variable scores as a weighted sum of the indicators in the corresponding block. In the
very first step, each latent variable is initialized setting all weights equal to one. In
other terms, initially we compute the scores as

ξ̂ξξ q =
Pq

∑
p=1

mpqxxxpq. (3.15)

This equation implies that the scores of each latent variable are initially set equal
to the algebraic sum of the indicators in the corresponding block, irrespective of
whether the construct is measured reflectively or formatively. This is the most popu-
lar initialization method, but it is not the only one available. Indeed, in some software
it is possible to choose a different method that consists in assigning a weight equal
to 1 to all indicators in a block except the last one, which instead receives a weight
of –1. This approach was frequently used in the past because it permits a faster con-
vergence. However, it also has the drawback of producing unexpected sign flipping
of the parameter estimates.

Step 1: Estimation of the inner weights. Inner weights are calculated for each latent
variable to reflect how strongly the other latent variables are connected to it. The
most common schemes for computing the inner weights are the centroid scheme,
originally proposed by Wold (1982), the factorial scheme and the path scheme, both
introduced by Lohmöller (1989). We provide below a brief description of each one
assuming that the inner weights are collected in a matrix denoted as EEE with generic
element ekq.

Centroid scheme: this scheme produces weights ekq based on the sign of rkq =
Cor(ξξξ k,ξξξ q), the linear correlation coefficient between the latent variables ξξξ k
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and ξξξ q resulting from the outer approximation (see Step 4 below21), assuming
they are neighbours. In particular, if ξξξ k and ξξξ q are adjacent, the weight ekq is set
to +1 if the correlation is positive and to −1 if the correlation is negative. If ξξξ k
and ξξξ q are not adjacent, that is there is no relationship between them, ekq is set
to 0. More formally, for k,q = 1, . . . ,Q,

ekq =

{
sign(rkq) if ckq = 1
0 otherwise , (3.16)

where ckq denotes the (k,q)th element of the matrix CCC = SSS+ SSS> and SSS is the
adjacency matrix of the structural model introduced in Section 3.3. Thus, CCC is a
symmetric matrix whose element ckq takes value 1 if the latent variables ξξξ k and
ξξξ q are neighbours in the structural model, and 0 otherwise.

Note that, as implied by Equation (3.16), correlations that are very close to zero
may cause the weights to take a non-zero value, which may lead to instabil-
ity. Moreover, the centroid scheme should not be used when the model contains
higher order constructs (see Section 3.10).

Factorial scheme: in this scheme the correlation value between each pair of latent
variables is directly used as the weight, that is

ekq =

{
rkq if ckq = 1
0 otherwise , (3.17)

with the same interpretation of the notation as above. Note that the aim of this
scheme is to take into consideration the strength of the association between the
two latent variables ξξξ k and ξξξ q, and not simply its sign as in the centroid scheme,
but irrespective of the direction of the relationship.

Path scheme: in this scheme two types of weights are produced depending on the
relationship between the latent variables. When a latent variable, say ξξξ k, is “caus-
ing” another latent variable ξξξ q (so called successor), the weight value corre-
sponds to the linear correlation coefficient rkq = Cor(ξξξ k,ξξξ q). If instead the latent
variable ξξξ k is “caused” by another latent variable ξξξ q (so called predecessor), the
weight is determined using a multiple regression model. In particular, the esti-
mated linear regression coefficient on the predecessor will be used as the weight.
More formally, according to the path scheme the weights are computed as fol-
lows

ekq =





γ̂q for q ∈ ξξξ
pred
k

rkq for q ∈ ξξξ
succ
k

0 otherwise
, (3.18)

where ξξξ
pred
k indicates the set of predecessors of ξξξ k and ξξξ

succ
k represents the cor-

responding set of successors. The coefficient γ̂q provides the estimate of the ξξξ q

21At the first iteration of the algorithm the outer proxies of the latent variable scores correspond to the
initial values computed in Step 0.
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coefficient in the linear regression model

ξξξ k = ξξξ
pred
k γγγ + εk,

assuming ξξξ q belongs to the predecessor set of ξξξ k. The path scheme is usually the
default weighting scheme used in most PLS-SEM software because it allows to
account for the largest amount of variance for the endogenous latent variables22.

Step 2: Inner approximation of the latent variable scores. Here, the latent vari-
able scores ξ̂ξξ 1, . . . , ξ̂ξξ Q obtained in the previous iteration (usually referred to as the
outer approximation of the latent variable scores) are updated getting new scores,
ξ̃ξξ 1, . . . , ξ̃ξξ Q (called the inner approximation of the latent variable scores), which
are computed as a weighted sum of their respective adjacent latent variables. More
specifically, the inner approximation of the latent variable scores is computed as

ξ̃ξξ q =
Q

∑
k=1

ekqξ̂ξξ k, (3.19)

where the ekqs are the inner weights as obtained from Step 1.

Step 3: Estimation of the outer weights. So far we did not make any distinction be-
tween reflective and formative measures. Now, we need to take this difference into ac-
count to properly estimate the parameters of the measurement model. Therefore, we
recalculate the latent variable scores obtained from Step 2 using yet another weight-
ing update. In the classical algorithm, there are two possible choices for updating the
outer weights, usually referred to as mode A and mode B, which typically refer to
reflective and formative models respectively.

With mode A, for each indicator in a given block, we fit a simple linear regres-
sion of the indicator versus the corresponding latent variable. Since both the indica-
tors and the latent variables obtained from Step 2 are standardized23, the regression
coefficients computed here correspond to linear correlation coefficients, that is

ŵww>q =

(
ξ̃ξξ
>
q ξ̃ξξ q

)−1

ξ̃ξξ
>
q XXXq

= Cor(ξ̃ξξ q,XXXq). (3.20)

In mode B we regress each latent variable against the indicators in its block. The
weights will then correspond to the partial coefficients, that is24

ŵwwq =
(

XXX>q XXXq

)−1
XXX>q ξ̃ξξ q

= Var(XXXq)
−1Cor(XXXq, ξ̃ξξ q). (3.21)

22Intuitively, this is due to the fact that, differently from the factorial scheme where the correlation
between any two latent variables is used irrespective of the direction of the relationship, the path scheme
differentiates between the possible directions.

23If the indicators are not standardized a priori, then we get covariances instead of correlations.
24The second equality below still refers to the situation where the indicators have been standardized.
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Step 4: Outer approximation of the latent variable scores. In this step, we estimate
the latent variable scores using the outer weights ŵwwq obtained from Step 3 above by
computing

ξ̂ξξ q =
Pq

∑
p=1

ŵpqxxxpq, (3.22)

which is usually referred to as the weight relation.

Step 5: Convergence checking. The process from Step 1 through Step 4 is then re-
peated until a convergence criterion is met. The most common criterion used is the
maximum relative difference between the outer weights from iteration to iteration.
When the criterion falls below the chosen tolerance value (e.g., 10−5), the algorithm
stops. More formally, the procedure ends when

max
p=1,...,P
q=1,...,Q

∣∣∣∣∣
ŵold

pq − ŵnew
pq

ŵnew
pq

∣∣∣∣∣< tolerance. (3.23)

However, other convergence criteria may be used, such as the maximum of the
squared differences between the outer weights from two consecutive iterations

max
p=1,...,P
q=1,...,Q

(
ŵold

pq − ŵnew
pq
)2

< tolerance, (3.24)

or the sum of the absolute weight differences

∑
p=1,...,P
q=1,...,Q

∣∣ŵold
pq − ŵnew

pq
∣∣< tolerance. (3.25)

3.3.3 Stage II: Estimation of measurement model parameters

Having estimated the latent variable scores, in the second stage of the PLS-SEM
algorithm the loadings for reflective constructs and coefficients for formative con-
structs are computed. To do that, we use the final latent variables scores (Ξ̂ΞΞ) to com-
pute the outer loadings (and cross-loadings) as the linear correlation between XXX and
Ξ̂ΞΞ, and the outer coefficients by regressing Ξ̂ΞΞ on XXX .

3.3.4 Stage III: Estimation of structural model parameters

In this stage, using the final latent variable scores, we estimate the path coefficients
(i.e., the structural model parameters) for each endogenous latent variable using OLS
according to the specified PLS-SEM model. In particular, for each latent variable
(ξ̂ξξ q) in the model, the path coefficients are computed as the regression coefficients
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of its predecessors (ξ̂ξξ
pred
q ), that is

β̂ββ q =

(
ξ̂ξξ

pred>
q ξ̂ξξ

pred
q

)−1

ξ̂ξξ
pred>
q ξ̂ξξ q

= Cor
(

ξ̂ξξ
pred
q , ξ̂ξξ

pred
q

)−1

Cor
(

ξ̂ξξ
pred
q , ξ̂ξξ q

)
. (3.26)

For convenience, we summarize the whole procedure in Algorithm 3.2. Before
moving to the practical illustration of the estimation algorithm, we want to make a
final remark about the convergence properties of the algorithm. In practice, the algo-
rithm usually converges in few iterations. However, it has been shown that in some
situations the algorithm may not converge (Hanafi, 2007; Henseler, 2010). This state-
ment should not be taken as a motivation for not using PLS-SEM, since as Henseler
(2010, page 118) puts it:

“It should be noted that the non-convergence of PLS path modelling does not
mean that researchers in behavioural, social, and business science should not
use PLS any more. Many of the most important psychometric methods, as
for instance common factor analysis or covariance-based structural equation
modelling, face the issue of non-convergence. It is just that users must learn
how to deal with it.”

3.4 Bootstrap-based Inference
As we have seen in the previous section, the estimation procedure in PLS-SEM in-
volves a sequence of stages and iterative steps. As a consequence, the path coeffi-
cient estimates we get at the end of the procedure cannot be expressed as an explicit
function of the indicators data. For this reason, it is not possible to derive the (exact)
sampling distributions of the corresponding estimators. It follows that the only viable
way to perform inference (i.e., compute p-values and confidence intervals) for a PLS-
SEM model is through (non-parametric) bootstrap (Davison and Hinkley, 1997). As
we discussed in Section 2.1, the bootstrap involves randomly drawing with replace-
ment a large number of subsamples from the observed data. So, if we denote with
XXX the original data matrix containing the observed values for the full set of manifest
variables, for each subsample b, with b = 1, . . . ,B, the bootstrap procedure generates
a new matrix XXX (b) whose rows are drawn randomly (with repetitions allowed) from
XXX . Then, for each subsample XXX (b) a complete PLS-SEM analysis is performed and
the corresponding parameter estimates are stored. After completion of the B boot-
strap iterations, we end up with a list of B values for each parameter in the model
that represents its bootstrap distribution. The bootstrap distributions can then be used
to perform the required inferential analyses.
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Algorithm 3.2 The PLS-SEM estimation algorithm.

1: Given data XXX on indicators, measurement and structural model adjacency matri-
ces MMM and SSS. Choose the latent variables measured in reflective (mode A) and
formative (mode B) way. Set the outer weights initial values ŴWW

old
to the zero

matrix. Fix the tolerance tol and the maximum number of iterations tmax.
2: Scale the indicators to have zero mean and unit variance.
3: Set the scores initial value to

Ξ̂ΞΞ = XXXMMM.

4: Scale the latent variables scores to have zero mean and unit variance.
5: Set the iteration counter to zero (t← 0) and the maximum relative difference of

the outer weights δ to 1 (δ ← 1).
6: while δ ≥ tol and t < tmax do
7: Estimate the inner weights using either (3.16), (3.17) or (3.18) and form

matrix EEE.
8: Compute the inner approximation of the latent variable scores as

Ξ̃ΞΞ = Ξ̂ΞΞEEE.

9: Scale the latent variables scores to have zero mean and unit variance.
10: for q← 1, Q do
11: if ξξξ q is in the set of mode A latent variables then
12: Compute the outer weights as

ŵww>q =

(
ξ̃ξξ
>
q ξ̃ξξ q

)−1

ξ̃ξξ
>
q XXXq.

13: else if ξξξ q is in the set of mode B latent variables then
14: Compute the outer weights as

ŵwwq =
(

XXX>q XXXq

)−1
XXX>q ξ̃ξξ q.

15: end if
16: end for
17: Compute the outer approximation of the latent variable scores as

Ξ̂ΞΞ = XXXŴWW ,

where ŴWW is a diagonal matrix collecting the estimated weights ŵwwq.
18: Scale the latent variables scores to have zero mean and unit variance.
19: Compute

δ = max
p=1,...,P
q=1,...,Q

∣∣∣∣∣
ŵold

pq − ŵnew
pq

ŵnew
pq

∣∣∣∣∣ .

20: Increase the iteration counter (t← t +1).
21: end while
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22: for q← 1, Q do
23: if ξξξ q is in the set of mode A latent variables then
24: Compute the cross loadings as

λ̂λλ
cross
q = Cor(XXX , ξ̂ξξ q).

25: Compute the outer loadings as

λ̂
outer
pq =

{
λ̂ cross

pq if mpq = 1
0 otherwise

.

26: else if ξξξ q is in the set of mode B latent variables then
27: Compute the outer coefficients as

ŵwwq =
(

XXX>q XXXq

)−1
XXX>q ξ̂ξξ q.

28: end if
29: Compute the path coefficients (i.e., the structural model parameters) as

β̂ββ q =

(
ξ̂ξξ

pred>
q ξ̂ξξ

pred
q

)−1

ξ̂ξξ
pred>
q ξ̂ξξ q.

30: end for

A last issue we must mention regarding bootstrapping PLS-SEM models is re-
lated to the sign indeterminacy of the latent variable scores, an unpleasant feature
which is shared with other factorial techniques (see for example Brown, 2015). From
our point of view, score indeterminacy implies the possibility that during resampling
any of the parameter sign does change unexpectedly. The main consequence of this
situation is that the bootstrap distribution of the corresponding parameter becomes
more dispersed thus influencing the estimate of the bootstrap standard error, which
in turn will produce higher p-values and wider confidence intervals. Even if different
strategies to deal with this situation have been proposed (see Hair et al., 2017, pages
153–154), the general suggestion is to take no action for it and accept the potential
negative effects of the latent scores sign changes on the results.

3.5 The plssem Stata Package
As we described in the introductory section, we developed an open-source package
for Stata called plssem, which implements all the analyses we present in this book.
The package is freely available as a GitHub repository at https://github.

https://github.com/
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com/sergioventurini/plssem, where you also find the instructions for in-
stalling it in your computer25. Among the features included in plssem there are:

• Model specification using an equation-like style.

• Standard and bootstrap based estimation of PLS-SEM models.

• Mediation analysis through estimation and inference (including bootstrap) for up
to five indirect effects (see Chapter 5).

• Moderation analysis through the inclusion of interactions among latent variables
in the structural model (see Chapter 6).

• Multi-group analysis of outer loadings/coefficients and path coefficients for deal-
ing with observed heterogeneity; in particular, it allows the comparison of an
arbitrary number of groups using either normal-based, bootstrap or permutation
tests.

• Potential to estimate higher order construct models (see Section 3.10).

• Postestimation commands to deal with unobserved heterogeneity (see Chap-
ter 7).

• A range of graphical and postestimation commands for representing and inspect-
ing the results of a fitted PLS-SEM model.

We provide now a description of the basic plssem characteristics, while more
advanced features will be presented throughout the rest of the book.

3.5.1 Syntax

The syntax of plssem reflects the measurement and structural part of a PLS-SEM
model, and accordingly requires the user to specify both of these parts simultane-
ously. Since a full PLS-SEM model typically includes a structural part, we need to
define at least two latent variables in the measurement model. For example, assum-
ing the model involves only two latent variables LV1 and LV2, the plssem syntax
requires to specify the measurement part as

plssem (LV1 > varlist1) (LV2 > varlist2).

To specify reflective measures we need to use the greater-than sign (>) between a
latent variable and its associated indicators (e.g., LV1 > varlist1), while the
less-than sign (<) is required to include latent variables measured in a formative way
(e.g., LV1 < varlist1).

The specification of the structural part26 requires that the user must provide each
endogenous/dependent latent variable (say, LV2) followed by the exogenous ones it
depends upon (say, LV1) as shown in the following example

25The package works on Stata 15 or later.
26While the measurement part is mandatory, the plssem package allows to fit PLS-SEM models that

do not include the structural part.

https://github.com/
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plssem (LV1 > varlist1) (LV2 > varlist2), ///
structural(LV2 LV1).

One may specify more than one structural relationship by separating them using
commas. For example, suppose we have two additional latent variables in the model,
LV3 and LV4, both measured reflectively, with LV4 endogenous and LV3 exoge-
nous. Then, the syntax for the structural part would be

plssem (LV1 > varlist1) (LV2 > varlist2) ///
(LV3 > varlist3) (LV4 > varlist4), ///
structural(LV2 LV1, LV4 LV3 LV1).

In addition, in line with most Stata commands, we can fit a full PLS-SEM model by
sub-setting the data directly in the syntax using the if and in qualifiers.

The plssem command can also be used with the by prefix, which causes Stata
to repeat the analysis on subsets of the sample data corresponding to the values of
the variable specified with by.

3.5.2 Options

The plssem command allows setting many options, in particular:

wscheme(weighting_scheme) provides the choice for the weighting scheme.
The default is path for the path scheme as given in equation (3.18). Alternative
choices are factorial or centroid.

boot(#) sets the number of bootstrap replications.

seed(#) sets the seed number for the bootstrap calculations. This option allows to
make the results reproducible.

tol(#) sets the tolerance value used for checking convergence attainment (see
Step 5 in Stage I described in Section 3.3). The default tolerance value is 1e-
7.

maxiter(#) indicates the maximum number iterations the algorithm runs. The
default is 100 iterations. Note that usually the algorithm requires a very limited
number of iterations to reach convergence, typically less than 10.

init(init_method) lets the user choose between two options for initialization.
These are indsum, the default, which sets the initial values of the weights to 1s
for all indicators, and eigen, which instead initializes the latent scores using
the first eigenvector of the factor analysis for the corresponding block.

loadpval shows the table of loadings’ p-values.

correlate(mv lv cross, cutoff(#)) lets the user ask for correlations
among the indicators or manifest variables (mv), latent variables (lv) as well
as cross-loadings (cross) between the indicators and latent variables27. When

27These correlations are computed using the original indicators and the estimated latent variable
scores.
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doing so, the user can also set a certain cut-off value for the correlations to be
displayed by using the suboption cutoff(#). For instance, cutoff(0.3)
will display correlations that are larger than 0.3 in absolute terms.

noscale if chosen, the manifest variables are not standardized before running the
algorithm.

convcrit(convergence_criterion) the convergence criterion to use. Al-
ternative choices are relative (default) or square. The former corresponds
to (3.23) while the latter to (3.24).

Other options will be presented in the rest of the book.

3.5.3 Stored results

Most of the estimation results and intermediate calculations performed by the
plssem command are stored in memory and can be listed using the ereturn
list command. Some of the stored results are:

e(iterations) a scalar that provides the number of iterations performed to
reach convergence,

e(mvs) a macro containing the list of manifest variables used in the analysis,

e(lvs) a macro containing the list of latent variables used in the analysis,

e(loadings) the matrix with the estimated outer loadings and coefficients,

e(pathcoef) the matrix containing the estimated path coefficients,

e(adj_meas) the measurement model adjacency matrix MMM,

e(adj_struct) the structural model adjacency matrix SSS.

Most importantly, the command always saves in the active dataset the final estimates
of the construct scores as new columns which are labelled as in the command call.

As usual in Stata, the stored results can be accessed using the matrix list
(or matlist) command for matrix results and display for scalars and macros.
The advantage of having a rich set of stored results is that one could use them for
further analyses or for building custom graphical representations.

3.5.4 Application: Tourists satisfaction (cont.)

We now use the plssem command to estimate the model we introduced in Sec-
tion 3.2.3, whose path diagram is reported in Figure 3.7. To fit the model we run the
following code:
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1 plssem (ACTIVITY < entertain visittown nature fishing) ///
2 (MOTIVES > energy getaway boredom exciting) ///
3 (SATISFACTION > recommend satisf expecta), ///
4 structural(SATISFACTION ACTIVITY MOTIVES)

As you can notice, we conventionally write a latent variable using uppercase let-
ters, while for indicators we use lowercase (or capitalized) words, but this is not
strictly required. The first part of the command, up to the comma, specifies the mea-
surement model given by equations (3.7)–(3.14). Since we want to model ACTIV-
ITY as a formative construct, the plssem syntax requires to specify it using the
lower-than sign, that is

(ACTIVITY < entertain visittown nature fishing)

which is a way to mimic the fact that in this case the indicators are predictive of the
latent variable values. The other two constructs, MOTIVES and SATISFACTION,
are reflective, which we specify using the greater-than sign instead:

(MOTIVES > energy getaway boredom exciting)
(SATISFACTION > recommend satisf expecta)

The single option we included in the previous code, that is structural(),
specifies the inner model. In plssem the inner model is provided using the standard
approach in Stata for specifying regression models, that is as a list of column names
with the dependent variable followed by its predictors list. In our first example the
inner model is made of a single relationship given by equation (3.6). Assuming we
have many equations, we should separate them using a comma. The output of the
analysis is reported in Figure 3.9.

The first part of the output provides the iterations performed with the correspond-
ing attained value of the convergence criterion. In this example, the algorithm took
13 iterations to converge. The default value for the tolerance in plssem is 10−7, but
it can be overridden with the option tol(). For example, if you try rerunning the
same code with the addition of the tol(1e-9) option, it means you want to run
the algorithm till the convergence criterion has attained a value smaller than 10−9. In
this case the algorithm will need 16 iterations to converge and stop.

The second part of the output summarizes the algorithm settings and reports some
goodness-of-fit indices. In particular, we see that we used the path scheme for esti-
mating the outer parameters, which represents the default in plssem. If you want
to use another scheme, you need to add either the wscheme(centroid) or the
wscheme(factorial) option. Table 3.3 reports the parameter estimates using
the three weighting schemes. As we see, they are very similar. The default method
for initializing the latent variable scores is the sum of the indicators in the block (re-
ferred to as Initialization: indsum in the output). Finally, we see that only
882 observations have been used even if 1000 were available in the sample because
of missing data. The goodness-of-fit measures will be presented in the next chapter.

Next, the output in Figure 3.9 reports the table of standardized loadings. These
are the parameters related to the outer model. The columns of the table are labelled
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Iteration 1: outer weights rel. diff. = 6.11e+01
Iteration 2: outer weights rel. diff. = 5.23e-01
Iteration 3: outer weights rel. diff. = 1.78e-01
Iteration 4: outer weights rel. diff. = 2.04e-02
Iteration 5: outer weights rel. diff. = 1.21e-02
Iteration 6: outer weights rel. diff. = 9.11e-04
Iteration 7: outer weights rel. diff. = 6.60e-04
Iteration 8: outer weights rel. diff. = 4.43e-05
Iteration 9: outer weights rel. diff. = 3.44e-05
Iteration 10: outer weights rel. diff. = 2.22e-06
Iteration 11: outer weights rel. diff. = 1.77e-06
Iteration 12: outer weights rel. diff. = 1.12e-07
Iteration 13: outer weights rel. diff. = 9.14e-08

Partial least squares SEM Number of obs = 882
Average R-squared = 0.09930
Average communality = 0.57438

Weighting scheme: path Absolute GoF = 0.23882
Tolerance: 1.00e-07 Relative GoF = 0.93839
Initialization: indsum Average redundancy = 0.06820

Measurement model - Standardized loadings
-----------------------------------------------------------

| Formative: Reflective: Reflective:
| ACTIVITY MOTIVES SATISFACTION

--------------+--------------------------------------------
entertain | 0.248
visittown | 0.145

nature | 0.719
fishing | 0.680
energy | 0.734
getaway | 0.707
boredom | 0.680

exciting | 0.678
recommend | 0.850

satisf | 0.838
expecta | 0.797

--------------+--------------------------------------------
Cronbach | 0.666 0.772

DG | 0.793 0.868
rho_A | 1.000 0.674 0.772

-----------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance
extracted (AVE)
-----------------------------------------------------------

| ACTIVITY MOTIVES SATISFACTION
--------------+--------------------------------------------

ACTIVITY | 1.000 0.025 0.024
MOTIVES | 0.025 1.000 0.087

SATISFACTION | 0.024 0.087 1.000
--------------+--------------------------------------------

AVE | 0.490 0.687
-----------------------------------------------------------

Structural model - Standardized path coefficients
-----------------------------

Variable | SATISFACTION
--------------+--------------

ACTIVITY | 0.111
| (0.001)

MOTIVES | 0.278
| (0.000)

--------------+--------------
r2_a | 0.097

-----------------------------
p-values in parentheses

FIGURE 3.9: Tourists satisfaction application. Output of the plssem command for
the model reported in Figure 3.7.
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TABLE 3.3: Comparison of parameter estimates using different weighting schemes
for the model in Figure 3.7.

Centroid scheme Factorial scheme Path scheme
Measurement model
entertain 0.24614 0.24748 0.24792
visittown 0.15004 0.14608 0.14477
nature 0.71576 0.71802 0.71876
fishing 0.68459 0.68110 0.67994
energy 0.73367 0.73380 0.73385
getaway 0.70590 0.70677 0.70706
boredom 0.68051 0.68005 0.67990
exciting 0.67885 0.67816 0.67794
recommend 0.85264 0.85102 0.85046
satisf 0.82978 0.83592 0.83792
expecta 0.80195 0.79810 0.79682

Structural model
ACTIVITY 0.11180 0.11114 0.11093
MOTIVES 0.27787 0.27794 0.27796

with the construct names and they also indicate whether the construct is reflective or
formative. For example, the fitted measurement model for ACTIVITY is

̂ACTIVITYi = 0.248entertaini+0.145visittowni+

0.719naturei +0.680fishingi.
(3.27)

These quantities are “standardized” because they are computed using the standard-
ized indicators. In the last three rows of the outer parameters table we find some
indices that are useful for assessing the goodness of this part of the model. Similarly,
the next table, titled Discriminant validity, contains further tools for the
same aim. As we already said, we will dedicate Chapter 4 to the interpretation of
these measures.

Finally, the last table provides the path coefficient estimates and the correspond-
ing p-values. We can therefore conclude that both ACTIVITY and MOTIVES seem
to positively and significantly affect the tourists satisfaction for the visit. The p-values
reported here are those based on the standard normal-theory (i.e., no bootstrap is
used). To make inferences using the bootstrap, we need to add the boot() option
as shown in the code below:

1 plssem (ACTIVITY < entertain visittown nature fishing) ///
2 (MOTIVES > energy getaway boredom exciting) ///
3 (SATISFACTION > recommend satisf expecta), ///
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FIGURE 3.10: Tourists satisfaction application. Bar chart of the estimated outer pa-
rameters for the model reported in Figure 3.7.

4 structural(SATISFACTION ACTIVITY MOTIVES) ///
5 boot(1000) seed(1406)

In this example we used 1000 bootstrap replications and the output, not re-
ported here, appears to be identical to the results of the standard plssem output
(Figure 3.9). However, if we compare the standard errors of the outer and inner
model parameters, which are available in the stored matrices e(loadings_se)
and e(struct_se), we conclude that there are some differences. In particular,
the bootstrap standard errors of the ACTIVITY outer coefficients are much higher.

The plssem package also includes commands for visualizing the results. This is
possible with the plssemplot postestimation command. For example, the follow-
ing code produces: 1) a bar chart of the estimated outer coefficients (Figure 3.10),
2) a graph of the outer weights convergence paths (Figure 3.11) and 3) a scatterplot
matrix with the estimated latent scores (Figure 3.12):

1 quietly plssem (ACTIVITY < entertain visittown nature fishing) ///
2 (MOTIVES > energy getaway boredom exciting) ///
3 (SATISFACTION > recommend satisf expecta), ///
4 structural(SATISFACTION ACTIVITY MOTIVES)
5 plssemplot, loadings
6 plssemplot, outerweights
7 plssemplot, scores
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FIGURE 3.11: Tourists satisfaction application. Evolution upon convergence of the
outer parameters for the model reported in Figure 3.7.

The graph of the outer weights evolution shows that the algorithm reached con-
vergence and it did so very quickly since the estimates stabilized practically after
the first two iterations. In addition, the scatter plot matrix of the estimated construct
scores does not provide evidence of outliers or other unusual observations.

3.6 Missing Data
Working with real data it is very common that some of the values in the data table
are missing, that is they are not available. Data may miss for many reasons such as
subjects dropping out from a study before the end, non-response in sample surveys,
refusal to answer particular questions in a questionnaire or simply an inadvertent
loss of information. There is a vast literature on how to deal with missing values in
different context and it is not our intention to provide a thorough presentation here28.
It suffices to say that in some circumstances missing data can be quite dangerous in
the sense that ignoring them may produce biased and inaccurate results.

28Good references are van Buuren (2018) or Molenberghs et al. (2015). You may also find an effective
and brief review in Hair et al. (2018a, Chapter 2 ).
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FIGURE 3.12: Tourists satisfaction application. Scatterplot matrix of the estimated
latent scores for the model reported in Figure 3.7.

The most common approaches to deal with missing data in practice are:

• Complete-case analysis (also called casewise or listwise deletion), which con-
sists in omitting any case with a missing value on any of the variables. This is the
default strategy adopted in most statistical software packages (Stata included).
Unless one can prove that the missing data are a true random subset of the orig-
inal full sample29, this option may dramatically reduce the effective number of
observations used in the analysis providing less accurate results. Additionally,
using this approach it is possible that entire groups of observations may be dis-
carded thus leading to severe biases in the estimates.

• Available-case analysis (sometimes called pairwise deletion) uses all available
data to estimate parameters of the model. For example, when interest focuses on
bivariate associations for a set of variables assessed using covariances or corre-
lation coefficients, then available-case analysis consists of a complete-case ap-
proach but performed separately for each pair of variables30. Even if this method
seems to make a better use of the data, the set of observations used is different
for each analysis and the resulting covariance or correlation matrices may even
be numerically inadequate31.

29This situation is referred to in the literature as data missing completely at random (MCAR).
30For example, this is the approach implemented in the pwcorr command in Stata.
31More technically, the covariance or correlation matrices may not be positive definite, which is a basic

requirement for most multivariate analyses.
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• Single imputation, which consists in “filling in” missing data with plausible val-
ues computed according to some rule. A popular choice is mean imputation
which replaces the missing values with the mean (or the mode for categorical
variables) of the available data. One drawback of this method is that it artificially
reduces the variability in the data. A more sophisticated version that allows to
partially reduce this issue is regression imputation, which uses an auxiliary re-
gression model to predict the values to replace missing data. Another single im-
putation method often used in practice is nearest neighbours, which uses the k
observations most similar to that whose values need to be imputed. For example,
suppose that for a given observation i we did not observe all the variables, but
2 out of 10 are missing. To impute them, we first look for the k observations
in the sample that are most similar to the ith observation for what regards the
non-missing variables. Then, the values to impute for the 2 missing variables are
computed by taking the averages of the corresponding columns for the identified
neighbours. Two choices must be taken in this case: how to measure the similar-
ity between any two observations and how many neighbours to use. Regarding
the former, any metric can be used but the most common choice is the Euclidean
distance (also called L2 norm), which has shown to provide good performance
results in many situations (Tutz and Ramzan, 2015). As for the number of neigh-
bours, k, this quantity behaves as a smoothing parameter and there is no general
rule for choosing it: smaller values (1 or 2) typically produce unstable results,
while larger values tend to approach the mean imputation case. A reasonable
choice for k is usually in between 3 and 7, with 5 often used as the default. The
advantages of this approach are that it deals with both discrete (i.e., categorical)
and continuous data and it is non-parametric in the sense that it does not require
the specification of a predictive model. The main drawback is that it is compu-
tationally more demanding than the other methods, an issue that may become
critical for large databases.

• Multiple imputation consists in generating multiple copies (e.g., 10) of the
dataset where the missing data are simulated according to an external imputa-
tion model. Each of the simulated complete dataset is then analysed using the
method of interest. Finally, the results are combined to produce estimates that
also take into account the uncertainty that is due to the presence of missing data.
Thanks to its flexibility, multiple imputation is currently considered one of the
best options for dealing with missing data. We refer to the literature for more
details.

In general, complete-case analysis may be considered acceptable only when
missing data represent at most 5% of the entire sample. Otherwise, one of the strate-
gies discussed above should be adopted. Nevertheless, as a general advice we suggest
to perform a thorough exploration of the data to understand whether those missing
are systematically different from those available. Additionally, it is often useful to try
different strategies to assess the robustness of the findings. The most popular options
to deal with missing data in PLS-SEM are mean imputation and nearest neighbours,
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which are also implemented in the plssem command. We now show an example
using the tourists satisfaction application.

3.6.1 Application: Tourists satisfaction (cont.)

As we noted in the previous analyses, the tourists satisfaction data contain a non-
negligible number of missing data, as the following code proves (output not re-
ported):

1 misstable summarize energy-expecta
2 misstable pattern energy-expecta

This first analysis shows that around 12% of the observations contain at least
one missing value. Thus, the results we reported in our previous examples, which
were using the complete-case approach, may be biased. To address this issue, we
now repeat the same analysis using different imputation methods. In particular, we
use mean imputation and nearest neighbours with k = 1,5 and 10. The plssem
command allows to impute missing values through the missing() option32. More
specifically:

• to perform mean imputation you need to specify missing(mean),

• to use nearest neighbours imputation you must provide missing(knn) and
the additional k() option for setting the number of neighbouring observations
to use (if not specified, k() is automatically fixed at 5).

The following code fits the model under these different scenarios using the path
weighting scheme33:

1 set seed 1404

2 plssem (ACTIVITY < entertain visittown nature fishing) ///
3 (MOTIVES > energy getaway boredom exciting) ///
4 (SATISFACTION > recommend satisf expecta), ///
5 structural(SATISFACTION ACTIVITY MOTIVES)
6 estimates store complete_case
7 label variable ACTIVITY "Scores of ACTIVITY (complete)"
8 label variable MOTIVES "Scores of MOTIVES (complete)"
9 label variable SATISFACTION "Scores of SATISFACTION (complete)"

10 rename ACTIVITY ACTIVITY_cc
11 rename MOTIVES MOTIVES_cc
12 rename SATISFACTION SATISFACTION_cc

13 plssem (ACTIVITY < entertain visittown nature fishing) ///

32Imputation occurs before standardizing the manifest variables.
33Note that we set the random seed because, in case of ties (i.e., when there are more than one ob-

servation at a given distance from that whose values are to be imputed), the nearest neighbours method
randomly selects those to use for computing the average. Therefore, setting the seed allows to reproduce
the same numbers we report here.
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14 (MOTIVES > energy getaway boredom exciting) ///
15 (SATISFACTION > recommend satisf expecta), ///
16 structural(SATISFACTION ACTIVITY MOTIVES) ///
17 missing(mean)
18 estimates store mean_imputation
19 label variable ACTIVITY "Scores of ACTIVITY (mean)"
20 label variable MOTIVES "Scores of MOTIVES (mean)"
21 label variable SATISFACTION "Scores of SATISFACTION (mean)"
22 rename ACTIVITY ACTIVITY_mean
23 rename MOTIVES MOTIVES_mean
24 rename SATISFACTION SATISFACTION_mean

25 plssem (ACTIVITY < entertain visittown nature fishing) ///
26 (MOTIVES > energy getaway boredom exciting) ///
27 (SATISFACTION > recommend satisf expecta), ///
28 structural(SATISFACTION ACTIVITY MOTIVES) ///
29 missing(knn) k(1)
30 estimates store knn_imputation_1
31 label variable ACTIVITY "Scores of ACTIVITY (k-NN - k=1)"
32 label variable MOTIVES "Scores of MOTIVES (k-NN - k=1)"
33 label variable SATISFACTION "Scores of SATISFACTION (k-NN - k=1)"
34 rename ACTIVITY ACTIVITY_knn1
35 rename MOTIVES MOTIVES_knn1
36 rename SATISFACTION SATISFACTION_knn1

37 plssem (ACTIVITY < entertain visittown nature fishing) ///
38 (MOTIVES > energy getaway boredom exciting) ///
39 (SATISFACTION > recommend satisf expecta), ///
40 structural(SATISFACTION ACTIVITY MOTIVES) ///
41 missing(knn) k(5)
42 estimates store knn_imputation_5
43 label variable ACTIVITY "Scores of ACTIVITY (k-NN - k=5)"
44 label variable MOTIVES "Scores of MOTIVES (k-NN - k=5)"
45 label variable SATISFACTION "Scores of SATISFACTION (k-NN - k=5)"
46 rename ACTIVITY ACTIVITY_knn5
47 rename MOTIVES MOTIVES_knn5
48 rename SATISFACTION SATISFACTION_knn5

49 plssem (ACTIVITY < entertain visittown nature fishing) ///
50 (MOTIVES > energy getaway boredom exciting) ///
51 (SATISFACTION > recommend satisf expecta), ///
52 structural(SATISFACTION ACTIVITY MOTIVES) ///
53 missing(knn) k(10)
54 estimates store knn_imputation_10
55 label variable ACTIVITY "Scores of ACTIVITY (k-NN - k=10)"
56 label variable MOTIVES "Scores of MOTIVES (k-NN - k=10)"
57 label variable SATISFACTION "Scores of SATISFACTION (k-NN - k=10)"
58 rename ACTIVITY ACTIVITY_knn10
59 rename MOTIVES MOTIVES_knn10
60 rename SATISFACTION SATISFACTION_knn10

The parameter estimates are reported in Table 3.4, from which we notice some
differences for both the outer and inner model parameters. In particular, the extent of
the differences with respect to the complete-case method provides some evidence of
the bias produced from disregarding missing values.
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FIGURE 3.13: Tourists satisfaction application. Scatterplot matrix of the estimated
latent scores for the model reported in Figure 3.7 under different missing data impu-
tation schemes.

A further comparison is provided by the graphs in Figure 3.13, which report the
estimated latent scores obtained after applying the different methods. The construct
that seems to be most affected by the choice of the missing data approach is SATIS-
FACTION, because its indicators (i.e., recommend, satisf and expecta) are
those containing the highest number of missing values.

3.7 Effect Decomposition
As we have seen in Section 2.4 for path analysis, a useful way to summarize and
interpret the results of a PLS-SEM analysis is through the computation of the direct,
indirect and total effects. We recall that direct effects correspond to the impacts of
one latent variable on another without the intervention of other variables along the
causal path that goes from the former to the latter. On the contrary, indirect effects are
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TABLE 3.4: Comparison of parameter estimates using different imputation methods for the model in Figure 3.7 (k-NN means k nearest
neighbours imputation).

Complete-case Mean imputation k-NN (k = 1) k-NN (k = 5) k-NN (k = 10)
Measurement model
entertain 0.24792 0.22429 0.26089 0.21738 0.22911
visittown 0.14477 0.16486 0.13740 0.19424 0.19456
nature 0.71876 0.66646 0.67466 0.68552 0.70413
fishing 0.67994 0.74623 0.71565 0.72942 0.70350
energy 0.73385 0.72921 0.72118 0.73060 0.72759
getaway 0.70706 0.69853 0.69228 0.69396 0.69950
boredom 0.67990 0.70895 0.71705 0.71161 0.71042
exciting 0.67794 0.71546 0.72613 0.71893 0.71910
recommend 0.85046 0.84407 0.84535 0.84725 0.84708
satisf 0.83792 0.82223 0.83383 0.82245 0.82435
expecta 0.79682 0.80984 0.81908 0.81818 0.81644

Structural model
ACTIVITY 0.11093 0.09982 0.10472 0.10159 0.10371
MOTIVES 0.27796 0.24208 0.25291 0.25924 0.26368



3.7 Effect Decomposition 125

ξ1

ξ2

ξ3 ξ4 ξ5

β13

β23

β24

β14

β45β34

FIGURE 3.14: Hypothetical path diagram for a model showing the assumed struc-
tural relationships between five latent variables ξ1, . . . ,ξ5 together with the corre-
sponding path coefficients.

the influences that are mediated by at least one other variable34. Total effects are the
summation of direct and indirect effects. In practice, direct effects correspond to the
path coefficients. Indirect effects for a variable ξA on another variable ξB are com-
puted by considering all paths going from ξA to ξB, multiplying the corresponding
coefficients and finally summing up the results.

As an example, consider the hypothetical structural model shown in Figure 3.14
(we skip the measurement model because it is not involved in the definition of the
direct and indirect effects), which involves five latent variables ξ1, . . . ,ξ5. The cor-
responding path coefficients βm j are also reported in the diagram. For illustration
purposes, we focus on two of the relationships, namely the effect of ξ1 on ξ4 and that
of ξ2 on ξ5. Regarding the former, we have:

• the direct effect of ξ1 on ξ4 is given by the corresponding path coefficient β14,

• the indirect effect of ξ1 on ξ4 is instead represented by the influence that ξ1 has on
ξ4 that is mediated by ξ3, the only variable that lies along the indirect path going
from ξ1 to ξ4. This indirect effect is computed as the product of the correspond-
ing path coefficients, that is (β13×β34). Since there are no other indirect paths
linking ξ1 to ξ4, this value represents the final measure of the indirect effect,

• the total effect is then given by β14 +(β13×β34).

For what regards the relationship between ξ2 and ξ5:

• there is no direct effect of ξ2 on ξ5 because there is no path linking directly ξ2 to
ξ5,

34For the moment we rely on the common intuition you already have about the notion of mediation,
but in Chapter 5 we provide a more detailed discussion of this topic.
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• the indirect effect of ξ2 on ξ5 is more articulated because there are now two paths
going from ξ2 to ξ5, that is the ξ2→ ξ4→ ξ5 path, which is the effect mediated
by the single ξ4 variable, and the ξ2 → ξ3 → ξ4 → ξ5 path, that is instead the
indirect effect mediated by two variables. The first indirect path produces an
effect equal to (β24×β45), while the second one is given by (β23×β34×β45) so
that the overall indirect effect of ξ2 on ξ5 is equal to their summation,

• since there is no direct effect, the total effect is simply equal to the overall indirect
effect, that is (β24×β45)+(β23×β34×β45).

Indirect and total effects are useful for providing a more detailed view of the re-
lationships among the latent variables in a structural model. In some cases, in fact,
a direct effect can be misleading because its value can be offset by that of the cor-
responding indirect effect producing thus a total effect that has the opposite sign. In
these situations, the total effects give a complete view of the overall net effect of one
variable on another. In other cases, one may be interested not only in the net effect of
a given change in an independent variable on an endogenous variable but also in the
process that leads to the final change. In these situations, the indirect effects would
provide the full answer.

The plssem Stata package includes a series of postestimation commands that
produce additional output after a PLS-SEM has been estimated. As it is common in
Stata, these further analyses are available via the estat command. More specifi-
cally, to get the decomposition of the total effects into direct and indirect effects for
a fitted PLS-SEM model you can use the estat total command. This command
returns a table containing the estimates for all the effects. Moreover, adding the plot
option also produces a graphical representation of the same values, which is particu-
larly useful for complex models that involve many latent variables and a complicated
structural model. As an illustrative example, we consider again the model shown in
Figure 3.7, but in which we also add a path going from ACTIVITY to MOTIVES
so that on top of the direct effects now we also have an indirect effect of ACTIV-
ITY on SATISFACTION. The code below runs the analysis (output not reported)
and computes the effects (see Figure 3.15):

1 plssem (ACTIVITY < entertain visittown nature fishing) ///
2 (MOTIVES > energy getaway boredom exciting) ///
3 (SATISFACTION > recommend satisf expecta), ///
4 structural(SATISFACTION ACTIVITY MOTIVES, ///
5 MOTIVES ACTIVITY)
6

7 estat total

The results show that in this hypothetical model ACTIVITY has both a direct and
indirect effect on SATISFACTION, which is mediated by MOTIVES. In particular,
the magnitude of the indirect effect is larger than the direct effect producing thus a
total effect which is more than twice that provided by the direct effect alone. This
allows to fully assess the impact of the ACTIVITY construct on SATISFACTION.
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Direct, Indirect (overall) and Total Effects
-----------------------------------------------------------------

Effect | Direct Indirect Total
--------------------------+--------------------------------------

ACTIVITY -> MOTIVES | 0.236 0.236
ACTIVITY -> SATISFACTION | 0.056 0.064 0.120
MOTIVES -> SATISFACTION | 0.273 0.273

-----------------------------------------------------------------

FIGURE 3.15: Illustrative example of computation of the direct, indirect and total
effects for the model reported in Figure 3.7 with the addition of a path going from
ACTIVITY to MOTIVES.

3.8 Sample Size Requirements
One of the features of PLS-SEM that is often advanced as a justification for its use
is a higher efficiency compared to CB-SEM methods in presence of small samples
(Reinartz et al., 2009). This means that, everything else equal, PLS-SEM requires
a smaller sample to achieve a given accuracy in the results. Even if papers have
been published showing that this is not true (see for example Rönkkö and Evermann,
2013 and Goodhue et al., 2012), we agree with the perspective reported by Hair et al.
(2018b) according to which some authors have abused in the past of the advantageous
sample size requirements of PLS-SEM by fitting complex models using samples that
were too small. This situation has clearly contributed to discredit the reputation of
PLS-SEM, which, as any other statistical technique, is not a magic wand. Therefore,
without adding more material to this debate, in the following we briefly describe the
approaches developed so far for determining the minimum sample size in a PLS-
SEM study.

We first remind that PLS-SEM is composed of separate OLS regression models
which use the local information available for each construct. This implies that, at least
as a first step, we may use the sample size requirements usually adopted in multiple
linear regression (Cohen, 1992; see also Exhibit 1.7 in Hair et al., 2017). Moreover,
since the OLS regressions involved in PLS-SEM are distinct, the overall complex-
ity of the structural model is not an element that affects sample size requirements.
More generally, when deciding the minimum sample size for whatever analysis, the
following elements should be taken into consideration:

• The statistical power we want to achieve; the power of a test in statistics corre-
sponds to the probability of rejecting the null hypothesis of no effect when in the
population there is a non-null effect. Conventionally, an analysis is deemed as
reasonable if its power is at least 80%.

• The effect size to detect, that is the extent of the effect of a variable on another
one. Examples of effect sizes are the mean difference between two groups, the
correlation index between two variables and a coefficient in linear regression.
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Within the context of PLS-SEM, one of the most common measure of effect size
often reported is the Cohen’s f 2 (Cohen, 1988), which is defined as

f 2 =
R2

A,B−R2
A

1−R2
A,B

, (3.28)

where R2
A denotes the R-squared index for a linear regression involving a set of

predictors A, while R2
A,B refers to the same quantity for a linear regression involv-

ing both predictors in sets A and B. In other terms, f 2 is a relative measure of the
contribution provided by the predictors in B to the explanation of the response
variability in addition to that already provided by the predictors in A. Conven-
tionally, f 2 values of 0.02, 0.15 and 0.35 are referred to as small, moderate and
large respectively.

• The significance of the test, usually denoted as α , which represents the risk of
wrongly rejecting a true null hypothesis (so called type I error). Typically, 5% is
taken as the default reference value for α , while 1% and 10% are used to describe
a more or less conservative situation compared to the standard respectively.

Thus, for a given value of the power, effect size and significance, one can determine
the corresponding minimum sample size.

In PLS-SEM, sample size requirements are typically provided with reference to
the so called 10-times rule, according to which the minimum sample size should be
larger than 10 times the maximum number of paths pointing to any latent variable
in both the inner and outer models (Hair et al., 2017, p. 24)35. So, for example, re-
garding the model represented in Figure 3.7, the minimum sample size is equal to
10×max{4,2}= 40, where 4 refers to the number of indicators pointing to ACTIV-
ITY and 2 to the number of predictors of SATISFACTION. The clear advantage of
this method is its simplicity. However, it does not require any of the elements we de-
scribed above so that in our example 40 should be the recommendation to provide ir-
respective to any considerations about power, effect size and significance. Moreover,
a number of studies (Kock and Hadaya, 2018; Goodhue et al., 2012) have shown that
the 10-times rule leads to a substantial underestimation of the minimum sample size.

Other methods that solve some of the limitations of the 10-times rule have been
proposed in the literature, such as the inverse square root and the gamma-exponential
methods (Kock and Hadaya, 2018), which are both based on approximating the stan-
dard error of a regression coefficient. However, the gold standard approach for deter-
mining the minimum sample size in PLS-SEM is based on Monte Carlo simulation.
The Monte Carlo simulation is a general method for assessing the finite sample prop-
erties of statistical procedures and it is typically used to discover features that are too
difficult to derive analytically. The first step in a Monte Carlo study is the design of
the generating model, that is the model that is used to generate the observations to
analyse afterwards. Then, a large number of samples (e.g., 1000) of fixed size (e.g.,

35This definition implies that to apply the 10-times rule to the outer model, we must focus only on the
formatively measured constructs.
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n = 150) are repeatedly drawn from the model thus mimicking the sampling process
that characterizes all real-life statistical analysis. Finally, for each generated sam-
ple, the model parameters are estimated using PLS-SEM (or whatever other method
of interest) and some of the corresponding characteristics are studied. The whole
process is repeated for different values of the sample size (e.g., 30,50,100,200 and
500). For determining the minimum sample size, after fixing the power target value,
the researcher must compute the percentage of significant effects obtained during the
simulation process. Monte Carlo studies are time-consuming both in terms of design
and implementation, but they provide a precise way to determine the minimum sam-
ple size in PLS-SEM. For a complete review of Monte Carlo simulation in the SEM
context we suggest to see Paxton et al. (2001) and Muthén and Muthén (2002).

3.9 Consistent PLS-SEM
As any other statistical technique, PLS-SEM is not a perfect tool. One of its most crit-
ical limitations is that in some cases it yields inconsistent estimates. Consistency is a
desirable statistical property of an estimator according to which a parameter estimate
should approach its true unknown value more closely as the sample size increases
indefinitely36. For PLS-SEM this means that when the data are assumed to origi-
nate from a common factor model, the method tends to overestimate the loadings of
reflectively measured constructs and to underestimate (i.e., attenuate) the path coef-
ficients in the structural model (Gefen et al., 2011; Dijkstra, 1983). The justification
for the inconsistency comes from the fact that PLS-SEM is composite-based, that is
the constructs are defined as linear combinations of the manifest variables, which are
typically measured with error. Therefore, the construct scores themselves will also be
affected by the same measurement error. As we discussed in Section 3.1, when you
run a linear regression between variables that are measured with error, the coefficient
estimates are attenuated and the bias does not go away if we increase the sample size.

Even if the original aim of PLS-SEM was not parameter estimation, inconsis-
tent estimates can considerably deceive the interpretation of the results of a PLS-
SEM analysis thus leading to wrong conclusions about the significance of a given
effect. For this reasons, the inconsistency issue has always attracted a lot of interest
in the literature and it has culminated in the development of a new approach called
consistent PLS-SEM (usually referred to as PLSc-SEM) by Dijkstra and Henseler
(2015a,b). The aim of the PLSc-SEM algorithm is to correct the estimates of the
standard PLS-SEM approach to produce consistent and asymptotically normal esti-
mates of loadings for reflective constructs and of correlations among latent variables.
We briefly describe it in the rest of this section.

The main idea in PLSc-SEM is to adjust the traditional PLS-SEM estimates using

36A further property, that is instead held by PLS-SEM, is consistency at large, which states that the
estimates converge to the correct values as long as both the sample size and the number of indicators in
each block increase indefinitely (Schneeweiss, 1993; Hui and Wold, 1982).
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a “correction for attenuation” using a newly developed reliability coefficient, ρA, that
provides a consistent estimate of construct reliability37. More specifically, the steps
involved in PLSc-SEM are as follows (for more details see the technical appendix at
the end of the chapter):

Step 1. The traditional PLS-SEM algorithm is used to estimate all the unknown
quantities described so far in this chapter, including latent variable scores,
correlations and weights. The choice of the weighting scheme in the PLS-
SEM’s inner approximation step (see Section 3.3.2) does not affect the con-
sistency of the PLSc-SEM procedure.

Step 2. For each reflective construct, compute the new reliability coefficient ρA
mentioned above. For formative constructs, ρA is conventionally set to 1.

Step 3. For every pair of latent variable scores obtained from the traditional PLS-
SEM algorithm, the corresponding correlation is corrected for attenuation.
The correction is also needed if one of the two latent variables is formative,
but not if both are formative.

Step 4. Compute the consistent path coefficients using the latent variable correla-
tions from the previous step as described in equation (3.26).

Step 5. Get the consistent loading estimates using the values of the weights and
reliability coefficients ρA computed in the previous steps.

The suggested approach to perform inference in PLSc-SEM is through bootstrap
as we discussed in Section 3.4 (Aguirre-Urreta and Rönkkö, 2018).

3.9.1 The plssemc command

The plssem Stata package includes another command called plssemc for estimat-
ing the model’s parameters using the PLSc-SEM approach. The syntax of plssemc
is the same as that of plssem described in Section 3.5.

As an illustration of PLSc-SEM, we now present an example taken from Sanchez
(2013, Section 5.1.2). The data come from a survey among students of an American
college and the aim of the study was assessing the satisfaction for the education they
received. The data are available in the education.dta file38:

1 use education, clear

The latent variables in the model and the corresponding indicators used to mea-
sure them are reported in Table 3.5, while the assumed structural relationships are
shown in Figure 3.16. We now fit the model using both PLS-SEM and PLSc-SEM
and we compare the results. To avoid having indicators that point in different direc-
tion in each block, we apply the trick suggested in Sanchez (2013, Section 5.4), that

37We will present the reliability coefficients commonly used in PLS-SEM in Chapter 4.
38The original dataset can be retrieved at https://www.gastonsanchez.com.

https://www.gastonsanchez.com
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TABLE 3.5: Content of the latent and manifest variables for the satisfaction in edu-
cation example described in Section 3.9.1.

Latent variable Manifest
variable

Content

Support suphelp I feel comfortable asking for help from the
program’s staff

supunder I feel underappreciated in the program
supsafe I can find a place where I feel safe in the pro-

gram
supconc I go to the program when I have concerns

about school

Advising advcomp Competence of advisors
advacces Access to advisors
advcomm Communication skills of advisors
advqual Overall quality of advising

Tutoring tutprof Proficiency of tutors
tutsched Tutoring schedules
tutstud Variety of study groups
tutqual Overall quality of tutoring

Value valdevel Helpfulness in my personal development
valdeci Helpfulness in personal decision-making
valmeet Facilitating meeting people and contacts
valinfo Accessibility to support and information

Satisfaction satglad I’m glad to be a member of the program
satexpe The program meets my expectations
satover Overall, I’m very satisfied with the program

Loyalty loyproud I’m proud to tell others I’m part of the pro-
gram

loyrecom I would recommend the program to my col-
leagues

loyasha I often feel ashamed of being a member of the
program

loyback I’m interested in giving something back to the
program
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Advising

Tutoring

Value

Support

Satisfaction Loyalty

FIGURE 3.16: Satisfaction in education application (Sanchez, 2013, Section 5.1.2).
The diagram shows the assumed structural relationships between the latent variables
in the model.

is we invert the scale of the supunder and loyasha manifest variables renaming
them as supappre and loypleas respectively:

1 generate supappre = 8 - supunder
2 generate loypleas = 8 - loyasha
3 drop supunder loyasha

The estimates using the two approaches are obtained by running the following
code, whose results are reported in Table 3.6:

1 set seed 101

2 plssem (Support > sup*) (Advising > adv*) ///
3 (Tutoring > tut*) (Value > val*) ///
4 (Satisfaction > sat*) (Loyalty > loy*), ///
5 structural(Value Support Advising Tutoring, ///
6 Satisfaction Support Advising Tutoring Value, ///
7 Loyalty Satisfaction) ///
8 wscheme("centroid") tol(1e-6) boot(1000)

9 plssemc (Support > sup*) (Advising > adv*) ///
10 (Tutoring > tut*) (Value > val*) ///
11 (Satisfaction > sat*) (Loyalty > loy*), ///
12 structural(Value Support Advising Tutoring, ///
13 Satisfaction Support Advising Tutoring Value, ///
14 Loyalty Satisfaction) ///
15 wscheme("centroid") tol(1e-6) boot(1000)
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TABLE 3.6: Comparison of parameter estimates for the satisfaction in education
example using the PLS-SEM and PLSc-SEM algorithms.

PLS-SEM PLSc-SEM
Measurement model
Support→ suphelp 0.84742 0.76432
Support→ supsafe 0.75250 0.62668
Support→ supconc 0.74660 0.67225
Support→ supappre 0.65386 0.54136
Advising→ advcomp 0.90610 0.84302
Advising→ advacces 0.85651 0.81764
Advising→ advcomm 0.91652 0.91523
Advising→ advqual 0.94908 0.92278
Tutoring→ tutprof 0.87721 0.77808
Tutoring→ tutsched 0.84663 0.81170
Tutoring→ tutstud 0.77459 0.76556
Tutoring→ tutqual 0.83875 0.72833
Value→ valdevel 0.89512 0.78534
Value→ valdeci 0.88892 0.82450
Value→ valmeet 0.90446 0.81850
Value→ valinfo 0.86108 0.94306
Satisfaction→ satglad 0.90436 0.84530
Satisfaction→ satexpe 0.91276 0.84706
Satisfaction→ satover 0.92704 0.91492
Loyalty→ loyproud 0.87260 0.80308
Loyalty→ loyrecom 0.90350 0.84617
Loyalty→ loyback 0.78421 0.71491
Loyalty→ loypleas 0.65612 0.58359

Structural model
Support→ Value 0.67111 0.96335
Advising→ Value 0.13045 -0.01623
Tutoring→ Value 0.10386 -0.01189
Support→ Satisfaction 0.14222 0.24685
Advising→ Satisfaction 0.36425 0.37261
Tutoring→ Satisfaction 0.12952 0.11927
Value→ Satisfaction 0.32428 0.24853
Satisfaction→ Loyalty 0.7765 0.88882

To conclude this section, a natural question may arise: since the PLS-SEM esti-
mates are inconsistent, why should one not use PLSc-SEM every time? As you can
expect, the answer is not clear-cut (see Chapter 1 for details). First, we need to recall
that PLSc-SEM provides consistent parameter estimates only when the data have
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been generated by an underlying common factor model, as in standard CB-SEM.
Clearly, this is an assumption that is not guaranteed to hold all the times. On the
other hand, PLSc-SEM should be used in cases where the model is under-identified
or when convergence problems arise with CB-SEM (Hair et al., 2019). In general, it
must be said that PLSc-SEM has provided a valid solution to one of the most dis-
puted limitations of traditional PLS-SEM. In the rest of this book we will continue
to present only the “standard” PLS-SEM results, but you may replicate the examples
by replacing plssem with the plssemc command39.

3.10 Higher Order Constructs
So far we considered PLS-SEM models containing only first-order latent variables
(FOLVs), that is latent variables that are directly related to the corresponding in-
dicators. However, sometimes researchers are interested in applying further levels
of abstraction assuming that the FOLVs are in turn related to other latent variables,
which are thus called higher order latent variables (HOLVs). This structure can
be motivated in particular when the FOLVs are strongly correlated so that their as-
sociation can be explained by higher order constructs. The application of HOLVs is
mostly limited to second-order latent variables (SOLVs), but some complex mod-
els may justify also the use of third or even higher order constructs. These models
are also referred to in the literature as hierarchical models (Lohmöller, 1989). A
typical example of HOLVs from psychology is represented by models for cogni-
tive ability, which state the existence of a general cognitive ability construct that in
turn determines more specific abilities like verbal, numerical or spatial ability (see
Figure 3.17a, where we use the convention to represent HOLVs using grey-shaded
ovals). Another example from the marketing literature is about customer satisfaction,
which can be assumed to be determined by different dimensions like satisfaction for
the quality, satisfaction for the price and satisfaction for the service provided by the
personnel (see Figure 3.17b).

The main advantage from using HOLVS is that they allow to reduce the model’s
complexity making it more parsimonious by reducing the number of structural rela-
tionships. Moreover, when the FOLVs are highly correlated, using them in the struc-
tural equations may produce collinearity issues (see Section A.2.6), a problem that
can be weakened by introducing a higher order construct.

We can distinguish two types of HOLVs according to the direction of the rela-
tionships between the latent variables at the different levels, which are called the
molecular and the molar model respectively40. The molecular model states that the
HOLVs are the “cause” of the lower order constructs, such as for the example in

39The GitHub repository of the book includes the code for all the examples using both plssem and
plssemc.

40This jazzy terminology has been introduced by Chin and Gopal (1995), but other terms are also used
in the literature (see for example Wetzels et al., 2009 or Hair et al., 2018c, Chapter 2).
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FIGURE 3.17: Examples of higher order constructs. Higher order constructs are
shown as grey-shaded ovals.

Figure 3.17a. The molar model instead assumes that the higher order constructs are
instead the “effects” of the latent variables at the lower levels, an example being the
model reported in Figure 3.17b.

As for the measurement part, two different approaches have been suggested:

• the repeated indicators approach, the most popular in practice, which consists
in using all the indicators of the lower order constructs as the manifest variables
for the corresponding HOLVs. For example, suppose that in your model you
have four FOLVs, each with four indicators, and the FOLVs are determined by a
second-order variable. Then, the second-order construct must use sixteen mani-
fest variables corresponding to all the indicators of the FOLVs (see Figure 3.18).

• the two-step approach, which first requires getting the FOLVs scores through
an auxiliary technique such as principal component extracting only one compo-
nent for each block. Then, the second step consists of a PLS-SEM analysis with
the FOLVs scores obtained at the previous step playing the role of the manifest
variables for the HOLVs.

As you may have noticed, in the example reported in Figure 3.18 we implicitly
assumed that both the FOLVs ξ1, . . . ,ξ4 and the second-order construct ξ5 have been
modelled reflectively. However, other choices are possible (see for example Wetzels
et al., 2009 and Sarstedt et al., 2019). The repeated indicators approach has pros and
cons, but overall it is suggested in the literature as the method of reference when
using higher order constructs within PLS-SEM.

We now show with a simple example how to fit models that include HOLVs using
Stata. In particular, the plssem command allows to reuse the same indicators mul-
tiple times in different parts of the measurement model, so that you can choose the
same manifest variables that measure the FOLVs also for defining the measurement
model of the higher order constructs. For illustration, we use the data available in
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FIGURE 3.18: Hypothetical example to show the application of the repeated indica-
tors approach to deal with higher order constructs.

the file ch3_Curiosity.dta. These data are about studying the determinants of
the propensity to travel abroad for holiday. More specifically, we assume that there
are two types of curiosity, perceptual and epistemic. The former represents curiosity
which leads to increased perception of stimuli evoked by visual, auditory, or tactile
stimulation, and the latter represents a drive to know that is aroused by conceptual
puzzles and gaps in knowledge (Litman and Spielberger, 2003). The relevant litera-
ture also established that curiosity has a positive impact on the people’s propensity to
travel abroad for holiday. The measurement of perceptual curiosity employed an or-
dinal scale (from 1 = totally disagree to 5 = totally agree), and the respondents in the
study were asked to reveal to what extent they agreed with the following statements:

1. “I like to discover new places to go to”, and

2. “I like to travel to places I have never been to before”.

Epistemic curiosity was measured in a similar way by requesting respondents to
respond to the following statements:

1. “I like to learn about subjects that are unfamiliar to me”, and

2. “I become fascinated when learning new information”.

Finally, the interest for holiday was measured by the following items:

1. “I like holidaying”, and

2. “I like holidaying abroad”.
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FIGURE 3.19: Curiosity example. The diagram shows the assumed structural rela-
tionships between the latent variables in the model. Curiosity is a second-order
latent variable.

The items considered here and the corresponding FOLVs are reported in Table 3.7.
The structural model considered in this example is fairly simple and it is reported

TABLE 3.7: Content of the latent and manifest variables for the curiosity example in
Section 3.10.

Latent variable Manifest
variable

Content

PerceptCur v2a I like to discover new places to go to
v2b I like to travel to places I have never been to

before

EpistemCur v2e I like to learn about subjects that are unfamil-
iar to me

v2f I become fascinated when learning new infor-
mation

HolidayInt v3a I like holidaying
v3b I like holidaying abroad

in Figure 3.19, where Curiosity acts as a second-order construct that causes
PerceptCur and EpistemCur.

We first apply the repeated indicators approach, which uses all the indicators of
both PerceptCur and EpistemCur as manifest variables for the second-order
construct Curiosity. The code to fit the model with plssem is reported below
and the corresponding results are shown in Figure 3.20:
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Partial least squares SEM Number of obs = 1000
Average R-squared = 0.51586
Average communality = 0.72095

Weighting scheme: path Absolute GoF = 0.60984
Tolerance: 1.00e-07 Relative GoF = 0.83107
Initialization: indsum Average redundancy = 0.42674

Measurement model - Standardized loadings
--------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Reflective:
| PerceptCur EpistemCur Curiosity HolidayInt

--------------+-----------------------------------------------------------
v2a | 0.927
v2b | 0.919
v2e | 0.911
v2f | 0.873
v2a | 0.775
v2b | 0.738
v2e | 0.788
v2f | 0.666
v3a | 0.917
v3b | 0.929

--------------+-----------------------------------------------------------
Cronbach | 0.825 0.745 0.728 0.827

DG | 0.920 0.886 0.831 0.920
rho_A | 0.827 0.760 0.733 0.830

--------------------------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
--------------------------------------------------------------------------

| PerceptCur EpistemCur Curiosity HolidayInt
--------------+-----------------------------------------------------------

PerceptCur | 1.000 0.119 0.673 0.077
EpistemCur | 0.119 1.000 0.672 0.208
Curiosity | 0.673 0.672 1.000 0.202
HolidayInt | 0.077 0.208 0.202 1.000

--------------+-----------------------------------------------------------
AVE | 0.851 0.796 0.553 0.852

--------------------------------------------------------------------------

Structural model - Standardized path coefficients
-----------------------------------------------------------

Variable | PerceptCur EpistemCur HolidayInt
--------------+--------------------------------------------

Curiosity | 0.821 0.820 0.449
| (0.000) (0.000) (0.000)

--------------+--------------------------------------------
r2_a | 0.673 0.672 0.201

-----------------------------------------------------------
p-values in parentheses

FIGURE 3.20: Curiosity example. Output of the plssem command for the model
reported in Figure 3.19 using the repeated indicators approach.

1 use ch3_Curiosity.dta, clear

2 /* Repeated indicators approach */
3 plssem (PerceptCur > v2a v2b) ///
4 (EpistemCur > v2e v2f) ///
5 (Curiosity > v2a v2b v2e v2f) ///
6 (HolidayInt > v3a v3b), ///
7 structural(PerceptCur Curiosity, ///
8 EpistemCur Curiosity, ///
9 HolidayInt Curiosity)
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In the next chapter you will learn how to assess the goodness of the results from
HOLVs models, but for the moment we can say that Curiosity is a significant
driver of the propensity to travel abroad for holiday.

We now apply the two-step approach to the same data. In the first step we get tem-
porary scores for the FOLVs, that is for PerceptCur and EpistemCur. We can
do that using principal component analysis (PCA). We define as PerceptCur_s
the score of the first principal component on the PerceptCur’s items. Similarly,
EpistemCur_s provides the same quantity for the EpistemCur’s items (the re-
sults of the two PCAs are not reported):

1 use ch3_Curiosity.dta, clear

2 /* Two-step approach */
3 /* -- Step 1 -- */
4 quietly {
5 pca v2a v2b, components(1)
6 predict PerceptCur_s, score

7 pca v2e v2f, components(1)
8 predict EpistemCur_s, score
9 }

Then, the second step involves a PLS-SEM analysis where we treat the scores ob-
tained in the previous step as indicators of the second-order construct Curiosity
(see Figure 3.21 for the corresponding results):

1 /* -- Step 2 -- */
2 plssem (Curiosity > PerceptCur_s EpistemCur_s) ///
3 (HolidayInt > v3a v3b), ///
4 structural(HolidayInt Curiosity)

As we can see by comparing the results of the two approaches, they produce
similar path coefficient estimates, that is 0.449 using repeated indicators and 0.471
using the two-step approach.

3.11 Summary
In this chapter we introduced the basics of the PLS-SEM approach. After illustrat-
ing the fundamental ideas of PLS-SEM, in parallel we presented the plssem Stata
package, which will be used in the rest of the book. Furthermore, we presented some
strategies to use in case some of the data are missing. Then, we discussed sample
size requirements for PLS-SEM and introduced the innovative PLSc-SEM algorithm
that allows to get consistent parameter estimates. Finally, we presented the options
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Partial least squares SEM Number of obs = 1000
Average R-squared = 0.22146
Average communality = 0.75525

Weighting scheme: path Absolute GoF = 0.40897
Tolerance: 1.00e-07 Relative GoF = 0.97864
Initialization: indsum Average redundancy = 0.18868

Measurement model - Standardized loadings
--------------------------------------------

| Reflective: Reflective:
| Curiosity HolidayInt

--------------+-----------------------------
PerceptCur_s | 0.706
EpistemCur_s | 0.905

v3a | 0.917
v3b | 0.929

--------------+-----------------------------
Cronbach | 0.504 0.827

DG | 0.792 0.920
rho_A | 0.589 0.830

--------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
--------------------------------------------

| Curiosity HolidayInt
--------------+-----------------------------

Curiosity | 1.000 0.221
HolidayInt | 0.221 1.000

--------------+-----------------------------
AVE | 0.659 0.852

--------------------------------------------

Structural model - Standardized path coefficients
-----------------------------

Variable | HolidayInt
--------------+--------------

Curiosity | 0.471
| (0.000)

--------------+--------------
r2_a | 0.221

-----------------------------
p-values in parentheses

FIGURE 3.21: Curiosity example. Output of the plssem command for the model
reported in Figure 3.19 using the two-step approach.

available to deal with higher order constructs. In the next chapter we will provide
more details on how to assess the goodness of a PLS-SEM analysis for both the
measurement and the structural parts.

Appendix: R Commands
Different packages are available to perform PLS-SEM in R. Currently, these are
matrixpls, semPLS, plspm and cSEM. They mainly differ for the interface to
use for specifying the model. In particular, some of them require to specify the model
through suitably structured matrices, while others allow for more user-friendly inter-
faces. Here, we briefly present the two packages that will be used in the rest of the
book, that is plspm and cSEM.
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The plspm package

The plspm package (Sanchez et al., 2017) is the first R package that has been de-
veloped for fitting PLS-SEM models and it currently provides many functionalities
including those for dealing with observed and unobserved heterogeneity (see Chap-
ters 6 and 7).

The specification of the model in plspm is not easy since it requires creating
a set of separate objects representing the different components of the model. The
structural model must be specified through a lower triangular Boolean matrix, that is
a square matrix whose elements below the main diagonal can only be either zero or
one. The ones in the matrix correspond to connections in the path diagram. The next
code chunk shows how to set up this matrix for the tourists satisfaction example we
presented in Section 3.2.3:

1 ACTIVITY <- c(0, 0, 0)
2 MOTIVES <- c(0, 0, 0)
3 SATISFACTION <- c(1, 1, 0)
4 tour_path <- rbind(ACTIVITY, MOTIVES, SATISFACTION)
5 colnames(tour_path) <- rownames(tour_path)

The tour_path matrix corresponds to the (transposed) structural model’s adja-
cency matrix. The structural model can also be plotted using the innerplot()
function.

Next, we must specify the measurement model by creating a list object with one
numerical vector for each block, where each vector indicates the column indices in
the dataset of the manifest variables forming the block. For the tourists satisfaction
example this corresponds to:

1 tour_blocks <- list(5:8, 1:4, 9:11)

This means, for example, that the ACTIVITY latent variable, the first one appearing
in the model, is measured through the variables in the fifth, sixth, seventh and eighth
columns of the dataset.

Finally, we need to specify whether each construct is reflective or formative. We
can do that by creating a character vector with elements either "A" or "B", where
the former indicates a reflective construct and the latter a formative one:

1 tour_modes <- c("B", "A", "A")

Then, we can estimate the model using the plspm() function, which includes
the following arguments:

• Data, a matrix or data frame containing the observed values of the manifest
variables,

• path_matrix, a square lower triangular Boolean matrix representing the inner
model,
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• blocks, a list of vectors with column indices or column names from the Data
indicating the sets of manifest variables forming each block,

• modes, character vector indicating the type of measurement for each block,

• scheme, length-one character vector indicating the type of inner weighting
scheme; possible values are "centroid", "factorial" or "path",

• scaled, a logical argument indicating whether the manifest variables should be
standardized,

• tol, the tolerance value,

• maxiter, an integer indicating the maximum number of iterations,

• boot.val, whether bootstrap validation should be performed (default to
FALSE),

• br, the number of bootstrap replications (default to 100).

The plspm() function returns an object of class plspm containing all the results.
We can get a full summary by applying the corresponding summary method. The
next code estimates and summarizes the tourists satisfaction model:

1 tour_res <- plspm(Data = tour_data_nomiss,
2 path_matrix = tour_path,
3 blocks = tour_blocks,
4 modes = tour_modes,
5 scheme = "path", tol = 1e-7)
6 summary(tour_res)

PARTIAL LEAST SQUARES PATH MODELING (PLS-PM)

----------------------------------------------------------
MODEL SPECIFICATION
1 Number of Cases 882
2 Latent Variables 3
3 Manifest Variables 11
4 Scale of Data Standardized Data
5 Non-Metric PLS FALSE
6 Weighting Scheme path
7 Tolerance Crit 0.0000001
8 Max Num Iters 100
9 Convergence Iters 4
10 Bootstrapping FALSE
11 Bootstrap samples NULL

----------------------------------------------------------
BLOCKS DEFINITION

Block Type Size Mode
1 ACTIVITY Exogenous 4 B
2 MOTIVES Exogenous 4 A
3 SATISFACTION Endogenous 3 A

----------------------------------------------------------
BLOCKS UNIDIMENSIONALITY
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Mode MVs C.alpha DG.rho eig.1st eig.2nd
ACTIVITY B 4 0.000 0.000 1.32 0.986
MOTIVES A 4 0.666 0.800 2.01 0.920
SATISFACTION A 3 0.772 0.868 2.06 0.557

----------------------------------------------------------
OUTER MODEL

weight loading communality redundancy
ACTIVITY
1 entertain 0.3913 0.248 0.0613 0.0000
1 visittown 0.0142 0.145 0.0210 0.0000
1 nature 0.7046 0.719 0.5167 0.0000
1 fishing 0.5802 0.680 0.4625 0.0000

MOTIVES
2 energy 0.4820 0.734 0.5384 0.0000
2 getaway 0.3323 0.707 0.4999 0.0000
2 boredom 0.2594 0.680 0.4624 0.0000
2 exciting 0.3465 0.678 0.4598 0.0000

SATISFACTION
3 satisf 0.3831 0.838 0.7021 0.0697
3 expecta 0.4104 0.797 0.6349 0.0630
3 recommend 0.4138 0.850 0.7233 0.0718

----------------------------------------------------------
CROSSLOADINGS

ACTIVITY MOTIVES SATISFACTION
ACTIVITY
1 entertain 0.2476 0.1801 0.0384
1 visittown 0.1449 0.0707 0.0224
1 nature 0.7188 0.0216 0.1113
1 fishing 0.6801 0.1226 0.1053

MOTIVES
2 energy 0.1183 0.7338 0.2687
2 getaway 0.1715 0.7070 0.1853
2 boredom 0.0431 0.6800 0.1445
2 exciting 0.0942 0.6781 0.1931

SATISFACTION
3 satisf 0.0940 0.2438 0.8379
3 expecta 0.1439 0.2440 0.7968
3 recommend 0.1444 0.2462 0.8505

----------------------------------------------------------

INNER MODEL
$SATISFACTION

Estimate Std. Error t value Pr(>|t|)
Intercept -2.11e-16 0.0320 -6.60e-15 1.00e+00
ACTIVITY 1.11e-01 0.0324 3.42e+00 6.50e-04
MOTIVES 2.78e-01 0.0324 8.57e+00 4.45e-17

----------------------------------------------------------
CORRELATIONS BETWEEN LVs

ACTIVITY MOTIVES SATISFACTION
ACTIVITY 1.000 0.158 0.155
MOTIVES 0.158 1.000 0.295
SATISFACTION 0.155 0.295 1.000

----------------------------------------------------------
SUMMARY INNER MODEL

Type R2 Block_Communality Mean_Redundancy AVE
ACTIVITY Exogenous 0.0000 0.265 0.0000 0.000
MOTIVES Exogenous 0.0000 0.490 0.0000 0.490
SATISFACTION Endogenous 0.0993 0.687 0.0682 0.687
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----------------------------------------------------------
GOODNESS-OF-FIT
[1] 0.2142

----------------------------------------------------------
TOTAL EFFECTS

relationships direct indirect total
1 ACTIVITY -> MOTIVES 0.000 0 0.000
2 ACTIVITY -> SATISFACTION 0.111 0 0.111
3 MOTIVES -> SATISFACTION 0.278 0 0.278

To enable bootstrap inference, we need to set the boot.val argument to TRUE:

1 set.seed(1406)
2 tour_boot <- plspm(Data = tour_data_nomiss,
3 path_matrix = tour_path,
4 blocks = tour_blocks,
5 modes = tour_modes, scheme = "path",
6 tol = 1e-7, boot.val = TRUE, br = 500)
7 # summary(tour_boot)
8 tour_boot$boot

$weights
Original Mean.Boot Std.Error perc.025 perc.975

ACTIVITY-entertain 0.39125832 0.3730243 0.19496051 -0.07993971 0.7338443
ACTIVITY-visittown 0.01419865 0.0107126 0.20875906 -0.41388384 0.4027639
ACTIVITY-nature 0.70462254 0.6449775 0.16584501 0.28185340 0.9130454
ACTIVITY-fishing 0.58018360 0.5522470 0.16810493 0.19649775 0.8527681
MOTIVES-energy 0.48198101 0.4841079 0.05276579 0.37554123 0.5872616
MOTIVES-getaway 0.33234335 0.3313903 0.04516998 0.24096101 0.4154432
MOTIVES-boredom 0.25942601 0.2560793 0.04328139 0.16844640 0.3406964
MOTIVES-exciting 0.34653196 0.3447588 0.04604970 0.25985363 0.4431503
SATISFACTION-satisf 0.38313747 0.3838447 0.02984427 0.32351970 0.4405398
SATISFACTION-expecta 0.41041384 0.4094214 0.03558346 0.34086305 0.4825443
SATISFACTION-recommend 0.41381980 0.4139794 0.02900239 0.35697009 0.4727902

$loadings
Original Mean.Boot Std.Error perc.025 perc.975

ACTIVITY-entertain 0.2476225 0.2447812 0.19703834 -0.1928380 0.6075208
ACTIVITY-visittown 0.1449344 0.1342296 0.20631034 -0.2925520 0.5164586
ACTIVITY-nature 0.7187989 0.6437762 0.20672191 0.2585761 0.8998321
ACTIVITY-fishing 0.6800879 0.6297343 0.19950004 0.2630712 0.9021197
MOTIVES-energy 0.7337576 0.7339382 0.04145715 0.6450601 0.8101335
MOTIVES-getaway 0.7070111 0.7042060 0.03529745 0.6287315 0.7656058
MOTIVES-boredom 0.6799806 0.6747773 0.04579328 0.5782904 0.7544747
MOTIVES-exciting 0.6780549 0.6724577 0.04843200 0.5626863 0.7581771
SATISFACTION-satisf 0.8379200 0.8370855 0.01873005 0.7971987 0.8714605
SATISFACTION-expecta 0.7968131 0.7949301 0.02327413 0.7454291 0.8380411
SATISFACTION-recommend 0.8504628 0.8499264 0.01665941 0.8116400 0.8786438

$paths
Original Mean.Boot Std.Error perc.025 perc.975

ACTIVITY -> SATISFACTION 0.1109361 0.1192742 0.04083167 0.04680154 0.1898248
MOTIVES -> SATISFACTION 0.2779547 0.2817236 0.03298507 0.21635329 0.3450580

$rsq
Original Mean.Boot Std.Error perc.025 perc.975

SATISFACTION 0.09929988 0.1066307 0.0202159 0.06793349 0.1505098
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$total.efs
Original Mean.Boot Std.Error perc.025 perc.975

ACTIVITY -> MOTIVES 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000
ACTIVITY -> SATISFACTION 0.1109361 0.1192742 0.04083167 0.04680154 0.1898248
MOTIVES -> SATISFACTION 0.2779547 0.2817236 0.03298507 0.21635329 0.3450580

For more details on the package, we suggest to refer to Sanchez (2013)41.

The cSEM package

The cSEM package (Rademaker and Schuberth, 2020) is the most recent addition to
the collection of R packages for PLS-SEM. Even if it is still in an early develop-
ment stage, it includes a wide range of modern composite-based methodologies such
as PLSc-SEM, GSCA and others42, and we consider it the most promising for the
future.

Compared to plspm, the cSEM package has the nice feature of allowing the
specification of the model using the lavaan syntax (see Table 2.3 for a brief sum-
mary or run the command ?lavaan::model.syntax for a more detailed pre-
sentation). More specifically, the steps required by the cSEM package are:

1. specify a model using the lavaan syntax,

2. fit the model using the csem() function,

3. apply some postestimation functions to the object returned by csem().

The csem() function includes different arguments, some of which regard meth-
ods we are not covering in this book. Therefore, we list below only those that are
relevant for our discussion, that is:

• .data, a data frame or matrix containing the observed values for the manifest
variables; it can also be a list of data frames or matrices, in which case estimation
is repeated for each dataset,

• .model, a length-one character vector with the model specification using
lavaan syntax,

• .approach_2ndorder, a length-one character vector indicating the ap-
proach to use for dealing with second-order constructs; possible values are
"2stage" (default) or "mixed",

• .disattenuate, a length-one logical vector indicating whether to apply dis-
attenuation to yield consistent loadings and path estimates (i.e., whether to apply
PLSc-SEM or not); default is TRUE,

41The book is freely available at https://www.gastonsanchez.com/PLS_Path_
Modeling_with_R.pdf.

42For a thorough introduction we suggest to read the package’s vignettes, which is also available at
https://m-e-rademaker.github.io/cSEM/.

https://www.gastonsanchez.com/
https://www.gastonsanchez.com/
https://m-e-rademaker.github.io/
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• .conv_criterion, a length-one character vector specifying the criterion
to use for convergence; possible values are "diff_absolute" (default),
"diff_squared" or "diff_relative",

• .PLS_weight_scheme_inner, a length-one character vector indicating
the inner weighting scheme to use; possible values are "centroid",
"factorial" or "path" (default),

• .iter_max, the maximum number of iterations allowed (default is 100),

• .tolerance, the tolerance criterion for convergence (default is 1e-05),

• .resample_method, a length-one character vector specifying the resampling
method to use; either "none", "jackknife" or "bootstrap",

• .R, the number of bootstrap replications.

The csem() function returns an object with three class attributes depend-
ing on the type of data and/or the model specified. The first class attribute is al-
ways cSEMResults. The second one can either be cSEMResults_default,
cSEMResults_multi or cSEMResults_2ndorder, with the first indicating
the basic model estimation, the second when a list of datasets is provided in in-
put, and the third if the model contains higher order constructs. Finally, the returned
object also includes a third class attribute, cSEMResults_resampled, in case
resampling has been requested. As you can see, the returned object is not only fairly
complex but also very flexible thus allowing for further extensions in the future. Each
object of class cSEMResults_default is a list with two elements:

• Estimates, a list containing all the estimated quantities,

• Information, a list containing the characteristics of the model.

In all cases, the object returned by csem() can be inspected through a range
of postestimation functions such as summarize(), infer() and assess()
(check the package documentation for the full list). More specifically:

• summarize() provides a complete summary of the estimated parameters,

• infer() computes common inferential quantities such as standard errors, con-
fidence intervals, test statistics and p-values using resampling,

• assess() prints the values of the indexes for assessing the quality of the fitted
model.

The following code fits the tourists satisfaction example using the csem() in-
terface and summarizes the corresponding results43:

43We note that currently cSEM is not able to handle missing values so that you have to remove them
beforehand. The package release we used is 0.3.0.9000.
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1 if (!require(cSEM, quietly = TRUE)) {
2 install.packages("devtools")
3 library(devtools)
4 install_github("M-E-Rademaker/cSEM")
5 }
6 library(cSEM)

7 tour_mod <- "
8 # measurement model
9 ACTIVITY <~ entertain + visittown + nature + fishing

10 MOTIVES =~ energy + getaway + boredom + exciting
11 SATISFACTION =~ recommend + satisf + expecta
12 # structural model
13 SATISFACTION ~ ACTIVITY + MOTIVES
14 "
15 tour_res <- csem(.data = tour_data_nomiss,
16 .model = tour_mod, .PLS_weight_scheme_inner = "path",
17 .disattenuate = FALSE, .tolerance = 1e-07)

18 summarize(tour_res)
19 assess(tour_res)

________________________________________________________________________________
----------------------------------- Overview -----------------------------------

General information:
------------------------
Estimation status = Ok
Number of observations = 882
Weight estimator = PLS-PM
Inner weighting scheme = path
Type of indicator correlation = Pearson
Path model estimator = OLS
Second-order approach = NA
Type of path model = Linear
Disattenuated = No

Construct details:
------------------
Name Modeled as Order Mode

ACTIVITY Composite First order modeB
MOTIVES Common factor First order modeA
SATISFACTION Common factor First order modeA

----------------------------------- Estimates ----------------------------------

Estimated path coefficients:
============================
Path Estimate Std. error t-stat. p-value
SATISFACTION ~ ACTIVITY 0.1109 NA NA NA
SATISFACTION ~ MOTIVES 0.2780 NA NA NA

Estimated loadings:
===================
Loading Estimate Std. error t-stat. p-value
ACTIVITY =~ entertain 0.2479 NA NA NA
ACTIVITY =~ visittown 0.1448 NA NA NA
ACTIVITY =~ nature 0.7188 NA NA NA
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ACTIVITY =~ fishing 0.6799 NA NA NA
MOTIVES =~ energy 0.7338 NA NA NA
MOTIVES =~ getaway 0.7071 NA NA NA
MOTIVES =~ boredom 0.6799 NA NA NA
MOTIVES =~ exciting 0.6779 NA NA NA
SATISFACTION =~ recommend 0.8505 NA NA NA
SATISFACTION =~ satisf 0.8379 NA NA NA
SATISFACTION =~ expecta 0.7968 NA NA NA

Estimated weights:
==================
Weights Estimate Std. error t-stat. p-value
ACTIVITY <~ entertain 0.3916 NA NA NA
ACTIVITY <~ visittown 0.0140 NA NA NA
ACTIVITY <~ nature 0.7047 NA NA NA
ACTIVITY <~ fishing 0.5800 NA NA NA
MOTIVES <~ energy 0.4821 NA NA NA
MOTIVES <~ getaway 0.3324 NA NA NA
MOTIVES <~ boredom 0.2594 NA NA NA
MOTIVES <~ exciting 0.3464 NA NA NA
SATISFACTION <~ recommend 0.4138 NA NA NA
SATISFACTION <~ satisf 0.3831 NA NA NA
SATISFACTION <~ expecta 0.4104 NA NA NA

Estimated construct correlations:
=================================
Correlation Estimate Std. error t-stat. p-value
ACTIVITY ~~ MOTIVES 0.1579 NA NA NA

Estimated indicator correlations:
=================================
Correlation Estimate Std. error t-stat. p-value
entertain ~~ visittown -0.0193 NA NA NA
entertain ~~ nature -0.1917 NA NA NA
entertain ~~ fishing -0.0143 NA NA NA
visittown ~~ nature 0.1803 NA NA NA
visittown ~~ fishing 0.0193 NA NA NA
nature ~~ fishing 0.1493 NA NA NA

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================
Total effect Estimate Std. error t-stat. p-value
SATISFACTION ~ ACTIVITY 0.1109 NA NA NA
SATISFACTION ~ MOTIVES 0.2780 NA NA NA

________________________________________________________________________________

________________________________________________________________________________

Construct AVE R2 R2_adj
MOTIVES 0.4901 NA NA
SATISFACTION 0.6868 0.0993 0.0973

-------------- Common (internal consistency) reliability estimates -------------

Construct Cronbachs_alpha Joereskogs_rho Dijkstra-Henselers_rho_A
MOTIVES 0.6658 0.7934 1.0000
SATISFACTION 0.7716 0.8679 1.0000

----------- Alternative (internal consistency) reliability estimates -----------

Construct RhoC RhoC_mm RhoC_weighted
MOTIVES 0.7934 0.9804 1.0000
SATISFACTION 0.8679 0.9998 1.0000

Construct RhoC_weighted_mm RhoT RhoT_weighted



3.11 Summary 149

MOTIVES 0.7914 0.6658 0.6707
SATISFACTION 0.8676 0.7716 0.7720

--------------------------- Distance and fit measures --------------------------

[ -- output partly skipped -- ]

----------------------- Variance inflation factors (VIFs) ----------------------

Dependent construct: 'SATISFACTION'

Independent construct VIF value
ACTIVITY 1.0256
MOTIVES 1.0256

-------------------------- Effect sizes (Cohen's f^2) --------------------------

Dependent construct: 'SATISFACTION'

Independent construct f^2
ACTIVITY 0.0133
MOTIVES 0.0836

------------------------------ Validity assessment -----------------------------

[ -- output partly skipped -- ]

Fornell-Larcker matrix

MOTIVES SATISFACTION
MOTIVES 0.4900849 0.0873043
SATISFACTION 0.0873043 0.6867689

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================
Total effect Estimate Std. error t-stat. p-value
SATISFACTION ~ ACTIVITY 0.1109 NA NA NA
SATISFACTION ~ MOTIVES 0.2780 NA NA NA

Estimated indirect effects:
===========================
Indirect effect Estimate Std. error t-stat. p-value
NA NA NA NA NA

[ -- output partly skipped -- ]
________________________________________________________________________________

We note that the output of the summarize() function contains a lot of NAs.
This is due to the fact that we did not explicitly require to use the bootstrap to
perform inference. To do that, we need to include the .resample_method =
"bootstrap" argument as in the next example:

1 tour_boot <- csem(.data = tour_data_nomiss,
2 .model = tour_mod, .PLS_weight_scheme_inner = "path",
3 .disattenuate = TRUE, .tolerance = 1e-07,
4 .resample_method = "bootstrap", .R = 1000,
5 .seed = 1406)
6 summarize(tour_boot, .ci = "CI_percentile")
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________________________________________________________________________________
----------------------------------- Overview -----------------------------------

General information:
------------------------
Estimation status = Ok
Number of observations = 882
Weight estimator = PLS-PM
Inner weighting scheme = path
Type of indicator correlation = Pearson
Path model estimator = OLS
Second-order approach = NA
Type of path model = Linear
Disattenuated = Yes (PLSc)

Resample information:
---------------------
Resample methode = bootstrap
Number of resamples = 500
Number of admissible results = 499
Approach to handle inadmissibles = drop
Sign change option = none
Random seed = 1406

Construct details:
------------------
Name Modeled as Order Mode

ACTIVITY Composite First order modeB
MOTIVES Common factor First order modeA
SATISFACTION Common factor First order modeA

----------------------------------- Estimates ----------------------------------

Estimated path coefficients:
============================

CI_percentile
Path Estimate Std. error t-stat. p-value 95%
SATISFACTION ~ ACTIVITY 0.1012 0.0390 2.5939 0.0095 [ 0.0338; 0.1829 ]
SATISFACTION ~ MOTIVES 0.3902 0.0466 8.3705 0.0000 [ 0.3068; 0.4818 ]

Estimated loadings:
===================

CI_percentile
Loading Estimate Std. error t-stat. p-value 95%
ACTIVITY =~ entertain 0.2479 0.1945 1.2745 0.2025 [-0.1262; 0.5920 ]
ACTIVITY =~ visittown 0.1448 0.2191 0.6607 0.5088 [-0.2996; 0.5935 ]
ACTIVITY =~ nature 0.7188 0.1392 5.1643 0.0000 [ 0.3661; 0.8927 ]
ACTIVITY =~ fishing 0.6799 0.1509 4.5046 0.0000 [ 0.3012; 0.8890 ]
MOTIVES =~ energy 0.7465 0.0694 10.7620 0.0000 [ 0.6020; 0.8911 ]
MOTIVES =~ getaway 0.5148 0.0718 7.1735 0.0000 [ 0.3857; 0.6556 ]
MOTIVES =~ boredom 0.4016 0.0806 4.9817 0.0000 [ 0.2218; 0.5446 ]
MOTIVES =~ exciting 0.5364 0.0743 7.2194 0.0000 [ 0.3806; 0.6778 ]
SATISFACTION =~ recommend 0.7474 0.0546 13.6930 0.0000 [ 0.6424; 0.8578 ]
SATISFACTION =~ satisf 0.6920 0.0585 11.8382 0.0000 [ 0.5640; 0.8001 ]
SATISFACTION =~ expecta 0.7413 0.0631 11.7563 0.0000 [ 0.6182; 0.8610 ]

Estimated weights:
==================

CI_percentile
Weights Estimate Std. error t-stat. p-value 95%
ACTIVITY <~ entertain 0.3916 0.1897 2.0640 0.0390 [ 0.0053; 0.7263 ]
ACTIVITY <~ visittown 0.0140 0.2221 0.0632 0.9496 [-0.4331; 0.4814 ]
ACTIVITY <~ nature 0.7047 0.1502 4.6919 0.0000 [ 0.3334; 0.9110 ]
ACTIVITY <~ fishing 0.5800 0.1666 3.4817 0.0005 [ 0.2005; 0.8214 ]
MOTIVES <~ energy 0.4821 0.0546 8.8327 0.0000 [ 0.3802; 0.5921 ]
MOTIVES <~ getaway 0.3324 0.0449 7.4010 0.0000 [ 0.2499; 0.4221 ]
MOTIVES <~ boredom 0.2594 0.0444 5.8404 0.0000 [ 0.1571; 0.3363 ]
MOTIVES <~ exciting 0.3464 0.0441 7.8578 0.0000 [ 0.2575; 0.4278 ]
SATISFACTION <~ recommend 0.4138 0.0287 14.4310 0.0000 [ 0.3579; 0.4737 ]
SATISFACTION <~ satisf 0.3831 0.0306 12.5044 0.0000 [ 0.3222; 0.4441 ]
SATISFACTION <~ expecta 0.4104 0.0358 11.4651 0.0000 [ 0.3356; 0.4826 ]

Estimated construct correlations:
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=================================
CI_percentile

Correlation Estimate Std. error t-stat. p-value 95%
ACTIVITY ~~ MOTIVES 0.1923 0.0570 3.3722 0.0007 [ 0.0736; 0.2985 ]

Estimated indicator correlations:
=================================

CI_percentile
Correlation Estimate Std. error t-stat. p-value 95%
entertain ~~ visittown -0.0193 0.0329 -0.5856 0.5582 [-0.0861; 0.0443 ]
entertain ~~ nature -0.1917 0.0330 -5.8029 0.0000 [-0.2544;-0.1248 ]
entertain ~~ fishing -0.0143 0.0351 -0.4060 0.6847 [-0.0820; 0.0533 ]
visittown ~~ nature 0.1803 0.0344 5.2448 0.0000 [ 0.1146; 0.2458 ]
visittown ~~ fishing 0.0193 0.0321 0.6023 0.5469 [-0.0393; 0.0789 ]
nature ~~ fishing 0.1493 0.0300 4.9774 0.0000 [ 0.0880; 0.2053 ]

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================

CI_percentile
Total effect Estimate Std. error t-stat. p-value 95%
SATISFACTION ~ ACTIVITY 0.1012 0.0390 2.5939 0.0095 [ 0.0338; 0.1829 ]
SATISFACTION ~ MOTIVES 0.3902 0.0466 8.3705 0.0000 [ 0.3068; 0.4818 ]

________________________________________________________________________________

Note that in the previous code chunk, we provided the random number generator seed
directly inside the csem() function through the .seed argument and not through
the global R seed.

Finally, to get the consistent parameter estimates (i.e., to use PLSc-SEM), we
need to set the .disattenuate argument to TRUE.

Appendix: Technical Details
A formal definition of PLS-SEM

We assume that we collected data on n units for P variables xi1,xi2, . . . ,xiP, with
i = 1, . . . ,n. For convenience, we partition the P observed variables in Q blocks

XXX = [XXX1, . . . ,XXXq, . . . ,XXXQ] ,

where the generic block XXXq refers to set of indicators used to measure the qth latent
variable in the model. As we described in the chapter, a construct can be measured
according to either a reflective or a formative model. In a reflective block it is as-
sumed that each manifest variable is related to the corresponding latent variable by a
simple linear regression model, that is

xipq = λpq0 +λpqξiq + εipq, (3.29)

where λpq0 is a location parameter (i.e., the intercept), λpq is the so called outer
loading, or simply loading, associated with the pth manifest in the qth block, and
εipq is the error term that also include the measurement error. As in standard OLS
regression analysis, it is assumed that the error term has zero mean and it satisfies the
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so called predictor specification assumption, that is

E (xipq|ξiq) = λpq0 +λpqξiq. (3.30)

This assumption guarantees that the error term is uncorrelated with the predictor, that
is the latent variable ξiq. The measurement model for a formative block assumes that
the latent variable is a linear combination of the corresponding indicators, that is

ξiq =
Pq

∑
p=1

πpqxipq +δiq, (3.31)

where Pq denotes the number of indicators in the qth block, πpq is the coefficient link-
ing each manifest variable xipq to the latent measure it determines, and δiq is the error
term representing the part of information about ξiq which is not accounted for by the
indicators in the block. We will refer to the πpqs as the indicator weights or outer
coefficients. As for reflective constructs, we still assume predictor specification, that
is

E (ξiq|XXXq) =
Pq

∑
p=1

πpqxipq. (3.32)

The structural model specifies the relationships between exogenous and endogenous
latent variables. In PLS-SEM it is assumed that the jth endogenous construct, with
j = 1, . . . ,J, is related to a set of M j predictors (sometimes also called predecessors)
by the following multiple linear regression model

ξi j = β0 j +
M j

∑
m:ξm→ξ j

βm jξim +ζi j, (3.33)

where βm j is the coefficient linking the mth exogenous latent variable to the jth
endogenous one and ζi j is the error term. The coefficients in the structural model are
commonly known as path or structural coefficients. Also the structural equations
are assumed to satisfy the predictor specification hypothesis, that is

E (ξi j|{ξξξ m}) = β0 j +
M j

∑
m:ξm→ξ j

βm jξim. (3.34)

No matter how a construct is measured, either reflectively or formatively, the
distinctive feature of PLS-SEM is that upon convergence of the algorithm, latent
variables scores ξ̂ξξ q corresponding to the qth latent variable ξξξ q are computed using
the following weight relation

ξ̂iq =
Pq

∑
p=1

wpqxipq, (3.35)

where the coefficients wpq are known as the outer weights. This equation character-
izes PLS-SEM as a component-based approach to structural equation modelling, in
contrast to factor-based CB-SEM.
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We conclude noting that the outer weights must not be confused with the outer
coefficients defined in equation (3.31). Even if the weight relation (3.35) resembles
the formative measurement model, they are two distinct statements. In particular, the
weight relation represents the rule used in PLS-SEM to compute the latent scores
as a linear combination of the corresponding indicators, but it does not specify the
“causal direction” between a construct and its manifest variables. Nonetheless, these
directions determine how the wpq weights are estimated (see Section 3.3).

More Details on the Consistent PLS-SEM Approach

We provide here more technical details for the consistent PLS-SEM (PLSc-SEM)
approach described in the chapter. The presentation here is based on Dijkstra and
Henseler (2015a).

The traditional PLS-SEM estimation in the first step of PLSc-SEM produces es-
timates of the (outer) weights for all latent variables (see Section 3.3.2, Step 3). For
the generic qth latent variable ξξξ q we denote the corresponding estimated weights as
ŵwwq. Then, the consistent reliability coefficient estimator for the qth latent variable
ρA(ξξξ q) introduced by Dijkstra and Henseler (2015a) is defined as

ρA(ξξξ q) =
(

ŵww>q ŵwwq

)2
·

ŵww>q (SSS−diag(SSS)) ŵwwq

ŵww>q
(

ŵwwqŵww>q −diag(ŵwwqŵww>q )
)

ŵwwq

, (3.36)

where SSS is the sample covariance matrix of the indicators representing the observed
measures for the qth latent variable, while diag(AAA) is a matrix operator that generates
a diagonal matrix using the diagonal elements of AAA.

Step 3 of the PLSc-SEM algorithm applies a correction to the correlations be-
tween the latent variables returned by the standard PLS-SEM approach. This correc-
tion (Nunnally and Bernstein, 1994, p. 241) is defined as

Cor(ξξξ k,ξξξ q) =
Cor(ξξξ ∗k ,ξξξ

∗
q)√

ρA(ξξξ
∗
k) ρA(ξξξ

∗
q)
, (3.37)

where ξξξ
∗
q denotes the scores for the qth latent variable that is returned by the tradi-

tional PLS-SEM algorithm.
Then, consistent path coefficients are computed as we illustrated in equa-

tion (3.26) but using the correlations as in (3.37). Finally, loadings are estimated
consistently as

λ̂λλ q = ŵwwq ·

√
ρA(ξξξ q)

ŵww>q ŵwwq
. (3.38)
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4
PLS Structural Equation Modelling:
Assessment and Interpretation

In this chapter we will describe how to practically assess and interpret the results of
a PLS-SEM model. To do so, we also make use of the output obtained from the es-
timation of a comprehensive PLS-SEM model. We first go through the measurement
part and then continue with an evaluation of the structural part of the model. That is,
criteria to evaluate the measurement and structural models are explained through an
application.

4.1 Introduction
As it is common in every statistical analysis, following the estimation of a model you
should always assess the goodness of the results obtained. In PLS-SEM a quite large
set of indexes is used that only marginally overlap those available in the CB-SEM
approach. In the next sections we present only the most popular tools for making
these assessments, but others are also available in the literature (for a recent account
see Hair et al., 2017).

One of the most frequently criticized limitations of PLS-SEM is that it does not
optimize any predefined global fit criterion, like CB-SEM does. Indeed, as we have
described in detail in the previous chapter, the estimates returned by PLS-SEM are
the results of an iterative procedure that originally was shown to represent the so-
lution of a so called fixed-point problem (Wold, 1965; see also Lyttkens, 1973 for
a review). Practically, this implies that there is no way to statistically compare two
alternative PLS-SEM models and assess the significance of the comparison as it is
typically done in CB-SEM with likelihood ratio tests. On one hand, the lack of a
global fit measure has motivated a lot of research that allowed to generate a deeper
understanding of the method itself (Amato et al., 2005; Hanafi, 2007; Kramer, 2007;
Esposito Vinzi et al., 2010; Tenenhaus and Tenenhaus, 2011; Esposito Vinzi and Rus-
solillo, 2013). On the other hand, given the emphasis of PLS-SEM on predictions, we
think that the issue of identifying the fit measure that is optimized by the PLS-SEM
is not fundamental since many other tools to assess its quality are available, as we
describe hereafter.
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4.2 Assessing the Measurement Part
A full PLS-SEM model may contain different types of measurement models which
in tandem make up what we may refer to as the measurement part of a model. An ex-
amination of the measurement part should take place prior to interpreting the results
from the structural part. The reason for this sequential process is simply because we
only can rely on results concerning the links between the different constructs (i.e.,
hypothesis testing making up the structural part) in the model when these constructs
exhibit good psychometric properties. The properties that are sought depend on the
type of measurement models used, with reflective and formative being the two most
commonly used types.

4.2.1 Reflective measurement models

As far as reflective measurement models are concerned, one should examine unidi-
mensionality of the construct, indicator reliability, construct reliability (i.e., compos-
ite reliability) and construct validity (i.e., convergent and discriminant validity).

4.2.1.1 Unidimensionality

Dimensionality is about finding out the number of constructs that may be reflected
by a set of items. In theory, we can obtain as many constructs as items, suggesting
that each of our items reflects a different construct. However, as it is for principal
component analysis whose purpose is data reduction, we commonly search for a
fewer number of constructs that could explain most of the variance in the items.
Further, each construct should itself be unidimensional, suggesting that the items
involved should primarily reflect one aspect of a phenomenon. Mathematically, this
means that the construct extracted captures more variance in the items than any other
possible constructs.

We examine eigenvalues from a principal component analysis (see Section 2.2)
associated with each construct to find out whether the construct is unidimensional or
multidimensional. An eigenvalue (θ ) represents the amount of variance a construct
explains in a set of items. It is generally recommended that constructs with eigenval-
ues above 1 are retained. The reason for this is that a construct should capture at least
as much variance as an item’s contribution to the correlation matrix. More specifi-
cally, if you hypothesize that a certain set of items should reflect a single construct,
you would expect only one component with an eigenvalue above 1 (and preferably
much larger than one) to demonstrate the construct’s unidimensionality.

Figure 4.1 illustrates the idea of dimensionality of items. On the left side of the
figure, we see a construct that is unidimensional in that all the four items are pri-
marily explained by one single construct (i.e., the only construct with θ > 1). On
the right side, we observe exactly the same items being explained by two separate
constructs (i.e., two constructs with θ > 1), illustrating the multidimensional nature
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CONSTRUCT 1

Item 1

Item 2

Item 3

Item 4

(a) Unidimensional items.

CONSTRUCT 1
Item 1

Item 2

CONSTRUCT 2
Item 3

Item 4

(b) Multidimensional items.

FIGURE 4.1: Dimensionality of items.

of these items. In the case of multidimensionality, the measurement model should be
respecified in order to meet the requirement of unidimensionality.

4.2.1.2 Construct reliability

While principal component analysis helps us in assessing the dimensionality, relia-
bility analysis examines the internal consistency (i.e., homogeneity) of a construct,
a condition which is necessary (as changes in one item mean changes in others) in a
sound measurement model. The most popular index used to check the reliability of a
construct is the Cronbach’s alpha, which provides an estimate for the reliability of
a construct based on the item intercorrelations.

Cronbach’s alpha does however assume τ-equivalence (i.e., all items are equally
important in expressing the constructs), which may not always be the case in real-
ity. Thus, Chin (1998b) suggests that Dillon-Goldstein’s rho (DG rho)1 is indeed
a better measurement of reliability than Cronbach’s alpha. Indeed, DG rho does not
assume τ-equivalence since it is based on the results from the measurement model
(i.e., loadings) rather than the intercorrelations among the items in the raw data.

All the common reliability coefficients including DG rho vary between 0 and
1. The higher the coefficient, the more reliable the construct. However, regardless
of the coefficient used, the reliability of a construct should, as a rule of thumb, be
larger than 0.7 but below 0.93. The reason why we do not want to have a reliability
coefficient above 0.93 is due to the fact that the items in such cases are redundant,
meaning that they simply contain information (i.e., they represent answers to similar
questions) about the same phenomenon.

4.2.1.3 Construct validity

A construct can be claimed to be valid when both convergent and discriminant va-
lidity are demonstrated. Convergent validity is the extent to which a set of items
reflecting the same construct are positively correlated. The higher the correlation

1For the technical definition of Dillon-Goldstein’s rho as well as the other criteria, see the technical
appendix at the end of the chapter.
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between the items, the more variance the items have in common. Since the items
compose a construct together, high correlation between each item and the construct
would imply high correlation among items, suggesting accordingly a high conver-
gence of the items on a common construct. Thus, to establish convergent validity we
seek high positive correlations between the items and the construct.

As we know from principal component/factor analysis, loadings are equivalent
to correlations between a set of items and a common construct. We further know
from bivariate regression analysis that squared correlation indicates the amount of
variance an independent variable accounts for in the dependent variable. Applied to
our case here, the squared loading would then indicate the share of variance of an
item captured by a construct. As it is common in the latent variable domain to expect
that a construct should at least capture half of the variance in each of its associated
items, we would usually opt for factor loadings2 not less than 0.7, yielding a shared
variance of about 50 percent (i.e., 0.72 = 0.49 ≈ 0.50). This quantity reflects what
is known as item/indicator reliability. It should also be added that each individual
factor loading should be statistically significant depending on the chosen significance
level.

Since each squared loading tells us how much variance a construct captures in
an item, taking the average of all the squared correlations between the items and the
construct would tell us how much variance on average the construct captures in its
associated items. This quantity is also referred to as average variance extracted
(AVE), indicating the communality (COM) of a construct. As we want a construct
to capture at least half of each of items’ variance, we would accordingly expect the
construct to also capture on average half of the variance in all of its associated items.
In other words, communality/AVE of a construct should at least be 0.5. Figure 4.2 il-
lustrates this idea clearly in that at least 50 percent of the variance in item1 (0.7012),
item2 (0.8022), item3 (0.8642) and item4 (0.7892) is captured by the construct. Fur-
ther, the construct captures on average nearly 63 percent variance from its items.

Discriminant validity is about the distinctiveness of constructs, showing the ex-
tent to which a construct captures variance of its associated items relative to that of
items associated with other constructs in the measurement model. The higher the
correlation between a construct and its items as compared to its correlation with the
other items in the model, the more distinct the construct is. Average variance ex-
tracted (average of squared loadings/correlations) by a construct can be considered
an omnibus indication of the correlation between a construct and its items. Further,
squared correlation between two different constructs indicates how much variance
each construct captures in/shares with each other’s items.

As such, to be able to establish discriminant validity for these two constructs, we
should expect each of the construct’s AVE to be larger than the squared correlation
between them. This is known as the Fornell-Larcker criterion (Fornell and Larcker,
1981). The same idea applies equally to a model containing several constructs, in that

2The fact that in PLS-SEM the measurement error, unlike in covariance-based SEM, is not taken into
account, stresses the importance of having factor loadings not less than 0.7. In fact, a data analyst should
try to opt for even higher values than 0.7. Only in some rare occasions (e.g., an exploratory/pilot study)
one could settle down with factor loadings as low as 0.6.
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CONSTRUCT

item1

item2

item3

item4

Corr = 0.701

Corr = 0.802

Corr = 0.864

Corr = 0.789

Com = 0.626

FIGURE 4.2: An example showing convergent validity. Com indicates a communal-
ity.

CONSTRUCT 1

item1

item2

item3

item4

Corr = 0.702

Corr = 0.801

Corr = 0.865

Corr = 0.790

Com = 0.627

CONSTRUCT 2

item5

item6

item7

item8

Corr = 0.790

Corr = 0.816

Corr = 0.855

Corr = 0.778

Com = 0.656

Corr = 0.132

FIGURE 4.3: An example showing discriminant validity. Com indicates a commu-
nality.

we this time should expect a higher AVE of a construct than its squared correlation
with any other construct in the model. Figure 4.3 illustrates the idea of discriminant
validity with an example showing that the AVEs/COMs of both CONSTRUCT 1
(0.627) and CONSTRUCT 2 (0.656) are indeed larger than their squared correlation
(0.1322), demonstrating clearly that these two constructs are distinct enough (i.e.,
discriminant validity is achieved).

Although we in some cases cannot show empirical evidence of discriminant va-
lidity for some constructs in a sample data, a strong theoretical reasoning supported
by previous studies may still justify for the inclusion of these constructs as distinct
phenomena in the measurement model.

4.2.2 Higher order reflective measurement models

As far as the examination of higher order reflective measurement models is con-
cerned, a multi-stage procedure must be followed. First, the measures in the lowest
order are subjected to the same criteria as those that apply to reflective measures ex-
plained above (alternatively, see Table 4.1). Then, the measures in the higher order
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TABLE 4.1: Summary of the criteria for assessing measurement models.

Reflective Formative

1. There should be only one eigen-
value above 1 associated with a
construct (unidimensionality)

2. Construct reliability coefficient
(DG rho) should be larger than 0.7
(homogeneity)

3. Standardized loadings should be
above 0.7 (item reliability)

4. Average variances extracted (AVE)
should be above 0.5 (convergent
validity)

5. AVE should be greater than
squared correlations (discriminant
validity)

1. Items should measure what they are
supposed to represent (content va-
lidity)

2. Variance inflation values should be
less than 2.5 (absence of multi-
collinearity)

3. Statistically significant weights

model should be assessed based on the level of construct reliability and average vari-
ance extracted as well as loadings. In other words, construct reliability and average
variance extracted values of second-order constructs should respectively be larger
than 0.7 and 0.5 as well. Further, the loadings of the lower order constructs on the
higher order constructs (i.e., correlations between constructs) should be above 0.6–
0.7 and statistically significant (see Figure 4.4). This procedure continues in the same
manner regardless how complex a higher order measurement model may be.

4.2.3 Formative measurement models

Due to the nature (i.e., items predicting a construct) of the relationship between the
items and constructs, formative measurement models require different assessment
criteria than those concern reflective measurement models. There are various criteria
suggested by different scholars for evaluating formative measurement models. How-
ever, we focus on the most common three criteria here (see Table 4.1). These include
an examination of the content validity, multicollinearity between the items forming
a construct as well as the statistical significant effect of the items on the construct.
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EXTREME
SPORT

s1_15

s1_16

s1_19

Corr = 0.933

Corr = 0.939

Corr = 0.911 Com = 0.861
Rho = 0.949

SKIING

s1_27

s1_34

s1_41

Corr = 0.846

Corr = 0.901

Corr = 0.753 Com = 0.698
Rho = 0.874

SPORT

Com = 0.504
Rho = 0.855

Corr = 0.866
Pr > |t| < 0.001

Corr = 0.726
Pr > |t| < 0.001

FIGURE 4.4: Evaluation of a second-order reflective measurement model. Com in-
dicates a communality while Rho refers to Dillon-Goldstein’s reliability coefficient.

4.2.3.1 Content validity

Content validity is about items measuring what they are claimed to define. Conse-
quently, we should assess each item’s operationalization and relevance in relation to
the content of the construct. As each item contributes to defining an aspect of the con-
struct, it is important to make sure that all the possible aspects of a construct are op-
erationalized and measured through items. An example that readily can illustrate this
issue can be a set of items measuring one’s interest in “football”, “basketball”, “vol-
leyball” and “handball” activity which all together are supposed to represent one’s
general interest in ball-based sports activity. Leaving out any of these four activities
in the measurement model will miss out on an important aspect of the construct of
interest. A thorough examination of the content validity may also significantly con-
tribute to distinguishing between formative and reflective measures.

4.2.3.2 Multicollinearity

While high correlation among items is required in reflective measurement models,
the reverse is the case for formative measurement models in that items are treated as
predictors of a construct (outcome). This relationship represents, in other words, any
typical statistical model tested using linear regression analysis. One of the main as-
sumptions in linear regression analysis (see Section A.2.6 for a review) is indeed the
absence of (severe) multicollinearity among predictors, an assumption which con-
sequently applies to formative measurements as well. The reason why we want to
avoid multicollinearity is the fact that standard error of the coefficients/weights on
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FIGURE 4.5: Formative measures with their tolerance values extracted.

each item will otherwise be biased upwards, leading thus to invalid test statistics
which again may result in non-significant coefficients/weights.

Tolerance value is one diagnostic that can be used to examine possible mul-
ticollinearity existent among the items. The tolerance value shows the amount of
variance in an item that cannot be explained by the remaining items in the equation.
Literally speaking, we ask ourselves how much variance in an item, can we tolerate,
being explained by the remaining items. There is a general consensus in the litera-
ture that we can tolerate a maximum of 60 percent, leaving us with 40 percent unex-
plained. This 40 percent is usually referred to as the tolerance value. In other words,
tolerance values lower than 0.40 may be a sign of multicollinearity. The higher the
tolerance value, the less severe the multicollinearity, indicating a weaker covariation
among the items.

To be able to obtain tolerance values for each item, we can regress each item on
the rest of the items forming the construct, and then extract the R-squared value for
each equation. Subtracting each R-squared value from 1 will give us the tolerance
value. In Figure 4.5 we provide an example showing this procedure. Incidentally,
we observe here that none of the tolerance values is less than 0.4, indication of no
multicollinearity among X1, X2 and X3 forming Y (construct).

We can indeed shorten the above procedure by regressing the component/factor
score of Y (estimated in the measurement model) on X1, X2 and X3. The tolerance
values obtained for these three items from this regression analysis are equivalent to
those above. Using this parsimonious approach provide us directly with variance
inflation factor (VIF) values. Squared root of VIF value for an item tells us how
many times (e.g.,

√
2.5 = 1.58) the standard error of a coefficient has increased as a

result of its correlation with the remaining items in the equation. There is an inverse
relation between tolerance and VIF values. A tolerance value of 0.4 corresponds
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directly to a VIF value of 2.5 (i.e., 1/0.4). As such, tolerance values above 0.4 and
VIF values less than 2.5 are signs of no serious multicollinearity among the items.
As it follows from the reasoning above, in this context we are sceptical about using
VIF values up to 10 as acceptable as it is commonly done in linear regression. A VIF
value of 10 corresponds to a tolerance value of 0.1, meaning that you simply accept
that 90 percent of an item’s variance is explained by the rest of the items in a model.
This, in our opinion, is a too liberal cut-off value to use in PLS-SEM.

What to do with the items affected by severe multicollinearity? One pragmatic
and easy solution is to leave out one of the items from the model. Theoretical argu-
mentation should incidentally be used deciding which of the two highly correlated
items shall be left out. Another remedy is to transform (e.g., summated score, mean
score, etc.) the highly correlated items and re-estimate the measurement model. A
third solution is to try to increase the sample size, if possible and convenient, as large
sample sizes tend to reduce the variance of coefficients.

4.2.3.3 Weights

While we examine loadings of reflective measures, we assess weights of formative
measures. Weights in PLS-SEM do work in an identical manner as coefficients do
in linear regression analysis. As such, we should examine statistical significance and
magnitudes of items’ weights to be able to judge how well the items are doing form-
ing a construct (i.e., how good the formative measurement model is). The size of a
weight reflects an item’s contribution to the construct. For instance, in Figure 4.5, all
the three weights are nearly of same size, implying that they contribute equally to the
Y construct.

Unlike for loadings though, there are no definite rules for deciding how large
weights should be. In theory, items with even the smallest weights should still be
kept in the model given that they cover an aspect of its construct. The magnitudes of
weights can incidentally be used to compare relative contribution of different items.
What we additionally can look at is the statistical significance of these weights. Ide-
ally, we should also expect the weights to be statistically significant. However, in
some occasions we even may consider keeping non-significant weights in the forma-
tive measurement model also given strong theoretical reasoning.

4.3 Assessing the Structural Part
Having established a psychometrically sound (i.e., reliable and valid) measurement
model, we can go ahead and examine the structural model (hypothesized causal re-
lations between variables). The assessment of a structural part in PLS-SEM is in-
deed similar to that commonly practised when examining a statistical model tested
using linear regression. In other words, we first should evaluate the share of a depen-
dent variable’s variance explained (R-squared) by one or a combination of several
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independent variables. Second, the sign, significance and size (so called “3S”) of
path coefficients should be considered. Finally, the goodness-of-fit of the full model
should be assessed (see Table 4.2).

TABLE 4.2: Summary of the criteria for assessing structural models.

1. The higher the R-squared value, the better the model fits the data. R-
squared values of 0.19, 0.33 and 0.67 represent respectively small, mod-
erate and large effects.

2. The sign of path coefficients should be examined in relation to hypothesis
statements and model specification issues. β values of 0.05, 0.1 and 0.25
represent respectively a small, medium and large effect.

3. Use standard errors from bootstrapping procedure. P-values less than 0.05
indicate statistically significant relationship.

4. Examine f 2 values as defined in equation (3.28) to determine the effect size
of each variable. f 2 values of 0.02, 0.15 and 0.35 represent respectively a
small, medium and large effect3.

5. Examine the issue of multicollinearity. Variance inflation values should be
less than 2.5.

6. The relative GoF value should be above 0.90.

4.3.1 R-squared

The R-squared is a popular goodness-of-fit metric in linear regression that quanti-
fies the percentage of variance in the dependent variable explained by a set of in-
dependent variables (for a review see Section A.2.2). However, there are no definite
thresholds as to how big R-squared should be. The evaluation of R-squared values
should be based on a substantial consideration rather than a pure statistical quantity.
In some fields (e.g., health) within a particular research area, an R-squared of 0.05
can be considered satisfactory while the same value may not be viewed enough in
another field (e.g., marketing). Different fields and research questions may perceive
R-squared differently. Further, low R-squared values may regardless be of impor-
tance if there is not much previous research done on a particular research topic. One
other factor to take into account is indeed the number of predictors included in the
model. Generally, a model with few predictors resulting in large R-squared can be

3The f 2 index is not currently provided by the plssem command.
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asserted to do a better prediction job. A common sense thing to do is relate the eval-
uation of R-squared to the tradition in a particular research field.

The evaluation of R-squared should also take into account the target dependent
variable(s). As a full PLS-SEM model is generally a complex one including several
dependent variables, we may expect better prediction of some of these as compared
to the others in the model. Nevertheless, Falk and Miller (1992) suggest that the vari-
ance explained for each dependent variable should, as a rule of thumb, be greater
than 10 percent regardless. Further, as for the target dependent variable, we can fol-
low the general guidelines in Chin (1998b): R-squared values of 0.19, 0.33 and 0.67
represent respectively small, moderate and large effects.

4.3.2 Goodness-of-fit

As R-squared alone cannot be used to evaluate the quality of the whole structural
model consisting of several equations, an additional global criterion of goodness-of-
fit (GoF) has been proposed by Tenenhaus et al. (2004), whose intent is to account
for the model performance at both the measurement and the structural model (all of
the R-squared values are taken into consideration) with a focus on overall prediction
performance of the model (see Chin, 2010). As such, the GoF index is obtained as
the geometric mean of the average communality index and the average of R-squared
value (Tenenhaus et al., 2004). This GoF measure is usually referred to as the abso-
lute GoF. A normalized version, the so called relative GoF, has also been proposed
(Esposito Vinzi et al., 2010). The relative GoF is bounded between 0 and 1 and values
equal to or higher than 0.90 indicate a good model.

However, note that goodness-of-fit in the context of PLS-SEM shall not be con-
sidered as equivalent to goodness-of-fit measures (e.g., chi-square statistic or root
mean square error of approximation) commonly used to evaluate the quality of a
model in the domain of covariance-based structural equation modelling4. Goodness-
of-fit here refers simply to the predictive ability of a full PLS-SEM model. As long
as a researcher’s purpose is to develop a complex model to explain as much variance
in the dependent variables as possible, the GoF index is readily a suitable criterion to
judge how well the model is doing.

4.3.3 Path coefficients

Path coefficients are estimates that help us to assess the hypothesized relationships
in the structural model. This assessment is done through an examination of the sign,
significance and size of path coefficients. These path coefficients are commonly pre-
sented in a standardized form which is equivalent to standardized betas in linear
regression. Standardized path coefficients are obtained from estimation of equations
in which all the variables are transformed into a same metric (i.e., mean is 0 and stan-
dard deviation is 1). This transformation expresses the observational values’ distance

4Some scholars have made a case against using GoF for model validation (see Henseler and Sarstedt,
2013).
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from the mean in terms of the number of standard deviations. This is done to account
for the differences in the range and variances in the variables. As such, having all the
variables expressed on the same metric allows us to compare the coefficients of the
variables directly.

Standardized coefficients generally range between −1 and 1, telling us about
the strength of the relationship between an independent (X) and a dependent vari-
able (Y ). The closer a path coefficient is to ±1, the stronger the relationship (pos-
itive/negative). And naturally, the closer a path coefficient is to 0, the weaker the
relationship. Since standardized coefficients are not raw score coefficients, their in-
terpretation will also be different. A standardized coefficient shows the change (in
standard deviation units) in the expected value of Y for one standard deviation in-
crease in X . In a complex model with several independent variables, the standardized
coefficients can be used to judge the relative importance of these variables regardless
of their original measurement scales. Briefly, a variable with a standardized coeffi-
cient higher than that of another variable in the model can be said to have a stronger
effect on the dependent variable. Standardized coefficients may give us a rough idea
of how important a variable is in terms of its contribution to explaining the variance
in the dependent variable. Using the benchmark provided by Keith (2016), standard-
ized coefficients of 0.05, 0.1 and 0.25 correspond respectively to small, moderate and
large effects.

Another property of path coefficients to be studied is their sign showing the di-
rection of the relationship. As in regression analysis, minus sign indicates a negative
relationship (mean Y decreases as X increases) while positive sign indicates a pos-
itive relationship (mean Y increases as X increases). The sign of path coefficients
helps us to assess whether or not the direction of a relationship between two vari-
ables that we hypothesized in our model is supported. The examination of coefficient
signs may also indeed help discovering possible misspecification of a model. That is,
surprisingly unexpected signs may in some cases be an indication of multicollinear-
ity, exclusion of a relevant variable or even non-linearity. Thus, researchers should
look at the coefficient signs in relation to model specification as well. Nevertheless,
unexpected signs may also simply occur as a function of multivariate modelling.

Speaking of multicollinearity, this is an issue that also should be considered in the
evaluation of a structural model. The explanation and criterion that we provided in
Section 4.2.3.2 on formative measurement models, apply directly to assessing mul-
ticollinearity between variables in the structural model as well when the model is
estimated using OLS.

A third aspect of path coefficients to examine is the statistical significance. Sta-
tistical significance is usually reported in form of a p-value. A p-value is a function
of the test statistic, and the test statistic is represented by the ratio of a path coef-
ficient and its standard error. In PLS-SEM context, the standard error is obtained
using the bootstrapping procedure that we treated in Section 2.1. The most com-
mon test statistic level used as a cut-off value to decide whether or not a path co-
efficient is statistically significant is 1.96, corresponding to a significance level α of
(approximately) 0.05. That is, a test statistic (in absolute value) above 1.96 or accord-
ingly a p-value less than α = 0.05 indicates a statistically significant path coefficient.
Technically, this is to say that the path coefficient is statistically significantly differ-
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ent from zero at a level of 5%. Two other commonly used cut-off test statistic values
are 2.57 (α of 0.01) and 1.65 (α of 0.1).

A test describing the relationship between two variables is usually set up as fol-
lows:

H0 : β1 = 0 (there is no relation), where H0 is the null hypothesis

H1 : β1 6= 0 (there is a relation), where H1 is the alternative hypothesis

Assuming an α value of 0.05, a p-value less than 0.05 for a path coefficient provides
evidence for a non-zero coefficient suggesting that there is a statistically significant
relation between two variables. In this case, we conclude that we reject H0. On the
other hand, a p-value above 0.05 provides no evidence for non-zero coefficient indi-
cating that there is not a statistically significant relation between two variables. Then,
we conclude that we fail to reject H0.

Furthermore, using the standard error obtained from the bootstrap procedure, we
can construct a confidence interval for every path coefficient using (b±1.96×SEb)
assuming a confidence level of (approximately) 0.95, where SEb represents the esti-
mated standard error of b. As in linear regression analysis, if the confidence interval
does not include zero we reject H0, whereas if the confidence interval includes zero
we fail to reject H0. This is an alternative approach to significance testing that in
some cases may be useful to adopt.

4.4 Assessing a PLS-SEM Model: A Full Example
We are in this section going to estimate and evaluate a comprehensive PLS-SEM
model using the plssem package in Stata. Before starting to evaluate the measure-
ment and structural models in line with the criteria that we have treated so far, we
first need to explain and exhibit how to set up a model using plssem in Stata.

4.4.1 Setting up the model using plssem

A detailed introduction of the plssem package in Stata is provided in Chapter 3.
Benefiting from this introduction, in this section we will provide a further applica-
tion involving the dataset we already used in the previous chapter for introducing the
basics of PLS-SEM. A description of the data is available in Section 3.2.3. This new
application goes beyond the introductory examples we discussed so far. In particu-
lar, we will set up and estimate the more complicated but realistic model reproduced
in Figure 4.6. As the path diagram shows, here we have got four different measure-
ment models. The first measurement model includes a second-order reflective con-
struct MOTIVES expressed by two first-order reflective constructs, namely Escape
and Novelty which are expressed by two indicators each. The second latent variable,
SATISFACTION, is measured reflectively by two indicators. The third measurement
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model is a formative one, ACTIVITY, formed by four different indicators. The fourth
and final measurement model represents a single-item construct, RECOMMENDA-
TION, associated only with one indicator. The data for this example are available in
file ch3_MotivesActivity.dta. To let the output be more easily interpreted,
we first rename the observed variables as follows:

1 rename spm1_6 energy
2 rename spm1_7 getaway
3 rename spm1_8 boredom
4 rename spm1_9 exciting
5 rename spm3_2 entertain
6 rename spm3_6 visittown
7 rename spm3_8 nature
8 rename spm3_12 fishing
9 rename spm15_3 recommend

10 rename spm15_7 satisf
11 rename spm15_8 expecta

Let us now set up the entire model in a cumulative fashion. That is, we will first
specify one component of the model and then add the others one by one. We can start
with the specification of the second-order construct.

1 plssem (Escape > energy getaway) ///
2 (Novelty > boredom exciting) ///
3 (MOTIVES > energy getaway boredom exciting), ///
4 structural(Escape MOTIVES, ///
5 Novelty MOTIVES)

As seen in the syntax above, we first specify the two first-order constructs (Escape
and Novelty) with two indicators attached to each. We then specify the second-order
construct MOTIVES by connecting it to the indicators of both Escape and Novelty.
Finally, in the structural part of the plssem command, we regress each of the first-
order constructs on the second-order construct itself. This specification is also in
line with the graphical representation in Figure 4.6 assuming reflective measurement
model (arrows from construct to its indicators). As we already know, this way of
specifying a second-order construct is referred to as repeated indicator approach.

We next extend the model by including the formative measurement construct
(ACTIVITY). We proceed exactly in the same manner as above. However, this time
we use the < operator (instead of >) to define the relationship between the indicators
(entertain, visittown, nature, fishing) and the construct (ACTIVITY). As you see
in Figure 4.6, the direction of the arrows between the items and construct is now
reversed in that the construct gets now predicted by the items in a formative model.
The resulting syntax is shown below5.

5We repeat that running these lines of code will produce no result. The reason is that the construct
ACTIVITY must first be connected to one other construct in the structural part of the model. This is done
in the final syntax statement that we present later in this section.



4.4 Assessing a PLS-SEM Model: A Full Example 169

1 plssem (Escape > energy getaway) ///
2 (Novelty > boredom exciting) ///
3 (MOTIVES > energy getaway boredom exciting) ///
4 (ACTIVITY < entertain visittown nature fishing), ///
5 structural(Escape MOTIVES, ///
6 Novelty MOTIVES)

As for the construct with a single item, we model the constructs with single items
in the exact manner that we follow in modelling formative relations (i.e., using <) just
above. The reason for this is simply because we assume that the construct is made
up of the single item alone. Constructs with single indicator will appear in an oval-
shaped figure with an arrow pointing at them from the item, as shown in Figure 4.6.
In the syntax below, you will observe that any single-indicator construct still must be
specified in the measurement part

1 plssem (Escape > energy getaway) ///
2 (Novelty > boredom exciting) ///
3 (MOTIVES > energy getaway boredom exciting) ///
4 (ACTIVITY < entertain visittown nature fishing) ///
5 (RECOMMENDATION < recommend), ///
6 structural(Escape MOTIVES, ///
7 Novelty MOTIVES)

Our final measurement model represents the construct SATISFACTION ex-
pressed by two indicators in a reflective way. This addition does then complete the
specification of the overall measurement part of our example study.

1 plssem (Escape > energy getaway) ///
2 (Novelty > boredom exciting) ///
3 (MOTIVES > energy getaway boredom exciting) ///
4 (ACTIVITY < entertain visittown nature fishing) ///
5 (RECOMMENDATION < recommend) ///
6 (SATISFACTION > satisf expecta), ///
7 structural(Escape MOTIVES, ///
8 Novelty MOTIVES)

Having drawn and set up the measurement model, the next step is to connect the
construct/indicator variables to each other depending on the study’s hypothesis. This
is readily done by typing first the dependent variable followed by its predictors in the
structural section of the syntax:

1 plssem (Escape > energy getaway) ///
2 (Novelty > boredom exciting) ///
3 (MOTIVES > energy getaway boredom exciting) ///
4 (ACTIVITY < entertain visittown nature fishing) ///
5 (RECOMMENDATION < recommend) ///
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6 (SATISFACTION > satisf expecta), ///
7 structural(Escape MOTIVES, ///
8 Novelty MOTIVES, ///
9 ACTIVITY MOTIVES, ///

10 SATISFACTION ACTIVITY MOTIVES, ///
11 RECOMMENDATION SATISFACTION ACTIVITY)

Once all the variables are connected to each other, the structural model of the
study is also established (see Figure 4.6) and ready to be estimated.

4.4.2 Estimation using plssem in Stata

To be able to estimate our model in Figure 4.6, including the measurement and struc-
tural model, we first need to choose among various options and settings for the es-
timation procedure. Treatment of the items (manifest variables) is the first matter to
make a decision about. The most common choice in the domain of structural equa-
tion modelling is to standardize the manifest variable (i.e., mean of 0, and variance
of 1). Two possible reasons for standardizing the items before estimation are (1) to
make the items comparable if they are on different scales and (2) to take into account
severely unequal variances of the items. plssem standardizes the manifest variables
by default.

Another choice one should make concerns the type of weighting scheme to be
used for the inner (i.e., structural) model estimation. As we described in the previ-
ous chapter, the most common schemes used are the centroid scheme, the factorial
scheme and the path scheme. The weights they produce are a function of the linear
correlation between the latent/observed variables, yielding similar results. However,
the path scheme is generally the one recommended as it is the only one that takes into
account the causal order in the structural model (see Henseler, 2010). Furthermore,
the use of centroid scheme is definitely discouraged for the estimation of models in-
cluding higher order constructs (see Hair et al., 2017). As such, the path scheme is
the default choice in plssem.

Further, to be able to obtain the bootstrapped standard error estimates and sub-
sequently the p-values of different parameters (loadings, weights, path coefficients
etc.), we need to explicitly choose the boot option (see Section 3.5). Thus, you
need to specify the number of bootstrap replications to use. You can further set a
seed number for the bootstrap calculation to be able to reproduce the results:

1 plssem (Escape > energy getaway) ///
2 (Novelty > boredom exciting) ///
3 (MOTIVES > energy getaway boredom exciting) ///
4 (ACTIVITY < entertain visittown nature fishing) ///
5 (RECOMMENDATION < recommend) ///
6 (SATISFACTION > satisf expecta), ///
7 structural(Escape MOTIVES, ///
8 Novelty MOTIVES, ///
9 ACTIVITY MOTIVES, ///
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10 SATISFACTION ACTIVITY MOTIVES, ///
11 RECOMMENDATION SATISFACTION ACTIVITY) ///
12 boot(1000) seed(123456)

Treatment of missing values is one (optional) final issue to give thought to prior
to estimating a PLS-SEM model. In plssem, there are two approaches available
for handling missing data. One considers the traditional mean substitution approach,
which estimates missing data by using the mean (hence only for quantitative vari-
ables), and the so called nearest neighbours approach (see Section 3.6). The default
option of plssem is listwise deletion of the missing values in that it removes the
observations with a missing value on any of the indicators in the model. Let us here
for the sake of demonstration use the mean imputation option. Finally, we require
also reporting the measurement model’s parameters p-values with the loadpval
option:

1 plssem (Escape > energy getaway) ///
2 (Novelty > boredom exciting) ///
3 (MOTIVES > energy getaway boredom exciting) ///
4 (ACTIVITY < entertain visittown nature fishing) ///
5 (RECOMMENDATION < recommend) ///
6 (SATISFACTION > satisf expecta), ///
7 structural(Escape MOTIVES, ///
8 Novelty MOTIVES, ///
9 ACTIVITY MOTIVES, ///

10 SATISFACTION ACTIVITY MOTIVES, ///
11 RECOMMENDATION SATISFACTION ACTIVITY) ///
12 boot(1000) seed(123456) ///
13 missing(mean) loadpval

We estimate the model depicted in Figure 4.6 with the settings and options ex-
hibited in the above syntax. We chose to standardize the indicators, use path scheme,
perform bootstrap procedure with 1000 replications with the seed number 123456,
and finally choose the mean option for imputing the missing values. The results from
this estimation are provided in Figure 4.7.

4.4.3 Evaluation of the example study model

In line with our suggestion, we first examine the measurement part of the model
and make sure that we have psychometrically sound measurement models prior to
assessing the results from the structural model.

4.4.3.1 Measurement part

The measurement part of the example study model consists of three first-order reflec-
tive measurement models (Escape, Novelty and SATISFACTION), one second-order
reflective measurement model (MOTIVES), one first-order formative measurement
model (ACTIVITY) and a single-item measurement model.
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Partial least squares SEM Number of obs = 1000
Average R-squared = 0.38586
Average communality = 0.64920

Weighting scheme: path Absolute GoF = 0.50050
Tolerance: 1.00e-07 Relative GoF = 0.88253
Initialization: indsum Average redundancy = 0.35900

Measurement model - Standardized loadings
--------------------------------------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Formative: Formative: Reflective:
| Escape Novelty MOTIVES ACTIVITY RECOMMENDA~N SATISFACTION

--------------+-----------------------------------------------------------------------------------------
energy | 0.809

getaway | 0.860
boredom | 0.887
exciting | 0.877

energy | 0.627
getaway | 0.722
boredom | 0.774
exciting | 0.745
entertain | 0.721
visittown | 0.303

nature | 0.262
fishing | 0.558

recommend | 1.000
satisf | 0.885

expecta | 0.832
--------------+-----------------------------------------------------------------------------------------

Cronbach | 0.567 0.715 0.686 1.000 0.646
DG | 0.821 0.875 0.810 1.000 0.849

rho_A | 0.574 0.715 0.692 1.000 1.000 0.659
--------------------------------------------------------------------------------------------------------

Measurement model - Standardized loading p-values (Bootstrap)
--------------------------------------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Formative: Formative: Reflective:
| Escape Novelty MOTIVES ACTIVITY RECOMMENDA~N SATISFACTION

--------------+-----------------------------------------------------------------------------------------
energy | 0.000

getaway | 0.000
boredom | 0.000
exciting | 0.000

energy | 0.000
getaway | 0.000
boredom | 0.000
exciting | 0.000
entertain | 0.000
visittown | 0.023

nature | 0.093
fishing | 0.000

recommend | 0.000
satisf | 0.000

expecta | 0.000
--------------------------------------------------------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
--------------------------------------------------------------------------------------------------------

| Escape Novelty MOTIVES ACTIVITY RECOMMENDA~N SATISFACTION
--------------+-----------------------------------------------------------------------------------------

Escape | 1.000 0.160 0.657 0.030 0.046 0.043
Novelty | 0.160 1.000 0.741 0.050 0.012 0.037
MOTIVES | 0.657 0.741 1.000 0.057 0.036 0.057
ACTIVITY | 0.030 0.050 0.057 1.000 0.016 0.007

RECOMMENDA~N | 0.046 0.012 0.036 0.016 1.000 0.411
SATISFACTION | 0.043 0.037 0.057 0.007 0.411 1.000
--------------+-----------------------------------------------------------------------------------------

AVE | 0.697 0.778 0.517 0.737
--------------------------------------------------------------------------------------------------------

Structural model - Standardized path coefficients (Bootstrap)
-----------------------------------------------------------------------------------------

Variable | Escape Novelty ACTIVITY RECOMMENDA~N SATISFACTION
--------------+--------------------------------------------------------------------------

MOTIVES | 0.811 0.861 0.239 0.232
| (0.000) (0.000) (0.000) (0.000)

ACTIVITY | 0.075 0.026
| (0.002) (0.544)

SATISFACTION | 0.635
| (0.000)

--------------+--------------------------------------------------------------------------
r2_a | 0.657 0.741 0.056 0.415 0.055

-----------------------------------------------------------------------------------------
p-values in parentheses

FIGURE 4.7: Results for the estimation of the plssemmodel reported in Figure 4.6.
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First-order reflective measurement models

We start with the examination of the unidimensionality of the three first-order reflec-
tive constructs6. To do so, we perform a factor analysis with principal component
extraction method using the factor command in Stata as shown below.

1 factor energy getaway, pcf
2 factor boredom exciting, pcf
3 factor satisf expecta, pcf

The results, not reported here, show that the two indicators reflected by the con-
struct Escape are associated with two eigenvalues one of which is 1.4 indicating that
70% (1.4/2) of the variance in these two indicators is captured by Escape. As for
Novelty indicators the first eigenvalue is 1.6 showing that 80% (1.6/2) of the vari-
ance in the two indicators is accounted for by Novelty. Finally, Satisfaction items are
associated with two eigenvalues one of which is 1.5, suggesting that 75% (1.5/2) of
the indicators is explained by Satisfaction. The fact each of these three constructs
captures considerable amount of variance (at least 70 percent) in their respective
items strengthens the unidimensionality further. In other words, we are not losing a
lot of information (variance) contained in the items.

We continue by examining the construct reliability of our reflective constructs.
As shown in Figure 4.7, the construct reliability coefficients (DG rho) for Escape,
Novelty and Satisfaction are all clearly above the suggested threshold of 0.7. This
confirms the homogeneity of the three constructs.

Next, we need to assess the reliability of our indicators expressing their respec-
tive constructs. As can be observed in Figure 4.7, all of the standardized loadings
associated with the three reflective constructs are above the acceptable level of 0.7
and statistically significant at 0.01 using the bootstrap standard errors. This confirms
that enough amount (at least 50 percent) variance of each indicator is contained in its
construct.

Next, we go ahead and examine the communality of a construct measured in
terms of average variance extracted (AVE). As seen in Figure 4.7, the average ex-
tracted variances for all three of the reflective constructs are above the suggested
figure of 0.5. This confirms that each of our constructs captures enough (at least 50
percent) of the variance in its associated items.

Finally, all of the AVEs are clearly above the squared correlations between any
two first-order reflective constructs in the model. This demonstrates discriminant va-
lidity of the three constructs, suggesting that they are distinct enough (shares more
variance with their own items than with the other constructs’ items) from each other.

6Although it generally makes more sense to check for unidimensionality when there are more than
two items per construct, we still want to show you how you go about examining unidimensionality with
our reflective constructs expressed by only two items each. The same idea applies to constructs with
several items.
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Second-order reflective measurement model

We continue our measurement model assessment by checking the construct reliability
and communality (AVE) as well as indicator (first-order constructs) reliability of the
second-order reflective construct MOTIVES. As seen in Figure 4.6, MOTIVES is
expressed by two first-order constructs, namely Escape and Novelty. As shown in
Figure 4.7, both the construct reliability (DG rho) and communality (AVE) are above
the recommended level of respectively 0.7 and 0.5. Further, in the structural part
of the results in Figure 4.7, the loadings7 of the first-order constructs (i.e., 0.811 and
0.861) on the second-order constructs are above 0.7 and statistically significant using
the bootstrap standard errors.

Formative measurement model

The first matter in the evaluation of a formative construct is to examine the content
validity of the construct. This is an issue that should be dealt with through theo-
retical/contextual reasoning rather than statistical tests. In our model shown in Fig-
ure 4.6, ACTIVITY is a formative construct. To be able to measure people’s level
of activity people are asked to indicate whether they participated in four common
activities on their vacation in the example study region. It is assumed that there is not
necessarily high correlation among these four activity items. As such, it makes sense
that responses to these four activities can indeed measure a person’s activity level.

The second feature of the formative construct to consider is the statistical signif-
icance of the indicators. As seen in Figure 4.7, apart from the third item (i.e., nature)
all of the items’ weights are statistically significant at 0.05 using bootstrap standard
errors. Despite the non-significant weight on the third item, it is included in the model
as it theoretically makes sense to have this item included in the formation of an over-
all activity construct. Leaving out this item from the model may lead to loss of one
important aspect of the whole activity measure.

Finally, as suggested earlier, we examine possible multicollinearity among the
four items8. We first obtain the estimated latent scores for the construct ACTIVITY.
These scores will be observed in the variable list right after the estimation. Then we
regress this latent score on the four indicators. None of the VIF values is above 2.5,
suggesting that multicollinearity does not cause any serious problems for the stability
of our estimates and test statistics. This procedure is easily done in Stata as follows
(output not reported):

1 quietly regress ACTIVITY entertain visittown nature fishing
2 estat vif

7We refer to these parameters as loadings instead of path coefficients because they regard the rela-
tionships between second-order and first-order constructs.

8We are aware of the limitations of computing VIFs for binary predictors. However, we follow this
practice here only for illustration purposes.
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Single-item measurement model

When it comes to single item constructs, they are modelled in the same manner as
formative constructs in that the single item alone forms a construct regardless of
the conceptual nature (reflective/formative) of the item. As such all of the single
item’s variance is included in its corresponding construct (i.e., communality equal
to 1) which is the case for our single item construct RECOMMENDATION (see
Figure 4.6).

4.4.3.2 Structural part

The structural part of our model in Figure 4.6 contains five different hypotheses to
be tested. We now examine whether or not these hypotheses are supported, and we
assess the predictive power of the overall model in terms of the amount of variance
explained in the dependent variables.

Hypotheses and path coefficients

We first examine the path coefficients with respect to the hypotheses set up in the
model. As shown in Figure 4.7, all of our hypotheses assume direct relations. It is
generally a good idea to list these hypotheses as follows as guidance for you and
readers of your work:

H1: Motives are positively related to activity

H2: Motives are positively related to satisfaction

H3: Activities are positively related to satisfaction

H4: Activities are positively related to recommendation

H5: Satisfaction is positively related to recommendation

As far as direct effects are concerned, to start with, we observe in Figure 4.7
that MOTIVES are significantly and positively related to ACTIVITY suggesting that
increased motivation leads to increased activity participation. Hypothesis 1 is conse-
quently supported. The magnitude of the relation between Motives and Activity can
be said to be moderate (0.239).

The results show further that MOTIVES are also significantly related to SAT-
ISFACTION suggesting that hypothesis 2 is supported. Incidentally, the size of the
effect (0.232) is moderate. Hypothesis 3 gets no support from our empirical data in
that ACTIVITY is found not to be significantly and positively related to SATISFAC-
TION. When it comes to hypothesis 4, we see that it too is supported as ACTIVITY is
significantly and positively associated with RECOMMENDATION. The strength of
this relation can be claimed to be weak though (0.075). The final relation, between
SATISFACTION and RECOMMENDATION, is also shown to be significant and
positive, a finding that provides certainly support for hypothesis 5. The magnitude of
this relation (0.635) can be considered large.
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Structural model - Multicollinearity check (VIFs)
-------------------------------------------------------------------------------

Variable | Escape Novelty ACTIVITY RECOMMEN~N SATISFAC~N
--------------+----------------------------------------------------------------

MOTIVES | 1.000 1.000 1.000 1.060
ACTIVITY | 1.007 1.060

SATISFACTION | 1.007
-------------------------------------------------------------------------------

FIGURE 4.8: Multicollinearity assessment for the structural part of the PLS-SEM
model shown in Figure 4.6.

To sum up the examination of the path coefficients of our model, we see that
four out five of our hypotheses find support in the data. This result could indeed be
seen as an indication that the researcher did a good job building a relevant and useful
theoretical model.

Predictive power

The examination of a structural model should also include an assessment of the pre-
dictive power of the individual models as well as the whole model. When it comes
to individual models, we observed in Figure 4.7 that about 6 percent of the variance
in ACTIVITY, nearly 6 percent of the variance in SATISFACTION, and almost 42
percent of the variance in RECOMMENDATION is explained by their respective
models. The fact that 42 percent of our target dependent variable is explained indi-
cates a large effect and suggests that the model fits the data well. In plain English, this
means that with this model we can effectively predict people’s willingness to recom-
mend the destination further to friends and relatives. The unexplained variance (58
percent) may be due to several factors (other relevant variables that are for different
reasons not in the model, heterogeneity in the data, etc.).

To be able to judge the overall prediction performance of the whole model, we
look at the relative GoF value, which is not that far from the 0.9 threshold. Given that
all parameter estimates are in line with our expectations (i.e., sign and significance),
we consider 0.88 satisfactory in this example. Furthermore, according to Wetzels
et al. (2009) absolute GoF values above 0.36 can be considered acceptable, which is
the case here (0.5).

Multicollinearity

As we estimate the model using OLS rule, we need to check for multicollinearity
that may cause instability in the estimates. To do so, we simply type in estat vif
after our plssem estimation, which will provide us with the output9 reported in
Figure 4.8. As seen, all the VIF values are below the suggested threshold of 2.5 sug-
gesting that no severe multicollinearity exists in any of the equations of our model.

9Note that plssem does not allow to run estat vif when the model has been estimated using
bootstrap. Therefore, to get the output in Figure 4.8, you need to remove the boot(1000) option from
the code above.
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4.5 Summary
A full PLS-SEM model consists of a measurement and a structural part. The former
is about the relationship between items and constructs while the latter deals with the
links among the constructs. A psychometrically sound measurement is a prerequisite
for interpreting the results from the structural part. A measurement model can mainly
be reflective or formative. To evaluate reflective measurement models we need to
examine construct and item reliabilities as well as convergent and discriminant va-
lidities. As for the assessment of formative measurement models the most important
condition is the absence of severe multicollinearity among the items. The structural
part can be as simple as a simultaneous linear regression model or a more advanced
mediated/moderated regression models. For the evaluation of the structural model we
examine path coefficients (sign, size and significance) as well as predictive power of
individual dependent variables and the overall model through R-squared and GoF
index.

Appendix: R Commands
We show here how to fit the model presented in Section 4.4 using the cSEM package
introduced in Chapter 3.

We first remind that the cSEM package is not able to deal with missing values.
Therefore, either we omit all the missing data or we impute them beforehand. We
decide to use mean imputation. Among the many R packages available for imputing
missing values, here we use mice (van Buuren and Groothuis-Oudshoorn, 2011):

1 tour_data <- read.csv(file.path(path_data,
2 "ch3_MotivesActivity.csv"))

3 # mean imputation
4 if (!require(mice, quietly = TRUE)) {
5 install.packages("mice")
6 }
7 library(mice)

8 tour_imp <- mice(tour_data, method = "mean")
9 tour_comp <- complete(tour_imp)

The path diagram for the tourists satisfaction example is shown in Figure 4.6,
which shows that the model includes the second-order reflective construct MO-
TIVES. The approach we used in the chapter to deal with such hierarchical con-
structs is the repeated indicators approach (see Section 3.10). The cSEM package
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does not implement this approach directly. Nevertheless, we can still use it by prop-
erly specifying the model and appending the repeated indicators to the dataset. These
indicators need to be renamed because the csem() function does not allow for one
indicator to be attached to multiple constructs:

1 tour_comp$energy_tmp <- tour_comp$energy
2 tour_comp$getaway_tmp <- tour_comp$getaway
3 tour_comp$boredom_tmp <- tour_comp$boredom
4 tour_comp$exciting_tmp <- tour_comp$exciting

The code below defines and fits the corresponding model using 1000 bootstrap
replications:

1 library(cSEM)

2 # repeated indicators appraoch
3 tour_mod <- "
4 # measurement model
5 Escape =~ energy + getaway
6 Novelty =~ boredom + exciting
7 ACTIVITY <~ entertain + visittown + nature + fishing
8 SATISFACTION =~ satisf + expecta
9 RECOMMENDATION <~ recommend

10 # 2nd order construct
11 MOTIVES =~ energy_tmp + getaway_tmp + boredom_tmp + exciting_tmp

12 # structural model
13 Escape ~ MOTIVES
14 Novelty ~ MOTIVES
15 ACTIVITY ~ MOTIVES
16 SATISFACTION ~ ACTIVITY + MOTIVES
17 RECOMMENDATION ~ SATISFACTION + ACTIVITY
18 "

19 tour_boot <- csem(.data = tour_comp,
20 .model = tour_mod, .PLS_weight_scheme_inner = "path",
21 .disattenuate = FALSE, .tolerance = 1e-07,
22 .resample_method = "bootstrap", .R = 1000,
23 .seed = 1406)

The results are given by:

1 summarize(tour_boot, .ci = "CI_percentile")
2 assess(tour_boot,
3 .quality_criterion = c("ave",
4 "cronbachs_alpha", "cronbachs_alpha_weighted",
5 "effects", "reliability", "r2",
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6 "r2_adj", "fl_criterion"))
7 calculateGoF(tour_boot)

________________________________________________________________________________
----------------------------------- Overview -----------------------------------

General information:
------------------------
Estimation status = Ok
Number of observations = 1000
Weight estimator = PLS-PM
Inner weighting scheme = path
Type of indicator correlation = Pearson
Path model estimator = OLS
Second-order approach = NA
Type of path model = Linear
Disattenuated = No

Resample information:
---------------------
Resample methode = bootstrap
Number of resamples = 1000
Number of admissible results = 1000
Approach to handle inadmissibles = drop
Sign change option = none
Random seed = 1406

Construct details:
------------------
Name Modeled as Order Mode

MOTIVES Common factor First order modeA
Escape Common factor First order modeA
Novelty Common factor First order modeA
ACTIVITY Composite First order modeB
SATISFACTION Common factor First order modeA
RECOMMENDATION Composite First order modeB

----------------------------------- Estimates ----------------------------------

Estimated path coefficients:
============================

CI_percentile
Path Estimate Std. error t-stat. p-value 95%
Escape ~ MOTIVES 0.8107 0.0135 59.9586 0.0000 [ 0.7816; 0.8348 ]
Novelty ~ MOTIVES 0.8611 0.0089 96.4351 0.0000 [ 0.8430; 0.8768 ]
ACTIVITY ~ MOTIVES 0.2387 0.0355 6.7341 0.0000 [ 0.1650; 0.3044 ]
SATISFACTION ~ MOTIVES 0.2318 0.0362 6.4098 0.0000 [ 0.1652; 0.3013 ]
SATISFACTION ~ ACTIVITY 0.0257 0.0421 0.6101 0.5418 [-0.0570; 0.1077 ]
RECOMMENDATION ~ ACTIVITY 0.0746 0.0244 3.0623 0.0022 [ 0.0263; 0.1221 ]
RECOMMENDATION ~ SATISFACTION 0.6349 0.0252 25.2301 0.0000 [ 0.5856; 0.6798 ]

Estimated loadings:
===================

CI_percentile
Loading Estimate Std. error t-stat. p-value 95%
MOTIVES =~ energy_tmp 0.6275 0.0294 21.3650 0.0000 [ 0.5674; 0.6797 ]
MOTIVES =~ getaway_tmp 0.7217 0.0190 37.9566 0.0000 [ 0.6816; 0.7550 ]
MOTIVES =~ boredom_tmp 0.7737 0.0152 50.7676 0.0000 [ 0.7437; 0.8011 ]
MOTIVES =~ exciting_tmp 0.7448 0.0178 41.7409 0.0000 [ 0.7072; 0.7785 ]
Escape =~ energy 0.8092 0.0184 44.0801 0.0000 [ 0.7673; 0.8393 ]
Escape =~ getaway 0.8597 0.0096 89.8755 0.0000 [ 0.8406; 0.8770 ]
Novelty =~ boredom 0.8867 0.0074 119.7272 0.0000 [ 0.8722; 0.9003 ]
Novelty =~ exciting 0.8772 0.0088 99.8278 0.0000 [ 0.8591; 0.8936 ]
ACTIVITY =~ entertain 0.7212 0.1200 6.0117 0.0000 [ 0.4261; 0.8892 ]
ACTIVITY =~ visittown 0.3027 0.1296 2.3364 0.0195 [ 0.0224; 0.5416 ]
ACTIVITY =~ nature 0.2618 0.1615 1.6205 0.1051 [-0.0656; 0.5618 ]
ACTIVITY =~ fishing 0.5580 0.1243 4.4911 0.0000 [ 0.2886; 0.7614 ]
SATISFACTION =~ satisf 0.8849 0.0089 99.4754 0.0000 [ 0.8652; 0.9001 ]
SATISFACTION =~ expecta 0.8316 0.0153 54.2646 0.0000 [ 0.7995; 0.8582 ]
RECOMMENDATION =~ recommend 1.0000 0.0000 Inf 0.0000 [ 1.0000; 1.0000 ]

Estimated weights:
==================

CI_percentile
Weights Estimate Std. error t-stat. p-value 95%
MOTIVES <~ energy_tmp 0.3116 0.0109 28.6885 0.0000 [ 0.2883; 0.3314 ]
MOTIVES <~ getaway_tmp 0.3522 0.0096 36.5451 0.0000 [ 0.3334; 0.3720 ]
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MOTIVES <~ boredom_tmp 0.3662 0.0104 35.3694 0.0000 [ 0.3471; 0.3883 ]
MOTIVES <~ exciting_tmp 0.3584 0.0086 41.7477 0.0000 [ 0.3425; 0.3763 ]
Escape <~ energy 0.5562 0.0149 37.3640 0.0000 [ 0.5254; 0.5843 ]
Escape <~ getaway 0.6397 0.0193 33.1639 0.0000 [ 0.6050; 0.6830 ]
Novelty <~ boredom 0.5776 0.0099 58.3882 0.0000 [ 0.5594; 0.5981 ]
Novelty <~ exciting 0.5561 0.0089 62.2940 0.0000 [ 0.5396; 0.5752 ]
ACTIVITY <~ entertain 0.7769 0.1069 7.2644 0.0000 [ 0.5186; 0.9156 ]
ACTIVITY <~ visittown 0.2330 0.1331 1.7504 0.0800 [-0.0507; 0.4683 ]
ACTIVITY <~ nature 0.2774 0.1549 1.7903 0.0734 [-0.0326; 0.5619 ]
ACTIVITY <~ fishing 0.5315 0.1228 4.3285 0.0000 [ 0.2724; 0.7469 ]
SATISFACTION <~ satisf 0.6319 0.0181 34.8657 0.0000 [ 0.5971; 0.6663 ]
SATISFACTION <~ expecta 0.5301 0.0162 32.8048 0.0000 [ 0.5006; 0.5634 ]
RECOMMENDATION <~ recommend 1.0000 0.0000 Inf 0.0000 [ 1.0000; 1.0000 ]

Estimated indicator correlations:
=================================

CI_percentile
Correlation Estimate Std. error t-stat. p-value 95%
entertain ~~ visittown 0.0088 0.0319 0.2775 0.7814 [-0.0523; 0.0693 ]
entertain ~~ nature -0.1758 0.0319 -5.5093 0.0000 [-0.2384;-0.1163 ]
entertain ~~ fishing -0.0168 0.0306 -0.5478 0.5838 [-0.0740; 0.0453 ]
visittown ~~ nature 0.2101 0.0314 6.6838 0.0000 [ 0.1448; 0.2661 ]
visittown ~~ fishing 0.0085 0.0313 0.2728 0.7850 [-0.0537; 0.0689 ]
nature ~~ fishing 0.1355 0.0296 4.5733 0.0000 [ 0.0699; 0.1885 ]

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================

CI_percentile
Total effect Estimate Std. error t-stat. p-value 95%
Escape ~ MOTIVES 0.8107 0.0135 59.9586 0.0000 [ 0.7816; 0.8348 ]
Novelty ~ MOTIVES 0.8611 0.0089 96.4351 0.0000 [ 0.8430; 0.8768 ]
ACTIVITY ~ MOTIVES 0.2387 0.0355 6.7341 0.0000 [ 0.1650; 0.3044 ]
SATISFACTION ~ MOTIVES 0.2380 0.0345 6.8952 0.0000 [ 0.1734; 0.3055 ]
SATISFACTION ~ ACTIVITY 0.0257 0.0421 0.6101 0.5418 [-0.0570; 0.1077 ]
RECOMMENDATION ~ MOTIVES 0.1689 0.0237 7.1386 0.0000 [ 0.1256; 0.2162 ]
RECOMMENDATION ~ ACTIVITY 0.0909 0.0371 2.4501 0.0143 [ 0.0155; 0.1580 ]
RECOMMENDATION ~ SATISFACTION 0.6349 0.0252 25.2301 0.0000 [ 0.5856; 0.6798 ]

Estimated indirect effects:
===========================

CI_percentile
Indirect effect Estimate Std. error t-stat. p-value 95%
SATISFACTION ~ MOTIVES 0.0061 0.0096 0.6367 0.5243 [-0.0141; 0.0246 ]
RECOMMENDATION ~ MOTIVES 0.1689 0.0237 7.1386 0.0000 [ 0.1256; 0.2162 ]
RECOMMENDATION ~ ACTIVITY 0.0163 0.0267 0.6097 0.5421 [-0.0383; 0.0690 ]

________________________________________________________________________________

________________________________________________________________________________

Construct AVE R2 R2_adj
MOTIVES 0.5170 NA NA
Escape 0.6969 0.6572 0.6569
Novelty 0.7779 0.7415 0.7412
SATISFACTION 0.7373 0.0572 0.0554
ACTIVITY NA 0.0570 0.0561
RECOMMENDATION NA 0.4164 0.4152

-------------- Common (internal consistency) reliability estimates -------------

Construct Cronbachs_alpha Joereskogs_rho Dijkstra-Henselers_rho_A
MOTIVES 0.6857 0.8098 1.0000
Escape 0.5667 0.8212 1.0000
Novelty 0.7145 0.8751 1.0000
SATISFACTION 0.6460 0.8487 1.0000

------------------------------ Validity assessment -----------------------------

Fornell-Larcker matrix

MOTIVES Escape Novelty SATISFACTION
MOTIVES 0.51698288 0.65721532 0.74149264 0.05662834
Escape 0.65721532 0.69687345 0.16034385 0.04304957
Novelty 0.74149264 0.16034385 0.77787604 0.03674087
SATISFACTION 0.05662834 0.04304957 0.03674087 0.73728206

------------------------------------ Effects -----------------------------------
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Estimated total effects:
========================
Total effect Estimate Std. error t-stat. p-value
Escape ~ MOTIVES 0.8107 0.0135 59.9586 0.0000
Novelty ~ MOTIVES 0.8611 0.0089 96.4351 0.0000
ACTIVITY ~ MOTIVES 0.2387 0.0355 6.7341 0.0000
SATISFACTION ~ MOTIVES 0.2380 0.0345 6.8952 0.0000
SATISFACTION ~ ACTIVITY 0.0257 0.0421 0.6101 0.5418
RECOMMENDATION ~ MOTIVES 0.1689 0.0237 7.1386 0.0000
RECOMMENDATION ~ ACTIVITY 0.0909 0.0371 2.4501 0.0143
RECOMMENDATION ~ SATISFACTION 0.6349 0.0252 25.2301 0.0000

Estimated indirect effects:
===========================
Indirect effect Estimate Std. error t-stat. p-value
SATISFACTION ~ MOTIVES 0.0061 0.0096 0.6367 0.5243
RECOMMENDATION ~ MOTIVES 0.1689 0.0237 7.1386 0.0000
RECOMMENDATION ~ ACTIVITY 0.0163 0.0267 0.6097 0.5421

Variance accounted for (VAF):
=============================
Effects Estimate Std. error t-stat. p-value
SATISFACTION ~ MOTIVES 0.0258 NA NA NA
RECOMMENDATION ~ MOTIVES 1.0000 NA NA NA
RECOMMENDATION ~ ACTIVITY 0.1793 NA NA NA

________________________________________________________________________________

[1] 0.4671579

All the results match with those provided by Stata apart from the goodness-of-fit
measure which is 0.4672 with cSEM and 0.5005 with Stata. This difference is due to
the fact that Stata’s plssem, differently from cSEM, disregards the formative and
single-item constructs in computing the index.

We conclude this appendix by highlighting that the csem() function includes
the .approach_2ndorder argument for dealing directly with second-order con-
structs, which can take value either "2stage" (default) or "mixed". These are
different from the repeated indicators approach and refer to the methods described
in Agarwal and Karahanna (2000) and Ringle et al. (2012) respectively. The code
reported below fits the same model but using the "2stage" approach (the output is
not reported):

1 # two-stage approach
2 tour_mod2 <- "
3 # measurement model
4 Escape =~ energy + getaway
5 Novelty =~ boredom + exciting
6 ACTIVITY <~ entertain + visittown + nature + fishing
7 RECOMMENDATION <~ recommend
8 SATISFACTION =~ satisf + expecta

9 # 2nd order construct
10 MOTIVES =~ Escape + Novelty

11 # structural model
12 Escape ~ MOTIVES
13 Novelty ~ MOTIVES
14 ACTIVITY ~ MOTIVES
15 SATISFACTION ~ ACTIVITY + MOTIVES
16 RECOMMENDATION ~ SATISFACTION + ACTIVITY
17 "
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18 tour_boot2 <- csem(.data = tour_comp,
19 .model = tour_mod2, .PLS_weight_scheme_inner = "path",
20 .disattenuate = FALSE, .tolerance = 1e-07,
21 .approach_2ndorder = "2stage",
22 .resample_method = "bootstrap", .R = 1000,
23 .seed = 1406)
24 summarize(tour_boot2, .ci = "CI_percentile")
25 assess(tour_boot2)

Note in particular that the model’s specification is different from that we used
with the repeated indicators approach.

Appendix: Technical Details
Tools for assessing the measurement part of a PLS-SEM model

We provide here the technical details for the criteria introduced in the chapter to
assess the measurement part of a PLS-SEM model. We use the same notation as in
Chapter 3.

For a reflective block, you should first check the unidimensionality, which can be
examined using the following tools:

• principal component analysis (PCA), according to which a block can be consid-
ered unidimensional if the first eigenvalue of the correlation matrix of the block’s
indicators is larger than 1 and the remaining ones are instead smaller than 1, or
at least far from the first one (see the appendix at page 2.6 for more technical
details on PCA). One suggestion that is found in the literature is to build the first
principal component to be positively correlated with all, or at least the majority
of, the indicators (Tenenhaus et al., 2005).

• Cronbach’s alpha, which is the most popular measure of internal consistency for
a set of items. If the Pq indicators for the generic qth block are on their original
scale, the Cronbach’s alpha is defined as

αq =
∑p6=p′ Cov(xxxpq,xxxp′q)

Var
(

∑
Pq
p=1 xxxpq

) · Pq

Pq−1
. (4.1)

In case the items are standardized, the formula above simplifies to

αq =
∑p6=p′ Cor(xxxpq,xxxp′q)

Pq +∑p6=p′ Cor(xxxpq,xxxp′q)
· Pq

Pq−1
. (4.2)

The Cronbach’s alpha is a number in between 0 and 1, with values closer to 1
indicating a stronger consistency between the items. Conventionally, a block is
considered unidimensional if its Cronbach’s alpha is larger than 0.7.
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• Dillon-Goldstein’s rho, which for the generic qth reflective block is defined as

ρq =

(
∑

Pq
p=1 λpq

)2
·Var(ξξξ q)

(
∑

Pq
p=1 λpq

)2
·Var(ξξξ q)+∑

Pq
p=1 Var(εεε pq)

, (4.3)

where Var(εεε pq) indicates the variance of the error term. Since both the indica-
tors and the latent variables are usually assumed to be standardized, the variance
Var(ξξξ q) of the qth construct is equal to 1. Moreover, an estimate of Var(εεε pq) is

represented by 1−∑
Pq
p=1 λ 2

pq, so that equation (4.3) is estimated with

ρ̂q =

(
∑

Pq
p=1 λ̂pq

)2

(
∑

Pq
p=1 λ̂pq

)2
+∑

Pq
p=1 (1− λ̂ 2

pq)
. (4.4)

As for the Cronbach’s alpha, the closer ρ̂q is to 1, the more reliable are the block’s
indicators as a unidimensional measure of the construct. Typically, a block can
be considered unidimensional if the Dillon-Goldstein’s ρ̂q is at least 0.7.

For what regards convergent and discriminant validity, the most popular crite-
ria used in PLS-SEM employ the average variance extracted (AVE) (Fornell and
Larcker, 1981), which provides a measure of the average amount of variance of the
indicators in the block that is accounted for by the corresponding construct (a sim-
ilar concept as the communalities in factor analysis). The AVE for the generic qth
reflective block with unstandardized indicators is defined as

AV Eq =
∑

Pq
p=1 λ 2

pq

∑
Pq
p=1 Var(xxxpq)

, (4.5)

which reduces to

AV Eq =
1
Pq

Pq

∑
p=1

λ
2
pq (4.6)

in case of standardized indicators. Since the standardized loading λpq corresponds to
the correlation between the pth indicator and the qth latent variable, expression (4.6)
is also referred to as the communality of the qth reflective block, that is

Comq =
1
Pq

Pq

∑
p=1

Cor
(

xxxpq, ξ̂ξξ q

)2
(4.7)

The assessment of formative blocks uses criteria that we already introduced in
other chapters (see in particular Appendix A).

A measure of goodness for the whole measurement model is given by the average
communality, that is defined by

Com =
1
P

Q

∑
q=1

Pq ·Comq =
1
P

Q

∑
q=1

Pq

∑
p=1

Cor
(

xxxpq, ξ̂ξξ q

)2
, (4.8)
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which provides a weighted average of the block-specific communalities with weights
given by the number of indicators in each block10.

Tools for assessing the structural part of a PLS-SEM model

As we already described, the goodness of the structural model depends on the propor-
tion of variance of an endogenous latent variable that is explained by the correspond-
ing exogenous latent predictors, an information that is provided by the R-squared
index. However, the quality of the measurement part for the endogenous variables
as measured by the communalities must also be taken into account. Therefore, for
each endogenous latent variable we can define a new measure called redundancy
that provides the amount of variance for the manifest variables in the block that is
explained by the corresponding exogenous latent predictors:

Red j = Com j×R2
j . (4.9)

The redundancy indexes are available only for reflective blocks since the computation
requires computing the communalities. The goodness of the whole structural model
can be assessed with the average redundancy defined as

Red =
1
J

J

∑
j=1

Red j. (4.10)

Finally, the absolute goodness-of-fit (GoF) index measures the overall quality
of a PLS-SEM model and it is defined as the geometric mean of the average com-
munality, which provides an assessment of the measurement model quality, and the
average R-squared, R2

= ∑
J
j=1 R2

j/J, which instead provides a measure of the struc-
tural model goodness:

GoFabs =

√
Com×R2

. (4.11)

A normalized version of the GoF index, the relative GoF, that is guaranteed to be
bounded between 0 and 1, has been introduced by Tenenhaus et al. (2004) and it
is defined by dividing each term in (4.11) by a corresponding upper bound. More
specifically, regarding the first term (i.e., the average communality), assuming all the
variables are standardized, an upper bound for the sum of the squared correlations
between the indicators in the qth block and the corresponding latent variable is given
by the first eigenvalue for the PCA on the qth block indicators λ

(q)
1 , that is

Pq

∑
p=1

Cor
(

xxxpq, ξ̂ξξ q

)2
≤ λ

(q)
1 , (4.12)

10Some authors define the average communality excluding the blocks composed of a single indica-
tor because in that case the communality is always equal to 1, which will artificially inflate the results
(Esposito Vinzi and Russolillo, 2013).
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so that we can define the quantity

T1 =
1
P

Q

∑
q=1

∑
Pq
p=1 Cor

(
xxxpq, ξ̂ξξ q

)2

λ
(q)
1

. (4.13)

For what regards the second term in (4.11) (i.e., the average R-squared), a possible
majorization is provided by the first canonical correlation of the canonical analysis
(see for example Mardia et al., 1979, Chapter 10) between the manifest variables
associated with the jth endogenous latent variable ξξξ j and the manifest variables
associated with the latent variables predicting ξξξ j. Denoting by ρ j the first canonical
correlation, we get that the normalized second term is given by

T2 =
1
J

J

∑
j=1

R2
j

ρ2
j

. (4.14)

Then, the relative GoF is defined as the geometric mean of T1 and T2, that is

GoFrel =

√√√√√ 1
P

Q

∑
q=1

∑
Pq
p=1 Cor

(
xxxpq, ξ̂ξξ q

)2

λ
(q)
1

× 1
J

J

∑
j=1

R2
j

ρ2
j

. (4.15)

Other procedures for assessing the predictive power of a PLS-SEM model (e.g.,
blindfolding) have also been introduced in the literature (see for example Espos-
ito Vinzi and Russolillo, 2013, and the references mentioned therein).
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5
Mediation Analysis With PLS-SEM

In this chapter we explain what mediation analysis is as well as presenting two ap-
proaches to testing mediational hypotheses. The first approach is that of Baron and
Kenny modified by Iacobucci and colleagues, and the second one is that of Zhao and
his colleagues. Before introducing them, we think that from a pedagogical point of
view it is better to first explain the original approach consisting of a series of sepa-
rate regression analyses. Following these explanations, we show how in practice the
reader can perform different types of mediational analyses using the postestimation
command estat mediate after the plssem command in Stata. The applications
we show include mediation models with one observed mediator, one latent mediator
as well as multiple latent mediators.

5.1 Introduction
Statistical mediation analysis is, in a nutshell, about quantifying the indirect effect of
an independent variable (X) on the dependent variable (Y ) through a third variable
called the mediator (M). In other words, mediation analysis unearths the mechanism,
be it emotional, cognitive, biological or otherwise by which X influences Y (Hayes,
2013). As an example, a mediation analysis can provide evidence for the fact that par-
ents’ educational level does influence their children’s educational level, which then
will be linked with their annual salary (or other occupational outcomes for that mat-
ter). That is, mediation analysis does help the researcher analyse complex statistical
models including more than only direct relationships. Examining indirect effects (in
addition to direct effects) has thus been an increasingly popular approach adopted by
scholars in the social sciences. One major factor that has facilitated this adoption is
the readily available statistical packages developed for this purpose.

5.2 Baron and Kenny’s Approach to Mediation Analysis
Social scientists typically adopt Baron and Kenny (1986) approach (from here on
referred to as BK approach) explained also recently elsewhere by Kenny (2016) to

189



190 5 Mediation Analysis With PLS-SEM

X Y
c

(a) X

M

a

(b)

X

M

c'
Y

b

(c)

X

M

c
Y

ba

(d)

FIGURE 5.1: Diagrammatic representation of statistical mediation analysis.

conduct a mediation analysis. The BK approach consists of four distinct steps to be
followed in establishing complete mediation. These steps are explained below and
accordingly shown diagrammatically in Figure 5.1:

Step 1. Regress Y on X to estimate path c, which must be statistically significant
implying that there is an effect to be mediated (see Figure 5.1a):

Y = β0 + cX + ε (5.1)

Step 2. Regress M on X to estimate path a, which must be statistically significant
providing evidence of a relationship between the independent and mediator
variable (see Figure 5.1b):

M = γ0 +aX +δ (5.2)

Step 3. Regress Y on M (by controlling for X) to estimate path b, which must be
statistically significant. X is controlled for as Y and M may be correlated
because X causes both (see Figure 5.1c). This estimation provides us with
path c′ as well.

Y = θ0 +bM+ c′X +ν (5.3)

Step 4. Path c′ must be zero, a situation indicating that the magnitude of path c′

is reduced to zero after controlling for the mediator. Note that the BK ap-
proach does not favour deciding whether path c′ is equal to zero in terms of
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statistical significance alone. The reason is that trivially small coefficients
can be statistically significant with large sample sizes and very large coeffi-
cients can be non-significant with small sample sizes (Kenny, 2016).

If all the four steps above are met, then one can claim that M completely mediates
the relationship between X and Y . However, if the first three steps are met but the step
4 is not met, one can assert that M partially mediates the relationship.

Partial mediation here implies a reduction in path c, which according to Baron
and Kenny (1986, p. 1176) is more realistic to encounter. The question that rises then
is how big the reduction (c− c′) should be to claim that there exists a partial medi-
ation (Jose, 2013). The BK approach is thus commonly followed by the Sobel’s test
(Sobel, 1987) which assesses the statistical significance of this reduction1. Since test-
ing the reduction (c− c′) is equivalent to testing the mediated path a ·b, the Sobel’s
test is based on the following test statistic (Iacobucci et al., 2007)

z =
a ·b√

b2s2
a +a2s2

b

, (5.4)

where a and sa (standard error of a) come from step 2, while b and sb (standard error
of b) come from step 3 of the BK approach described above2. If |z|> 1.96, then the
mediation (c− c′ or a ·b) is statistically significant at the 0.05 level.

5.2.1 Modifying the Baron-Kenny approach

The original BK approach suggests that one estimates the first three steps separately
using regression. However, Iacobucci et al. (2007) have demonstrated with a series
of Monte Carlo simulations that using the regression technique suffers from a seri-
ous drawback (even in the simplest mediation model including X , M and Y ) when
compared with the structural equation modelling (SEM) technique. Their simula-
tions show that the regression technique consistently produces larger standard errors
for the path coefficients than does the SEM technique (see Figure 5.2) as a result of
the fact that the latter estimates all the model parameters simultaneously3.

A further advantage of the SEM technique is that it inherently can facilitate me-
diation analysis including multi-item scales. The conclusion is then that the SEM
technique should be the standard framework for conducting mediation analysis. Con-
sequently, Iacobucci et al. (2007, p. 153), by modifying the BK approach, propose
the following series of steps for conducting mediation analysis via structural equation
modelling:

1It goes without saying, if path c′ is zero then there is no need for the Sobel’s test.
2A slightly different way of computing the standard error is through the delta method. The delta

method uses
√

b2s2
a +a2s2

b + s2
as2

b as the denominator in equation (5.4).
3We remark that the simulations in Iacobucci et al. (2007) were using covariance-based SEM.
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FIGURE 5.2: Comparing standard errors from the regression and SEM techniques
(from Iacobucci et al., 2007, p. 144).

Step 1. Fit one model (Figure 5.1d) via SEM so the direct and indirect paths are
fit simultaneously so as to estimate either effect while partialling out, or
statistically controlling for, the other.

1. If either one or both are not significant there is no mediation and the
researcher should stop.

2. Some mediation is indicated when both X →M and M→ Y coefficients
are significant and the researcher goes to the next step.

Step 2. Compute the Sobel’s z to test explicitly the relative sizes of the indirect
(mediated) versus direct paths. Conclusions hold as follows:

1. If the z is significant and the direct path X → Y is not, the mediation is
complete.

2. If both the z and the direct path X → Y are significant, the mediation is
partial.

3. If the z is not significant but the direct path X → Y is, the mediation is
partial in the presence of a direct effect.

4. If neither the z nor the direct path X → Y are significant, the mediation
is partial in the absence of a direct effect.

Step 3. The researcher can report the results categorically as “no”, “partial” or “full”
mediation.

5.2.2 Alternative to the Baron-Kenny approach

Zhao et al. (2010) do agree with Iacobucci et al. (2007) that the SEM technique is
an optimal framework for conducting mediation analysis. They however go a step
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further and suggest the BK approach (i.e., three regression estimations and the So-
bel’s test) be replaced with only one test: the bootstrap test of the indirect effect a ·b
(see Figure 5.1d). They argue that to establish mediation, all that matter is that the
indirect effect is statistically significant based on the bootstrap test. Based on this
reasoning, the following steps are recommended by the authors for testing mediation
hypotheses:

Step 1. If neither the bootstrap test of the indirect effect (a · b) nor the X → Y co-
efficient (c) is significant, then there is no-effect non-mediation (i.e., no
mediation).

Step 2. If the bootstrap test of the indirect effect (a ·b) is not significant but X → Y
coefficient (c) is significant, then there is direct-only non-mediation (i.e., no
mediation).

Step 3. If the bootstrap test of the indirect effect (a · b) is significant and X → Y
coefficient (c) is not significant, then there is indirect-only mediation (i.e.,
full mediation).

Step 4. If both the bootstrap test of the indirect effect (a ·b) and X → Y coefficient
(c) are significant and their coefficients point in same direction, then there
is complementary mediation (i.e., partial mediation).

Step 5. If both the bootstrap test of the indirect effect (a ·b) and X → Y coefficient
(c) are significant and their coefficients point in opposite direction, then
there is competitive mediation (i.e., partial mediation).

The reason why Zhao et al. (2010) categorically suggest the use of the bootstrap
test of indirect effects is due to the fact that the Sobel’s test has low power because
it by default uses a normal approximation presuming a symmetric distribution when
the sampling distribution of a ·b is known to be highly skewed (Kenny, 2016). This
is still the case even when a and b per se are normally distributed (Jose, 2013), as
illustrated in Figure 5.3.

As we already know (see Section 2.1), bootstrapping is a technique for generat-
ing an empirical sampling distribution of a statistic (which in our case is the medi-
ated/indirect effect). We remind that this distribution comes about by computing and
collecting the indirect effects from each of B (e.g., 1000) resamples4 drawn with re-
placement from the original sample data (see Figure 5.4). From this bootstrap distri-
bution, the standard error and accordingly a confidence interval are obtained, which
can be used to test the statistical significance of the indirect effect. As for any regres-
sion coefficient, the rule is that if the confidence interval of the indirect effect does
not include the value of zero, one can conclude that the indirect effect is statistically
significant.

4Each sample drawn from the original sample must be the same size as that of the original sample,
that is n.
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FIGURE 5.3: Two normally distributed variables (a and b) and the corresponding
non-normal distribution of their product (a ·b).

FIGURE 5.4: The process of generating the bootstrap distribution (see Hesterberg,
2015).
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5.2.3 Effect size of the mediation

One way of determining the effect size of an indirect effect is to examine the com-
pletely standardized coefficient. According to Kenny (2016), a small effect size
would be 0.01, a medium effect would be 0.09 and a large effect would be 0.25.
He further notes that if X is a dichotomous variable, the effect size would resemble
Cohen’s dand thus a small effect size would be 0.02, a medium effect would be 0.15
and a large effect would be 0.40 (Cohen, 1988) .

A second way of gauging the effect size of an indirect effect is to take the ratio
of the indirect effect to the total effect (RIT) given by

RIT =
a ·b

(a ·b)+ c
, (5.5)

Say for instance that the figure obtained from equation (5.5) is about 0.40. We
can then interpret this as that a mediated effect explains 40% of the total effect of
the independent variable (X) on a dependent variable (Y ) or that 40% of the effect
of the independent variable (X) on (Y ) is mediated by the mediator variable (M)
(MacKinnon, 2008). In cases in which the mediated effect and direct effect have
opposite signs, a remedying option is to take the absolute values of the quantities to
go into equation (5.5) (Alwin and Hauser, 1975).

A third and final measure to evaluate the effect size of an indirect effect is to take
the ratio of the indirect effect to the direct effect (RID) as shown in the following
formula:

RID =
a ·b

c
, (5.6)

Suppose that the number resulting from equation (5.6) is about 2. The researcher can
then interpret this as that the mediated effect is about 2 times as large as the direct
effect (MacKinnon, 2008).

5.3 Examples in Stata
In this section we are going to estimate different (simple to complex) types of me-
diation models using the plssem package in Stata and then based on these esti-
mated models we are going to test the assumed mediational hypotheses with the
help of the postestimation command estat mediate. Since we already know
how the plssem package works (see Chapter 3), we describe here how the estat
mediate command as well as its options work. We start by presenting the full syn-
tax of the command. Note that specifications included in the brackets are optional
while the rest is obligatory:

1 estat mediate indep(varname) med(varname) dep(varname)
2 [breps(#) seed(#) zlc rit rid bca level(#) digits(#)]
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where

• indep(varname) specifies the name of the independent variable.

• med(varname) specifies the name of the mediating variable.

• dep(varname) specifies the name of the dependent variable.

• breps(#) specifies the number of bootstrap replications to be performed. The
default is 50.

• seed(#) sets the seed number for the bootstrap estimation to ensure replicabil-
ity.

• zlc tests the mediational hypotheses based on the approach by Zhao et al. (2010)
in addition to the tests based on the adjusted Baron and Kenny approach.

• rit provides the ratio of the indirect effect to the total effect.

• rid provides the ratio of the indirect effect to the direct effect.

• bca provides the bias-corrected accelerated (BCa) bootstrap confidence inter-
vals. The default is the percentile confidence intervals. We warn you that this
option usually makes the computation much longer because it requires using the
jackknife method (see Section 2.6).

• level(#) indicates the confidence level to use.

• digits(#) indicates the number of digits to show in the output.

We are now ready to estimate our example mediational models. We will start with
the simplest form of a mediational model including only observed variables with one
mediator and no covariates.

5.3.1 Example 1: A single observed mediator variable

In this example we are going to estimate a model with three observed variables mea-
suring people’s age (age), job tenure (tenure) and hourly wage (wage), which
are included in the dataset called wageed. Our mediational hypothesis here is that
tenure (M) will mediate the relationship between age (X) and wage (Y ). Dia-
grammatically, this model is equivalent to the one illustrated in Figure 5.1d. After
loading the data, we estimate the whole mediation model using the plssem com-
mand:

1 use http://www.stata-press.com/data/r15/wageed.dta, clear

2 plssem (Age > age) ///
3 (Tenure > tenure) ///
4 (Wage > wage), ///

http://www.stata-press.com
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Structural model - Standardized path coefficients
--------------------------------------------

Variable | Tenure Wage
--------------+-----------------------------

Age | 0.632 0.255
| (0.000) (0.000)

Tenure | 0.322
| (0.000)

--------------+-----------------------------
r2_a | 0.399 0.272

--------------------------------------------
p-values in parentheses

FIGURE 5.5: Structural model estimates for the plssem model discussed in Sec-
tion 5.3.1.

5 structural(Tenure Age, ///
6 Wage Tenure Age)

The plssem command will provide us with the output (some parts are omit-
ted) reported in Figure 5.5, from which we can observe the path coefficients on a
(X →M), b (M→ Y ) and c (X → Y ). Notice that our model above corresponds to a
latent model with three constructs expressed by a single indicator each. As learnt in
Chapter 4, we specify a latent variable for a single indicator in plssem command
in the same way as we would do if we had more than one indicator. The results from
the structural part of our plssem model estimation above includes two separate
equations showing the direct relationships, which can be expressed as:

̂Tenure = 0.632 ·Age
Ŵage = 0.255 ·Age+0.322Tenure,

with all path coefficients being highly statistically significant.
Based on these estimates, we can now use the estat mediate command to

test the mediational hypothesis automatically without having to make all the estima-
tions ourselves saving us the time and more importantly providing accurate calcu-
lations. The command is shown below and the corresponding output is reported in
Figure 5.6:

1 estat mediate, indep(Age) med(Tenure) dep(Wage) ///
2 seed(12345) breps(1000) zlc rit rid

Let us now go through the output produced by estat mediate. First, as the
most salient result we observe that the indirect effect of age (via tenure) on wage
is about 0.203, which could be considered moderate effect. Further, all the three pro-
cedures (Sobel, delta method and bootstrapping) for testing the significance of this
indirect effect show that the indirect effect is statistically significant. Next, following
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Significance testing of (standardized) indirect effect
---------------------------------------------------------------------------------------
Statistics | Sobel Delta Bootstrap

------------------------+--------------------------------------------------------------
Indirect effect | 0.203 0.203 0.203
Standard error | 0.010 0.010 0.010
Z statistic | 21.298 21.298 20.836
P-value | 0.000 0.000 0.000
Confidence interval | (0.185, 0.222) (0.185, 0.222) (0.185, 0.223)
---------------------------------------------------------------------------------------
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation
STEP 1 - Tenure:Age (X -> M) with b = 0.632 and p = 0.000
STEP 2 - Wage:Tenure (M -> Y) with b = 0.322 and p = 0.000
STEP 3 - Wage:Age (X -> Y) with b = 0.255 and p = 0.000

As STEP 1, STEP 2 and STEP 3 as well as the Sobel's test above
are significant the mediation is partial

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - Wage:Age (X -> Y) with b = 0.255 and p = 0.000

As the bootstrap test above is significant, STEP 1 is
significant and their coefficients point in same direction,
you have complementary mediation (partial mediation)

RIT = (Indirect effect / Total effect)
(0.203 / 0.458) = 0.444
Meaning that about 44.4% of the effect of Age
on Wage is mediated by Tenure

RID = (Indirect effect / Direct effect)
(0.203 / 0.255) = 0.799
That is, the mediated effect is about 0.799 times as
large as the direct effect of Age on Wage

FIGURE 5.6: Test of the mediation effect example discussed in Section 5.3.1. Note
that in the notation Tenure:Age, the variable reported before : represents the de-
pendent variable, whereas the variable indicated after : represents the independent
variable.

the steps suggested by BK and ZLC (see Section 5.2) we can conclude that there is a
partial mediation or alternatively put, tenure partially mediates the effect of age
on wage. From this output we can also see that about 44 percent of the effect of
age on wage is mediated by tenure. In other words, we could also state that the
mediated effect is about 0.8 times (quite close to 1 meaning as much) as the direct
effect of age on wage.

5.3.2 Example 2: A single latent mediator variable

In our second example, we are still going to have three variables in our model how-
ever this time these variables will be latent ones each represented by more than one
indicator, which indeed is a more typical example of models estimated using the
structural equation modelling technique. The observed variables to be used are found
in the data available in the ch5_envbehav.dta file.

Based on the relevant literature, we assume that PERSONAL NORMS will medi-
ate the relationship between ENVIRONMENTAL CONCERN and ENVIRINMEN-
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EnvConcern

PersNorm

EnvBehavInt

FIGURE 5.7: Structural model for the PLS-SEM model described in Section 5.3.2.

TAL BEHAVIOUR INTENTION. Put it differently, ENVIRONMENTAL CON-
CERN will influence ENVIRONEMNTAL BEHAVIOUR INTENTION indirectly
(via PERSONAL NORMS) as well as directly as depicted in Figure 5.7. Since we
are here concerned primarily with mediational model, we show only the structural
part of the full PLS-SEM model.

For the purposes of testing our mediational hypothesis we operationalize ENVI-
RONMENTAL CONCERN (EnvConcern), ENVIRONMENTAL BEHAVIOUR
INTENTION (EnvBehavInt) and PERSONAL NORMS (PersNorm) using an
ordinal scale asking the respondents to indicate on five-point scale (from 1 = totally
disagree to 5 = totally agree) to what extent they agree with the ten statements listed
in Table 5.1.

As we did with the previous example, we have to estimate the mediational model
with the plssem command prior to asking for the details of the mediational hypoth-
esis test using estat mediate. The output of the PLS-SEM analysis is reported
in Figure 5.8.

1 use ch5_envbehav, clear

2 plssem (EnvConcern > sp1e sp1m sp1o) ///
3 (PersNorm > sp3a sp3b sp3c) ///
4 (EnvBehavInt > sp2a sp2b sp2c sp2d), ///
5 structural(PersNorm EnvConcern, ///
6 EnvBehavInt PersNorm EnvConcern)

Since our mediational model in the current example includes latent variables, we
need to examine the psychometric properties of the model based on the same criteria
that we presented in Chapter 4. This is also the reason why we provide the complete
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Iteration 1: outer weights rel. diff. = 2.57e-01
Iteration 2: outer weights rel. diff. = 1.69e-02
Iteration 3: outer weights rel. diff. = 8.62e-04
Iteration 4: outer weights rel. diff. = 6.47e-05
Iteration 5: outer weights rel. diff. = 3.64e-06
Iteration 6: outer weights rel. diff. = 2.84e-07
Iteration 7: outer weights rel. diff. = 1.62e-08

Partial least squares SEM Number of obs = 947
Average R-squared = 0.16744
Average communality = 0.56054

Weighting scheme: path Absolute GoF = 0.30636
Tolerance: 1.00e-07 Relative GoF = 0.96308
Initialization: indsum Average redundancy = 0.09361

Measurement model - Standardized loadings
-----------------------------------------------------------

| Reflective: Reflective: Reflective:
| EnvConcern PersNorm EnvBehavInt

--------------+--------------------------------------------
sp1e | 0.721
sp1m | 0.710
sp1o | 0.809
sp3a | 0.828
sp3b | 0.724
sp3c | 0.715
sp2a | 0.765
sp2b | 0.743
sp2c | 0.753
sp2d | 0.708

--------------+--------------------------------------------
Cronbach | 0.608 0.634 0.736

DG | 0.792 0.801 0.831
rho_A | 0.621 0.660 0.752

-----------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
-----------------------------------------------------------

| EnvConcern PersNorm EnvBehavInt
--------------+--------------------------------------------

EnvConcern | 1.000 0.116 0.112
PersNorm | 0.116 1.000 0.177

EnvBehavInt | 0.112 0.177 1.000
--------------+--------------------------------------------

AVE | 0.560 0.574 0.551
-----------------------------------------------------------

Structural model - Standardized path coefficients
--------------------------------------------

Variable | PersNorm EnvBehavInt
--------------+-----------------------------

EnvConcern | 0.341 0.217
| (0.000) (0.000)

PersNorm | 0.347
| (0.000)

--------------+-----------------------------
r2_a | 0.115 0.217

--------------------------------------------
p-values in parentheses

FIGURE 5.8: Estimates for the model discussed in Section 5.3.2.
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TABLE 5.1: Content of the latent and manifest variables for the example in Sec-
tion 5.3.2.

Latent variable Manifest
variable

Content

EnvConcern sp1e Humans are severely abusing the environment
sp1m The balance of nature is very delicate and eas-

ily upset
sp1o If things continue on their present course, we

will soon experience a major ecological catas-
trophe

EnvBehavInt sp2a I would be willing to sign a petition to support
an environmental cause

sp2b I would consider joining a group or club
which is concerned with the environment

sp2c I would be willing to pay more taxes to sup-
port greater governmental control of pollution

sp2d I would be willing to pay more each month
for electricity if it meant cleaner air

PersNorm sp3a Feel moral obligation to buy environmentally
friendly products for my household

sp3b Feel moral obligation to recycle household
waste

sp3c Feel moral obligation to pay attention to ad-
vertisements about products which are safe
for the environment

results of the plssem results. Without explaining the detailed assessment of the
measurement model here, we could confirm that our measurement model looks sat-
isfactory. The results from the structural part of the model estimated above contains
two separate equations showing the direct relationships (between the two dependent
variables and their corresponding independent variable/s), that is

̂PersNorm = 0.341 ·EnvConcern
̂EnvBehavInt = 0.217 ·EnvConcern+0.347 ·PersNorm,

with all coefficients being highly statistically significant.
Finally, we can now use the estat mediate command to test our initial me-

diational hypothesis and get the results reported in Figure 5.9.
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Significance testing of (standardized) indirect effect
---------------------------------------------------------------------------------------
Statistics | Sobel Delta Bootstrap
------------------------+--------------------------------------------------------------
Indirect effect | 0.118 0.118 0.118
Standard error | 0.015 0.015 0.016
Z statistic | 7.945 7.945 7.432
P-value | 0.000 0.000 0.000
Confidence interval | (0.089, 0.147) (0.089, 0.147) (0.088, 0.151)
---------------------------------------------------------------------------------------
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation
STEP 1 - PersNorm:EnvConcern (X -> M) with b = 0.341 and p = 0.000
STEP 2 - EnvBehavInt:PersNorm (M -> Y) with b = 0.347 and p = 0.000
STEP 3 - EnvBehavInt:EnvConcern (X -> Y) with b = 0.217 and p = 0.000

As STEP 1, STEP 2 and STEP 3 as well as the Sobel's test above
are significant the mediation is partial

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - EnvBehavInt:EnvConcern (X -> Y) with b = 0.217 and p = 0.000

As the bootstrap test above is significant, STEP 1 is
significant and their coefficients point in same direction,
you have complementary mediation (partial mediation)

RIT = (Indirect effect / Total effect)
(0.118 / 0.335) = 0.352
Meaning that about 35.2% of the effect of EnvConcern
on EnvBehavInt is mediated by PersNorm

RID = (Indirect effect / Direct effect)
(0.118 / 0.217) = 0.544
That is, the mediated effect is about 0.544 times as
large as the direct effect of EnvConcern on EnvBehavInt

FIGURE 5.9: Test of the mediation effect example discussed in Section 5.3.2.

1 estat mediate, indep(EnvConcern) med(PersNorm) ///
2 dep(EnvBehavInt) ///
3 seed(12345) breps(1000) zlc rit rid

We can now go through the results and provide the necessary interpretations.
First, we observe that the indirect effect of EnvConcern (via PersNorm) on
EnvBehavInt is about 0.118. We further see that all the three procedures (So-
bel, delta and bootstrap) for testing the significance of this indirect effect confirm
that the indirect effect is statistically significant. Finally, according to the steps pro-
posed by BK and ZLC approaches we also see that there is a partial mediation. That
is, PersNorm partially mediates the effect of EnvConcern on EnvBehavInt.
From the same output it could be observed that about 35 percent of the effect of
EnvConcern on EnvBehavInt is mediated by PersNorm. We could alterna-
tively claim that the mediated effect is about 0.5 times (nearly half as much) as the
direct effect of EnvConcern on EnvBehavInt.
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IndValues

PersNorm

EnvBehavIntEnvConcern

FIGURE 5.10: Structural model for the PLS-SEM model described in Section 5.3.3.

5.3.3 Example 3: Multiple latent mediator variables

In our third example, we are simply going to extend our model from the previous
example by adding one more latent variable to it, namely IndValues representing
people’s individualistic personal values. This latent variable is operationalized using
an ordinal scale asking the respondents to indicate on five-point scale (from 1 = not
important at all to 5 = very important) how important the following three values were
to them: sense of accomplishment, self-fulfilment and self-respect. Again, based on
the theory reviewed, in addition to the mediational hypothesis in the previous ex-
ample, we propose two more mediational hypotheses in our new model. Briefly and
as depicted in Figure 5.10, we hypothesize that INDIVIDUALISTIC VALUES will
influence ENVIRONMENTAL BEHAVIOUR INTENTION indirectly both via EN-
VIRONMENTAL CONCERN and PERSONAL NORMS.

Now that we have set up our model, we can estimate it using the plssem com-
mand as follows (the output is reported in Figure 5.11):

1 plssem (IndValues > sp8_6 sp8_7 sp8_9) ///
2 (EnvConcern > sp1e sp1m sp1o) ///
3 (PersNorm > sp3a sp3b sp3c) ///
4 (EnvBehavInt > sp2a sp2b sp2c sp2d), ///
5 structural(EnvConcern IndValues, ///
6 PersNorm IndValues EnvConcern, ///
7 EnvBehavInt PersNorm EnvConcern IndValues)

Here too, we will have to examine the psychometric properties of the measure-
ment model prior to examining the structural model including the two additional
mediational hypotheses. Again, without going into the details, we can confirm that
the measurement model below is satisfactory. In this case, the structural model in-
cludes three separate equations, as there are three dependent variables in the model,
which we mathematically express as:
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Iteration 1: outer weights rel. diff. = 3.86e-01
Iteration 2: outer weights rel. diff. = 2.96e-02
Iteration 3: outer weights rel. diff. = 1.00e-03
Iteration 4: outer weights rel. diff. = 5.81e-05
Iteration 5: outer weights rel. diff. = 3.70e-06
Iteration 6: outer weights rel. diff. = 2.22e-07
Iteration 7: outer weights rel. diff. = 1.50e-08

Partial least squares SEM Number of obs = 925
Average R-squared = 0.12187
Average communality = 0.59844

Weighting scheme: path Absolute GoF = 0.27005
Tolerance: 1.00e-07 Relative GoF = 0.94544
Initialization: indsum Average redundancy = 0.06821

Measurement model - Standardized loadings
--------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Reflective:
| IndValues EnvConcern PersNorm EnvBehavInt

--------------+-----------------------------------------------------------
sp8_6 | 0.811
sp8_7 | 0.888
sp8_9 | 0.850
sp1e | 0.714
sp1m | 0.716
sp1o | 0.810
sp3a | 0.825
sp3b | 0.736
sp3c | 0.713
sp2a | 0.771
sp2b | 0.745
sp2c | 0.746
sp2d | 0.704

--------------+-----------------------------------------------------------
Cronbach | 0.813 0.607 0.638 0.736

DG | 0.887 0.792 0.803 0.830
rho_A | 0.846 0.620 0.663 0.756

--------------------------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
--------------------------------------------------------------------------

| IndValues EnvConcern PersNorm EnvBehavInt
--------------+-----------------------------------------------------------

IndValues | 1.000 0.025 0.008 0.005
EnvConcern | 0.025 1.000 0.119 0.119
PersNorm | 0.008 0.119 1.000 0.174

EnvBehavInt | 0.005 0.119 0.174 1.000
--------------+-----------------------------------------------------------

AVE | 0.723 0.560 0.577 0.550
--------------------------------------------------------------------------

Structural model - Standardized path coefficients
-----------------------------------------------------------

Variable | EnvConcern PersNorm EnvBehavInt
--------------+--------------------------------------------

IndValues | 0.157 0.036 0.004
| (0.000) (0.252) (0.880)

EnvConcern | 0.340 0.228
| (0.000) (0.000)

PersNorm | 0.338
| (0.000)

--------------+--------------------------------------------
r2_a | 0.024 0.119 0.218

-----------------------------------------------------------
p-values in parentheses

FIGURE 5.11: Estimates for the model discussed in Section 5.3.3.
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Significance testing of (standardized) indirect effect
---------------------------------------------------------------------------------------
Statistics | Sobel Delta Bootstrap

------------------------+--------------------------------------------------------------
Indirect effect | 0.012 0.012 0.012
Standard error | 0.011 0.011 0.012
Z statistic | 1.140 1.140 1.046
P-value | 0.254 0.254 0.296
Confidence interval | (-0.009, 0.033) (-0.009, 0.033) (-0.009, 0.035)

---------------------------------------------------------------------------------------
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation
STEP 1 - PersNorm:IndValues (X -> M) with b = 0.036 and p = 0.252
STEP 2 - EnvBehavInt:PersNorm (M -> Y) with b = 0.338 and p = 0.000

As either STEP 1 or STEP 2 (or both) are not significant,
there is no mediation

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - EnvBehavInt:IndValues (X -> Y) with b = 0.004 and p = 0.880

As the bootstrap test above is not significant and STEP 1 is
not significant you have no effect nonmediation (no mediation)

RIT = (Indirect effect / Total effect)
(0.012 / 0.017) = 0.732
Meaning that about 73.2% of the effect of IndValues
on EnvBehavInt is mediated by PersNorm

RID = (Indirect effect / Direct effect)
(0.012 / 0.004) = 2.729
That is, the mediated effect is about 2.729 times as
large as the direct effect of IndValues on EnvBehavInt

FIGURE 5.12: Test of the first mediation effect for the example discussed in Sec-
tion 5.3.3.

̂EnvConcern = 0.157 ·IndValues
̂PersNorm = 0.036 ·IndValues+0.340 ·EnvConcern

̂EnvBehavInt = 0.004 ·IndValues+0.228 ·EnvConcern+0.338 ·PersNorm,

with all coefficients being highly statistically significant apart from those for
IndValues in the last two equations.

Then, we can use the estat mediate command to test one of the mediational
hypotheses (i.e., people’s individual values affect their personal norms, which then
influences their environmental behaviour intention) and get the results reported in
Figure 5.12:

1 estat mediate, indep(IndValues) med(PersNorm) ///
2 dep(EnvBehavInt) ///
3 seed(12345) breps(1000) zlc rit rid

When examining the output produced by the estat mediate command, we
notice that both the BK and ZLC approaches indicate that there is no mediation.
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Significance testing of (standardized) indirect effect
---------------------------------------------------------------------------------------
Statistics | Sobel Delta Bootstrap

------------------------+--------------------------------------------------------------
Indirect effect | 0.036 0.036 0.036
Standard error | 0.009 0.009 0.010
Z statistic | 4.021 4.021 3.749
P-value | 0.000 0.000 0.000
Confidence interval | (0.018, 0.053) (0.018, 0.053) (0.018, 0.055)

---------------------------------------------------------------------------------------
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation
STEP 1 - EnvConcern:IndValues (X -> M) with b = 0.157 and p = 0.000
STEP 2 - EnvBehavInt:EnvConcern (M -> Y) with b = 0.228 and p = 0.000
STEP 3 - EnvBehavInt:IndValues (X -> Y) with b = 0.004 and p = 0.880

As STEP 1, STEP 2 and the Sobel's test above are significant
and STEP 3 is not significant the mediation is complete

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - EnvBehavInt:IndValues (X -> Y) with b = 0.004 and p = 0.880

As the bootstrap test above is significant and STEP 1 is not
significant you have indirect-only mediation (full mediation)

RIT = (Indirect effect / Total effect)
(0.036 / 0.040) = 0.889
Meaning that about 88.9% of the effect of IndValues
on EnvBehavInt is mediated by EnvConcern

RID = (Indirect effect / Direct effect)
(0.036 / 0.004) = 8.049
That is, the mediated effect is about 8.049 times as
large as the direct effect of IndValues on EnvBehavInt

FIGURE 5.13: Test of the second mediation effect for the example discussed in Sec-
tion 5.3.3.

Finally, we can test the second mediational hypothesis using the following com-
mand (output in Figure 5.13):

1 estat mediate, indep(IndValues) med(EnvConcern) ///
2 dep(EnvBehavInt) ///
3 seed(12345) breps(1000) zlc rit rid

From the results, we see that the indirect effect of INDIVIDUALISTIC VAL-
UES on ENVIRONMENTAL BEHAVIOUR INTENTION via ENVIRONMENTAL
CONCERN is statistically significant. Further, both BK and ZLC procedures show
that ENVIRONMENTAL CONCERN does completely mediate the relationship be-
tween INDIVIDUALISTIC VALUES and ENVIRONMENTAL BEHAVIOUR IN-
TENTION. As such, we have support for our second mediational hypothesis.
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5.4 Moderated Mediation
Moderated mediation occurs when an indirect effect of an independent variable on a
dependent variable (X via M on Y ) varies depending on the values of another vari-
able in the model. For instance, we could find out that the indirect effect of envi-
ronmental concern (via personal norm) on environmentally friendly behaviour will
be stronger among highly-educated people than among low-educated people. What
we are saying here is that personal norm will mediate a larger share of the effect of
environmental concern among highly-educated people. In this example, essentially,
moderated mediation will be about testing the difference between the indirect effects
for highly-educated and low-educated groups.

As such, we suggest that one uses the multi-group approach (see Section 6.4)
to performing moderated mediation. As the first step, the mediation model must be
specified and tested in each group (e.g., highly- and low-educated). As we did earlier
in this chapter, the measurement model must be examined in each group prior to ex-
amining the structural part of the model estimated. As the second step, we would test
the mediational hypothesis in each group using the estat mediate command
as we did just in the previous section. Finally, if the mediational test gives simi-
lar/identical results for both groups, then one should obtain bootstrap standard con-
fidence intervals for the difference between the indirect effects for deciding whether
this difference is statistically significant or not. This procedure can readily be applied
to a moderator including more than two categories using the knowledge provided in
the current and next chapter on moderation effects.

When the moderator variable is a continuous one, we suggest to discretize the
continuous moderator variable based on a theoretical/practical reasoning or arbitrary
values such as one standard deviation below and above the mean. In this case, we
would have three groups. We can then use the multi-group approach to testing the
moderated mediation as described above. In the current version of plssem we do
not have yet a procedure for testing the difference between the indirect effects for
two or more groups.

5.5 Summary
A mediated effect occurs when an exogenous variable indirectly (via another vari-
able) influences an endogenous variable. We have seen in this chapter that there are
two approaches to testing mediational hypotheses. Both of them rightly suggest the
use of simultaneous structural equation models as the standard framework for medi-
ation analysis for observed variables, latent variables as well as a combination of ob-
served and latent variables. When latent variables are included in a mediation model,
we have also learnt that we still need to examine the measurement part of the model
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before interpreting the results from the structural part of the model as well as the
mediation analysis results.

Appendix: R Commands
None of the R packages for PLS-SEM we presented in the previous chapters cur-
rently include any interface for performing a mediation analysis. Therefore, we cre-
ated a couple of simple functions, called mediate() and print_mediate(),
which replicate the calculations of Stata’s estat mediate postestimation com-
mand. You can find the functions in the mediate.R file available in the supplemen-
tary material for this chapter. The mediate() function performs the computations
and it includes the following arguments:

• frmlist, a named list of formulas specifying the relationships in the structural
model,

• data, a data frame containing the sample data,

• indep, a length-one character vector providing the name of the independent
variable,

• med, a length-one character vector providing the name of the mediator variable,

• dep, a length-one character vector providing the name of the dependent variable,

• B, the number of bootstrap replications,

• bca, a length-one logical vector indicating whether to print the bias-corrected
accelerated (BCa) bootstrap confidence intervals (TRUE) instead of the percentile
confidence intervals (FALSE),

• level, a length-one numeric vector specifying the confidence level to use,

• fit_plssem, a cSEMResults object containing the fit of a PLS-SEM model
performed using the csem() function from the cSEM package.

Note that the frmlist argument must be specified as a list with elements that are
named using the names of the endogenous constructs, otherwise the function will not
be able to pick the right numbers.

The print_mediate() function prints the results and it provides the follow-
ing arguments:

• res_mediate, a list containing the results of the mediate() function,

• zlc, a length-one logical vector indicating whether to print the Zhao, Lynch and
Chen’s approach to testing mediation (TRUE) or not (FALSE),
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• rit, a length-one logical vector indicating whether to print the ratio of the indi-
rect effect to the total effect (TRUE) or not (FALSE),

• rid, a length-one logical vector indicating whether to print the ratio of the indi-
rect effect to the direct effect (TRUE) or not (FALSE),

• digits, a length-one numeric vector specifying the number of decimal digits
to report in the output.

We now use the mediate() function for replicating the same examples we
presented in Section 5.3, but we clearly skip the comments on the results. The first
example involves a single observed mediator variable and uses the wageed dataset
shipped with Stata. After importing the data, the following code computes the PLS-
SEM solution using the cSEM package and then applies the mediate() function
(results are reported next):

1 if (!require(systemfit, quietly = TRUE)) {
2 install.packages("systemfit")
3 }
4 if (!require(bootstrap, quietly = TRUE)) {
5 install.packages("bootstrap")
6 }
7 if (!require(numDeriv, quietly = TRUE)) {
8 install.packages("numDeriv")
9 }

10 library(cSEM)

11 source(file.path(path_code, "R", "mediate.R"))

12 # Example 1: a single observed mediator variable
13 wage_data <- read.csv(file.path(path_data,
14 "wageed.csv"))

15 wage_mod <- "
16 # measurement model
17 Age =~ age
18 Tenure =~ tenure
19 Wage =~ wage

20 # structural model
21 Tenure ~ Age
22 Wage ~ Tenure + Age
23 "

24 wage_res <- csem(.data = wage_data,
25 .model = wage_mod, .PLS_weight_scheme_inner = "path",
26 .disattenuate = FALSE, .tolerance = 1e-07,
27 .resample_method = "bootstrap", .R = 1000)
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28 wage_hat <- as.data.frame(getConstructScores(wage_res))
29 tenure_frm <- as.formula(Tenure ~ Age)
30 wage_frm <- as.formula(Wage ~ Tenure + Age)
31 frmlist <- list(Tenure = tenure_frm, Wage = wage_frm)
32 dep <- "Wage"
33 med <- "Tenure"
34 indep <- "Age"

35 set.seed(1406)
36 wage_med <- mediate(frmlist, wage_hat, indep, med, dep,
37 B = 1000, fit = wage_res)
38 mediate_print(wage_med, rit = TRUE, rid = TRUE, zlc = TRUE,
39 digits = 4)

Significance testing of (standardized) indirect effect

Sobel Delta Bootstrap
Indirect effect 0.2033 0.2033 0.2033
Standard error 0.0095 0.0095 0.0097
Z statistic 21.2976 21.2976 20.9043
P-value 0.0000 0.0000 0.0000
Lower CI 0.1846 0.1846 0.1839
Upper CI 0.2221 0.2221 0.2222
---
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation
STEP 1 - Tenure:Age (X -> M) with b = 0.6321 and p = 0
STEP 2 - Wage:Tenure (M -> Y) with b = 0.3217 and p = 1.489e-104
STEP 3 - Wage:Age (X -> Y) with b = 0.2546 and p = 3.13e-75

As STEP 1, STEP 2 and STEP 3 as well as the Sobel's test above
are significant the mediation is partial

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - Wage:Age (X -> Y) with b = 0.2546 and p = 3.13e-75

As the bootstrap test above is significant, STEP 1 is
significant and their coefficients point in same direction,
you have complementary mediation (partial mediation)

RIT = (Indirect effect / Total effect)
(0.2033 / 0.4579) = 0.444
Meaning that about 44.4% of the effect of Age
on Wage is mediated by Tenure

RID = (Indirect effect / Direct effect)
(0.2033 / 0.2546) = 0.7987
That is, the mediated effect is about 0.7987 times as
large as the direct effect of Age on Wage

The second example involves a single latent mediator variable and uses the
data available in the ch5_envbehav.dta file. The structural part of the model
is shown in Figure 5.7. In this case, the independent variable is EnvConcern, the
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mediator is PersNorm and the dependent one is EnvBehavInt. The following
code fits the model (output omitted) and then performs the mediation analysis5:

1 if (!require(haven, quietly = TRUE)) {
2 install.packages("haven")
3 }

4 envbehav_data <- read_stata(file =
5 file.path(path_data, "ch5_envbehav.dta"))
6 envbehav_data <- as.data.frame(envbehav_data) # convert to data.frame
7 envbehav_data <- envbehav_data[, -c(11, 12, 13)] # remove unneeded columns
8 envbehav_data <- na.omit(envbehav_data) # remove missing values

9 envbehav_mod <- "
10 # measurement model
11 EnvConcern =~ sp1e + sp1m + sp1o
12 PersNorm =~ sp3a + sp3b + sp3c
13 EnvBehavInt =~ sp2a + sp2b + sp2c + sp2d

14 # structural model
15 PersNorm ~ EnvConcern
16 EnvBehavInt ~ PersNorm + EnvConcern
17 "

18 envbehav_res <- csem(.data = envbehav_data,
19 .model = envbehav_mod, .PLS_weight_scheme_inner = "path",
20 .disattenuate = FALSE, .tolerance = 1e-07,
21 .resample_method = "bootstrap", .R = 1000)
22 # summarize(envbehav_res)

23 envbehav_hat <- as.data.frame(getConstructScores(envbehav_res))
24 ciccio <- as.formula(PersNorm ~ EnvConcern)
25 pluto <- as.formula(EnvBehavInt ~ PersNorm + EnvConcern)
26 frmlist <- list(PersNorm = PersNorm_frm, EnvBehavInt = EnvBehavInt_frm)
27 dep <- "EnvBehavInt"
28 med <- "PersNorm"
29 indep <- "EnvConcern"

30 set.seed(1406)
31 envbehav_med <- mediate(frmlist, envbehav_hat, indep, med, dep,
32 B = 1000, fit = envbehav_res)
33 mediate_print(envbehav_med, rit = TRUE, rid = TRUE, zlc = TRUE)

Significance testing of (standardized) indirect effect

Sobel Delta Bootstrap
Indirect effect 0.118 0.118 0.118
Standard error 0.015 0.015 0.017
Z statistic 7.945 7.945 6.986
P-value 0.000 0.000 0.000
Lower CI 0.089 0.089 0.089
Upper CI 0.147 0.147 0.155
---
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation

5In this case we use the haven package to import the Stata data file because it is more flexible than
foreign.
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STEP 1 - PersNorm:EnvConcern (X -> M) with b = 0.341 and p = 6.95e-30
STEP 2 - EnvBehavInt:PersNorm (M -> Y) with b = 0.347 and p = 3.25e-27
STEP 3 - EnvBehavInt:EnvConcern (X -> Y) with b = 0.217 and p = 6.09e-12

As STEP 1, STEP 2 and STEP 3 as well as the Sobel's test above
are significant the mediation is partial

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - EnvBehavInt:EnvConcern (X -> Y) with b = 0.217 and p = 6.09e-12

As the bootstrap test above is significant, STEP 1 is
significant and their coefficients point in same direction,
you have complementary mediation (partial mediation)

RIT = (Indirect effect / Total effect)
(0.118 / 0.335) = 0.352
Meaning that about 35.2% of the effect of EnvConcern
on EnvBehavInt is mediated by PersNorm

RID = (Indirect effect / Direct effect)
(0.118 / 0.217) = 0.544
That is, the mediated effect is about 0.544 times as
large as the direct effect of EnvConcern on EnvBehavInt

Finally, the third example involves multiple latent mediator variables using the
same data as in the previous example, but a more complex model (see Figure 5.10
for the corresponding structural part). In this case, we assume that the new con-
struct IndValues may influence EnvBehavInt indirectly both via the constructs
EnvConcern and PersNorm. The first code chunk below fits the model (output
skipped), while the next two perform the mediation analysis separately for the two
different pathways:

1 envbehav_data <- read_stata(file =
2 file.path(path_data, "ch5_envbehav.dta"))
3 envbehav_data <- as.data.frame(envbehav_data) # convert to data.frame
4 envbehav_data <- na.omit(envbehav_data) # remove missing values

5 envbehav_mod <- "
6 # measurement model
7 EnvConcern =~ sp1e + sp1m + sp1o
8 PersNorm =~ sp3a + sp3b + sp3c
9 EnvBehavInt =~ sp2a + sp2b + sp2c + sp2d

10 IndValues =~ sp8_6 + sp8_7 + sp8_9

11 # structural model
12 EnvConcern ~ IndValues
13 PersNorm ~ IndValues + EnvConcern
14 EnvBehavInt ~ PersNorm + EnvConcern + IndValues
15 "

16 envbehav_res <- csem(.data = envbehav_data,
17 .model = envbehav_mod, .PLS_weight_scheme_inner = "path",
18 .disattenuate = FALSE, .tolerance = 1e-07,
19 .resample_method = "bootstrap", .R = 1000)
20 # summarize(envbehav_res)

1 envbehav_hat <- as.data.frame(getConstructScores(envbehav_res))
2 EnvConcern_frm <- as.formula(EnvConcern ~ IndValues)
3 PersNorm_frm <- as.formula(PersNorm ~ IndValues + EnvConcern)
4 EnvBehavInt_frm <- as.formula(EnvBehavInt ~ PersNorm + EnvConcern + IndValues)
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5 frmlist <- list(EnvConcern = EnvConcern_frm, PersNorm = PersNorm_frm,
6 EnvBehavInt = EnvBehavInt_frm)
7 dep <- "EnvBehavInt"
8 med <- "PersNorm"
9 indep <- "IndValues"

10 set.seed(1406)
11 envbehav_med <- mediate(frmlist, envbehav_hat, indep, med, dep,
12 B = 1000, fit = envbehav_res)
13 mediate_print(envbehav_med, rit = TRUE, rid = TRUE, zlc = TRUE)

Significance testing of (standardized) indirect effect

Sobel Delta Bootstrap
Indirect effect 0.012 0.012 0.012
Standard error 0.011 0.011 0.012
Z statistic 1.140 1.140 1.023
P-value 0.254 0.254 0.306
Lower CI -0.009 -0.009 -0.011
Upper CI 0.033 0.033 0.035
---
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation
STEP 1 - PersNorm:IndValues (X -> M) with b = 0.0358 and p = 0.321
STEP 2 - EnvBehavInt:PersNorm (M -> Y) with b = 0.338 and p = 1.82e-26

As either STEP 1 or STEP 2 (or both) are not significant,
there is no mediation

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - EnvBehavInt:IndValues (X -> Y) with b = 0.00444 and p = 0.89

As the bootstrap test above is not significant and STEP 1 is
not significant you have no effect nonmediation (no mediation)

RIT = (Indirect effect / Total effect)
(0.012 / 0.017) = 0.732
Meaning that about 73.2% of the effect of IndValues
on EnvBehavInt is mediated by PersNorm

RID = (Indirect effect / Direct effect)
(0.012 / 0.004) = 2.729
That is, the mediated effect is about 2.729 times as
large as the direct effect of IndValues on EnvBehavInt

1 dep <- "EnvBehavInt"
2 med <- "EnvConcern"
3 indep <- "IndValues"
4 set.seed(1406)
5 envbehav_med <- mediate(frmlist, envbehav_hat, indep, med, dep,
6 B = 1000, fit = envbehav_res)
7 mediate_print(envbehav_med, rit = TRUE, rid = TRUE, zlc = TRUE)

Significance testing of (standardized) indirect effect

Sobel Delta Bootstrap
Indirect effect 0.036 0.036 0.036
Standard error 0.009 0.009 0.009
Z statistic 4.021 4.021 3.839
P-value 0.000 0.000 0.000
Lower CI 0.018 0.018 0.019
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Upper CI 0.053 0.053 0.056
---
confidence level: 95%
bootstrap replications: 1000

Baron & Kenny approach to testing mediation
STEP 1 - EnvConcern:IndValues (X -> M) with b = 0.157 and p = 0.00000126
STEP 2 - EnvBehavInt:EnvConcern (M -> Y) with b = 0.228 and p = 8e-13
STEP 3 - EnvBehavInt:IndValues (X -> Y) with b = 0.00444 and p = 0.89

As STEP 1, STEP 2 and the Sobel's test above are significant
and STEP 3 is not significant the mediation is complete

Zhao, Lynch & Chen's approach to testing mediation
STEP 1 - EnvBehavInt:IndValues (X -> Y) with b = 0.00444 and p = 0.89

As the bootstrap test above is significant and STEP 1 is not
significant you have indirect-only mediation (full mediation)

RIT = (Indirect effect / Total effect)
(0.036 / 0.04) = 0.889
Meaning that about 88.9% of the effect of IndValues
on EnvBehavInt is mediated by EnvConcern

RID = (Indirect effect / Direct effect)
(0.036 / 0.004) = 8.049
That is, the mediated effect is about 8.049 times as
large as the direct effect of IndValues on EnvBehavInt



6
Moderating/Interaction Effects Using
PLS-SEM

In this chapter the reader learns what a moderating/interaction effect is within the
framework of two-way linear interactions in PLS-SEM. Three approaches to testing
interactions effects in PLS-SEM are accordingly elucidated. These are the product-
indicator approach, the two-stage approach and the multi-sample approach, the latter
also called multi-group analysis. In the explanation of the multi-sample approach,
parametric and permutation tests are also explained. Finally, the chapter concludes
with detailed applications of the three approaches.

6.1 Introduction
Social scientists typically specify a statistical model based on the assumption that the
effect of an independent (exogenous) variable on a dependent (endogenous) variable
is invariant of any other exogenous variable in the model. More precisely, the coef-
ficient of an exogenous variable is assumed to be the same at every level of other
exogenous variables in the model. Such linear additive models may however not
hold in some situations leading thus at best to less nuanced or even wrong informa-
tion. Thus, the importance of non-additive statistical models has been continuously
stressed in the methodology literature.

In linear additive models, we examine main effects whereas in non-additive mod-
els, we are mainly interested in testing moderating or interaction effects (see Fig-
ure 6.1). Incidentally, we use the terms moderating effect and interaction effect inter-
changeably in this chapter. A moderating effect is said to occur when a third variable,
the moderator, affects the relation between an exogenous variable and an endogenous
variable. The moderating effect is demonstrated through a significant change in the
size or/and direction of the coefficient of the exogenous variable at different values
of the moderator variable. The concept of moderating/interaction effect can be best
explained through some real life examples.

For instance, an organization psychologist finds out that the effect of authori-
tarian leadership style on employee effectiveness differs between inexperienced and
experienced employees: authoritarian leadership has a significantly larger and posi-
tive effect on effectiveness among inexperienced employees than among experienced

215
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ξ3ξ2

ξ1

(a) Main effects.

ξ3ξ2

ξ1

(b) Moderating effect.

FIGURE 6.1: Illustration of additive (left panel) and non-additive (right panel) mod-
els. ξ1 and ξ2 represent exogenous latent variables while ξ3 indicates an endogenous
latent variable.

employees. In this case, authoritarian leadership is the exogenous variable, effective-
ness is the endogenous variable and employee status (in/experienced) is the modera-
tor variable. In another example, we may have a political scientist discovering in her
research that the effect of attitude towards immigrants on opinions about right-wing
politics differs from a low unemployment year (1990) to a high unemployment year
(1991). More specifically, attitude towards immigrants has a stronger negative effect
on opinions about right-wing politics in the low unemployment year than it has in
the high unemployment year. Here, year of employment rate (1990 vs. 1991) is the
moderator variable. The researcher can thus claim that year moderates the effect of
attitude towards immigrants on opinions about right-wing politics. In a third exam-
ple, we have a marketing scholar discovering that image of a company moderates the
effect of media coverage on willingness to buy a product. In other words, as people
have a more favourable image of a company, the effect of media coverage of the
company on people’s willingness to buy a product from that company increases.

Bear in mind that in the first example, we have a categorical moderator variable
(inexperienced/experienced employee). We have a categorical moderator variable in
the second example as well. However, the moderator variable in this case includes
two time points. In the third example, we have a continuous moderator variable (im-
age). These examples imply that we can readily use both categorical and continuous
variables as moderators in PLS-SEM.

In the following sections, we present in detail the three most common approaches
used to examine moderating/interactions effects in partial least squares structural
equation modelling. These are the product-indicator, the two-stage and the multi-
sample approach.
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6.2 Product-Indicator Approach
The product-indicator approach used often in PLS-SEM stems from the way inter-
actions are modelled in multiple linear regression analysis1. That is, a product term
created by multiplying x1 and x2 (let’s call it x1x2) is entered into the regression
model together with x1 and x2 as y = β0 +β1x1 +β2x2 +β3x1x2 + ε . This equation
shows a typical interactive model containing two component terms (x1 and x2) that
are observable. The question that rises is then how one goes about applying this idea
to interactions between latent variables.

Chin et al. (2003) have addressed this issue and suggest creating product terms
directly between the indicators of the exogenous latent variable and the indicators
of the moderator latent variable. As shown in Figure 6.22, when the exogenous (ξ1)
and moderator (ξ2) latent variables are reflected by two (x11 and x21) and three in-
dicators (x12,x22 and x32) respectively, there will be as many as 6 product indicators
which will serve as the reflective indicators of the latent interaction variable (ξ3). The
endogenous variable (ξ4) is then simply regressed onto the three latent variables in
tandem resulting in the following equation

ξ4 = β0 +β1ξ1 +β2ξ2 +β3ξ3 +ζ , (6.1)

where ξ3 corresponds to the product (ξ1×ξ2).
Here we test whether β3 is significantly different from 0 (H0 : β3 = 0). The stan-

dard error from the bootstrap distribution of β3 is generated and used to calculate the
required p-value. If the p-value is less than 0.05 (or another conventional level), then
we can reject the null hypothesis, and thus provide evidence for the presence in the
model of an interaction effect (H1 : β3 6= 0).

We note that both the exogenous, moderator and interaction latent variables must
all be reflective constructs to be able to employ the product-indicator approach to
test interaction effects in PLS-SEM. Due to pedagogical reasons, in Figure 6.2 we
denote ξ2 as the moderator variable and ξ1 as the independent variable. However, we
can readily reverse this situation and still apply the same product-indicator equation.
In other words, the product term (ξ1×ξ2) can equally be interpreted as if either ξ1 or
ξ2 is the moderator variable. In practice though, the researcher’s hypothesis decides
what variable is to be treated as the moderator.

To better understand the interpretation of the results from a non-additive latent
variable model estimated with an interaction term, we first remind the reader of the
way one interprets the coefficients in an additive model (i.e., with no interaction
term). An additive version of the model depicted in Figure 6.2 would then look as
follows:

ξ4 = β0 +β1ξ1 +β2ξ2 +ζ . (6.2)

Here we are purely interested in examining the main effects of ξ1 and ξ2 on ξ4.

1In Section A.2.5 you can find a review of interaction terms in linear regression.
2In this chapter we simplify slightly the notation to allow focusing on the new concepts we illustrate.
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FIGURE 6.2: Depiction of the product-indicator approach in PLS-SEM.

Intuitively put, β1 reflects the “average” effect of ξ1 on ξ4 at all levels of ξ2. β1
is subsequently assumed to be constant across ξ2. More formally, β1 represents the
number of units that mean ξ4 changes as a result of one unit increase in ξ1 while
holding ξ2 constant. Accordingly, β2 represents the number of units the mean of ξ4
changes as a result of one unit increase in ξ2 while holding ξ1 constant.

Let us now extend equation (6.2) by creating an interaction term (ξ1× ξ2) and
including it in the model which then results in the equation below:

ξ4 = β0 +β1ξ1 +β2ξ2 +β3(ξ1×ξ2)+ζ . (6.3)

In the equation above, β1 and β2 no longer represent main effects. They now
reflect the so called simple main effects. Specifically, β1 represents the effect of ξ1
on ξ4 when ξ2 is equal to 0, and likewise β2 represents the effect of ξ2 on ξ4 when
ξ1 is equal to 0. More importantly, β3 represents the change in the slope of ξ4 on ξ1
as a result of one unit increase in ξ2. Had we chosen β1 as the moderator variable
instead, β3 would represent the change in the slope of ξ4 on ξ2 as a result of one unit
increase in ξ1. Mathematically, these two interpretations are equally legitimate.

The model represented by (6.3) illustrates one further important point that, in our
opinion, is often neglected or kept implicit in the dissemination of results from inter-
action analysis in research publications. That is, in the case of interaction between
two latent variables (or continuous variables for that matter) the form of the inter-
action effect is assumed to be linear. However, in some situations the effect of an
exogenous variable on an endogenous variable may not necessarily follow a linear
pattern.
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In our example above, the coefficient β3 on the interaction term (ξ1× ξ2) in the
product indicator approach is used to test the linear form of interactions. The null
hypothesis is that β3 = 0, so if β3 proves to be significantly different from 0, then
we can claim that ξ2 indeed moderates the relation between ξ1 and ξ4. As such, a
non-significant β3 is a sign of no linear interaction effect and however it should not
be seen as a sign of not any form of interaction at all. Thus, researchers should be
cautious about not making hasty conclusions in such cases.

Let us now further elaborate the interpretation of an interactive model using some
hypothetical values for the intercept and the coefficients of the predictors and inter-
action part in (6.3). Let us further assume also that ξ1, ξ2 (moderator) and ξ4 all have
a scale ranging from 1 to 5 and all the coefficients in the equation are statistically
significant:

ξ4 = β0 +β1ξ1 +β2ξ2 +β3(ξ1×ξ2)+ζ

= −4+2ξ1 +3ξ2 +1(ξ1×ξ2)+ζ .

To obtain the slope of ξ4 on ξ1 at different values of ξ2, we use the pursuing approach:

ξ4 =−4+2ξ1 +3× (1)+1(ξ1×1)+ζ when ξ2 = 1 then ξ4 =−1+3ξ1 +ζ

ξ4 =−4+2ξ1 +3× (2)+1(ξ1×2)+ζ when ξ2 = 2 then ξ4 = 2+4ξ1 +ζ

ξ4 =−4+2ξ1 +3× (3)+1(ξ1×3)+ζ when ξ2 = 3 then ξ4 = 5+5ξ1 +ζ

ξ4 =−4+2ξ1 +3× (4)+1(ξ1×4)+ζ when ξ2 = 4 then ξ4 = 8+6ξ1 +ζ

ξ4 =−4+2ξ1 +3× (5)+1(ξ1×5)+ζ when ξ2 = 5 then ξ4 = 11+7ξ1 +ζ

As seen above, the slope increases by one unit as a result of one unit increase in the
moderator variable (ξ2) exhibiting a linear interaction form.

Until now we have deliberately only worked with raw (i.e., untransformed) data
to get a deeper understanding of interactions. We remember from equation (6.3) that
a coefficient on the independent variable in an interactive model reflects the slope
(effect) when the moderator is zero. Such an interpretation does however not make
any sense when the moderator variable does not have 0 in its scale range. One solu-
tion to easily come around this situation is indeed standardizing the variables. Like in
an interactive model with centred data, the coefficients on the independent variable
will still reflect the slope at the value of 0. Since 0 is the mean of a standardized vari-
able, the coefficient will reflect the slope at the mean of the moderator variable. As
opposed to raw scales used for the interpretation in the centred solution, the coeffi-
cients in the standardized solution will be interpreted in terms of standard deviations.
The interpretation of the standardized solution is similar to that in multiple linear
regression analysis. That is, one standard deviation increase in X leads to so much
standard deviation change in Y . If one wishes to obtain a standardized solution in
PLS-SEM, the variables are suggested to be standardized prior to creating the inter-
action term. The reason is simply that standardized product term (a posteriori) is not
equal to product term of standardized indicators (a priori). The latter provides the
basis for the correct interpretation in terms of standard deviations.
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FIGURE 6.3: Two-stage approach: stage one, main effects only.

6.3 Two-Stage Approach
The two-stage approach was originally proposed by Chin et al. (2003) for interactive
models with formative constructs (i.e., exogenous and moderator variables). How-
ever, as suggested elsewhere (Henseler and Chin, 2010), the two-stage approach may
also be employed for testing interaction effects between reflective constructs. Thus,
the following explanation of the two-stage approach is equally relevant and valid for
interactive models with formative or reflective constructs.

The logic behind the two-stage approach is that we estimate and use latent vari-
able scores as manifest (observed) variables in constructing the different components
of an interactive model. More specifically, as the name of the method implies, this
approach takes place in two stages. In the first stage, we build up a main effect only
(additive) model and estimate the latent variable scores for the components of this
model (ξ1, ξ2 and ξ4). The latent variable scores, from the model shown in Figure 6.3,
are obtained after ξ4 is regressed on the exogenous latent variable (ξ1) and moderator
latent variable (ξ2).

In stage two, we build up the interactive model using the latent variable scores
obtained from the first stage. Let us now denote the latent variable scores for the
exogenous and moderator variables as ξ LS

1 , ξ LS
2 and ξ LS

4 respectively. As depicted in
Figure 6.4, the latent variable scores are used as the manifest variables or indicators
reflecting the exogenous (ξ1) and moderator (ξ2) variable. The interaction term (ξ3)
is then created as the product of the indicators (i.e., ξ LS

1 × ξ LS
2 ) of the component

terms. The latent variable score for the endogenous variable is incidentally used as
the indicator of ξ4 in the interactive model. The endogenous variable is subsequently
regressed on the exogenous, moderator and the interaction term in tandem.

The explanation and procedures (including the bootstrap procedure for testing the
interaction effect) as to the interpretation of the coefficients in an interactive model
provided under the section on product indicator approach is directly transferable to
the two-stage approach. In a way, the only difference between product-indicator and
two-stage approach is that in the former, constructs are reflected by more than one
indicator whereas in the latter the constructs are simply single-indicator quantities.
Put it differently, the interpretation of the two-stage interactive models will indeed
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FIGURE 6.4: Two-stage approach: stage two, interactive model.

be same as that used for interpreting interaction effects between two continuous pre-
dictors in an ordinary multiple regression analysis.

The two-stage approach as opposed to the product indicator approach is more
flexible, and thus it, in our opinion, can readily be used to test models with an inter-
action between an exogenous latent variable and a dichotomous moderator variable
as well. Although we actually can use the same interpretation technique as in the
product indicator approach also for interpreting the results from an interactive model
with a categorical moderator variable, we will still in the following present and ex-
plain how this can be done in practice. To do so, we start with the first step of the
two-stage approach, that is the equation below where ξ1 is the exogenous latent vari-
able and θ1 represents the dichotomous moderator variable:

ξ4 = β0 +β1ξ1 +β2θ1 +ζ . (6.4)

As explained previously, the latent variable scores obtained having estimated the
model represented by equation (6.4) are subsequently used to build up the interactive
model reflected now by the following equation:

ξ
LS
4 = β0 +β1ξ

LS
1 +β2θ1 +β3

(
ξ

LS
1 ×θ1

)
+ζ . (6.5)

Suppose now that, after the estimation of this model, we get the following hypo-
thetical values for the coefficients:

ξ
LS
4 = β0 +β1ξ

LS
1 +β2θ1 +β3

(
ξ

LS
1 ×θ1

)
+ζ (6.6)

= 204+1.70ξ
LS
1 −15θ1−1.65

(
ξ

LS
1 ×θ1

)
+ζ . (6.7)

The simple main effect of ξ1 on ξ4 is 1.70. This is also referred to as the slope
for those belonging to the 0 value of the moderator variable (θ1). The simple main
effect θ1 is -15. This is also referred to the difference between mean scores of those
belonging to the 0 and 1 values of the moderator when ξ1 is zero. The coefficient for
the interaction term is -1.65, suggesting that for a unit increase (in this case from 0
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to 1), the effect of ξ1 on ξ4 (slope) decreases by 1.65 units. In other words, the slope
for those belonging to the 0 value of the moderator is 1.65 units higher than that for
those belonging to the 1 value of the moderator. Put it less formally, ξ1 has a larger
positive effect on ξ4 in group 0 as compared to group 1. We can also alternatively
arrive at the same results by directly working out the following equations:

• when θ1 = 0

ξ
LS
4 = 204+1.70ξ

LS
1 −15×0−1.65

(
ξ

LS
1 ×0

)
+ζ

= 204+1.70ξ
LS
1 +ζ ,

so that the slope for the 0 group is 1.70,

• when θ1 = 1

ξ
LS
4 = 204+1.70ξ

LS
1 −15×1−1.65

(
ξ

LS
1 ×1

)
+ζ

= 189+0.05ξ
LS
1 +ζ ,

so that the slope for the 1 group is 0.05.

The difference between the two slopes is 1.65 (i.e., 1.70−0.05), which indeed cor-
responds to the coefficient of the interaction term in equation (6.6). This point is also
graphically depicted in Figure 6.5. The slope of ξ4 on ξ1 in group 0 is clearly larger
(steeper regression line) than that in group 1, a pattern that is an indication of an in-
teraction effect. If there was not an interaction effect, the two regression lines would
be parallel to each other.

Use of the two-stage approach can be further extended to test interaction effects
when the moderator variable has more than two categories. Say that the moderator
variable has three categories. In this case, we create three dummy variables two of
which (say θ1 and θ2) along with the exogenous variable they are assumed to interact
with are included in the model. In so doing, this time two product terms are created
between the two included dummy variables and the exogenous variable. Our equation
will then look as the following:

ξ
LS
4 = β0 +β1ξ

LS
1 +β2θ1 +β3θ2 +β4

(
ξ

LS
1 ×θ1

)
+β5

(
ξ

LS
1 ×θ2

)
+ζ . (6.8)

As we did earlier, we can plug in different values for the terms in equation (6.8) to
obtain the slopes of interest. However, as far as the interaction effects are concerned,
we can simply look and interpret the coefficients of the product terms directly. Here,
β4 and β5 would reflect the slope difference between the dummy group coded as 1
and the dummy group coded as 0 (i.e., the reference category).

Although interactive models including a categorical moderator can be estimated
using the two-stage approach, the same can alternatively be done using the multi-
sample approach. In the following, we consequently present the multi-sample ap-
proach.
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FIGURE 6.5: Interaction between a latent and a dichotomous variable.

6.4 Multi-Sample Approach
The multi-sample approach, as its name implies, is simply about estimating and then
comparing the slope/coefficient of interest between two or more groups. This ap-
proach is sometimes referred to as multi-group analysis (MGA) in the structural
equation modelling literature as well.

The idea behind multi-sample approach can further be illustrated through Fig-
ure 6.6. Here we see that when the assumed moderator variable is a categorical one
consisting of two categories, each of these two categories represents simply an inde-
pendent sample. As such, slope(s) of interest (ξ1→ ξ4) is estimated for each category
of the moderator variable separately. Subsequently, a statistical test is performed to
find out whether the difference (∆) between the two slopes, say βgroup1 and βgroup2 , is
statistically different from 0 or not. An interaction can be claimed to be present when
∆ is significant and vice versa. In other words, we are testing if the effect of ξ1 on ξ4
is statistically different in the two samples.

This idea can readily be extended to a case where we have an assumed categor-
ical moderator variable consisting of K categories (i.e., groups). In this situation, as
shown in Figure 6.6, the slope(s) of interest (ξ1 → ξ4) is estimated and compared
between the K groups. Again, the differences between the slopes are tested for sta-
tistical significance to conclude whether or not an interaction exists.
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FIGURE 6.6: Multi-sample approach to test interaction effects.

6.4.1 Parametric test

One approach to testing the difference between path coefficients involves applying
an independent samples t-test where standard errors are estimated with a bootstrap
resampling procedure. This means that we need to obtain the bootstrap standard er-
rors of the estimated path coefficients by resampling B times (usually at least 1000)
each group/sample. The standard error estimates are next plugged in the following
equation (see for example Hair et al., 2018c):

t =
β̂group1 − β̂group2√[ 1

m + 1
n

][ (m−1)2

(m+n−2)SE2
group1

+ (n−1)2

(m+n−2)SE2
group2

] , (6.9)

where the numerator incidentally represents the difference between the (original)
slope estimates for the two groups, m and n are the sample sizes and SEgroup1 and
SEgroup2 are the corresponding standard errors obtained via bootstrapping for the two
path coefficient estimates. Under suitable assumptions, the test statistic (6.9) follows
a t distribution with (m+ n− 2) degrees of freedom. The resulting t-test statistic is
finally used in a traditional manner to decide whether or not the difference between
the slopes of the two samples is statistically different from 0. That is, if the resulting
t statistic is larger than the critical value from the t distribution, the difference can be
claimed to be statistically different suggesting the existence of an interaction effect.

The testing approach we just described is based on the usual assumptions of equal
variance and normality of the data3. If the equal variance assumption is not supported

3The data referred to here are the path coefficient estimates obtained through the bootstrap procedure.
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by the data4, then the Welch’s t-test should be used instead (Welch, 1947). The test
statistic in this case is given by:

t =
β̂group1 − β̂group2√

(m−1)
m SE2

group1
+ (n−1)

n SE2
group2

.

This statistic is asymptotically distributed as a t distribution where the number of
degrees of freedom are calculated using the so called Satterthwaite’s approximation
(Satterthwaite, 1946), that is

d f =

(
(m−1)

m SE2
group1

+ (n−1)
n SE2

group2

)2

(m−1)
m2 SE4

group1
+ (n−1)

n2 SE4
group2

−2,

which is then rounded to the nearest integer.

6.4.2 Permutation test

The permutation test5 is a distribution-free test (i.e., it doesn’t require any distribu-
tional assumption) suiting thus well to partial least squares structural equation mod-
elling. The way a permutation test works is that first as done above the difference
between the slopes of the two samples (original slope difference) is computed. Then,
the two samples are merged making up a single dataset which then gets divided ran-
domly B times (usually at least 500) in two samples again. The slope difference be-
tween each of these pair of samples is estimated. All of these slope differences make
up an empirical sampling distribution of our test statistic under the null hypothesis
that the slope difference is equal to 0. If the corresponding p-value is typically less
than 0.05, we reject the null hypothesis that the slope difference is equal to 0.

As a general conclusion regarding the choice between parametric and permuta-
tion test, we can suggest that the permutation test should be preferable regardless of
small or large sample size if the assumption of normality is severely violated6. If not,
parametric tests should be the usual choice (see Chin and Dibbern, 2010, page 174).

Before moving on to the applications of the three approaches to examining inter-
actions in the next section, we would like to provide you with some general guide-
lines as to the choice among these approaches. When you have a reflective modera-
tor construct containing multiple continuous or/and binary indicators and exogenous
construct(s) reflected by continuous or/and binary indicators, product indicator ap-
proach and two-stage approach can be used interchangeably despite slight differences
between them. Further, the two-stage and multi-sample approach can both be used
when you have a categorical (two or more than two groups) moderator and reflective
exogenous construct(s). Finally, whenever a formative construct is involved either as
a moderator or exogenous variable, the two-stage approach is suggested to be used.

4To check if your data support the equal variance assumption, you should perform a test on the
variances such as the Levene’s test (Levene, 1960).

5You can find a brief review of permutation tests in the technical appendix of Chapter 7.
6Normality here refers to the path coefficient estimates obtained through the bootstrap procedure.
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As a closing remark for this section, we also remind that if more than two groups
are compared using either the bootstrap or permutation test, some correction for mul-
tiple testing must be used to avoid inflating the overall type I error (see for example
Hair et al., 2018c, Chapter 4)7.

6.5 Example Study: Interaction Effects
In this section we apply the three approaches for examining interaction effects
we presented in the previous sections using the Stata plssem package. In all
three of the applications we make use of a real dataset available in the file
ch6_CultureCuriosity.dta. We already used a portion of these data in Sec-
tion 3.10, but here we consider a larger set of items. Prior to continuing, we would
like to present our moderation/interaction hypothesis as well as the involved vari-
ables.

From the relevant literature, we know that both curiosity trait (hereafter CU-
RIOSITY) and cultural upbringing (hereafter CULTURE) have significant effects on
people’s propensity to travel abroad for holiday (hereafter HOLIDAYING INTER-
EST). Building up on this knowledge, we further hypothesize that there may be a
moderating/interaction effect that should also be included in the equation. That is, we
assume that CURIOSITY influences the relationship between CULTURE and HOL-
IDAYING INTEREST. More specifically, we expect that as CURIOSITY increases,
the effect of CULTURE on HOLIDAYING INTEREST decreases. Put informally,
CULTURE will have a stronger effect among incurious people than among curious
people.

We then operationalize CULTURE, CURIOSITY and HOLIDAYING INTER-
EST using an ordinal scale asking the respondents to indicate on five-point scale (1
= totally disagree and 5 = totally agree) to what extent they agree with the eight
statements listed in Table 6.1. While the operationalization of CURIOSITY takes the
original form (i.e., ordinal) for use in the application of product-indicator approach,
for the purposes of the remaining two applications (two-stage and multi-sample) we
transform CURIOSITY into a categorical moderator consisting of two categories
representing incurious and curious samples.

6.5.1 Application of the product-indicator approach

To be able to estimate our interactive model (which will resemble Figure 6.2), we
first need to standardize the items of the interacting constructs of CULTURE and
CURIOISITY:

7Currently, the plssem package does not include any correction for multiple testing.
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TABLE 6.1: The example study’s constructs and indicators.

Latent variable Manifest
variable

Content

CULTURE V1A I have grown up in a family that has always gone
on vacations at holiday times

V1B My parents have had an impact on my interest in
going on vacations at holiday times

V1C There is an expectation from my
friends/colleagues that one should go on va-
cation at holiday times

CURIOSITY V2A I like to discover new places to go to
V2E I like learning about things that are unfamil-

iar/foreign to me
V2F I become fascinated when learning new informa-

tion

HOLIDAYING V3A I like going on vacations
INTEREST V3B I like travelling abroad for holidaying

1 foreach var of varlist V1A V1B V1C V2A V2E V2F {
2 egen `var'_std = std(`var')
3 }

In the code below, we use the standardized items when specifying the measure-
ment model and we specify the constructs to be interacted with an asterisk sign (*).

1 plssem (CULTURE > V1A_std V1B_std V1C_std) ///
2 (CURIOSITY > V2A_std V2E_std V2F_std) ///
3 (H_INTEREST > V3A V3B), ///
4 structural(H_INTEREST CULTURE*CURIOSITY) ///
5 boot(1000) seed(123456)

This specification will automatically generate the product terms between the
items of the two constructs (CULTURE and CUROSITY) and attach them to the
interaction term (CULTURECURIOSITY) itself. Finally, the endogenous variable
(HOLIDAYING INTEREST) will be regressed onto the two constructs and the in-
teraction term. When estimating the model, we also ask for the bootstrap standard
errors of the slopes using 1000 resamples. These standard errors are then used to ar-
rive at the required p-values for testing statistically significance of the estimates. The
results from this estimation are provided in Figure 6.7.
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Partial least squares SEM Number of obs = 997
Average R-squared = 0.38195
Average communality = 0.52995

Weighting scheme: path Absolute GoF = 0.44991
Tolerance: 1.00e-07 Relative GoF = 0.94418
Initialization: indsum Average redundancy = 0.32551

Measurement model - Standardized loadings
--------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Reflective:
| CULTURE CURIOSITY H_INTEREST CULTURECUR~Y

--------------+-----------------------------------------------------------
V1A_std | 0.757
V1B_std | 0.768
V1C_std | 0.776
V2A_std | 0.643
V2E_std | 0.846
V2F_std | 0.827

V3A | 0.920
V3B | 0.926

V1A_stdV2A~d | 0.540
V1A_stdV2E~d | 0.656
V1A_stdV2F~d | 0.644
V1B_stdV2A~d | 0.629
V1B_stdV2E~d | 0.755
V1B_stdV2F~d | 0.718
V1C_stdV2A~d | 0.598
V1C_stdV2E~d | 0.619
V1C_stdV2F~d | 0.609

--------------+-----------------------------------------------------------
Cronbach | 0.659 0.665 0.827 0.823

DG | 0.811 0.819 0.920 0.863
rho_A | 0.667 0.685 0.828 0.829

--------------------------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
--------------------------------------------------------------------------

| CULTURE CURIOSITY H_INTEREST CULTURECUR~Y
--------------+-----------------------------------------------------------

CULTURE | 1.000 0.055 0.189 0.021
CURIOSITY | 0.055 1.000 0.254 0.106
H_INTEREST | 0.189 0.254 1.000 0.108

CULTURECUR~Y | 0.021 0.106 0.108 1.000
--------------+-----------------------------------------------------------

AVE | 0.588 0.604 0.852 0.414
--------------------------------------------------------------------------

Structural model - Standardized path coefficients (Bootstrap)
-----------------------------

Variable | H_INTEREST
--------------+--------------

CULTURE | 0.323
| (0.000)

CURIOSITY | 0.376
| (0.000)

CULTURECUR~Y | -0.159
| (0.000)

--------------+--------------
r2_a | 0.380

-----------------------------
p-values in parentheses

FIGURE 6.7: Results of the estimation of our interactive PLS-SEM model.
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When it comes to the assessment and interpretation of the model (both measure-
ment and structural part) in Figure 6.7, we use the same approach and criteria that
we went through in Chapter 4. Assuming that the measurement part is psychometri-
cally sound, we can move on to interpreting the estimates. The most salient estimate
to observe is that of the interaction term (CULTURECURIOSITY). As seen, this
estimate is statistically significant indicating that there is a linear interaction effect.
This confirms our hypothesis that as CURIOSITY increases the effect (i.e., slope) of
CULTURE on HOLIDAYING INTEREST decreases, and it does so by 0.159 point
for every unit increase in CURIOSITY as shown by the following equation

ξ4 = β1ξ1 +β2ξ2 +β3 (ξ1×ξ2)+ζ , (6.10)

which is estimated to be
̂HOLIDAYING INTEREST = 0.323 CULTURE+0.376 CURIOSITY−0.159 CULTURECURIOSITY,

with all path coefficients being highly statistically significant.
Since we do have zeros in the range of the two constructs as a result of stan-

dardization, the coefficients of the CULTURE and CURIOSITY represent the slopes
at the mean of each other (simple effect) and not any longer the main effects. More
specifically, every one unit (standard deviation) increase in CULTURE leads to an
average increase of 0.323 point (standard deviation) in HOLIDAYING INTEREST
at the mean value of CURIOSITY. In a similar manner, every one unit increase in
CURIOSITY causes an average increase of 0.376 point in HOLIDAYING INTER-
EST at the mean value of CULTURE.

6.5.2 Application of the two-stage approach

In this section we first show how to perform the interaction analysis we presented
in the previous section (product-indicator approach) using the two-stage approach.
Secondly, we also show the application of the two-stage approach with a categorical
moderator.

6.5.2.1 Two-stage as an alternative to product-indicator

The first step is to build up a main effect model resembling Figure 6.3 and estimate
the latent variable scores for all of the components in the equation using plssem. In
other words, we first obtain the latent variable scores for our constructs CULTURE,
CURIOSITY and HOLIDAYING INTEREST after estimating the main effect model:

1 plssem (CULTURE2 > V1A V1B V1C) ///
2 (CURIOSITY2 > V2A V2E V2F) ///
3 (H_INTEREST2 > V3A V3B), ///
4 structural(H_INTEREST2 CULTURE2 CURIOSITY2)

The estimated latent variable scores will automatically be generated and added to
the existing dataset in Stata. Each latent variable score will now represent an omnibus
measure of the constructs CULTURE, CURIOSITY and HOLIDAYING INTEREST.
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Next, we build up and estimate the interactive model following exactly the same pro-
cedure (bootstrapping, etc.) as we used when estimating the interactive model using
the product-indicator approach in Section 6.5.1 using the following code. Notice that
the estimated latent variable scores are included here as single items:

1 plssem (CULTURE > CULTURE2) ///
2 (CURIOSITY > CURIOSITY2) ///
3 (H_INTEREST > H_INTEREST2), ///
4 structural(H_INTEREST CULTURE*CURIOSITY)

Here too, as we observe from Figure 6.8, the coefficient (-0.139) on the product
term (CULTURECURIOSITY) is statistically significant, confirming the existence
of a linear interaction effect. Moreover, as shown in equation (6.11), the remaining
results (simple effects, magnitudes of the coefficients, etc.) are quite similar to those
obtained from the product-indicator estimation in Section 6.5.1. The interpretation of
the results that we have here in the two-stage approach is done again in an identical
manner as we do in the product-indicator approach.

ξ
LS
4 = β1ξ

LS
1 +β2ξ

LS
2 +β3

(
ξ

LS
1 ×ξ

LS
2
)
+ζ , (6.11)

which is estimated to be
̂HOLIDAYING INTEREST = 0.325 CULTURE+0.381 CURIOSITY−0.139 CULTURECURIOSITY,

with all path coefficients being highly statistically significant.
Since the two-stage approach above is based on single items, it does not make

any sense to interpret the results from the measurement part. Thus, we have only
examined the estimates and their significance in the structural part in Figure 6.8.
Having said, we should however examine the psychometric properties of the two-
stage model based on the measurement part in the first stage (i.e., the main effect
model) using the criteria learnt in Chapter 4.

6.5.2.2 Two-stage with a categorical moderator

We are in this section going to continue with the same example study. The only
difference is that we now have a categorical/dummy variable representing our mod-
erator CURIOSITY. This variable is named as CURIOSITY_D in the current dataset
in which 0 represents incurious whereas 1 represents curious respondents. Needless
to say, our exogenous variable is still CULTURE and our endogenous variable is
HOLIDAYING INTEREST.

As shown in Figure 6.9, the first stage is to build up the main effects model includ-
ing all the components except for the product term. Notice that while the constructs
CULTURE and HOLIDAYING INTEREST are reflected by the same indicators as in
the previous sections, CURIOSITY is now reflected by a binary indicator (CURIOS-
ITY_D). Subsequently, we estimate this model to obtain the scores for the constructs
(CULTURE and HOLIDAYING INTEREST) in the model:
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Partial least squares SEM Number of obs = 997
Average R-squared = 0.37676
Average communality = 1.00000

Weighting scheme: path Absolute GoF = .
Tolerance: 1.00e-07 Relative GoF = .
Initialization: indsum Average redundancy = 0.37676

Measurement model - Standardized loadings
--------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Reflective:
| CULTURE CURIOSITY H_INTEREST CULTURECUR~Y

--------------+-----------------------------------------------------------
CULTURE2 | 1.000

CURIOSITY2 | 1.000
H_INTEREST2 | 1.000
CULTURE2CU~2 | 1.000

--------------+-----------------------------------------------------------
Cronbach | 1.000 1.000 1.000 1.000

DG | 1.000 1.000 1.000 1.000
rho_A | 1.000 1.000 1.000 1.000

--------------------------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
--------------------------------------------------------------------------

| CULTURE CURIOSITY H_INTEREST CULTURECUR~Y
--------------+-----------------------------------------------------------

CULTURE | 1.000 0.055 0.189 0.019
CURIOSITY | 0.055 1.000 0.254 0.109
H_INTEREST | 0.189 0.254 1.000 0.096

CULTURECUR~Y | 0.019 0.109 0.096 1.000
--------------+-----------------------------------------------------------

AVE | 1.000 1.000 1.000 1.000
--------------------------------------------------------------------------

Structural model - Standardized path coefficients
-----------------------------

Variable | H_INTEREST
--------------+--------------

CULTURE | 0.325
| (0.000)

CURIOSITY | 0.381
| (0.000)

CULTURECUR~Y | -0.139
| (0.000)

--------------+--------------
r2_a | 0.375

-----------------------------
p-values in parentheses

FIGURE 6.8: Results of the interactive model using two-stage approach.
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FIGURE 6.9: Stage one of the two-stage approach with a categorical moderator.
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FIGURE 6.10: Stage two of the two-stage approach with a categorical moderator.

1 plssem (CULTURE3 > V1A V1B V1C) ///
2 (CURIOSITY3 > CURIOSITY_D) ///
3 (H_INTEREST3 > V3A V3B), ///
4 structural(H_INTEREST3 CULTURE3 CURIOSITY3)

In the second stage, we build up the interactive model by attaching the latent vari-
able scores obtained in the first stage to their respective constructs as single indicators
as depicted in Figure 6.10.

Finally, we estimate the interaction model with plssem using the code below:

1 plssem (CULTURE > CULTURE3) ///
2 (CURIOSITY > CURIOSITY3) ///
3 (H_INTEREST > H_INTEREST3), ///
4 structural(H_INTEREST CULTURE*CURIOSITY)
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Partial least squares SEM Number of obs = 998
Average R-squared = 0.27137
Average communality = 1.00000

Weighting scheme: path Absolute GoF = .
Tolerance: 1.00e-07 Relative GoF = .
Initialization: indsum Average redundancy = 0.27137

Measurement model - Standardized loadings
--------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Reflective:
| CULTURE CURIOSITY H_INTEREST CULTURECUR~Y

--------------+-----------------------------------------------------------
CULTURE3 | 1.000

CURIOSITY3 | 1.000
H_INTEREST3 | 1.000
CULTURE3CU~3 | 1.000

--------------+-----------------------------------------------------------
Cronbach | 1.000 1.000 1.000 1.000

DG | 1.000 1.000 1.000 1.000
rho_A | 1.000 1.000 1.000 1.000

--------------------------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
--------------------------------------------------------------------------

| CULTURE CURIOSITY H_INTEREST CULTURECUR~Y
--------------+-----------------------------------------------------------

CULTURE | 1.000 0.006 0.188 0.000
CURIOSITY | 0.006 1.000 0.064 0.001
H_INTEREST | 0.188 0.064 1.000 0.029

CULTURECUR~Y | 0.000 0.001 0.029 1.000
--------------+-----------------------------------------------------------

AVE | 1.000 1.000 1.000 1.000
--------------------------------------------------------------------------

Structural model - Standardized path coefficients
-----------------------------

Variable | H_INTEREST
--------------+--------------

CULTURE | 0.419
| (0.000)

CURIOSITY | 0.227
| (0.000)

CULTURECUR~Y | -0.187
| (0.000)

--------------+--------------
r2_a | 0.269

-----------------------------
p-values in parentheses

FIGURE 6.11: Results of the two-stage approach with a categorical moderator.

As we see in the output (structural part) in Figure 6.11, the p-value for the coef-
ficient on the product term is smaller than 0.001. This again indicates that there is a
significant interaction effect in that CURIOSITY moderates the relationship between
CULTURE and HOLIDAYING INTEREST as curious group (coded as 1) has a sig-
nificantly lower coefficient (0.187 point less) than the incurious group (coded as 0).
Put it more directly, this finding suggests that CULTURE has a significantly larger
positive effect on HOLIDAYING INTEREST among incurious group as compared to
curious group. As in the previous example, we do not use the numbers from the out-
put in Figure 6.11 as a basis for judging the quality of the measurement part. Instead,
we use the main effect model estimates to examine the goodness of the measurement
model.
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FIGURE 6.12: The main effect model of the multi-sample approach.

Furthermore, we see from equation (6.12) that the coefficient on CULTURE is
0.419, which is simply showing the slope at the value of 0 of CURIOSITY, namely
incurious group. The difference between 0.419 and 0.187 (i.e., 0.232) would then
provide the slope at the value 1 of CURIOSITY, which is the curious group. We can
also observe that the coefficient on CURIOSITY is 0.227, which is showing the slope
for those at the average of CULTURE.

ξ
LS
4 = β1ξ

LS
1 +β2x1 +β3
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ξ

LS
1 × x1

)
+ζ , (6.12)

which is estimated to be
̂HOLIDAYING INTEREST = 0.419 CULTURE+0.227 CURIOSITY−0.187 CULTURECURIOSITY,

with all path coefficients being highly statistically significant.

6.5.3 Application of the multi-sample approach

In the previous section we tested our moderation/interaction hypothesis using the
two-stage approach. In this section, we are going to show how the same hypothesis
can be tested using the multi-sample approach. In the multi-sample approach, we as
usual build up the main effect model for the entire sample as depicted in Figure 6.12.
Since CURIOSITY_D is now going to be our grouping variable, it should naturally
not be included in the main effect model.

Having done so, we now estimate this main effect model for both samples (in-
curious and curious) simultaneously. To do so, we specify the group option in the
plssem command by providing the grouping variable CURIOSITY_D. The group
option accepts the following suboptions:

• method() indicates the type of test to perform for the comparisons;
allowed values are normal, for normal-based theory, bootstrap and
permutation,

• reps(#) specifies the number of bootstrap or permutation replications,

• plot indicates that the results must also be represented graphically,

• alpha(#) indicates the significance level to use (default to 0.05),
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• unequal specifies whether to assume unequal variances in the parametric tests
(i.e., normal-based and bootstrap),

• groupseed(#) provides the random number seed for reproducibility.

In this example we ask for 1000 bootstrap resamples for the parametric test to
compare the path coefficients and loadings of the incurious and curious groups as-
suming unequal variances:

1 plssem (CULTURE > V1A V1B V1C) ///
2 (H_INTEREST > V3A V3B), ///
3 structural(H_INTEREST CULTURE) ///
4 group(CURIOSITY_D, unequal reps(1000) ///
5 groupseed(123456) method(bootstrap))

The path coefficients estimated for both groups can be observed in Figure 6.13.
The slopes for the incurious and curious groups are respectively 0.492 and 0.355. The
difference between these two slopes is about 0.137. The results show that the slopes
for the incurious and curious groups do significantly differ from each other. This is
a clear indication of an interaction effect in that CULTURE has a significantly larger
effect on HOLIDAYING INTEREST among incurious group compared to curious
group. As we clearly see, the results from the multi-sample approach to examining
an interaction hypothesis are close to those obtained from the two-stage approach
described in Section 6.5.2.2. As a general rule of thumb, we suggest to use the two-
stage approach when you have a large and complex model. Otherwise, the multi-
sample approach can be used instead.

6.6 Measurement Model Invariance
When we compare path coefficients of two independent samples, what we formally
are doing is testing the invariance of the structural model. If our hypothesis is about
assuming significant differences between the slopes, what we ideally will hope for is
the existence of a variant structural model. The other type of invariance concerns the
measurement model endeavouring to find out whether the indicators reflecting the
different constructs mean the same thing to people in different samples. We naturally
hope for an invariant/equivalent measurement model prior to testing the invariance
of structural model. Otherwise, findings of differences between the slopes in two
different samples cannot be unambiguously interpreted (Horn and McArdle, 1992).
In other words, we cannot be sure whether the slope differences represent the real
differences or occur as a result of different perceptions of the items by people.

Thus, we should ideally precede the multi-sample analysis in the earlier section
with a testing of the measurement model invariance. There is unfortunately scarce
treatment of measurement invariance in the partial least squares structural equation
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Partial least squares SEM

Weighting scheme: path
Tolerance: 1.00e-07
Initialization: indsum

Multigroup comparison (CURIOSITY_D) - Parametric test
--------------------------------------------------------------------------------------------
Measurement effect | Global Group_1 Group_2 Abs_Diff Statistic P-value

--------------------+-----------------------------------------------------------------------
CULTURE -> V1A | 0.756 0.754 0.673 0.081 0.854 0.393
CULTURE -> V1B | 0.768 0.776 0.648 0.127 1.436 0.152
CULTURE -> V1C | 0.774 0.765 0.888 0.123 2.533 0.011

H_INTEREST -> V3A | 0.921 0.919 0.899 0.020 0.518 0.605
H_INTEREST -> V3B | 0.926 0.927 0.887 0.041 1.497 0.135

--------------------------------------------------------------------------------------------
number of replications: 1000
unequal variances assumed
group labels:

Group 1: incurious
Group 2: curious

group sizes:
Group 1: 616
Group 2: 382

Multigroup comparison (CURIOSITY_D) - Parametric test
-----------------------------------------------------------------------------------------------

Structural effect | Global Group_1 Group_2 Abs_Diff Statistic P-value
-----------------------+-----------------------------------------------------------------------
CULTURE -> H_INTEREST | 0.434 0.492 0.355 0.137 2.451 0.014

-----------------------------------------------------------------------------------------------
number of replications: 1000
unequal variances assumed
group labels:

Group 1: incurious
Group 2: curious

group sizes:
Group 1: 616
Group 2: 382

FIGURE 6.13: The results of the multi-sample approach for the model shown in
Figure 6.12.

modelling literature. Thus, one commonly employs the procedures suggested in the
covariance-based structural equation modelling (CB-SEM) domain for testing mea-
surement invariance in PLS-SEM as well. Nevertheless, not all of the invariance
forms suggested in CB-SEM are directly transferrable to the PLS-SEM context.

As a pragmatic solution we still suggest at least the two basic forms of invariance
used in CB-SEM also for examining measurement invariance in PLS-SEM. The most
basic form of invariance to establish is the typically called configural invariance
which may also be referred to as equal form invariance or even pattern invariance
(Wang and Wang, 2012). The idea here is simply to check whether a proposed factor
structure is the same in different samples/groups under study. Our suggestion for
testing the configural invariance in PLS-SEM context is to apply the dimensionality
criterion that we treated in Chapter 4. Dimensionality is about finding out the number
of constructs that may be reflected by a set of items. If you have same dimensionality
pattern regarding the constructs in both samples, we may conclude that the factor
structure is invariant/equivalent in both samples.

The examination of measurement invariance is a sequential one in that we first
need to establish the configural invariance prior to checking the second form of in-
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variance, namely construct-level metric invariance (see for example Kline, 2016),
which is also referred to as equal factor loadings or even weak measurement invari-
ance. If factor loadings can be shown to be equivalent across samples/groups, then
measures across groups can be considered to be on the same scale (Wang and Wang,
2012).

In Stata, to check for the dimensionality of the constructs (CULTURE and HOL-
IDAYING INTEREST) of the measurement model, you simply need to run a factor
analysis with the extraction method of principal component on each of the construct’s
items for each sample and examine the eigenvalues. With regards to our last example,
we would use the following code (output not reported):

1 factor V1A V1B V1C if CURIOSITY_D == 0, pcf
2 factor V1A V1B V1C if CURIOSITY_D == 1, pcf
3 factor V3A V3B if CURIOSITY_D == 0, pcf
4 factor V3A V3B if CURIOSITY_D == 1, pcf

In an equal form measurement model, one should expect the same type of eigen-
value and factor relation in both samples. For instance, if a factor is associated with
one eigenvalue larger than one in one sample but with two eigenvalues larger than
one in the other, then this would be a sign of variant/unequal form. As for the
construct-level metric invariance, using plssem, we compare the differences be-
tween the standardized loadings using the bootstrap test that we use when compar-
ing slopes/coefficients. To be able to establish construct-level metric invariance, we
want non-significant results, which would indicate that the loadings are close to each
other8.

6.7 Summary
A moderating/interaction effect occurs when a third variable influences the rela-
tion between an exogenous variable and an endogenous variable. There are three
main approaches to examining moderating/interaction effects in PLS-SEM: product-
indicator approach, two-stage approach and multi-sample approach. The product-
indicator approach is commonly used when we have a continuous moderator variable
while the other two approaches are mainly used when there is a categorical moder-
ator. The two-stage approach is further the only option for examining interactions
effects with formative measures. Finally, we note that an equal measurement model
should be established before comparing the slopes of different samples/groups.

8We have incidentally checked the equal form and loadings conditions for our example study. Both
CULTURE and HOLIDAYING INTEREST are each associated with one eigenvalue larger than 1 in both
incurious and curious samples. Further, nearly half of the loadings are significantly different between the
two samples. This further suggests that equal loading assumption can partially be supported.
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Appendix: R Commands
In this appendix we discuss how to fit PLS-SEM models that include a moderat-
ing/interaction effect using the cSEM package in R9. In this appendix, we are going
to reuse the same examples discussed in the chapter highlighting what cSEM can ad-
ditionally provide compared to Stata’s plssem. These examples analyse some data
that have been collected to study the determinants of the propensity to travel abroad
for holiday. The data are available in the ch6_CultureCuriosity.dta file,
which we import in R using the haven package:

1 if (!require(haven, quietly = TRUE)) {
2 install.packages("haven")
3 }

4 curios_data <- as.data.frame(read_stata(file =
5 file.path(path_data, "ch6_CultureCuriosity.dta")))

Application of the product-indicator approach

To use the product-indicator approach with the cSEM package we need to explicitly
create the indicators for the interactions in the model. We can do that in R follow-
ing different approaches, but a quick one uses the model.matrix() function.
model.matrix() creates a matrix containing all the relevant columns given the
dataset and the formula for the model we want to fit10. In the first example, whose
path diagram is shown in Figure 6.2, this is accomplished by the following code
chunk, which first standardizes the indicators and removes the missing values:

1 curios_data_std <- scale(curios_data[, 1:8])
2 colnames(curios_data_std) <- paste0(colnames(curios_data_std), "_std")
3 curios_data <- cbind(curios_data, curios_data_std)
4 curios_data <- na.omit(curios_data)

5 curios_data_pi <- model.matrix(
6 object = ~ (V1A_std + V1B_std + V1C_std + V2A_std + V2E_std + V2F_std)^2
7 + V3A + V3B - 1, data = curios_data)

The “^2” syntax means to create all the interactions between the terms within
parentheses, while the final “-1” indicates to avoid adding to the matrix a column of
ones, which typically is used to estimate the intercept in a regression context. Then,
we can fit the model using the csem() function (output not reported):

9The plspm package also includes a function, called plspm.groups(), that performs multi-
group analysis, but it is limited to the comparison of two groups only. In case you are interested in
understanding how it works, we suggest to look at Chapter 6 of Sanchez (2013).

10To effectively use the model.matrix() function, you should know something about formula
objects. You can find more details by typing ?formula.
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1 curios_mod_pi_1 <- "
2 # structural model
3 H_INTEREST ~ CULTURE + CURIOSITY + CULTURE_CURIOSITY

4 # measurement model
5 CULTURE =~ V1A_std + V1B_std + V1C_std
6 CURIOSITY =~ V2A_std + V2E_std + V2F_std
7 H_INTEREST =~ V3A + V3B
8 "
9 curios_mod_pi_2 <- "

10 CULTURE_CURIOSITY =~ V1A_std:V2A_std + V1A_std:V2E_std +
11 V1A_std:V2F_std + V1B_std:V2A_std + V1B_std:V2E_std +
12 V1B_std:V2F_std + V1C_std:V2A_std + V1C_std:V2E_std +
13 V1C_std:V2F_std
14 "
15 curios_mod_pi <- paste0(curios_mod_pi_1, gsub("\n", "", curios_mod_pi_2))

16 library(cSEM)

17 curios_res_pi <- csem(.data = curios_data_pi,
18 .model = curios_mod_pi, .PLS_weight_scheme_inner = "path",
19 .disattenuate = FALSE, .tolerance = 1e-07,
20 .resample_method = "bootstrap", .R = 1000, .seed = 101)
21 # summarize(curios_res_pi)

Note that in the code above, we separated the specification of the model in two
parts, curios_mod_pi_1 and curios_mod_pi_2, to avoid showing the long
formula for CULTURE_CURIOSITY in a single line.

Application of the two-stage approach

The two-stage approach can be used with cSEM following the same two steps we
described in the chapter using Stata, that is:

Step 1. fit a main effect model (i.e., without interactions),

Step 2. using the predicted construct scores from the previous step, fit the interactive
model using the scores as the unique indicators.

These steps are easily implemented in R as shown in the following code (output not
reported):

1 ## first stage
2 curios_mod_2s_step1 <- "
3 # measurement model
4 CULTURE2 =~ V1A + V1B + V1C
5 CURIOSITY2 =~ V2A + V2E + V2F
6 H_INTEREST2 =~ V3A + V3B

7 # structural model
8 H_INTEREST2 ~ CULTURE2 + CURIOSITY2
9 "

10 curios_res_2s_step1 <- csem(.data = curios_data,
11 .model = curios_mod_2s_step1, .PLS_weight_scheme_inner = "path",
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12 .disattenuate = FALSE, .tolerance = 1e-07,
13 .resample_method = "bootstrap", .R = 1000, .seed = 101)
14 # summarize(curios_res_2s_step1)

15 ## second stage
16 curios_data_2s <- as.data.frame(
17 getConstructScores(curios_res_2s_step1)$Construct_scores)
18 curios_data_2s <- model.matrix(
19 object = ~ (CULTURE2 + CURIOSITY2)^2 + H_INTEREST2 - 1,
20 data = curios_data_2s)

21 curios_mod_2s_step2 <- "
22 # measurement model
23 CULTURE =~ CULTURE2
24 CURIOSITY =~ CURIOSITY2
25 H_INTEREST =~ H_INTEREST2
26 CULTURE_CURIOSITY =~ CULTURE2:CURIOSITY2

27 # structural model
28 H_INTEREST ~ CULTURE + CURIOSITY + CULTURE_CURIOSITY
29 "

30 curios_res_2s_step2 <- csem(.data = curios_data_2s,
31 .model = curios_mod_2s_step2, .PLS_weight_scheme_inner = "path",
32 .disattenuate = FALSE, .tolerance = 1e-07,
33 .resample_method = "bootstrap", .R = 1000, .seed = 101)
34 # summarize(curios_res_2s_step2)

The same identical steps apply also to the case of a categorical moderator (see
Section 6.5.2.2) so we do not show them here.

Before moving to the last example, we highlight that the cSEM package has
built-in capabilities to deal with non-linear terms such as polynomials and interac-
tions, which implements the approach described in Dijkstra and Schermelleh-Engel
(2014). In addition, after the estimation of a model that includes non-linear terms, the
package also provides the function doNonlinearEffectsAnalysis(), which
allows to estimate the expected value of the dependent variable conditional on the
values of an independent variables and a moderator variable, keeping all other vari-
ables at their mean levels. We now show how to perform the same analysis described
above but directly using these functionalities. To do that, the model specification
must use the “.” operator to include the non-linear terms. Our example involves the
interaction between CULTURE and CURIOSITY so that the required code is

1 ## direct use of csem() with an interaction
2 curios_mod_int <- "
3 # measurement model
4 CULTURE =~ V1A + V1B + V1C
5 CURIOSITY =~ V2A + V2E + V2F
6 H_INTEREST =~ V3A + V3B

7 # structural model
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8 H_INTEREST ~ CULTURE + CURIOSITY + CULTURE.CURIOSITY
9 "

Then, the model can be fitted as usual with the csem() function:

1 curios_res_int <- csem(.data = curios_data,
2 .model = curios_mod_int, .PLS_weight_scheme_inner = "path",
3 .disattenuate = FALSE, .tolerance = 1e-07,
4 .resample_method = "bootstrap", .R = 1000, .seed = 101)
5 summarize(curios_res_int)

________________________________________________________________________________
----------------------------------- Overview -----------------------------------

General information:
------------------------
Estimation status = Ok
Number of observations = 997
Weight estimator = PLS-PM
Inner weighting scheme = "path"
Type of indicator correlation = Pearson
Path model estimator = OLS
Second-order approach = NA
Type of path model = Nonlinear
Disattenuated = No

Resample information:
---------------------
Resample method = "bootstrap"
Number of resamples = 1000
Number of admissible results = 1000
Approach to handle inadmissibles = "drop"
Sign change option = "none"
Random seed = 101

Construct details:
------------------
Name Modeled as Order Mode

CULTURE Common factor First order "modeA"
CURIOSITY Common factor First order "modeA"
H_INTEREST Common factor First order "modeA"

----------------------------------- Estimates ----------------------------------

Estimated path coefficients:
============================

CI_percentile
Path Estimate Std. error t-stat. p-value 95%
H_INTEREST ~ CULTURE 0.3251 0.0269 12.0832 0.0000 [ 0.2720; 0.3784 ]
H_INTEREST ~ CURIOSITY 0.3809 0.0281 13.5726 0.0000 [ 0.3278; 0.4345 ]
H_INTEREST ~ CULTURE.CURIOSITY -0.1156 0.0281 -4.1184 0.0000 [-0.1677;-0.0618 ]

Estimated loadings:
===================

CI_percentile
Loading Estimate Std. error t-stat. p-value 95%
CULTURE =~ V1A 0.7564 0.0257 29.4397 0.0000 [ 0.7008; 0.8009 ]
CULTURE =~ V1B 0.7675 0.0245 31.3522 0.0000 [ 0.7153; 0.8088 ]
CULTURE =~ V1C 0.7759 0.0229 33.8115 0.0000 [ 0.7293; 0.8182 ]
CURIOSITY =~ V2A 0.6428 0.0352 18.2557 0.0000 [ 0.5665; 0.7064 ]
CURIOSITY =~ V2E 0.8460 0.0153 55.4736 0.0000 [ 0.8137; 0.8737 ]
CURIOSITY =~ V2F 0.8268 0.0217 38.0185 0.0000 [ 0.7781; 0.8643 ]
H_INTEREST =~ V3A 0.9185 0.0104 88.4414 0.0000 [ 0.8952; 0.9360 ]
H_INTEREST =~ V3B 0.9277 0.0076 121.9789 0.0000 [ 0.9111; 0.9410 ]

Estimated weights:
==================

CI_percentile
Weight Estimate Std. error t-stat. p-value 95%
CULTURE <~ V1A 0.3841 0.0298 12.8698 0.0000 [ 0.3224; 0.4380 ]
CULTURE <~ V1B 0.3840 0.0274 14.0371 0.0000 [ 0.3299; 0.4338 ]
CULTURE <~ V1C 0.5344 0.0324 16.5095 0.0000 [ 0.4715; 0.6013 ]
CURIOSITY <~ V2A 0.3752 0.0371 10.1239 0.0000 [ 0.3079; 0.4545 ]
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FIGURE 6.14: The diagram shows how the impact of CULTURE on H_INTEREST
is affected by the values of CURIOSITY for the example discussed in Section 6.5.2.

CURIOSITY <~ V2E 0.4117 0.0206 20.0069 0.0000 [ 0.3726; 0.4521 ]
CURIOSITY <~ V2F 0.4965 0.0260 19.0985 0.0000 [ 0.4465; 0.5481 ]
H_INTEREST <~ V3A 0.5260 0.0132 39.7687 0.0000 [ 0.5000; 0.5520 ]
H_INTEREST <~ V3B 0.5571 0.0153 36.4587 0.0000 [ 0.5299; 0.5888 ]

Estimated construct correlations:
=================================

CI_percentile
Correlation Estimate Std. error t-stat. p-value 95%
CULTURE ~~ CURIOSITY 0.2356 0.0334 7.0523 0.0000 [ 0.1728; 0.2990 ]

________________________________________________________________________________

Note that all the estimates match with those provided by Stata apart from the esti-
mated coefficient of the interaction term. This is due to a different approach imple-
mented within the csem() function.

After the model with non-linear terms has been estimated, we can assess how the
effect of CULTURE on H_INTEREST is affected by the values of the CURIOSITY
moderator using the doNonlinearEffectsAnalysis() function and plot the
corresponding results (see Figure 6.14):

1 neffects <- doNonlinearEffectsAnalysis(curios_res_int,
2 .dependent = "H_INTEREST",
3 .moderator = "CURIOSITY",
4 .independent = "CULTURE")
5 # neffects
6 plot(neffects, .plot_type = "simpleeffects")

As we already commented in the chapter, the diagram shows that as CURIOSITY
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FIGURE 6.15: The diagram shows the floodlight analysis (Spiller et al., 2013) for
the example introduced in Section 6.5.2.

increases the effect of CULTURE on H_INTEREST decreases. Note that, since
the constructs are standardized, the values of the moderator equal the deviation
from its mean (i.e., zero) measured in standard deviations. This conclusion is fur-
ther confirmed by the so called floodlight analysis (Spiller et al., 2013), that can
be obtained by executing the command plot(neffects, .plot_type =
"floodlight"), whose output is shown in Figure 6.15.

Application of the multi-sample approach

We conclude this appendix showing how to perform a multi-sample (also called
multi-group) analysis with the cSEM package. To do that, we need to provide the
csem() function with the further argument .id, which indicates the name of the
column containing the groups11. The csem() function will then split the data by
groups and run the estimation for each group separately. If the number of groups
is large, the computational burden can critically increase, especially if resampling
is requested. To speed up the computation in these cases, it is possible to set the
.eval_plan argument to "multiprocess" thus enabling parallel computing.

Once the model has been fitted separately for each group, we can compare the
estimates across groups with the testMGD() function, which allows to test the
differences using different methods (for more details on the available approach, see

11Alternatively, we may provide a list of datasets corresponding to the subsets of the sample data that
refer to each group.
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the function help page). Inference on the parameter differences is performed using
both bootstrap and permutation tests. After reloading the data, the following code
replicates the example we presented in Section 6.5.3 and compares the results using
the approach described in Chin and Dibbern (2010):

1 curios_data <- as.data.frame(read_stata(file =
2 file.path(path_data, "ch6_CultureCuriosity.dta")))
3 curios_data <- na.omit(curios_data)

4 curios_mod_mga <- "
5 # measurement model
6 CULTURE =~ V1A + V1B + V1C
7 H_INTEREST =~ V3A + V3B

8 # structural model
9 H_INTEREST ~ CULTURE

10 "

11 curios_res_mga <- csem(.data = curios_data,
12 .id = "CURIOSITY_D", .model = curios_mod_mga,
13 .PLS_weight_scheme_inner = "path",
14 .disattenuate = FALSE, .tolerance = 1e-07,
15 .resample_method = "bootstrap", .R = 1000, .seed = 101)
16 summarize(curios_res_mga)

17 curios_mga <- testMGD(curios_res_mga, .R_bootstrap = 1000,
18 .R_permutation = 1000, .seed = 1406)
19 print(curios_mga, .approach_mgd = "Chin")

$`0`
________________________________________________________________________________
----------------------------------- Overview -----------------------------------

General information:
------------------------
Estimation status = Ok
Number of observations = 616
Weight estimator = PLS-PM
Inner weighting scheme = "path"
Type of indicator correlation = Pearson
Path model estimator = OLS
Second-order approach = NA
Type of path model = Linear
Disattenuated = No

Resample information:
---------------------
Resample method = "bootstrap"
Number of resamples = 1000
Number of admissible results = 1000
Approach to handle inadmissibles = "drop"
Sign change option = "none"
Random seed = 101

Construct details:
------------------
Name Modeled as Order Mode

CULTURE Common factor First order "modeA"
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H_INTEREST Common factor First order "modeA"

----------------------------------- Estimates ----------------------------------

Estimated path coefficients:
============================

CI_percentile
Path Estimate Std. error t-stat. p-value 95%
H_INTEREST ~ CULTURE 0.4920 0.0308 15.9585 0.0000 [ 0.4365; 0.5539 ]

Estimated loadings:
===================

CI_percentile
Loading Estimate Std. error t-stat. p-value 95%
CULTURE =~ V1A 0.7539 0.0309 24.3913 0.0000 [ 0.6881; 0.8025 ]
CULTURE =~ V1B 0.7759 0.0269 28.8055 0.0000 [ 0.7199; 0.8226 ]
CULTURE =~ V1C 0.7652 0.0288 26.6031 0.0000 [ 0.7033; 0.8164 ]
H_INTEREST =~ V3A 0.9188 0.0123 74.7279 0.0000 [ 0.8911; 0.9385 ]
H_INTEREST =~ V3B 0.9273 0.0099 93.8775 0.0000 [ 0.9066; 0.9447 ]

Estimated weights:
==================

CI_percentile
Weight Estimate Std. error t-stat. p-value 95%
CULTURE <~ V1A 0.3651 0.0325 11.2293 0.0000 [ 0.2970; 0.4264 ]
CULTURE <~ V1B 0.4092 0.0309 13.2376 0.0000 [ 0.3504; 0.4691 ]
CULTURE <~ V1C 0.5322 0.0368 14.4748 0.0000 [ 0.4627; 0.6053 ]
H_INTEREST <~ V3A 0.5272 0.0223 23.6043 0.0000 [ 0.4857; 0.5713 ]
H_INTEREST <~ V3B 0.5560 0.0234 23.7645 0.0000 [ 0.5120; 0.6036 ]

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================

CI_percentile
Total effect Estimate Std. error t-stat. p-value 95%
H_INTEREST ~ CULTURE 0.4920 0.0308 15.9585 0.0000 [ 0.4365; 0.5539 ]

________________________________________________________________________________

$`1`
________________________________________________________________________________
----------------------------------- Overview -----------------------------------

General information:
------------------------
Estimation status = Ok
Number of observations = 381
Weight estimator = PLS-PM
Inner weighting scheme = "path"
Type of indicator correlation = Pearson
Path model estimator = OLS
Second-order approach = NA
Type of path model = Linear
Disattenuated = No

Resample information:
---------------------
Resample method = "bootstrap"
Number of resamples = 1000
Number of admissible results = 1000
Approach to handle inadmissibles = "drop"
Sign change option = "none"
Random seed = 101

Construct details:
------------------
Name Modeled as Order Mode

CULTURE Common factor First order "modeA"
H_INTEREST Common factor First order "modeA"

----------------------------------- Estimates ----------------------------------
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Estimated path coefficients:
============================

CI_percentile
Path Estimate Std. error t-stat. p-value 95%
H_INTEREST ~ CULTURE 0.3566 0.0466 7.6546 0.0000 [ 0.2692; 0.4475 ]

Estimated loadings:
===================

CI_percentile
Loading Estimate Std. error t-stat. p-value 95%
CULTURE =~ V1A 0.6747 0.0870 7.7571 0.0000 [ 0.4550; 0.7804 ]
CULTURE =~ V1B 0.6468 0.0830 7.7943 0.0000 [ 0.4363; 0.7682 ]
CULTURE =~ V1C 0.8903 0.0385 23.1046 0.0000 [ 0.8224; 0.9709 ]
H_INTEREST =~ V3A 0.8983 0.0267 33.6684 0.0000 [ 0.8337; 0.9370 ]
H_INTEREST =~ V3B 0.8869 0.0264 33.5509 0.0000 [ 0.8268; 0.9270 ]

Estimated weights:
==================

CI_percentile
Weight Estimate Std. error t-stat. p-value 95%
CULTURE <~ V1A 0.3420 0.0814 4.2015 0.0000 [ 0.1356; 0.4449 ]
CULTURE <~ V1B 0.2189 0.0802 2.7306 0.0063 [ 0.0392; 0.3512 ]
CULTURE <~ V1C 0.7050 0.0836 8.4376 0.0000 [ 0.5699; 0.8848 ]
H_INTEREST <~ V3A 0.5741 0.0449 12.7894 0.0000 [ 0.4899; 0.6670 ]
H_INTEREST <~ V3B 0.5460 0.0475 11.5056 0.0000 [ 0.4515; 0.6402 ]

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================

CI_percentile
Total effect Estimate Std. error t-stat. p-value 95%
H_INTEREST ~ CULTURE 0.3566 0.0466 7.6546 0.0000 [ 0.2692; 0.4475 ]

________________________________________________________________________________

________________________________________________________________________________
----------------------------------- Overview -----------------------------------

Total permutation runs = 1000
Admissible permutation results = 1000
Permutation seed = 1406

Total bootstrap runs = 1000
Admissible bootstrap results:

Group Admissibles
0 1000
1 1000

Bootstrap seed:

Group Seed
0 1406
1 1406

Number of observations per group:

Group No. Obs.
0 616
1 381

Overall decision (based on alpha = 5%):

p_adjust = 'none'
Sarstedt reject
Chin reject
Keil reject
Nitzl reject
________________________________________________________________________________
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-------- Test for multigroup differences based on Chin & Dibbern (2010) --------

Null hypothesis:

===========================================
H0: Parameter k is equal across two groups.
===========================================

Test statistic and p-value:

Multiple testing adjustment: 'none'

Compared groups: 0_1

Parameter Test statistic p-value Decision
H_INTEREST ~ CULTURE 0.1354 0.0140 reject
CULTURE =~ V1A 0.0792 0.2040 Do not reject
CULTURE =~ V1B 0.1291 0.0260 reject
CULTURE =~ V1C -0.1252 0.0060 reject
H_INTEREST =~ V3A 0.0205 0.3840 Do not reject
H_INTEREST =~ V3B 0.0404 0.0620 Do not reject
________________________________________________________________________________

These results confirm the findings we reported in Figure 6.13, in particular that
there is an interaction of CURIOSITY with CULTURE since the slopes for the in-
curious and curious groups in the structural model do significantly differ from each
other.

Measurement model invariance

We close the appendix with a quick mention to the testMICOM() function,
which performs the permutation-based test for measurement invariance of compos-
ites across groups proposed by Henseler et al. (2016). This function provides a more
formal approach for assessing measurement model invariance as we discussed it in
Section 6.6. As an example, the code below uses the testMICOM() function to
assess measurement model invariance for the multi-sample analysis we described
above:

1 testMICOM(curios_res_mga, .R = 1000, .seed = 1406)

________________________________________________________________________________
-------- Test for measurement invariance based on Henseler et al (2016) --------
======================== Step 1 - Configural invariance ========================

Configural invariance is a precondition for step 2 and 3.
Do not proceed to interpret results unless
configural invariance has been established.

======================= Step 2 - Compositional invariance ======================

Null hypothesis:

===========================================================
H0: Compositional measurement invariance of the constructs.
===========================================================



248 6 Moderating/Interaction Effects Using PLS-SEM

Test statistic and p-value:

Compared groups: 0_1
p-value by adjustment

Construct Test statistic none
CULTURE 0.9753 0.0020
H_INTEREST 0.9998 0.5010

================= Step 3 - Equality of the means and variances =================

Null hypothesis:

======================================================
1. H0: Difference between group means is zero
2. H0: Log of the ratio of the group variances is zero
======================================================

Test statistic and critical values:

Compared groups: 0_1

Mean
p-value by adjustment

Construct Test statistic none
CULTURE -0.1081 0.1140
H_INTEREST -0.1683 0.0030

Var
p-value by adjustment

Construct Test statistic none
CULTURE 0.0896 0.3100
H_INTEREST 0.2825 0.1090

Additional information:

Out of 1000 permutation runs, 1000 where admissible.
See ?verify() for what constitutes an inadmissible result.

The seed used was: 1406

Number of observations per group:

Group No. observations
0 616
1 381
________________________________________________________________________________



7
Detecting Unobserved Heterogeneity in
PLS-SEM

In this chapter we illustrate the main methods developed so far in the literature to
estimate unobserved heterogeneity in a PLS-SEM analysis. We start the chapter with
a description of the types of heterogeneity one may encounter in a statistical anal-
ysis, namely observed and unobserved heterogeneity. Then, we focus on the latter
and present some approaches for detecting it in the PLS-SEM framework. In par-
ticular, we provide a full description of two methodologies called REBUS-PLS and
FIMIX-PLS. Other approaches that are less frequently used in practice will be briefly
presented as well. As usual, we will illustrate the new ideas with the support of prac-
tical examples. The models included in the examples will be estimated using the
plssem Stata command, whose results will be further inspected with the estat
unobshet postestimation command. In the presentation we will refer to some pop-
ular statistical approaches for identifying homogenous groups of observations such
as cluster analysis and latent class analysis, a review of which is available in Sec-
tion 2.3.

7.1 Introduction
Heterogeneity represents to a great extent the primary focus of any statistical mod-
elling. This general statement is typically operationalized by choosing a set of covari-
ates (or independent variables) through which one aims at explaining the observed
variability in the response (or dependent) variable. However, it is very rarely the case
that we succeed in collecting data on all relevant covariates in a given problem. Thus,
we usually end up the analysis with a portion of the observed response variability that
is left “unexplained”.

From a practical point of view, we can distinguish two types of heterogeneity, that
is observed and unobserved heterogeneity. Observed heterogeneity is typically due
to differences between groups of data that we can measure a priori using cultural,
geographic, demographic and socio-economic variables (e.g., age, gender, country
of origin, income), as well as variables that are more strictly related to the context of
our analysis (e.g., product usage frequency or store loyalty in marketing; cigarettes
consumption or food habits in the health sciences). On the other hand, unobserved

249
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heterogeneity is related to information that we have not been able to measure a
priori, implying that differences between groups of cases should be discovered indi-
rectly using some post hoc analysis. Typical sources of unobserved heterogeneity are
personality traits, personal lifestyle, preferences and attitudes.

The easiest way to deal with observed heterogeneity is to split the data into groups
according to the values of the variables we measured (age, gender, etc.) and perform
a group-specific analysis. However, more sophisticated methods are typically used
in practice1. On the contrary, accounting for unobserved heterogeneity is more chal-
lenging. Statisticians have developed different approaches in this respect. Random ef-
fects are one example (Skrondal and Rabe-Hesketh, 2004; Bartholomew, 2013), but a
similar issue arises also in other fields such as casual inference for observational stud-
ies, where a primary concern is heterogeneity originated by unmeasured confounding
variables (Pearl et al., 2016; Hernán and Robins, 2021). Another method that explic-
itly deals with unobserved heterogeneity is finite mixture modelling (McLachlan and
Peel, 2000; Frühwirth-Schnatter, 2006), in which the observed data are assumed to
be generated by different subpopulations with potentially different parameter values.

No matter what the source of heterogeneity is, the crucial point in all cases is
that failing to account for it may lead to a severe bias in the model estimates, thus
producing potentially misleading results. As an easy example, consider the situation
represented in Figure 7.1a, which reports the histogram for a sample of fictional
data. The histogram shows that the data are composed by two groups, the first one
on the left that is centred around the value 10, and the second one on the right that
is centred around a value in between 15 and 20 instead. If we consider these data
as coming from an homogeneous population, and we are interested in estimating its
mean, we would obtain an estimate (sample mean) equal to 13.72. However, taking
also into consideration the grouping structure, we would get 9.95 and 17.89 as the
group-specific estimates. The two subpopulations that we used to generate the data
are the two normal distributions shown in Figure 7.1b. In this simple example we
clearly see that disregarding the grouping of the data produces a biased result.

Even in a simple context like this, the critical issue to consider regards the in-
formation we have about the grouping. If the groups refer to information we have
collected/measured, we are in the case of observed heterogeneity and we can ac-
count for the group differences by performing a two-sample t-test. If the groups refer
to information that we have not collected/measured (unobserved heterogeneity), we
need to use one of the strategies for discovering the latent groups (cluster analysis,
finite mixtures, etc.). The aim of this chapter is to address these same issues with
regard to PLS-SEM.

1In PLS-SEM this corresponds to multi-sample analysis, that we illustrated in Chapter 6.
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(a) Overall sample data (histogram) with a ker-
nel density estimate overimposed (solid line).
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(b) Overall sample data (histogram) together
with the generating populations (dashed lines).

FIGURE 7.1: An example of data originating from a mixture of two subpopulations.

7.2 Methods for the Identification and Estimation of Unobserved
Heterogeneity in PLS-SEM

As we discussed above, if we don’t know a priori the sources of heterogeneity, a com-
mon approach is to segment the dataset through a cluster analysis (Section 2.3.1) and
run the main analysis on each of the identified segments. This practice is often used
for example in CB-SEM, where separate models are estimated for the different seg-
ments obtained by an external clustering analysis. A similar strategy can be used in
PLS-SEM as well. In particular, after fitting a global model using the whole sam-
ple, we may perform a cluster analysis on the indicators and/or the latent variable
scores, and finally run a group-specific PLS-SEM analysis. Unfortunately this ap-
proach presents many drawbacks (Esposito Vinzi et al., 2008), and some simulation
studies have shown a poor performance for the identification of group differences
(Sarstedt and Ringle, 2010). Nonetheless, the crucial limitation of this procedure is
that it fails to account for the measurement and structural relationships postulated by
the researcher.

The aim of this section is to present the most popular methods developed so
far in the literature for detecting and estimating unobserved heterogeneity in PLS-
SEM. Figure 7.2 summarizes the available methods according to a taxonomy sug-
gested in Sarstedt (2008). In the following we present the details of two of these ap-
proaches, the response-based unit segmentation in PLS-SEM approach (REBUS-
PLS) (Trinchera, 2007; Esposito Vinzi et al., 2008) and the finite mixture PLS
(FIMIX-PLS) approach (Hahn et al., 2002).

7.2.1 Response-based unit segmentation in PLS-SEM

Response-based unit segmentation (REBUS-PLS) is a technique that is inspired by
cluster analysis in that at each iteration it assesses whether leaving an observation
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Approaches for discovering unobserved heterogeneity in PLS-SEM

Pathmox Distance-based FIMIX-PLS

PLS typological 
regression approaches FPLS-LCD PLS-GAS

PLS-TPM REBUS-PLS

FIGURE 7.2: Methods introduced in the PLS-SEM literature for discovering the
presence of unobserved heterogeneity (see Sarstedt, 2008).

in its original group or reassigning it to another one will improve the results. More
specifically, the core idea of the algorithm is to calculate the so called closeness
measure between each observation and each local (i.e., group-specific) model. The
intuition behind this concept is that if latent classes do exist, observations belonging
to the same class will share a similar local model. In other terms, if an observation is
assigned to the “correct” (appropriate) group, the performance of the corresponding
local model will be higher than that we would obtain by placing the same observation
in any of the other groups.

The REBUS-PLS algorithm starts by estimating the global model, that is the
model that uses the whole sample. Then, residuals from the global model are com-
puted for both the measurement and the structural parts. These residuals are usually
called communality residuals and structural residuals respectively. Next, using all
the residuals, the number of groups K to segment the data into is chosen by running
a hierarchical clustering algorithm (see Section 2.3.1.1)2 REBUS-PLS then proceeds
by estimating the local models corresponding to the groups identified with the clus-
ter analysis in the previous step. This produces K group-specific PLS-SEM models
each one fitted using only the observations in the corresponding segment. The group-
specific parameter estimates are used to calculate the communality and the structural
residuals for each observation in the sample (i.e., not only for the observations in a
class) from every local model. Afterwards, using the residuals, the closeness measure
for each observation from every local model is computed. This provides an assess-
ment of how close each observation is from every group-specific model. Each unit is
then assigned to the closest local model. During this reallocation, it can happen that

2There is no strict indication in the literature on the specific hierarchical algorithm to use. Similarly,
the authors of the REBUS-PLS algorithm did not provide suggestions on how to select the number of
groups from the hierarchy of solutions. The plssem Stata package implements the Ward’s method and
the number of groups can be either provided by the user or selected automatically by the software using
the Caliński-Harabasz stopping rule.
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some observations remain in the same clusters, while others move to another group.
After the assignments of all observations, the K local models for the new allocation
are estimated again and the algorithm continues until a specified stopping criterion
is met. The usual suggestion (Esposito Vinzi et al., 2010, page 70) is to stop the al-
gorithm when no more than 5% of the observations change class from one iteration
to the other. The whole algorithm typically reaches convergence in few iterations
(usually less than 15). The steps of the REBUS-PLS procedure are summarized in
Algorithm 7.3.

When group stability is attained, the K final local models are estimated and the
corresponding results are compared. In addition, Trinchera (2007) developed an in-
dex, the group quality index (GQI), to assess the goodness of the latent partition
found by the REBUS-PLS algorithm. The GQI fundamentally represents a reformu-
lation of the GoF index (see Chapter 4) in a multi-group context. From an intuitive
point of view, the GQI can be considered as an average of the GoF indexes from
the final local models. Moreover, it can be shown that the GQI for a partition with
a single group that includes all the observations is mathematically equivalent to the
GoF index for the global model. Therefore, to assess the goodness of the partition, it
makes sense to compare the GQI with the GoF index from the global model. That is
to say, if any of the local models performs better than the global one, the GQI will be
larger than the global GoF index, indicating that we found some evidence of hetero-
geneity. In this case, it would be appropriate to perform separate PLS-SEM analyses.
The technical appendix at the end of the chapter provides more details about the
REBUS-PLS procedure.

On top of the GQI, the quality of the partition produced by the REBUS-PLS
algorithm can be further validated using a permutation test. This procedure in-
volves generating a large number M (usually at least 500) of random partitions of
the data, keeping fixed the group proportions as detected by REBUS-PLS. For each
random partition, the GQI is computed obtaining an empirical distribution for the
index. Then, one can use this simulation-based sampling distribution of the GQI to
compare the actual value of the GQI obtained in the main REBUS-PLS analysis to
assess if the REBUS-PLS partition performs better than random allocations of the
observations to the groups. In particular, the permutation test returns a p-value that
can be used to test the null hypothesis that the actual REBUS-PLS partition is not
better than a random partition. Therefore, if the p-value of the test is smaller than the
significance level (e.g., 0.05), we can reject the null hypothesis concluding that there
is evidence for heterogeneity in the PLS-SEM analysis. You can find a brief review
of permutation tests in the technical appendix at the end of the chapter.

Finally, some authors (see for example Hair et al., 2018c, Chapter 5) suggest
to further corroborate the findings by crossing the class membership indicator for
the identified partition with other variables. This is usually called ex post analysis.
This step usually involves running cross tabulations, logistic regressions or other
predictive analysis (e.g., tree-based models like the CHAID algorithm or the CART
approach) to check which are the covariates (so called concomitant variables) that
can predict the class membership.
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Algorithm 7.3 The REBUS-PLS algorithm.

Input: Data on indicators for n observations; specification of the measurement and
structural models.

1: Estimate the global PLS-SEM model.
2: for i = 1 to n do
3: Compute the communality and structural residuals from the global model.
4: end for
5: Perform a hierarchical cluster analysis on the communality and structural resid-

uals
6: Using a prespecified stopping rule (e.g., Caliński-Harabasz), choose the number

of classes K to consider in the rest of the procedure.
7: while more than 5% of observations change class from one iteration to the other

do
8: for j = 1 to K do
9: Estimate the local PLS-SEM model for the jth class.

10: end for
11: for j = 1 to K do
12: for i = 1 to n do
13: Compute the communality and structural residuals for observation ith

from the jth local model.
14: Compute the closeness measure for observation ith from the jth local

model.
15: end for
16: end for
17: for i = 1 to n do
18: Assign observation ith to the class with which it has the smallest close-

ness measure value.
19: end for
20: end while
21: for j = 1 to K do
22: Estimate the final local PLS-SEM model for the jth class using the final

allocation of the observations to the classes.
23: end for

Output: Estimates of the K final local model parameters; class membership for all
observations.
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The REBUS-PLS approach has some advantages over other methods for detect-
ing the presence of unobserved heterogeneity in PLS-SEM. First, it does not require
any distributional assumption for the data, which is in line with the overall philoso-
phy of the PLS-SEM approach. Second, in forming the partition it takes into account
both the measurement and structural parts of the model. This is a nice feature because
it means that the method is capable to detect heterogeneity in either one or both of the
two components. Third, the approach does not require concomitant variables (e.g.,
socio-demographic variables) and so no external information is needed to define the
partition.

On the contrary, one limitation of REBUS-PLS is that it can be applied to PLS-
SEM models that include only reflective latent variables. This drawback derives from
the fact that the method is based on the residuals of both the measurement and struc-
tural parts. In particular, the communality residuals (those related to the measurement
model) are computed as the difference between the observed and predicted values
of the manifest variables. Thus, this computation is possible only for reflective con-
structs. This is an unfortunate restriction especially because formative measures have
attracted an increasing attention in recent years.

In Stata you can perform a REBUS-PLS analysis using the estat unobshet
postestimation command available in the plssem package3. Currently, this com-
mand includes the following options:

• method(unobshet_method) specifies the method to use for assessing the
presence of unobserved heterogeneity; currently only REBUS-PLS (rebus) and
FIMIX-PLS (fimix; see Section 7.2.2) are available,

• numclass(#), allows to set the number of classes to use in the REBUS-PLS
algorithm; minimum is 1. If none is specified, the number of classes is automat-
ically selected based on the Caliński-Harabasz stopping rule,

• maxclass(#) allows to set the maximum number of classes for the clustering
stopping rule,

• dendrogram visualizes the dendrogram for a Ward hierarchical clustering al-
gorithm of the residuals from the global model,

• maxiter(#) sets the maximum number of iterations before the REBUS-PLS
algorithm stops,

• stop(#) allows to set the stopping rule for the REBUS-PLS algorithm with
regard to the stability of the partition from one iteration to the other,

• test performs a permutation test for the GQI of a REBUS-PLS solution,

• reps(#) sets the number of replications in the permutation test on the GQI,

3Remind that in Stata a postestimation command works only if it is used right after the corresponding
main estimation command, otherwise an error will be thrown.
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FIGURE 7.3: PLS-SEM for the REBUS-PLS example described in the text.

• seed(#) sets the seed for the permutation test on the GQI to allow for repro-
ducible results,

• plot visualizes the GQI empirical distribution corresponding to the replications
generated in the permutation test,

• name(varname) allows to set the name of the variable that will contain the
final partition produced by the REBUS-PLS algorithm.

REBUS-PLS: A worked example using Stata

We now apply the REBUS-PLS method to real data collected in a cruise-experience
setting and described in Mehmetoglu (2011). The sample contains 408 respondents
who completed a questionnaire that included questions mainly about activities partic-
ipated in on the cruise, the importance of motives for spending money on a cruise, the
consideration of several cruise-experience attributes, as well as socio-demographic
features. Figure 7.3 shows the structural model that we use in this example, where,
assuming that loyalty is a key variable in the context of a cruise experience, we link
both the TANGIBLE and ATMOSPHERIC attributes (exogenous) to LOYALTY (en-
dogenous). We note that the model includes only reflective measures, as it is required
by REBUS-PLS. The questionnaire measured the three latent variables with an ordi-
nal scale (1 = completely disagree, . . . , 7 = completely agree) by asking the respon-
dents to indicate to what degree they agreed with the statements listed in Table 7.1.
The data are available in the file ch7_Cruise.dta.

After loading the data, we first estimate the global model for the whole sam-
ple using the plssem command. Note that the dataset contains some missing val-
ues (the misstable patterns command allows to check that only 88% of the
cases are complete). Therefore, to avoid wasting too much information, we use the
missing(mean) option of plssem which imputes the missing values with the
mean of the available data for each indicator before running the estimation algorithm.
The corresponding code is reported below while the results are shown in Figure 7.4.
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TABLE 7.1: Content of the latent and manifest variables for the REBUS-PLS exam-
ple in the text.

Latent variable Manifest
variable

Content

Tangible Service The staff are capable of helping me with any
questions that I have

Food The quality of the food is good
Hygiene The cleaning of the cabins is satisfactory

Atmospheric Lively The ship has an atmosphere full of warmth
Lighting The lighting contributes to the warm atmo-

sphere

Loyalty Positive talk I shall talk positively about this cruise ship
Recommend I shall recommend my friends to travel with

this cruise ship

1 use ch7_Cruise, clear

2 misstable patterns

3 plssem (TANGIBLE > Service Food Hygiene) ///
4 (ATMOSPHERIC > Lively Lighting) ///
5 (LOYALTY > Positive_talk Recommend), ///
6 structural(LOYALTY TANGIBLE ATMOSPHERIC) ///
7 missing(mean)

As we discussed in Chapter 4, the results for the global model show that conver-
gent validity, reliability and discriminant validity are attained. The estimates of the
structural model parameters also provide a significant evidence that the tangible and
atmospheric attributes have nearly equal positive effects on loyalty. Finally, note that
even if the structural model explains practically 50% of the loyalty variability, there
is still another 50% of unexplained variation, some of which may be attributable to
unobserved heterogeneity. Therefore, we now proceed to identify the presence of ho-
mogenous classes in the data, which may help the cruise businesses to improve their
marketing policies.

The following code performs a REBUS-PLS analysis on the cruise data choosing
automatically the number of groups through a Ward’s algorithm with the Caliński-
Harabasz stopping rule. In addition, a permutation test with 1000 replications is run
and a graphical representation of the empirical GQI distribution is provided. The
output is shown in Figures 7.5 and 7.6.
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Partial least squares SEM Number of obs = 408
Average R-squared = 0.49259
Average communality = 0.75189

Weighting scheme: path Absolute GoF = 0.60858
Tolerance: 1.00e-07 Relative GoF = 0.97660
Initialization: indsum Average redundancy = 0.43837

Measurement model - Standardized loadings
-----------------------------------------------------------

| Reflective: Reflective: Reflective:
| TANGIBLE ATMOSPHERIC LOYALTY

--------------+--------------------------------------------
Service | 0.726

Food | 0.846
Hygiene | 0.821
Lively | 0.900

Lighting | 0.870
Positive_t~k | 0.951

Recommend | 0.936
--------------+--------------------------------------------

Cronbach | 0.717 0.724 0.877
DG | 0.841 0.878 0.942

rho_A | 0.733 0.732 0.887
-----------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)
-----------------------------------------------------------

| TANGIBLE ATMOSPHERIC LOYALTY
--------------+--------------------------------------------

TANGIBLE | 1.000 0.279 0.385
ATMOSPHERIC | 0.279 1.000 0.368

LOYALTY | 0.385 0.368 1.000
--------------+--------------------------------------------

AVE | 0.639 0.783 0.890
-----------------------------------------------------------

Structural model - Standardized path coefficients
-----------------------------

Variable | LOYALTY
--------------+--------------

TANGIBLE | 0.416
| (0.000)

ATMOSPHERIC | 0.387
| (0.000)

--------------+--------------
r2_a | 0.490

-----------------------------
p-values in parentheses

FIGURE 7.4: Results for the estimation with plssem of the (global) model reported
in Figure 7.3.

1 set matsize 1000
2 estat unobshet, test reps(1000) seed(123456) plot ///
3 method(rebus)

Before discussing the results, we call your attention on the first line in the pre-
vious chunk. This code is necessary because estat unobshet internally creates
some big matrices of temporary results that may be too large for the default maxi-
mum matrix size in Stata, which is 400 columns. If you forget to set it, you will get
a matsize too small error message and the execution will stop.

The results of REBUS-PLS show that two classes have been automatically iden-
tified, with the first one that contains 259 observations (i.e., 63% of the sample) and
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Response based unit segmentation (REBUS) solution

Weighting scheme: path
Tolerance: 1.00e-07
Initialization: indsum
Number of REBUS iterations: 7
Group Quality Index (GQI): 0.66962

REBUS classes
------------------------------------------------------------

| Global Class 1 Class 2
------------------------+-----------------------------------

Observations | 408 259 149
Percentage | 100.000 63.480 36.520

GoF | 0.609 0.673 0.664
------------------------------------------------------------

Loadings
------------------------------------------------------------

| Global Class 1 Class 2
------------------------+-----------------------------------

Service | 0.726 0.764 0.689
Food | 0.846 0.764 0.906

Hygiene | 0.821 0.778 0.881
Lively | 0.900 0.897 0.878

Lighting | 0.870 0.892 0.834
Positive_talk | 0.951 0.916 0.904

Recommend | 0.936 0.904 0.856
------------------------------------------------------------

Path coefficients
------------------------------------------------------------

| Global Class 1 Class 2
------------------------+-----------------------------------

TANGIBLE -> LOYALTY | 0.416 0.566 0.328
ATMOSPHERIC -> LOYALTY | 0.387 0.350 0.546
------------------------------------------------------------

Permutation test
------------------------------------

| Value
------------------------+-----------

Replications | 1000
P-value | 0.000

------------------------------------

FIGURE 7.5: Results of the REBUS-PLS algorithm for the model reported in Fig-
ure 7.3.
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FIGURE 7.6: PLS-SEM for the REBUS-PLS example described in the text.

the second the remaining 149 (37% of the sample). The table of loadings shows that
the two classes are similar for what regards the measurement model, while the ta-
ble of path coefficients shows more noticeable differences. In particular, for the first
class, in contrast to the atmospheric attribute, the tangible attribute has a stronger ef-
fect on loyalty. Further, this effect is larger in this class than it is for both the second
class and the global model. The opposite situation holds instead for the second class,
where the atmospheric attribute has a stronger effect on loyalty than in the first class.

The goodness of the partition can be assessed using the GQI together with the
corresponding permutation test. By comparing the GQI (0.6696) with the GoF for
the global model (0.6086) we conclude that the REBUS-PLS solution provides ev-
idence for unexplained heterogeneity. The GoF measure for the global model is in
fact equivalent to the GQI for a partition that includes a single class, so the fact that
the former is larger implies that the two-class partition found by the algorithm seems
to provide a better explanation of the variability in the data compared to the global
model. Moreover, the permutation test for the GQI has a very small p-value (reported
as 0.000) confirming the goodness of the partition.

To complete the analysis, we perform a multi-sample analysis (see Chapter 6) us-
ing the class membership generated by estat unobshet (by default this column
is called rebus_class). The results, reported in Figures 7.7 and 7.8, lend support
in favour of the two-class partition as the bootstrap tests for the difference in the path
coefficients have p-values below the conventional 0.05 level.
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1 plssem (TANGIBLE > Service Food Hygiene) ///
2 (ATMOSPHERIC > Lively Lighting) ///
3 (LOYALTY > Positive_talk Recommend), ///
4 structural(LOYALTY TANGIBLE ATMOSPHERIC) ///
5 group(rebus_class, method(bootstrap) ///
6 reps(1000) plot seed(123456)) ///
7 missing(mean)

Partial least squares SEM

Weighting scheme: path
Tolerance: 1.00e-07
Initialization: indsum

Multigroup comparison (rebus_class) - Bootstrap t-test
--------------------------------------------------------------------------------------------------

Measurement effect | Global Group_1 Group_2 Abs_Diff Statistic P-value
--------------------------+-----------------------------------------------------------------------

TANGIBLE -> Service | 0.726 0.764 0.689 0.075 1.357 0.176
TANGIBLE -> Food | 0.846 0.764 0.906 0.142 2.614 0.009

TANGIBLE -> Hygiene | 0.821 0.778 0.881 0.103 1.669 0.096
ATMOSPHERIC -> Lively | 0.900 0.897 0.878 0.019 0.006 0.995

ATMOSPHERIC -> Lighting | 0.870 0.892 0.834 0.058 1.979 0.049
LOYALTY -> Positive_talk | 0.951 0.916 0.904 0.012 0.611 0.542

LOYALTY -> Recommend | 0.936 0.904 0.856 0.047 2.181 0.030
--------------------------------------------------------------------------------------------------
number of replications: 1000
group labels:

Group 1: 1
Group 2: 2

group sizes:
Group 1: 259
Group 2: 149

Multigroup comparison (rebus_class) - Bootstrap t-test
------------------------------------------------------------------------------------------------

Structural effect | Global Group_1 Group_2 Abs_Diff Statistic P-value
------------------------+-----------------------------------------------------------------------

TANGIBLE -> LOYALTY | 0.416 0.566 0.328 0.238 2.140 0.033
ATMOSPHERIC -> LOYALTY | 0.387 0.350 0.546 0.196 1.980 0.048

------------------------------------------------------------------------------------------------
number of replications: 1000
group labels:

Group 1: 1
Group 2: 2

group sizes:
Group 1: 259
Group 2: 149

FIGURE 7.7: Results of the multi-group analysis using the partition produced by the
REBUS-PLS algorithm for the model reported in Figure 7.3.

7.2.2 Finite mixture PLS (FIMIX-PLS)

Another popular approach for detecting unobserved heterogeneity in a PLS-SEM is
FIMIX-PLS (Hahn et al., 2002; Ringle et al., 2010; Becker et al., 2013), which rep-
resents the extension to PLS-SEM of the finite mixture model approach introduced
by Jedidi et al. (1997a,b) in the CB-SEM context. FIMIX-PLS is based on more
restrictive assumptions than REBUS-PLS. Indeed, it assumes that the unobserved
heterogeneity involves only the structural part of the model and not the measurement
part, which is then assumed to be fixed across the latent segments. Furthermore, it as-
sumes that the endogenous latent variables are modelled as a finite mixture of normal
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FIGURE 7.8: Results of the multi-group analysis using the partition produced by
the REBUS-PLS algorithm for the model reported in Figure 7.3 (only the structural
model coefficients are reported).

distributions. This is to say that within each class the endogenous latent variables are
assumed to be normally distributed.

As for REBUS-PLS, the first step in FIMIX-PLS is to estimate the global PLS-
SEM model using the entire sample. Then, based on the estimated latent scores from
the global model, FIMIX-PLS uses the expectation-maximization (EM) algorithm to
estimate the parameters of the mixture components4. Finally, the algorithm computes
the class posterior probabilities, that is the probabilities for each observation to be-
long to the different classes5. It follows that an observation will be allocated to the
class with the largest posterior probability. Once the classes have been identified, the
final step is to estimate the segment-specific models. A multi-sample analysis may
be further performed to assess the statistical significance of the differences between
the local model parameters (see Section 6.4). The FIMIX-PLS steps are detailed in
Algorithm 7.4.

Different from REBUS-PLS, which first performs a hierarchical cluster analysis
to determine the number of classes K to use, in FIMIX-PLS the number of classes
is not chosen automatically by the algorithm. A typical approach consists in running
FIMIX-PLS with different values of K (usually all the values in between 1 and a
given maximum Kmax) and then comparing the results using some criteria such as

4More details on finite mixture models are available in Section 2.3.2.
5The class posterior probabilities should not be confused with the class marginal probabilities, which

instead are represented by the estimates of the mixture weights.
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Algorithm 7.4 The FIMIX-PLS method using the EM algorithm.

Input: Data on indicators for n observations; specification of the measurement and
structural models; number of latent classes K; stopping criterion δ ; maximum
number of iterations itermax; number of algorithm restarts R.

1: Estimate the global PLS-SEM model.
2: for r = 1 to R do
3: Set random starting values for the posterior mixture proportions Pik with i =

1, . . . ,n and k = 1, . . . ,K.
4: Set the current log-likelihood value loglikcurr to a given number V and the

log-likelihood change to ∆.
5: Perform an initial maximization step (M-step) to get initial parameter esti-

mates.
6: while (iteration number is smaller than itermax and ∆≥ δ ) do
7: Perform the expectation step (E-step) producing updated values of the

posterior mixture proportions Pik, for every i = 1, . . . ,n and k = 1, . . . ,K.
8: Set the previous log-likelihood value loglikprev to the current one.
9: Perform the M-step to get updated parameter estimates.

10: Compute the updated current log-likelihood value.
11: Set ∆ = loglikcurr− loglikprev.
12: end while
13: end for
14: Select as the best solution that with the largest log-likelihood value.
15: Compute the information and classification criteria.
16: for i = 1 to n do
17: Assign observation ith to the class with the largest posterior probability Pik.
18: end for
19: for j = 1 to K do
20: Estimate the final local PLS-SEM model for the jth class using the final

allocation of the observations to the classes.
21: end for

Output: Estimates of the K final local model parameters; class membership for all
observations; likelihood-based information criterion and entropy measures.
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AIC and BIC (see Section 2.3.2). Other popular indexes used in FIMIX-PLS are
(Sarstedt et al., 2011):

• Modified AIC with factor 3 (AIC3) and 4 (AIC4), which use a penalization factor
of 3 and 4 respectively instead of the usual factor 2 as in equation (2.21). These
indexes, introduced by Bozdogan (1994), allow to reduce the tendency of the
AIC index to overspecify the correct number of segments.

• Consistent AIC (CAIC), developed by Bozdogan (1987), which is more conser-
vative than the AIC and prefers models with fewer classes.

• Minimum description length with factor 5 (MDL5), developed by Liang et al.
(1992). This criterion has shown weak performance in simulations because it
tends to underestimate the actual number of classes.

• Entropy criterion (EN), which is a class separation index, that is a measure of
how well the class-specific component densities of the mixture are separated
(Ramaswamy et al., 1993). This index is bounded between 0 and 1. Values close
to 1 indicates that the classes are well separated, while values of the index close
to 0 indicate no class separation. Celeux and Soromenho (1996) proposed a mod-
ification of this index, the normed (or normalized) entropy criterion (NEC), but
this has some drawbacks, and so it is less frequently used in practice.

Hair et al. (2016) provide the following suggestions to select the number of
classes in FIMIX-PLS:

• If AIC3 and CAIC agree in indicating the same number of segments, choose this
as the best solution. Differently, consider AIC3 (or AIC4) jointly with BIC.

• The entropy criterion EN should be larger than 0.5.

• Check that the solution under examination produces segments with reasonable
sample sizes. In particular, if you get some classes that contain only few obser-
vations, this may indicate that you have chosen a value of K that is too large.

• Take into considerations a priori information and also indications coming from
the theory related to the problem you are analysing.

Despite the availability of so many indexes, the selection of the number of latent
classes remains a difficult and generally unresolved problem, which requires knowl-
edge of the problem and experience in the technicalities of mixture models.

A further practical aspect to take into account when running FIMIX-PLS is that it
is based on the EM algorithm. As we already highlighted in Chapter 2, EM represents
a general approach for fitting mixture models, but it is not free from criticisms. More
specifically, even if the EM algorithm always reaches convergence, it has a tendency
to get stuck in local optima, especially when the model includes a large number of
parameters. One way to limit this problem is to rerun the algorithm a given number
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of times (in the literature it is suggested 10) and pick the best solution, that is the
solution with the largest value of the log-likelihood.

Even if FIMIX-PLS represents an important advancement in the treatment of
unobserved heterogeneity in PLS-SEM, it also has limitations. First, FIMIX-PLS as-
sumes that heterogeneity only affects the structural model, while the measurement
model is fixed during the iterations. In fact, the first step of the algorithm involves
the estimation of the global model, whose latent scores are then used as the input of
the next step. This implies that, in all local models, the outer weights are constant and
equal to those obtained for the global model. As suggested by Ringle et al. (2010),
a strategy to solve this problem consists in looking for external (observed) variables
that are able to reproduce the classes detected by the FIMIX-PLS algorithm. Then, a
multi-group analysis based on these variables is performed leading to class-specific
measurement and structural models. Unfortunately, the chances to identify such vari-
ables in practice are few. A second limitation of FIMIX-PLS is that it assumes that
within each class the endogenous latent variables are normally distributed. This is a
strong distributional assumption, which is unlikely to hold in practice and that goes
in opposite direction with respect to the distribution-free perspective at the base of
PLS-SEM.

In Stata you can perform a FIMIX-PLS analysis using the estat unobshet
postestimation command setting the method() option to fimix (the default
method is rebus6). This command provides the following options:

• numclass(#), allows to set the number of classes to use in the FIMIX-PLS
algorithm; minimum is 1.

• maxiter(#) sets the maximum number of iterations before the FIMIX-PLS
algorithm stops; the default is 30000 iterations.

• stop(#) allows to set the stopping rule for the FIMIX-PLS algorithm with
regard to the log-likelihood of the underlying finite mixture model.

• restart(#) sets the number of times the algorithm will be executed to avoid
local maxima; the default is 10 restarts.

• seed(#) sets the seed to allow for reproducible results.

• name(varname) allows to set the name of the variable that will contain the
final partition produced by the FIMIX-PLS algorithm.

• groups(range) this option allows to pass a list of number of classes to use;
the results of the different solutions are then compared by means of the indexes
discussed above, namely AIC, AIC3, AIC3, BIC, CAIC, HQ, MDL5, EN, NFI
and NEC7.

6Currently the FIMIX-PLS option in plssem is still experimental and under testing.
7HQ refers to the Hannan-Quinn information criterion (Hannan and Quinn, 1979), while NFI corre-

sponds to the non-fuzzy classification criterion developed by Roubens (1978).



266 7 Detecting Unobserved Heterogeneity in PLS-SEM

7.2.3 Other methods

While REBUS-PLS and FIMIX-PLS are currently the prominent methods to detect
unobserved heterogeneity in the PLS-SEM framework, other approaches have been
introduced in the literature for the same purpose. In this section we briefly review two
of them, namely the path modelling segmentation tree algorithm, also known as the
Pathmox algorithm, and the genetic algorithm segmentation for PLS-SEM method,
also known as PLS-GAS.

7.2.3.1 Path modelling segmentation tree algorithm (Pathmox)

The Pathmox8 algorithm, introduced in the literature by Sanchez and Aluja (2006)
and further explored in Lamberti et al. (2016, 2017), adopts a binary segmentation
approach to produce a tree structure with different path models in each of the final
nodes. More specifically, the algorithm starts by fitting the global PLS-SEM model
to the entire sample and then proceeds looking for the optimal split that provides path
models that are as different as possible. To split the observations in groups, the Path-
mox algorithm uses external concomitant (typically socio-demographic) variables.
The optimal split is determined by calculating all possible binary splits obtainable
from the categories of the concomitant variables, thus dividing the parent node into
two segments. The generated child nodes (i.e., the corresponding local models) are
then compared first with regards to the structural parts. In particular, an F-test for
comparing the path coefficients of the child nodes is used. The partition showing the
most significant (i.e., smaller) p-value is considered a candidate for the optimal split.
The same process is then repeated for the categories of each concomitant variable,
finally identifying as optimal the split corresponding to the minimum p-value among
all candidates. The algorithm stops when the F-tests produce non-significant results.

The Pathmox algorithm is a sensible approach for detecting unobserved hetero-
geneity, but it has several limitations. First, it requires using external observed vari-
ables to classify the observations. On one side this implies that the partition produced
by Pathmox does not involve the structural relationships directly, but it substantially
comes from external information. Moreover, the ability of the algorithm to discover
the heterogeneity in the data is conditioned on the availability of such external vari-
ables. If none are available in your study, you will not be able to apply the method.
Second, as in FIMIX-PLS, the Pathmox algorithm only assesses the presence of het-
erogeneity in the structural model, disregarding what happens in the measurement
part. Finally, the F-tests used for splitting presuppose that the error terms in the struc-
tural relationships are normally distributed with equal variance, assumptions that are
rarely met in practice.

As for the software, currently there is only one R package that implements the
Pathmox approach, the pathmox package (Sanchez and Aluja, 2013).

8As the authors of the method suggest, “mox” means “divide into two” in the Aztec language.
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7.2.3.2 Partial least squares genetic algorithm segmentation (PLS-GAS)

The last approach we present for detecting unobserved heterogeneity in PLS-SEM is
called partial least squares genetic algorithm segmentation, or simply PLS-GAS. Ge-
netic algorithms (GAs) are a family of computational models inspired by evolution
that belong to the larger class of evolutionary algorithms. These algorithms encode a
potential solution to a specific problem on a simple chromosome-like data structure
and apply operators such as mutation, crossover and selection to these structures so
as to preserve critical information (for an introduction to GAs see Mitchell, 1996). In
GAs, a population of candidate solutions (usually called individuals) to an optimiza-
tion problem is evolved toward better solutions. The evolution starts from a randomly
generated population of individuals, and in each generation, the fitness of every in-
dividual is evaluated. The fitness is usually the value of the objective function in the
optimization problem being solved by the GA. Genetic algorithms are often viewed
as function optimizers, although the range of problems to which they have been ap-
plied is much broader. Introduced by Ringle et al. (2013, 2014), PLS-GAS uses GAs
to identify the best hidden partition of the data in a PLS-SEM analysis. PLS-GAS
aims at finding the partition that minimizes the error variance of the PLS-SEM in the
detected classes. Thus, its objective function corresponds to the sum of the squared
residuals for both measurement and structural parts from all segments. PLS-GAS in-
volves two stages. Following Cowgill et al. (1999), in the first stage a GA is used to
identify a nearly optimal partition of the data. Since it is not guaranteed that the first
stage provides the global optimum, the second stage refines the first stage solution by
locally improving it. This is achieved by adopting the same idea as in REBUS-PLS,
that is checking whether the partition might improve (i.e., produces a better objective
function value) by reassigning each observation to a different segment based on its
“distance” from each local model9.

The main advantages of PLS-GAS are that it is a distribution-free approach and
that, differently from REBUS-PLS, it can be applied even when formative constructs
are included in the model10. However, the major drawback of the method is repre-
sented by the intense computational burden it requires.

At the time of writing, the only software implementing the PLS-GAS proce-
dure is some GAUSS code made available by the developer of the algorithm11 and
a Python package developed by Seman (2016)12. Unfortunately, using them requires
advanced programming skills from the side of the user.

9Note that PLS-GAS and REBUS-PLS differ in the way they measure the distance of each obser-
vations from each local model: in REBUS-PLS the closeness measure is used, while in PLS-GAS this
corresponds to the algorithm’s objective function, that is the sum of squared residuals.

10This is because formative constructs are not included in the objective function of PLS-GAS.
11You can download the GAUSS code for PLS-GAS from https://www.pls-sem.net/

downloads/.
12The GitHub repository for the package is https://github.com/lseman/pylspm.

https://www.pls-sem.net/
https://www.pls-sem.net/
https://github.com/
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7.3 Summary
Heterogeneity in a statistical analysis is usually classified as either observed or un-
observed. In the former case we can attribute the variability to quantities we have
been able to measure (i.e., observed variables), while the latter refers to situations
where the variability cannot be ascribed to any measured quantity. The easiest way
of dealing with observed heterogeneity is to split the data into groups according to
the values of the measured variables (age, gender, etc.) and perform group-specific
analyses. Accounting for unobserved heterogeneity is instead more challenging, and
a variety of approaches for detecting it have been developed so far (e.g., cluster anal-
ysis and finite mixture models). The presence of unobserved heterogeneity is also
a major concern in PLS-SEM, because failing to account for it may lead to biased
results and hence to potentially harmful decisions. Therefore, different methods for
detecting it have been introduced in the last years, the most prominent ones being
REBUS-PLS and FIMIX-PLS. Each of these methods has advantages and disadvan-
tages, so that none of them has shown a clear superiority over the others. No matter
which method we use, discovering the presence of unobserved heterogeneity in a
PLS-SEM framework remains an arduous problem that requires a high level of tech-
nical expertise.

Appendix: R Commands
At the time of writing of this book only one of the R packages currently available for
PLS-SEM provides some facilities for assessing the presence of unobserved hetero-
geneity, the plspm package. In particular, the package includes the rebus.pls()
function for performing a response-based unit segmentation (REBUS-PLS) analysis.
Our presentation here follows that available in Chapter 9 of Sanchez (2013).

The rebus.pls() performs all the steps we described in Section 7.2.1, that is
estimation of the global model and iterative assignment of the observations to the K
local models until convergence. The function requires a single mandatory argument,
an object of class plspm as returned by the plspm() function (see page 141).
In addition, the function accepts the argument stop.crit indicating the stopping
criterion to apply (percentage of units changing class from one iteration to the other),
and iter.max that represents the maximum number of iterations. The following
code loads the data, applies mean imputation and fits the global model (output not
reported):

1 if (!require(haven, quietly = TRUE)) {
2 install.packages("haven")
3 }
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4 cruise_data <- as.data.frame(read_stata(file =
5 file.path(path_data, "ch7_Cruise.dta")))

6 # mean imputation
7 if (!require(mice, quietly = TRUE)) {
8 install.packages("mice")
9 }

10 library(mice)

11 cruise_imp <- mice(cruise_data, method = "mean",
12 print = FALSE)
13 cruise_comp <- complete(cruise_imp)

14 library(plspm)

15 TANGIBLE <- c(0, 0, 0)
16 ATMOSPHERIC <- c(0, 0, 0)
17 LOYALTY <- c(1, 1, 0)
18 cruise_path <- rbind(TANGIBLE, ATMOSPHERIC, LOYALTY)
19 colnames(cruise_path) <- rownames(cruise_path)
20 cruise_blocks <- list(c(2, 4, 5), c(1, 3), c(6, 7))
21 cruise_modes <- rep("A", 3)

22 cruise_plspm <- plspm(Data = cruise_comp,
23 path_matrix = cruise_path,
24 blocks = cruise_blocks,
25 modes = cruise_modes,
26 scheme = "path", tol = 1e-7)
27 # summary(cruise_plspm)

The global model is then passed to the rebus.pls() function. Note that
rebus.pls() produces a dendrogram of the outer and inner residuals based on
which the user must interactively provide the number of groups to use in the next
step of the REBUS-PLS algorithm. For our example we decide to use two groups:

1 cruise_rebus <- rebus.pls(cruise_plspm, stop.crit = 0.005,
2 iter.max = 100)
3 cruise_rebus

RESPONSE-BASED UNIT SEGMENTATION (REBUS)
IN PARTIAL LEAST SQUARES PATH MODELING
----------------------------------------------

Parameters Specification
Number of segments: 2
Stop criterion: 0.005
Max number of iter: 100
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REBUS solution (on standardized data)
Number of iterations: 7
Rate of unit change: 0.004901961
Group Quality Index: 0.6695858

REBUS Segments
Class.1 Class.2

number.units 259 149
proportions(%) 63 37

----------------------------------------------
$path.coef

Class.1 Class.2
TANGIBLE->LOYALTY 0.5658 0.3282
ATMOSPHERIC->LOYALTY 0.3500 0.5457

----------------------------------------------
$loadings

Class.1 Class.2
Service 0.7643 0.6895
Food 0.7644 0.9063
Hygiene 0.7782 0.8808
Lively 0.8973 0.8781
Lighting 0.8925 0.8341
Positive_talk 0.9163 0.9041
Recommend 0.9038 0.8564

----------------------------------------------
$quality

Class.1 Class.2
Aver.Com
Com.TANGIBLE 0.5913396 0.6908425
Com.ATMOSPHERIC 0.8008456 0.7333647
Com.LOYALTY 0.8282901 0.7754492

Aver.Redu
Red.LOYALTY 0.5218247 0.4696579

R2
R2.LOYALTY 0.6300024 0.6056591

GoF
GoF 0.6828628 0.6663938

All the results match with those reported by Stata. The object returned by the
rebus.pls() function also includes an element called segments, which provide
the identified group membership for each observation. This can be used to perform
further analyses.

Next, the local.models() function can be used to extract the local models,
that is the fitted models for the chosen number of groups. This function returns a list
with the results of the global model as well as those of each local model. The local
models can be inspected using the same methods as for plspm objects.

Finally, to assess the quality of the local models obtained by REBUS-PLS, we
can use the rebus.test() function, that performs a permutation test for com-
paring each pair of groups. The function rebus.pls() requires as arguments an
object of class plspm corresponding to the global model and the object returned
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by rebus.pls(). The number of permutations performed by rebus.test() in
each test is fixed at 100. The output produced by rebus.test() is a list whose
elements are the test results for the comparison of each pair of groups. The following
code performs the permutation test for the example above:

1 cruise_test <- rebus.test(cruise_plspm, cruise_rebus)
2 cruise_test$test_1_2

$paths
Class.1 Class.2 diff.abs p.value sig.05

TANGIBLE->LOYALTY 0.5658 0.3282 0.2376 0.0099 yes
ATMOSPHERIC->LOYALTY 0.3500 0.5457 0.1957 0.0099 yes

$loadings
Class.1 Class.2 diff.abs p.value sig.05

Service 0.7393 0.7393 0.0748 0.0099 yes
Food 0.8672 0.8672 0.1419 0.0099 yes
Hygiene 0.8507 0.8507 0.1026 0.0099 yes
Lively 0.8902 0.8902 0.0192 0.0099 yes
Lighting 0.8571 0.8571 0.0584 0.0099 yes
Positive_talk 0.9505 0.9505 0.0122 0.0099 yes
Recommend 0.9323 0.9323 0.0474 0.0099 yes

$gof
Class.1 Class.2 diff.abs p.value sig.05

1 0.6133 0.6133 0.0093 0.0099 yes

Appendix: Technical Details
The math behind the REBUS-PLS algorithm

The core of the REBUS-PLS algorithm is represented by the calculation of the dis-
tance between each observation and the local models corresponding to the latent
classes. This distance is usually referred to as the closeness measure (CM). In this
appendix we provide the technical definition of the CM as well as that of the group
quality index (GQI), which is used to assess the quality of a REBUS-PLS partition.
The following presentation follows that by Trinchera (2007, Chapter 5).

Since the definition of CM used in REBUS-PLS is based on the same idea behind
the goodness-of-fit (GoF) index, we first remind the definition of the latter, that we
introduced in Chapter 4. The GoF index is defined as

GoF =

√
communality×R2

=

√√√√√∑
Q
q=1 ∑

Pq
p=1 cor2(xxxpq,ξξξ q)

∑
Q
q=1 Pq

×
∑

J
j=1 R2

(
ξξξ j,{ξξξ q’s explaining ξξξ j}

)

J
. (7.1)
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The left term inside the square root, which corresponds to the average communality,
provides an assessment of the measurement model goodness, while the right term,
corresponding to the average R-squared, represents an assessment of the structural
model quality.

The CM used in REBUS-PLS follows the same idea as the global GoF index
since it is defined using both the measurement and structural models, and it is based
on the residuals for both parts of the model, that is the measurement (or com-
munality) and structural residuals. Measurement residuals are computed for each
manifest variable in the model13, while structural residuals are defined for each en-
dogenous latent variable. More specifically, the measurement residual eipqk of the
ith observation for the kth local model (i.e., the model estimated using observations
allocated to the kth latent class), is defined as

eipqk = xipq− x̂ipqk, (7.2)

where xipq is the observed value of the pth manifest variable defined by the qth
latent variable for the ith observation, while x̂ipqk is the corresponding predicted value
obtained from the kth local model. In particular, x̂ipqk is computed as

x̂ipqk = λ̂pqkξiqk, (7.3)

with λ̂pqk denoting the estimated class-specific loading associated with the pth mani-
fest variable of the qth block in the kth latent class, and ξiqk being the score of the qth
latent variable for the ith unit. The latent variable score ξiqk is computed using the
weights ŵpqk estimated by performing a PLS path model on observations belonging
to the kth class, that is

ξiqk =
Pq

∑
p=1

ŵpqkxipq, (7.4)

The structural residual fi jk of the ith observation for the jth endogenous latent
variable in the kth local model is defined as

fi jk = ξi jk− ξ̂i jk, (7.5)

where ξi jk is computed according to (7.4) and ξ̂i jk is instead obtained as

ξ̂i jk = ∑
{`:ξ` explains ξ j}

β̂` jkξi jk, (7.6)

with β̂` jk representing the estimated path coefficient from the kth local model for the
`th exogenous latent variable linked to the jth endogenous latent variable.

Given the measurement and structural residuals (7.2) and (7.5), the closeness
measure CMik of the ith unit to the kth local model is defined as

CMik =

√√√√√√
∑

Q
q=1 ∑

Pq
p=1

[
e2

ipqk/com(xxxpq,ξξξ qk)
]

∑
n
i=1 ∑

Q
q=1 ∑

Pq
p=1

[
e2

ipqk/com(xxxpq,ξξξ qk)
]

(n−2)

×
∑

J
j=1

[
f 2
i jk/R2

(
ξξξ j,{ξξξ `’s explaining ξξξ j}

)]

∑
n
i=1 ∑

J
j=1

[
f 2
i jk/R2(ξξξ j ,{ξξξ `’s explaining ξξξ j})

]

(n−2)

, (7.7)

13Remember that REBUS-PLS can be used only for models based on reflective constructs.
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where com(xxxpq) denotes the communality for the pth manifest variable in the qth
block from the kth local model (for the definition of communalities, see Section 4.2).

Comparing expressions (7.1) and (7.7), we note the similarity between the GoF
measure and CM, since they both take into account the quality of the measurement
and structural parts. A feature worth of notice for the CM is that all residuals are
computed for each observation with respect to each local model, regardless of the
membership of the observation. Therefore, an observation will be allocated to the
kth latent class by the REBUS-PLS algorithm if its residuals with respect the kth
local model are smaller than those corresponding to the other (K−1) local models.

The GQI can be used to assess whether the K local models identified by the
REBUS-PLS algorithm perform better than the global model. In a sense it represents
a generalization of the GoF index and it is based on the model’s residuals in a similar
way as the CM.

To understand the definition of the GQI it is useful to start recalling that the R-
squared index for a linear regression model can be computed as one minus the ratio
between the residual sum of squares (RSS) and the total sum of squares (TSS), that
is

R2 = 1− RSS
T SS

= 1− ∑
n
i=1 (Yi− Ŷi)

2

∑
n
i=1 (Yi−Y )2

= 1− ∑
n
i=1 e2

i

∑
n
i=1 (Yi−Y )2

, (7.8)

where ei = Yi − Ŷi is the residual for the ith observation. Using this fact, we can
reformulate the GoF index (7.1) in terms of residuals as

GoF =

√√√√√√
∑

Q
q=1 ∑

Pq
p=1

(
1− ∑

n
i=1 e2

ipq

∑
n
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)

∑
Q
q=1 Pq

×
∑

J
j=1

(
1− ∑

n
i=1 f 2

i j

∑
n
i=1 (ξi j−ξ j)

2

)

J
. (7.9)

Denoting the total number of manifest variables in the model as P, that is P =

∑
Q
q=1 Pq, the GoF can be finally written as

GoF =

√√√√ 1
P

Q

∑
q=1

Pq

∑
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)
. (7.10)

Then, if we now consider K latent classes including nk observations each, instead
of just one as in (7.10), we arrive at the definition of the GQI given by

GQI =

√√√√ K

∑
k=1

nk

n

[
1
P

Q

∑
q=1

Pq

∑
p=1

(
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2

)]
. (7.11)

Note that when K = 1, that is when we consider a single group including all the ob-
servations, the GQI reduces to the GoF measure. This allows to compare the GQI
with the GoF to assess the quality of the REBUS-PLS partition. In particular, simu-
lation studies have shown (see Trinchera, 2007, Section 6.1.3) that a GQI which is
25% larger than the global GoF provides a reasonable threshold to use in practice for
preferring the solution detected by the REBUS-PLS over the global model.
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Permutation tests

In statistics it is common to use the sample data to compute a statistic of interest S
which is then used for testing a certain null hypothesis H0. Typically, values of S that
are too extreme from the point of view of H0 are considered as providing evidence
against the null hypothesis, in favour of the alternative hypothesis. In this classical
framework, the assessment of whether the value of S must be considered extreme
or not is performed using the so called null distribution of S, that is the proba-
bility distribution of S under the assumption that H0 is true. Unfortunately, in most
practical situations the null distribution of S is not available analytically, because it
is unknown or it is too difficult to be derived. In these cases resampling methods
turn out to be very useful, because they allow to approximate the null distribution
of a statistic of interest by repeatedly drawing subsets of the data from the original
sample. Common resampling methods are bootstrapping, jackknifing and permuta-
tion tests (Good, 2006) and they differ in the way observations are drawn from the
original sample. Here we briefly focus on permutation tests14.

Permutation tests have been introduced by Fisher in the early 1930s as a general
method of testing hypotheses based on permuting the data in ways that do not change
the distribution under the null hypothesis (i.e., ways that are consistent with the null
hypothesis of interest). Permutation tests do not require any standard parametric as-
sumptions such as normality of the data.

Given that the general theory of permutation tests is far beyond the scope of this
book, we only illustrate how these tests work when one is interested in checking
whether two populations have the same mean value15. Clearly, a parametric t-test
could be used here, but if the samples are small, the normality assumption may not
be easy to defend. Suppose we have two samples x1,x2, . . . ,xm and y1,y2, . . . ,yn with
corresponding sample means x and y. For example, these could be measurements of
a given variable for a sample of males and females. Suppose also that to test the null
hypothesis H0 : µX = µY we decide to use the test statistic

t =
x− y√

SE2
x +SE2

y

where SEx and SEy are the standard errors of the sample mean for the two samples.
Note that there is nothing special about this particular statistic, so that we could

use any other statistics that measure a departure from the null hypothesis. We denote
with t∗ the statistic value corresponding to the observed data. Now the crucial point:
if it is true that the population distributions are equal (i.e., they have the same mean,
as well as everything else), it should not make any difference from which one of the
two each observation has been taken. This is like saying that the (m+n) observations
come from a single population and the way they were divided into the two groups
(e.g., males and females) was fundamentally random, with any other division being

14The bootstrap is briefly presented in Section 2.1.
15In this example we assume that the two populations have distributions that may differ only with

respect to the mean, while all other features (spread, shape, etc.) are the same.
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equally likely. Then, to test the null hypothesis of no mean difference, we compute
the statistic value corresponding to every possible way to split the data into two sam-
ples of sizes m and n. That is, we permute the combined sample (x1, . . . ,xm,y1, . . . ,yn)
in all possible ways. These permutations are clearly consistent with the null hypoth-
esis that there are no group differences. Therefore, the distribution of the test statistic
values obtained in this way provides the (exact) null distribution. From an opera-
tional point of view, enumerating all the possible permutations is unfeasible unless
the sample is small enough, and thus a sampling approach is taken. In our example
this means that we randomly assign m observations of the combined sample to the
first group and the remaining n to the second one, repeating the procedure many times
(usually at least 1000). Finally, a permutation p-value is computed as the fraction
of test statistic values that disagree with the null hypothesis. The way the permuta-
tion p-value is computed depends on the specific alternative hypothesis we choose.
In particular, for the example on the mean difference:

• if H0 is tested against H1 : µX > µY , the permutation p-value corresponds to
the fraction of statistic values that are greater than or equal to the observed test
statistic t∗,

• if H0 is tested against H1 : µX < µY , the permutation p-value corresponds to the
fraction of statistic values that are lower than or equal to the observed test statistic
t∗,

• if H0 is tested against the two-sided H1 : µX 6= µY , the permutation p-value is
computed as 2 times the smaller between the one-sided p-values above (rounding
the result to 1, if necessary).

Before concluding, we stress that the choice of what to permute depends on the
specific problem you are studying. For example, if the observations in the example
above are assumed to be paired instead of independent, then the permutations should
be taken within the pairs, independently from pair to pair.

Permutation tests provide a general approach for hypothesis testing, but they can-
not be used in all situations. In particular, it must be that certain invariance properties
under the null hypothesis are satisfied (see for example Boos and Stefanski, 2013,
Chapter 12).
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Part III

Conclusions
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8
How to Write Up a PLS-SEM Study

In this chapter we mention some of the most common academic publication types
and how they optimally should be structured for publication. Further, by referring to
an actual PLS-SEM journal article, we show how the method and results sections of
a PLS-SEM paper should be detailed and reported. In doing so, we provide templates
for figures and tables to represent respectively the research model of the study and
numerical findings from its estimation. The suggested templates and guidelines can
be deemed as the minimum requirements for reporting academic PLS-SEM work.

8.1 Publication Types and Structure
Structural equation modelling including PLS-SEM is becoming one of the most com-
mon statistical techniques used in academic publications from many different fields
such as psychology, marketing, management and education. Academic publications
come in a variety of forms and structures. One of these is represented by students’
theses/dissertations. The emergence of readily available and intuitive software has
made it possible for students at different levels (bachelor and master) to employ
PLS-SEM to test relatively advanced models in their work. Secondly and more typ-
ically, we have got researchers (doctoral students, professors, research fellows, etc.)
publishing papers/articles based on PLS-SEM in international outlets such as jour-
nals and conference proceedings. Finally, research reports which is generally of an
applied nature written for business or policy makers may also include results based
on PLS-SEM estimations.

Regardless of publication types, any study based on PLS-SEM would generally
adopt the following macro structure despite some unsubstantial deviations:

1. Introduction

2. Theory

3. Method

4. Results

5. Discussion and conclusion

279
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The introduction section, by referring to previous scholarly work, provides a ra-
tionale and justification for the concerned research. In so doing, the research ques-
tion of the study is clearly stated. The theory section reviews the literature (existing
theoretical and empirical studies) pertaining to the research question. This literature
should be presented and synthesized in order to derive and justify the study’s hy-
potheses making up the research model to test. The method section presents the data
collection, research model and item measures used as well as the data analytic pro-
cedures (including PLS-SEM) employed in the study. The results section includes
an assessment of the measurement model and subsequently an examination of the
structural model testing the study’s hypotheses. In the final section, discussion and
conclusion, the results of the study are elaborated and discussed in order to generate
some new theoretical insights/contributions as well as practical implications for the
concerned stakeholders, but also to highlight its limitations.

8.2 Example of PLS-SEM Publication
In this section we are going to present and discuss an actual study using PLS-SEM
published in a scientific journal. This review will allow the reader to see how in par-
ticular PLS-SEM as a statistical technique is justified and used and its results are
presented. That is, our focus will be on the method and result sections of this publi-
cation leaving out the bits on introduction, theory and conclusions. The study that we
will go through is about examining the relationship between personality (traits) and
experiential consumption (activity preferences), more specifically the effect of the
former on the latter. Incidentally, we suggest the reader to keep the original version
of this study (Mehmetoglu, 2012) readily available as we will frequently refer to it
in our review below.

In the method section of the article, the author first explains the details of the
data collection stating mainly that the necessary data were collected through tele-
phone interviews in April-May 2011 in Norway and that 1000 out of 7465 contacted
individuals agreed to participate in the survey, yielding a modest response rate of
nearly 13 percent.

Next, in the method section the author diagrammatically shows the overall re-
search model (see the extract shown in Figure 8.1) that he has derived from the
literature reflecting also the individual hypotheses. As SEM papers tend to be more
complex, we strongly recommend that authors/researchers provide their readers with
such a diagrammatic representation so that the target audience can easily see the
different relationships between the study variables before reading the results of the
PLS-SEM estimation.

Prior to moving on to the results section, one final task to do is justify the use of
PLS-SEM in the method section. As you would remember, we provided some guide-
lines as to when and what version of PLS-SEM is most optimal to use for a given
study at the outset in Chapter 1. Relatedly, in our example article the author explains
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FIGURE 8.1: Research model of the PLS-SEM publication discussed in this chapter.

that PLS-SEM is chosen to estimate the study model because of non-convergence
solutions encountered using CB-SEM. Although the author has used the traditional
PLS-SEM, consistent PLS-SEM could have been used as it takes measurement error
into account. The reason is that consistent PLS-SEM was not available at the time of
publication.

In the results section of the article, the author adopts the commonly known two-
stage approach used in standard covariance-based SEM to present the numerical find-
ings (Chin, 2010): in the first stage, the focus is on the reliability and validity of the
item measures used (measurement part) whereas the emphasis is put on the results
from the estimations of the path coefficients (structural part) in the second stage. The
first stage, where you make sure that your measures are representing the constructs
of interest, is a prerequisite for interpreting the path coefficients in the second stage
(ibid).

In the following extracts from our example article, we can observe how the au-
thor has adopted the two-stage approach to examine and present the results from
the PLS-SEM estimation of the research model depicted in Figure 8.1. As regards
the first stage, in line with the author’s presentation, we propose an examination of
composite reliabilities, average variances extracted (AVE), item loadings’ size and
discriminant validity as a minimum standard requirement for assessing a measure-
ment model’s adequacy in a PLS-SEM study (Figure 8.2).

In addition to the explanation in the extract shown in Figure 8.2, the author
presents the necessary numbers in a table called measurement model (see the ex-
tract in Figure 8.3). This is a standard table that is generally expected to be included
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FIGURE 8.2: The results section of the PLS-SEM example publication discussed in
this chapter (see Mehmetoglu, 2012).

in any PLS-SEM study. The author provides also a table showing the results of the
discriminant validity analysis (see the extract in Figure 8.4).

When it comes to the second stage, the author provides quantitative evidence for
testing the study’s hypotheses. That is, sign, size and significance of the relevant path
coefficients are examined. Based on this examination, the author concludes whether
the suggested hypotheses are supported or not as illustrated in the extract shown in
Figure 8.5.

As with the measurement model, the author provides the numerical findings re-
lated to the structural part of the PLS-SEM estimation (see the extract in Figure 8.6)
in table format too. As an alternative to this table format presentation, one could
show the results of the structural part (path coefficients and p-values) on the concep-
tual model itself (see Figure 8.1) presented in the method section.
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FIGURE 8.3: The results section (cont.) of the PLS-SEM example publication dis-
cussed in this chapter (see Mehmetoglu, 2012).
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FIGURE 8.4: The results section (cont.) of the PLS-SEM example publication dis-
cussed in this chapter (see Mehmetoglu, 2012).

FIGURE 8.5: The results section (cont.) of the PLS-SEM example publication dis-
cussed in this chapter (see Mehmetoglu, 2012).
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FIGURE 8.6: The results section (cont.) of the PLS-SEM example publication dis-
cussed in this chapter (see Mehmetoglu, 2012).

8.3 Summary
In this chapter we have shown how one can structure and write up a scientific publica-
tion from a research including a model estimated using PLS-SEM. What we have pre-
sented is a minimum requirement for what to be included in an academic PLS-SEM
publication. Nevertheless, additional information or different ways of presenting the
results may readily be incorporated into this template. Furthermore, depending on
the publication format (journal paper, dissertation, etc.) the method and results sec-
tions can be adjusted and/or extended. Finally, we encourage the reader to search for
PLS-SEM publications in relevant outlets to see some more examples of reporting
styles.
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A
Basic Statistics Prerequisites

In this appendix we present some basic prerequisites for understanding the partial
least squares approach to structural equation modelling. More specifically, after re-
viewing the definitions of covariance and linear correlation, we briefly recall the main
elements of the linear regression model, which represents the fundamental building
block of PLS-SEM. During the presentation we will show a number of examples us-
ing both real and simulated data. These examples will be illustrated using Stata, but
in the final section we also briefly discuss how to perform the same analyses using R.

A.1 Covariance and Correlation
The simplest, but also most useful, exploratory analyses for assessing the linear as-
sociation between two numerical variables are the covariance and correlation analy-
ses. Covariance analysis should not be confused with “analysis of covariance” (AN-
COVA), which is a variant of the analysis of variance (ANOVA) method that also
takes into account the effects of other continuous variables that are not of primary
interest (so called control variables or covariates).

The sample covariance for a pair of observed variables X and Y is defined as the
average of the cross product deviations of the variables from their sample means, that
is

Cov(X ,Y ) =
1

n−1

n

∑
i=1

(xi− x)(yi− y) , (A.1)

where n is the sample size, xi and yi the observed values of the two variables for the
ith observation in the sample and x and y denote the corresponding sample means1.

Practically, the covariance provides an assessment of the co-movement of the two
variables. In particular:

• If the covariance is positive, it indicates that the two variables move in the same
direction (on average); this means that when one of the two variables increases
(decreases), the other one increases (decreases) as well.

1We recall that the unintuitive denominator (n− 1) has the role to make the sample covariance an
unbiased estimator of the unknown population covariance.
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FIGURE A.1: Graphical interpretation of the sample covariance between two ob-
served variables X and Y (simulated data).

• If the covariance is negative, this is an indication that the two variables move
in opposite direction (on average); this instead means that when one of the two
variables increases (decreases), the other one tends to decrease (increase).

The diagrams in Figure A.1 make this interpretation more explicit. These pictures
show that the sample means of X and Y allow to split the graphs in four areas, that we
label 1, 2, 3 and 4 respectively proceeding counterclockwise from top right. Points
placed in area 1 have a positive deviation product, because both the deviations are
positive, so that they contribute by increasing the covariance. The same result occurs
for points in area 3, since in this region the deviations are both negative. For points
placed in areas 2 and 4 we get a negative product and contribution to the covariance
value instead, because in these areas one of the deviation is positive and the other
one is negative. In substance, since the covariance is an average of these products, its
value is positive whenever most of the points fall in areas 1 and 3, while it takes a
negative value if the majority of the points fall in the other two areas2.

The drawback of the covariance as an index of linear association between two
variables is that its value depends upon the scales of the variables. For example, sup-
pose that xi and yi represent the annual income and the amount spent for purchasing
a new car for an individual i, which are both measured in dollars. Suppose we collect
these quantities for a sample of individuals and the corresponding sample covariance
is equal to 230000000. Suppose now that we rescale the variables expressing all the

2Clearly, the covariance considers also the magnitude of the deviations and not only how many of
them are positive and negative.
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values in thousands of dollars (i.e., we divide the values xi and yi by 1000). If we re-
compute the covariance we would get the value 230. Clearly, the observations didn’t
change, and the same is true for their association. Therefore, the magnitude of the
covariance value is not useful to assess the strength of the association between two
variables but only whether they are positively or negatively associated.

The information on the strength of the linear association between two variables
is provided by the sample linear correlation index, which essentially removes from
the covariance the effect of the scales. In particular, the linear correlation index for
two variables X and Y is defined as

rXY = Cor(X ,Y ) =
Cov(X ,Y )

sX · sY
, (A.2)

where sX and sY denote the sample standard deviations of X and Y respectively. In-
tuitively, the fact that the covariance is divided by a number on the same scale makes
the linear correlation index a more intuitive and useful measure for assessing the
extent of the linear association between two variables. Indeed, the linear correlation
index takes values in the range [−1,1]. In particular, the closer the index to either
one of the extremes, the stronger the linear association (either negative or positive)
between the variables. On the other side, the closer the index to zero, the weaker the
association. We remind that a strong (weak) linear association means that we can
(cannot) accurately predict the values of either one of the variables through a linear
function of the other. Figure A.2 shows some examples corresponding to different
situations one may encounter in practice.

We provide now a last remark on the relationship between the covariance and the
linear correlation index: given two variables X and Y with sample means x and y and
sample standard deviations sX and sY , the linear correlation index between X and Y
is equal to the covariance between their standardized versions3, that is

rXY = Cov
(

X−X
sX

,
Y −Y

sY

)
.

This property provides a particular case of the more general rule according to which
the linear correlation index does not change if the variables are rescaled or shifted.
This rule is frequently used in the PLS-SEM estimation algorithm we present in this
book.

As a practical example, we use one of the datasets shipped with Stata and con-
tained in the file nlsw88.dta. These data are an extract of the 1988 National Lon-
gitudinal Survey of Young Woman who were ages 14–24 in 1968 (NLSW). To load
the data we run the command

3We remind that standardizing a variable X means subtracting its mean and dividing by the standard
deviation, that is, X̃ = (X − x)/sX . As a consequence, the standardized version of the variable, X̃ , has
mean equal to zero and standard deviation equal to one. More technically, the standardization is a linear
transformation of a variable that allows to center it around zero and to scale it to have unit standard
deviation.
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FIGURE A.2: Some examples of linear association between two variables corre-
sponding to different extent of association (simulated data).

1 sysuse nlsw88, clear

Here, we focus on the following variables:

• age, that provides the respondents age in years,

• wage, which gives the hourly wage,

• hours, that contains the usual hours worked during weeks worked,

• ttl_exp, which provides the total work experience.

First, the following code computes some summary statistics (Figure A.3) and
visualize the data with a scatter plot matrix (Figure A.4):



A.1 Covariance and Correlation 293

stats | age hours ttl_exp wage
---------+----------------------------------------
N | 2246 2242 2246 2246
mean | 39.15316 37.21811 12.53498 7.766949
p50 | 39 40 13.125 6.27227
p25 | 36 35 9.211538 4.259257
p75 | 42 40 15.98077 9.597424
sd | 3.060002 10.50914 4.610208 5.755523
min | 34 1 .1153846 1.004952
max | 46 80 28.88461 40.74659
--------------------------------------------------

FIGURE A.3: Summary statistics for some variables included in the nlsw88 dataset
in Stata.

1 tabstat age hours ttl_exp wage, ///
2 statistics(count mean median p25 p75 sd min max)
3 graph matrix age hours ttl_exp wage, half msize(small)

The results show that there are only four observations missing in the hours col-
umn and the wage distribution appears to be somewhat right skewed since the mean
is larger than the median (reported as p50). Moreover, there is a fairly pronounced
variability among the observed wages because the standard deviation is large com-
pared to the mean. The scatter plots show a moderate to weak positive association
among the different pairs of variables. The graphs in the last row of the picture, those
reporting wage on the vertical axis, clearly confirm the right skewness of the wage
distribution, which is mainly due to the presence of some extreme values in the upper
part of the plots. A common approach in statistics to down-weight the influence of
outliers and reduce the distribution asymmetry is to transform the variables with a
logarithm. So, we compute a new variable, logwage, defined as the natural loga-
rithm of wage, and we produce again the scatter plot matrix using this new variable
(Figure A.5). This operation confirms the positive association among the variables:

1 generate logwage = log(wage)
2 label variable logwage "logarithm of hourly wage"
3 graph matrix age hours ttl_exp logwage, half ///
4 msize(small)

Finally, we compute the linear correlation indexes for the same variables (we
directly use logwage). In Stata there are two commands to compute correlations,
correlate and pwcorr. The difference between them is that the former provides
the correlation (as well as the covariance) matrix for a set of variables while the
latter computes the pairwise correlations. Practically this means that correlate
disregards the rows containing at least one missing value for any of the variables in
the set (so called casewise or listwise deletion), while pwcorr proceeds removing
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FIGURE A.4: Scatter plot matrix for some variables included in the nlsw88 dataset
in Stata.

FIGURE A.5: Scatter plot matrix for some variables included in the nlsw88 dataset
in Stata.
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. correlate age hours ttl_exp logwage
(obs=2,242)

| age hours ttl_exp logwage
-------------+------------------------------------

age | 1.0000
hours | -0.0279 1.0000

ttl_exp | 0.1235 0.2295 1.0000
logwage | -0.0214 0.2049 0.3848 1.0000

. pwcorr age hours ttl_exp logwage, obs sig

| age hours ttl_exp logwage
-------------+------------------------------------

age | 1.0000
|
| 2246
|

hours | -0.0279 1.0000
| 0.1874
| 2242 2242
|

ttl_exp | 0.1243 0.2295 1.0000
| 0.0000 0.0000
| 2246 2242 2246
|

logwage | -0.0223 0.2049 0.3851 1.0000
| 0.2909 0.0000 0.0000
| 2246 2242 2246 2246
|

FIGURE A.6: Correlation matrix and pairwise correlations for some variables in-
cluded in the nlsw88 dataset in Stata.

the missing values separately for each pair of variables4. Despite this difference,
pwcorr is often more appealing than correlate because it allows to assess the
statistical significance of the correlation indexes by computing the corresponding p-
values. These are shown in the output by adding the option sig. The following code
uses both commands to compute the correlations, which are reported in Figure A.6:

1 correlate age hours ttl_exp logwage
2 pwcorr age hours ttl_exp logwage, obs sig

The correlation indexes confirm that logwage is positively and significantly associ-
ated with hours and ttl_exp, while it doesn’t seem to be significantly correlated
with age. Overall, the correlations among these variables are at most moderate.

4We warn you that listwise deletion may dramatically reduce the effective sample size used in the
calculations, especially when the missing values are highly sparse in the dataset.
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A.2 Linear Regression Analysis
Linear regression is by far the most popular statistical technique applied in all fields.
Since it is a vast topic, here we focus only on the main concepts we need for illustrat-
ing partial least squares path modelling. Book-length presentations of this important
subject can be found for example in Kutner et al. (2005); Fahrmeir et al. (2013);
Weisberg (2013) or in Fox (2016), while Mehmetoglu and Jakobsen (2016) provide
a more applied perspective using Stata.

A.2.1 The simple linear regression model

Given two variables X and Y , the simple linear regression (SLR) model for the ith
observation is defined as

yi = E(Yi|Xi = xi)+ εi = β0 +β1xi + εi, (A.3)

where β0 and β1 represent the model’s intercept and slope and εi denotes the un-
observed error term for the same observation. Y is usually called the dependent,
outcome or response variable, while X is typically referred to as the independent,
explanatory or predictor variable.

The first equality in (A.3) indicates that a regression model is a way to specify
how the average value of Y changes according to the value of X . More technically,
the notation E(Yi|Xi = xi) represents the so called conditional expectation of Y given
the particular value xi taken by X5. In other words, SLR enriches the information
provided by the linear correlation index by specifying how the value of Y can be
predicted once the value of X is given. The error term εi represents the information
about yi that can’t be accounted for by xi, and it is assumed to be a random quantity
with mean equal to zero and variance equal to a constant6 quantity σ2. Finally, the
error terms are supposed to be uncorrelated among themselves and with the predictor
X7.

Equation (A.3) is usually referred to as the population regression model in the
sense that it specifies the relationship that we assume is linking the average value of
Y to x in the entire population of interest. For this reason, the values of the model’s
coefficients β0 and β1 (as well as those of the εis) are not known and need to be
estimated. We denote the sample estimates of β0 and β1 as b0 and b1 respectively. The
classical estimation method used in regression analysis, that sometimes is identified
with the model itself, is ordinary least squares (OLS). To define OLS we need first

5More precisely, the “linearity” referred to in the name of the method refers to the model’s coefficients
β0 and β1 and not to the independent variable X . For example, the specification yi = β0 +β1 log(xi)+ εi
also is a SLR model even if the logarithm of X is used on the right hand side. An example of a non-linear
regression model is yi =

β1xi
β0+xi

+ εi.
6The assumption of constant error variance is called homoskedasticity.
7The assumption that the errors and the predictor are uncorrelated is called exogeneity. In particular,

if it holds we say that X is exogenous.
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to introduce the concepts of predictions and residuals. The prediction for the ith
observation from the SLR (A.3) is defined as the quantity ŷi corresponding to the
predictor value xi and computed using the coefficient estimates b0 and b1, that is

ŷi = b0 +b1xi. (A.4)

Equation (A.4) provides the so called sample (or estimated) regression model be-
cause it corresponds to the fitted line computed using only the sample observations.
Figure A.7 provides a comparison between the population and the sample models
using some fictitious data. Observations (xi,yi) in the hypothetical population and
the corresponding model are shown as grey dots and dashed line respectively, while
the sample quantities are shown using black dots and solid line. If the sample is truly
random, the estimated line will be close to the unknown population line, while if the
sample is biased, the difference between them can be conspicuous.

Residuals are defined as the differences between observed and predicted values
for the response variable, that is for the ith observation

ei = yi− ŷi (A.5)
= yi− (b0 +b1xi).

Residuals correspond to the errors made by the model in predicting the value of the
response variable for a given predictor value. They are positive or negative depend-
ing on whether the model under- or over-estimates respectively the observed response
value. Geometrically, residuals correspond to the distances between the points ver-
tical coordinates and the fitted line. Figure A.8 shows a graphical representation of
both predictions and residuals for a generic SLR model.

OLS is an estimation method that computes the model’s coefficients by mini-
mizing the residual sum of squares (RSS)8. More technically, RSS is defined as

RSS =
n

∑
i=1

e2
i =

n

∑
i=1

(yi− ŷi)
2, (A.6)

which clearly depends upon b0 and b1 because these are embedded inside the pre-
dicted values ŷi. With a little algebra it can be shown that the OLS coefficient esti-
mates correspond to

b0 = y−b1x (A.7)

b1 =
Cov(X ,Y )

s2
X

= rXY
sY

sX
. (A.8)

Equation (A.8) clearly shows the direct connection between the linear correlation in-
dex rXY and the slope estimate b1. In particular, b1 is nothing else than the correlation
between X and Y that also takes into account the scale of the variables. This implies

8RSS is also known as sum of squared errors of prediction (SSE).
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FIGURE A.7: Comparison between the population and sample regression models
using simulated data. Grey dots represent the hypothetical observations in the popu-
lation, the dashed grey line indicates the corresponding population model, black dots
provide a random sample drawn from the population and the black solid line provides
the corresponding sample regression model.

that when we perform linear regression between variables that have been standard-
ized, the slope estimate b1 will correspond to the correlation index rXY , while the
intercept estimate b0 will be equal to zero. Moreover, both equation (A.7) and (A.8)
also highlight that exchanging the role of X and Y produces different results for b0
and b1

9. In this sense we can say that linear regression is not symmetric, while the
correlation index is.

9Note that this is true unless the two variables are standardized, in which case exchanging their roles
does not produce any change in the results. This is a confirmation that data alone are not able to tell us
anything about the causal direction between the variables, but they are able only to provide us with an
assessment of their “association”. To infer any causal implications we need to postulate a casual model.
For a clear and instructive discussion on the differences between association and causation we suggest to
read the first chapter of Pearl and Mackenzie (2018).
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ŷ

●

e = y − ŷ
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FIGURE A.8: Graphical representation of key quantities for a simple linear regres-
sion model.

Practically, estimates (A.7) and (A.8) can be interpreted as follows:

• the intercept estimate, b0, provides the estimated mean value of the response Y
when the predictor X is set to zero,

• the slope estimate, b1, provides the change in the response estimated mean as-
suming the predictor value increases by one unit.

A.2.2 Goodness-of-fit

A popular way to assess the predictive ability of a linear regression model, or its
goodness-of-fit, is through the R-squared index. To define it we need to introduce
the so called deviance decomposition. The deviance of a linear regression model, also
known as total sum of squares (TSS), corresponds to the sum of squared deviations
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of the response values from their mean, that is

TSS =
n

∑
i=1

(yi− y)2. (A.9)

It can be shown that the deviance of any linear regression model can be decomposed
as follows

TSS = ESS+RSS, (A.10)

where ESS denotes the explained sum of squares10 defined as

ESS =
n

∑
i=1

(ŷi− y)2, (A.11)

and RSS is given in (A.6). Even if we do not give a formal proof of the decomposition
in (A.10), an intuitive graphical justification is provided in Figure A.9.

The deviance decomposition (A.10) can be interpreted saying that only a portion
of the total observed variability in the response (TSS) can be accounted for by the
linear regression model (ESS), that is by the specific predictor we decide to use, while
the remaining portion is left unexplained (RSS). The R-squared index provides this
same information in relative terms, that is

R2 =
ESS
TSS

= 1− RSS
TSS

. (A.12)

Hence, R-squared takes values in the range [0,1]. It is close to 0 every time that the
predictor is not able to explain a lot of the response variability, while it is close to 1
whenever the predictor almost perfectly predicts the response.

There is no universal threshold that we can use to assess the predictive ability of
a given linear regression model. The realized value of R-squared depends clearly on
the choice we made on the predictor to use in the model. Moreover, different fields
may require a different level for the R-squared to qualify the model as good. Finally,
the assessment of the R-squared value also depends on the intentions of the analysis.
In particular, if the aim of the analysis is to provide predictions for future events,
clearly we would like to base the predictions on a relatively good and robust model,
while if the aim is purely descriptive, then even smaller R-squared values would be
deemed as acceptable.

A.2.3 The multiple linear regression model

In practice it is unlikely that a single measure is able to explain most or all of the
variation observed in the response. So, to get more accurate predictions or a better
explanation of the phenomenon under investigation, the standard approach is to en-
rich the regression model with additional predictors. This approach gives rise to what
is usually known as the multiple linear regression (MLR) model, which is defined as

yi = E(Yi|X1i = x1i,X2i = x2i, . . . ,Xpi = xpi)+ εi

= β0 +β1x1i +β2x2i + · · ·+βpxpi + εi, (A.13)

10ESS is alternatively known as sum of squares due to regression (SSR).
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FIGURE A.9: Graphical representation of the deviance decomposition for a linear
regression model.

where β0 denotes the model’s intercept, β1, . . . ,βp correspond to the partial slopes
with respect to each one of the p predictors X1,X2, . . . ,Xp and εi still indicates the
error term for the ith observation. All the concepts we introduced for SLR applies
exactly in the same way in MLR. Similarly, estimation is still performed using OLS.
Predictions are now computed as

ŷi = b0 +b1x1i +b2x2i + · · ·+bpxpi. (A.14)

However, the coefficient estimates b0,b1, . . . ,bp have a slightly different interpre-
tation:

• the intercept estimate b0 provides the estimated mean value of the response Y
when the predictors X1, . . . ,Xp are jointly set to zero,

• the generic partial slope estimate b j, with j = 1, . . . , p, provides the change in
the response estimated mean assuming the value of the X j predictor increases by
one unit, assuming the other predictors stay fixed.
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The last part of the interpretation for the partial slope estimates is necessary to guar-
antee that b j actually measures the effect of X j on the average value of Y and it is
not due to the combined effect of more than one predictor. Clearly, this statement is
based on the implicit assumption that the predictors are uncorrelated of one another,
which rarely applies in practice (see the discussion in Section A.2.6).

An important difference between MLR and SLR consists in how to compare the
goodness-of-fit of different regression models (i.e., regression models for the same
response variable but with a different set of predictors). Unfortunately, the R-squared
index does not provide a fair comparison in these cases and therefore it shouldn’t
be used. The reason is that the R-squared numerator, ESS, is a quantity that does
increase if new predictors are added to the model. This means that if we use the
R-squared to select the best model, we would end up choosing the model with the
largest number of predictors. A large model is not necessarily a good model, because
some predictors may explain just a negligible portion of the response variability at
the cost of complicating the model excessively. To correct for this drawback of R-
squared, it is common to introduce in the assessment a penalization for the number
of predictors included in the model. The most popular measure that goes in this
direction is the adjusted R-squared index, which is defined as

R2
a = 1−

RSS
n−p−1

TSS
n−1

= 1− RSS
TSS

· n−1
n− p−1

= 1− (1−R2)
n−1

n− p−1
, (A.15)

with p denoting the number of predictors in the model. Typically, the adjusted R-
squared is smaller than the ordinary R-squared, even if the two differ usually by
a small amount. So, the larger the adjusted R-squared, the better the model in the
sense that it provides a better compromise between goodness-of-fit and complexity.
We conclude this section by highlighting that in some cases the adjusted R-squared
may become negative. This is typically the case when the sample size n is small. For
example, assuming n = 20 and the R-squared index is 0.1, the adjusted R-squared is
positive only when we use a single predictor model, while it becomes negative for a
number of predictors equal to 2 or larger. Nevertheless, even when it is negative, we
can still use it for comparing different models.

A.2.4 Inference for the linear regression model

As we already said, there is a difference between the model we postulate in the
population and its sample version. The difference is due to the fact that the latter
is computed using only a small subset of units from the population. Therefore, it
is critically important to assess the reliability of the sample estimates as a guess of
the unknown population quantities of interest. The classical approach to inference
for linear regression is based on the assumption that the error terms εi are normally
distributed. The normality assumption simplifies the calculations and allows to derive
closed-form expressions for both confidence intervals and p-values. However, in few
cases in practice the errors (and thus the response) can be assumed to be distributed
as a normal. As a consequence, a more general approach, called the bootstrap, should
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be used. In this section we review the main results for the normal-based theory, while
we already provided an introduction to the bootstrap approach in Section 2.1.

A.2.4.1 Normal-based inference

The normal-based inferential approach for the linear regression model requires the
additional assumption that the error terms are normally distributed in the population
with mean zero and fixed variance σ2. More formally, we must assume that

εi ∼ N(0,σ2), (A.16)

for i = 1, . . . ,n. As we already said, the error variance σ2 is assumed to be a fixed un-
known constant. The assumption of normally distributed errors translates in a similar
assumption for the response variable, that is (A.16) is equivalent to

Yi ∼ N(β0 +β1x1i + · · ·+βpxpi,σ
2).

A graphical representation of this assumption in the single predictor setting is shown
in Figure A.10, where the vertical axis reports the conditional probability of observ-
ing the response for three hypothetical x values on the X axis.

It is responsibility of the analyst to check that the normality assumption is sat-
isfied, at least approximately, by the sample data. Many tools have been developed
to verify this assumption, but the most popular are for sure the normal probability
plot (also known as the normal quantile plot) and the normality tests. The former is
a scatter plot where the ordered observed values of the response are plotted against
the corresponding values of the normal distribution. If the response empirical distri-
bution is close to a normal, then we should see the dots in the graph placed along a
straight line. On the contrary, systematic departures from a straight line indicate de-
partures from normality. For what regards the normality tests, the Shapiro-Wilk test
is generally the preferred one and it is the default one implemented in most software
packages indeed, but many others exist11. In these tests the null hypothesis corre-
sponds to the normality of the population. As usual, we reject the null hypothesis
when the p-value is smaller than the chosen significance level α12.

Thanks to the normal assumption, it is possible to show that the (1−α) confi-
dence interval for the generic β j coefficient, with j = 0,1, . . . , p, is given by

(
b j− tn−p−1, α

2
·SE j;b j + tn−p−1, α

2
·SE j

)
, (A.17)

where SE j denotes the standard error of b j
13 and tn−p−1,α/2 indicates the critical

value of a t-distributed random variable with (n− p− 1) degrees of freedom and a
probability of α/2 to its right14.

11For a list of popular (univariate) normality tests see for example https://en.wikipedia.
org/wiki/Normality_test.

12In Stata you can use the qnorm command to produce the normal probability plot, while swilk
provides the results of the Shapiro-Wilk normality test.

13We remind that the term standard error corresponds to the estimated standard deviation of the sam-
pling distribution of a statistic, which therefore measures its variability under repeated sampling.

14When the sample size n is large enough, say at least 50, and (1−α) is 0.95, we may approximate
the t critical value with the value 1.96.

https://en.wikipedia.org/
https://en.wikipedia.org/
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FIGURE A.10: Graphical representation of the normal assumption in the simple lin-
ear regression model for three hypothetical x values on the X axis. Note that the
spread, that is the variance, of the normal curves is constant across the X values
(homoskedasticity).

Using similar results, one may also prove that to test the hypothesis H0 : β j = 0
versus H1 : β j 6= 0 we can use the test statistic

t =
b j

SE j
, (A.18)

which under the null hypothesis is distributed as a t distribution with (n− p− 1)
degrees of freedom. As you already know, this result is used by software to compute
p-values.
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A.2.5 Categorical predictors

So far we discussed only the case of numerical predictors, but linear regression can
also be used with categorical explanatory variables. In this section we briefly review
how to deal with:

• a binary (or dichotomous) predictor, that is typically coded using a single dummy
variable,

• a K-categories (or polytomous) predictor, which is coded in a regression model
using a set of (K−1) dummy variables,

• interactions between numerical and categorical predictors, that are coded as
products between dummy variables and numerical predictors.

As we will see, these tools allow to greatly extend the flexibility of regression models.
A dummy is a special type of variables that may take only two possible values,

0 and 1, that is used to account for information coming from a binary categorical
predictor. Values 0 and 1 refer to the categories of the binary predictor and the choice
of which one codes each of the category is largely subjective and generally irrelevant
for the analysis. For example, suppose we are fitting a linear regression between the
annual salary and experience for a sample of male and female employees. Clearly,
experience is a numerical information, while gender is categorical and we can incor-
porate it in the model using a single dummy variable D that takes value 0 for males
and value 1 for females. Equivalently, we may decide to code the two categories the
other way round, that is 0 for females and 1 for males. The only difference between
these two choices is that the category coded as 0 plays the role of baseline (or refer-
ence) category, which implies a slightly different interpretation for the coefficients,
but it is irrelevant from a numerical point of view.

Continuing with the example, let Y denote the annual salary, X the experience (in
years) and D the gender with D = 0 indicating females (baseline) and D = 1 males.
Then, the linear regression model introduced above is given by

yi = β0 +β1xi +β2di + εi. (A.19)

The crucial point in using dummy variables lies in the correct interpretation of the
coefficients. In particular, from equation (A.19) we derive the sub-models for males
and females, that is

di = 0 (females) =⇒ yi = β0 +β1xi +β2×0+ εi

= β0 +β1xi + εi

di = 1 (males) =⇒ yi = β0 +β1xi +β2×1+ εi

= (β0 +β2)+β1xi + εi

Therefore, the dummy variable coefficient β2 corresponds to the difference in the
average annual salary between males and females for any given value of experience.
Geometrically, β2 represents the difference in the intercepts between the two sub-
models for males and females. In other words, including a dummy for modelling
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FIGURE A.11: Graphical representation for an hypothetical linear regression model
that includes a numerical predictor X and a binary predictor D. The coefficient β0
provides the intercept for the baseline category, while the dummy coefficient β2 rep-
resents the difference in the intercepts between the two categories. In this example
β2 is positive.

the gender of the employees we have been able to fit two separate lines for males
and females, which, for the moment, may only differ for their intercepts (i.e., they
are parallel). A graphical representation for an hypothetical model is shown in Fig-
ure A.11.

As we said, since the baseline category (i.e., D = 0) here is female, β2 provides
the male vs. female difference. If instead we chose male as the reference, the value
of β2 would be the same but with a reversed sign, therefore we must interpret it as
the female vs. male difference.

The next step is to show how to use dummy variables to deal with a K-category
predictor, with K larger than two (otherwise we get back to the binary situation). The
solution is an extension of the binary case:
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1. define K dummy variables, each one taking value 1 in correspondence of one of
the categories of the predictor and 0 otherwise,

2. choose the baseline category and include in the model only the remaining (K−
1) dummies; as for the binary case, it is indifferent which category we use as
baseline; software usually use the first or the last category.

Suppose that we modify the previous example and instead of gender we decide to
include in the model the age class W of the employees, which takes K = 3 different
values, that is

Wi =





from 20 to 34 years
from 35 to 50 years
from 51 to 70 years

Then, we create three dummy variables, D1, D2 and D3, whose values are defined as
follows:

d1i =

{
1 if wi = “from 20 to 34 years”
0 otherwise

d2i =

{
1 if wi = “from 35 to 50 years”
0 otherwise

d3i =

{
1 if wi = “from 51 to 70 years”
0 otherwise.

The model to fit now is

yi = β0 +β1xi +β2d2i +β3d3i + εi, (A.20)

where we decided to use the first category (“from 20 to 34 years”) as the baseline,
which in fact is not in the model.

Interpretation of the dummy variable coefficients proceeds as in the case of a
binary predictor, but keeping in mind that they all refer to the same baseline category:

wi = “from 20 to 34 years” ⇒ yi = β0 +β1xi +β2×0+β3×0+ εi

= β0 +β1xi + εi

wi = “from 35 to 50 years” ⇒ yi = β0 +β1xi +β2×1+β3×0+ εi

= (β0 +β2)+β1xi + εi

wi = “from 51 to 70 years” ⇒ yi = β0 +β1xi +β2×0+β3×1+ εi

= (β0 +β3)+β1xi + εi

So, β2 represents the difference in the average annual salary between employees in
the second age class and those in the first (baseline). Similarly, β3 represents the
difference in the average annual salary between employees in the third age class
and those in the first (baseline). Geometrically, this is equivalent to saying that we
are fitting three separate lines for the three groups of employees that differ only in
terms of the intercepts (i.e., the lines are parallel). A graphical representation for an
hypothetical model is shown in Figure A.12.
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FIGURE A.12: Graphical representation for an hypothetical linear regression model
that includes a numerical predictor X and a 3-category predictor W that enters the
model through two dummy variables D2 and D3. The coefficient β0 provides the
intercept for the baseline category, while the dummy coefficients β2 and β3 represent
the differences in the intercepts between the other categories and the baseline. In this
example β2 and β3 are both positive and β2 < β3.

Finally, we can further extend the flexibility of a regression model by allowing
also the slopes to differ across values of a predictor. This can be achieved by includ-
ing in the model interactions between two predictors. Interactions are defined as the
product of other two predictors (usually already included in the model15) which aim
at accounting for the possibility that the effect on the response of one predictor may
depend on the value of another one. Even if the two predictors that define an inter-
action can be of any type, we focus here on the most common case of interactions
between a numerical predictor and a dummy variable. Furthermore, for simplicity,

15This is the so called principle of marginality introduced by Nelder (1977), which states that a sta-
tistical model should always include all the main effects and lower order interactions whenever a higher
order interaction is included. A violation of this principle would make the model not broadly applicable.
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we consider only the case of a binary categorical predictor, with that of polytomous
predictors being an immediate extension.

Going back to the example involving salary (Y ) versus experience (X) and gender
(D), we now include in the model the interaction between the latter two variables thus
getting the following specification

yi = β0 +β1xi +β2di +β3(xi×di)+ εi. (A.21)

This model accounts for the possibility that the effect of X on Y may be different
depending on the value of D. In fact, the sub-models corresponding to the values od
D are

di = 0 (females) =⇒ yi = β0 +β1xi +β2×0+β3(xi×0)+ εi

= β0 +β1xi + εi

di = 1 (males) =⇒ yi = β0 +β1xi +β2×1+β3(xi×1)+ εi

= (β0 +β2)+(β1 +β3)xi + εi

It follows that the interaction coefficient β3 represents the difference in the slopes
between males and females, that is the differential effect of experience on the annual
salary for males versus females. Figure A.13 shows an hypothetical situation where
both β2 and β3 are positive.

A.2.6 Multicollinearity

We already mentioned that the linear regression model is based on a set of assump-
tions that mainly regard the error terms. However, a further issue that may arise
regards the possibility that some predictors are strongly linear related, a situation
known as multicollinearity, or simply as collinearity. The main consequences of
multicollinearity are:

1. the coefficient estimates become unstable, which means that a small change in
the data may have a huge impact on the regression results. Moreover, in presence
of multicollinearity it is more difficult to separate the individual effect of each
predictor on the response variable, because when one predictor moves also others
will do, thus making difficult to understand what is the source of the change in
Y . Therefore, in these cases we can only afford measuring the aggregate effect
of the predictors affected by multicollinearity. More technically, in presence of
multicollinearity different combinations of the regression coefficients provide
similar RSS values which are almost as optimal as the least-squares solutions

2. coefficient standard errors are biased upwards thus producing wider confidence
intervals and larger p-values

The main tool used to detect multicollinearity is the variance inflation factor
(VIF), an index computed for each predictor in the model that tells us how directly
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FIGURE A.13: Graphical representation for an hypothetical linear regression model
that includes a numerical predictor X , a binary predictor D and their interaction.
Coefficients β0 and β1 provide the intercept and slope for the baseline category, while
coefficients β2 and β3 represent the differences in the intercepts and slopes between
the two categories respectively. In this example β2 and β3 are both positive.

how much is the impact of multicollinearity on each coefficient standard error16.
Its square root is interpreted indeed as the number of times the standard error is
“inflated” due to the multicollinearity. Therefore, a VIF equal to 1 means that the
predictor is not affected by multicollinearity, while a large VIF value indicates a
critical situation. Formally, the VIF for the jth predictor in a model is defined as

V IFj =
1

1−R2
j
, (A.22)

where R2
j denotes the R-squared index for the regression of X j on the other predictors.

16Some software also produce the tolerance index, which is defined as the reciprocal of the variance
inflation factor.
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Even if there are no theoretical guidelines on how to assess the VIF value, a popular
approach consists in considering as harmless a VIF that is smaller than 5, while a
value in between 5 and 10 provides a serious warning signal and a value above 10
indicates a critical situation in which multicollinearity is unduly influencing the least
squares estimates.

Once we realize that our regression analysis is affected by multicollinearity, we
should take counteractions to try limiting its consequences. Unfortunately, there is
no general quick cure for it and in some cases the remedy may even be more harmful
than the problem itself. Since multicollinearity is an issue related to the data and not
to the model, one possibility is to collect more observations with the hope that the
new data at least attenuate the severity of multicollinearity. Clearly, this solution is
not feasible because of the costs of sampling. Other common remedies are:

• Select the variables to keep in the model, either manually or automatically, using
one of the variable selection methods available (stepwise regression, best-subset
regression using the adjusted R-squared or an information criterion such as the
BIC)17.

• Use a dimensionality reduction technique such as principal component analysis
(PCA), which allow to condense most of the information available in the corre-
lated predictors in a new set of uncorrelated components; we describe PCA in
Section 3.2.

• Use a shrinkage method like ridge regression or the LASSO, which allow for a
small amount of bias in the coefficient estimates in exchange to a reduction in
the coefficient standard errors (see Efron and Hastie, 2016, Chapter 16).

Stata allows to compute the VIFs for a given regression problem with the postes-
timation command estat vif.

A.2.7 Example

In this section we provide a practical example of linear regression whose aim is to
present the Stata commands to compute the various measures discussed above. We
use again the NLSW data available in the nlsw88.dta Stata file and we fit different
models to predict the hourly wage.

Stata’s main command for linear regression is regress, which requires to spec-
ify first the response variable followed by the list of predictors. We start fitting the a
simple model for wage against grade, the current grade completed, whose results
are reported in Figure A.14:

1 sysuse nlsw88, clear
2 regress wage grade

As expected, the grade completed is positively associated with the hourly wage.

17For a thorough presentation of these methods we suggest to see (Hastie et al., 2008, Chapter 3).
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Source | SS df MS Number of obs = 2,244
-------------+---------------------------------- F(1, 2242) = 265.57

Model | 7874.79847 1 7874.79847 Prob > F = 0.0000
Residual | 66479.532 2,242 29.6518876 R-squared = 0.1059

-------------+---------------------------------- Adj R-squared = 0.1055
Total | 74354.3305 2,243 33.1495009 Root MSE = 5.4454

------------------------------------------------------------------------------
wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
grade | .7431729 .0456033 16.30 0.000 .6537438 .832602
_cons | -1.965886 .6083143 -3.23 0.001 -3.158804 -.7729677

------------------------------------------------------------------------------

FIGURE A.14: Estimated linear regression model of the wage (hourly wage) vari-
able versus grade (current grade completed) for the NLSW data.

The R-squared shows that grade explains around 11% of the observed variability in
the hourly wages. Moreover, the grade coefficient estimate is highly reliable since
its p-value is very small (shown ad 0.000). To confirm the statistical goodness of
the model we also check that the assumptions of the linear regression are satisfied.
Let’s remind quickly how to verify them:

• linearity can be easily checked using a scatter plot because we are using a single
predictor; the scatter plot (not reported here) confirms that there is no strong
evidence against the linearity assumption.

• error independence is taken for granted here because we have a cross-sectional
dataset involving different individuals; the error independence assumption is
more likely to be violated with time series or longitudinal data.

• constant error variance can be verified with the popular Breusch-Pagan test. The
null hypothesis is that the error variance is constant (homoskedasticity), so the
hope is to get a large p-value to avoid rejecting the null hypothesis. In Stata we
can perform the test with the postestimation command estat hettest. In
our example the p-value turns out to be very small, which provides evidence
against the constant error variance assumption.

• normality of the errors can be checked with the normal probability plot of the
residuals and the Shapiro-Wilk test. In the example both these tools confirm a
marked deviation from normality18.

While normality in this example is not a big issue because the sample is large enough
to guarantee that the coefficient sampling distributions are close to a normal19, the
non-constant error variance is a problem since, even if the OLS estimates are still
consistent (i.e., they converge to the true values as n becomes large), their standard

18To store the residuals in the dataset as a new column labelled resid use the command predict
resid, residuals.

19This also implies that in this example the advantage of using the bootstrap for inference is limited,
as we will show later in the section.
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Source | SS df MS Number of obs = 2,244
-------------+---------------------------------- F(1, 2242) = 469.04

Model | 128.194579 1 128.194579 Prob > F = 0.0000
Residual | 612.768221 2,242 .273313212 R-squared = 0.1730

-------------+---------------------------------- Adj R-squared = 0.1726
Total | 740.962799 2,243 .330344538 Root MSE = .52279

------------------------------------------------------------------------------
logwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
grade | .0948211 .0043782 21.66 0.000 .0862352 .1034069
_cons | .6267517 .0584026 10.73 0.000 .5122229 .7412805

------------------------------------------------------------------------------

FIGURE A.15: Estimated linear regression model of logwage (logarithm of hourly
wage) variable versus grade (current grade completed) for the NLSW data.

errors are no longer valid. So, we decide to transform the response using a logarithm
and create the new variable logwage (see Figure A.15):

1 generate logwage = log(wage)
2 regress logwage grade
3 estimates store model1

By performing the same checks we see that the situation has improved signifi-
cantly, even if the p-value of the Breusch-Pagan test is still smaller than the conven-
tional α = 0.05. For now we stop trying other remedies because it may be the case
that adding other predictors will contribute to lessen the heteroskedasticity issue20.

We now extend the model by adding the smsa variable as a new predictor. This
is a binary variable taking values 1 or 0 depending on whether each individual in the
sample lives in a standard metropolitan statistical area (SMSA) or not21. Stata has
some operators that allow to deal with dummy variables and interactions in a general
way22. In particular:

• the operator i. in front of a variable name generates the necessary dummy vari-
ables to include in the model,

• the operator c. in front of a variable name tells Stata to treat the variable as
numeric,

• the operator # includes in the model the interactions between values of two pre-
dictors,

• the operator ## includes in the model both the interactions and the main effects.

20Another popular approach to deal with heteroskedasticity is to use robust estimates of the standard
errors, also called Huber-White heteroskedasticity-robust standard errors. We can get them in Stata adding
the vce(robust) option to regress. For more details see Wooldridge (2016), Chapter 8.

21https://en.wikipedia.org/wiki/Metropolitan_statistical_area.
22For more details type help fvvarlist.

https://en.wikipedia.org/
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The following code first fits the model that includes only smsa, stores its results,
and then fits a second model including both smsa and the interaction with grade
(see Figure A.16 for the results):

1 regress logwage grade i.smsa
2 estimates store model2
3 regress logwage c.grade##smsa

The results show that the data do not provide evidence for different slopes for the
two groups of individual that live or live not in a SMSA because the p-values of the
interaction in the second model is large (0.203). However, the first model provides
support for different intercepts. This conclusion is also confirmed by the scatter plot
shown in Figure A.17 that reports the fitted lines form the first model. So, according
to these estimates, a woman living in a SMSA in 1988 would have earned about
100(e0.2381−1)% ≈ 27% more per hour than a woman with the same grade but not
living in a SMSA.

We now add some other predictors, in particular age, hours, ttl_exp,
tenure, race, married, union, south, never_married and occupation.
The results are reported in Figure A.1823.

1 regress logwage grade i.smsa age hours ttl_exp tenure ///
2 i.race i.married i.union i.south i.never_married ///
3 i.occupation ///
4 if occupation != 9 & occupation != 10 & occupation != 12
5 estimates store model3
6 estat hettest // (output not reported)
7 estat vif // (output not reported)

The model has substantially improved, with the adjusted R-squared that has more
than doubled. Most coefficients are significant and their signs go in the direction that
one would expect. However, note that the number of observation has decreased from
about 2244 to approximately 1856. This is due mainly to the union variable that
contains a lot of missing values. We also highlight that for this model heteroskedas-
ticity is no longer an issue (the p-value is 0.3524). Similarly, multicollinearity is not
critical because all the VIFs (not reported) are below the conventional threshold 5.

We conclude the example by comparing the results of the last model, which uses
normal-based theory, with the corresponding bootstrap results using 2000 replica-
tions (Figure A.19):

1 quietly regress logwage grade i.smsa age hours ttl_exp ///
2 tenure i.race i.married i.union i.south ///
3 i.never_married i.occupation ///
4 if occupation != 9 & ///

23We exclude some of the occupation categories because too rare and may cause numerical insta-
bilities in the calculations.
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. regress logwage grade i.smsa

Source | SS df MS Number of obs = 2,244
-------------+---------------------------------- F(2, 2241) = 294.37

Model | 154.162551 2 77.0812755 Prob > F = 0.0000
Residual | 586.800248 2,241 .2618475 R-squared = 0.2081

-------------+---------------------------------- Adj R-squared = 0.2074
Total | 740.962799 2,243 .330344538 Root MSE = .51171

------------------------------------------------------------------------------
logwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
grade | .0886297 .0043303 20.47 0.000 .0801378 .0971215

|
smsa |
SMSA | .2381447 .0239137 9.96 0.000 .1912494 .2850399
_cons | .5401754 .0578218 9.34 0.000 .4267856 .6535652

------------------------------------------------------------------------------

. regress logwage c.grade##smsa

Source | SS df MS Number of obs = 2,244
-------------+---------------------------------- F(3, 2240) = 196.85

Model | 154.587906 3 51.5293022 Prob > F = 0.0000
Residual | 586.374893 2,240 .261774506 R-squared = 0.2086

-------------+---------------------------------- Adj R-squared = 0.2076
Total | 740.962799 2,243 .330344538 Root MSE = .51164

------------------------------------------------------------------------------
logwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
grade | .0801407 .0079432 10.09 0.000 .0645639 .0957176

|
smsa |
SMSA | .0838435 .1233867 0.68 0.497 -.1581206 .3258077

|
smsa#c.grade |

SMSA | .0120772 .0094744 1.27 0.203 -.0065024 .0306568
|

_cons | .6466321 .1015729 6.37 0.000 .4474452 .845819
------------------------------------------------------------------------------

FIGURE A.16: Estimated linear regression model of logwage (logarithm of
hourly wage) variable versus grade (current grade completed) and smsa (standard
metropolitan statistical area) for the NLSW data, with and without interaction.
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FIGURE A.17: Scatter plot and fitted lines for linear regression model of logwage
(logarithm of hourly wage) variable versus grade (current grade completed) and
smsa (standard metropolitan statistical area) for the NLSW data.

5 occupation != 10 & ///
6 occupation != 12, ///
7 vce(bootstrap, reps(2000) seed(101) ///
8 saving(appA_nlws_reg, replace))
9 estimates store model3b

10 estimates table model*, b(%9.4f) se(%9.4f) stats(N r2_a)

Note that the standard errors for the last two models (model3 and model3b)
are very similar. This is a confirmation that in this case the bootstrap is not strictly
necessary, because thanks to the large sample size the sampling distributions of the
coefficients are close to a normal. For the same reason, the bootstrap confidence in-
tervals (not reported here, but you can get them by executing the command estat
bootstrap, all) are also similar. We partially prove our statement by reporting
the bootstrap distribution of the tenure coefficient and the bivariate bootstrap dis-
tributions of the coefficients related to the numerical predictors (plus the constant)
included in the model (see Figures A.20 and A.21).

1 use appA_nlws_reg, clear
2 histogram _b_tenure, frequency normal ///
3 normopts(lwidth(thick))
4 graph matrix _b_*, half
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Source | SS df MS Number of obs = 1,847
-------------+---------------------------------- F(21, 1825) = 76.63

Model | 228.017158 21 10.8579599 Prob > F = 0.0000
Residual | 258.57359 1,825 .141684159 R-squared = 0.4686

-------------+---------------------------------- Adj R-squared = 0.4625
Total | 486.590749 1,846 .263591955 Root MSE = .37641

-------------------------------------------------------------------------------------
logwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

--------------------+----------------------------------------------------------------
grade | .0580982 .0045687 12.72 0.000 .0491377 .0670587

|
smsa |

SMSA | .1980121 .0202338 9.79 0.000 .1583283 .2376959
age | -.0048872 .0029435 -1.66 0.097 -.0106602 .0008858

hours | .0009899 .0009592 1.03 0.302 -.0008913 .0028711
ttl_exp | .0268968 .0024905 10.80 0.000 .0220123 .0317813
tenure | .0112598 .0019487 5.78 0.000 .0074379 .0150817

|
race |

black | -.0697331 .0223199 -3.12 0.002 -.1135084 -.0259578
other | .0295896 .0779276 0.38 0.704 -.123247 .1824263

|
married |

married | -.0170925 .0217239 -0.79 0.431 -.0596989 .0255138
|

union |
union | .1604566 .0218353 7.35 0.000 .1176317 .2032815
1.south | -.0851979 .0193013 -4.41 0.000 -.1230529 -.047343

1.never_married | -.0547122 .0327602 -1.67 0.095 -.1189636 .0095393
|

occupation |
Managers/admin | .0513316 .0350093 1.47 0.143 -.017331 .1199942

Sales | -.1986713 .0288094 -6.90 0.000 -.2551742 -.1421684
Clerical/unskilled | -.174097 .0501827 -3.47 0.001 -.2725186 -.0756753

Craftsmen | -.1325747 .0594448 -2.23 0.026 -.2491617 -.0159876
Operatives | -.2405205 .039101 -6.15 0.000 -.3172079 -.1638331
Transport | -.4753187 .0932906 -5.10 0.000 -.6582862 -.2923511
Laborers | -.3441774 .0386245 -8.91 0.000 -.4199303 -.2684245
Service | -.0148908 .1125175 -0.13 0.895 -.2355673 .2057858

Other | -.2686168 .038958 -6.90 0.000 -.3450238 -.1922098
|

_cons | .9232746 .1439897 6.41 0.000 .6408727 1.205676
-------------------------------------------------------------------------------------

FIGURE A.18: Estimated linear regression model of logwage versus grade,
smsa, age, hours, ttl_exp, tenure, race, married, union, south,
never_married and occupation for the NLSW data.
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--------------------------------------------------------------

Variable | model1 model2 model3 model3b
-------------+------------------------------------------------

grade | 0.0948 0.0886 0.0581 0.0581
| 0.0044 0.0043 0.0046 0.0052
|

smsa |
SMSA | 0.2381 0.1980 0.1980

| 0.0239 0.0202 0.0197
|

age | -0.0049 -0.0049
| 0.0029 0.0030

hours | 0.0010 0.0010
| 0.0010 0.0013

ttl_exp | 0.0269 0.0269
| 0.0025 0.0027

tenure | 0.0113 0.0113
| 0.0019 0.0021
|

race |
black | -0.0697 -0.0697

| 0.0223 0.0208
other | 0.0296 0.0296

| 0.0779 0.0883
|

married |
married | -0.0171 -0.0171

| 0.0217 0.0213
|

union |
union | 0.1605 0.1605

| 0.0218 0.0224
|

south |
1 | -0.0852 -0.0852

| 0.0193 0.0201
|

never_marr~d |
1 | -0.0547 -0.0547

| 0.0328 0.0357
|

occupation |
Managers/~n | 0.0513 0.0513

| 0.0350 0.0368
Sales | -0.1987 -0.1987

| 0.0288 0.0282
Clerical/~d | -0.1741 -0.1741

| 0.0502 0.0687
Craftsmen | -0.1326 -0.1326

| 0.0594 0.0575
Operatives | -0.2405 -0.2405

| 0.0391 0.0385
Transport | -0.4753 -0.4753

| 0.0933 0.1015
Laborers | -0.3442 -0.3442

| 0.0386 0.0416
Service | -0.0149 -0.0149

| 0.1125 0.1118
Other | -0.2686 -0.2686

| 0.0390 0.0374
|

_cons | 0.6268 0.5402 0.9233 0.9233
| 0.0584 0.0578 0.1440 0.1508

-------------+------------------------------------------------
N | 2244 2244 1847 1847

r2_a | 0.1726 0.2074 0.4625 0.4625
--------------------------------------------------------------

legend: b/se

FIGURE A.19: Comparison of the models fitted in the example with the NLSW data.
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FIGURE A.20: Bootstrap distribution of the tenure coefficient for the linear re-
gression model shown in Figure A.18 for the NLSW data. The solid black line indi-
cates the fitted normal distribution with mean and standard deviation equal to those
of the bootstrap replicates.
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FIGURE A.21: Bivariate bootstrap distributions of the coefficients of the numeri-
cal predictors (plus the constant) included in the linear regression model shown in
Figure A.18 for the NLSW data. In each diagram the dots represent the bootstrap
replicates, while the grey shaded regions are the corresponding bivariate kernel den-
sity estimate. In Stata you can get it with the user-written kdens2 command.

A.3 Summary
In this chapter we reviewed the basic statistical concepts that are at the core of the
methods we present in the book. In particular, we provided a concise presentation of
linear correlation and a more detailed discussion of linear regression, one of the most
successful statistical model applied in practically all fields.
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Appendix: R Commands
In this final section we briefly present some of the R commands for performing the
analyses discussed in the appendix.

Covariance and correlation

R provides the cov() and cor() functions respectively for computing covariances
and correlations between pairs of variables. They both require a data frame or a ma-
trix object containing only numerical variables. The additional use argument speci-
fies the method to use for computing covariances and correlations in the presence of
missing values. Allowed values are:

• "everything", which propagates NA values (the R flag for missing data)
through the computation, that is a resulting value will be NA whenever one of
its contributing observations is NA,

• "all.obs", produces an error in case of any missing observation,

• "complete.obs", which handles missing values by listwise deletion (see
Section 3.6); this choice corresponds to Stata’s correlate command,

• "na.or.complete" is the same as "complete.obs" unless there are no
complete cases, in which case it gives NA,

• "pairwise.complete.obs", which uses pairwise deletion (see Sec-
tion 3.6); this choice corresponds to Stata’s pwcorr command.

Through the method argument, the cor() function also allows to specify
whether to compute the standard Pearson’s linear correlation index (the default) or
other non-parametric versions, namely the Spearman’s or Kendall’s indexes.

The basic graphical command to produce a scatterplot matrix in R is pairs(),
which is simple but not very flexible. If you need more customization options, you
need to use other packages like lattice (Sarkar, 2008) or GGally (Schloerke
et al., 2020).

The linear independence test is provided by the cor.test() function.
The following code, whose output is not reported, replicates the same results as

in Section A.1:

1 if (!require(haven, quietly = TRUE)) {
2 install.packages("haven")
3 }
4 library(haven)
5 if (!require(dplyr, quietly = TRUE)) {
6 install.packages("dplyr")
7 }
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8 library(dplyr)

9 nlsw88 <- read_dta(file = file.path(path_data,
10 "nlsw88.dta"))
11 vars <- c("age", "hours", "ttl_exp", "wage")
12 pairs(nlsw88[, vars], pch = 20, col = gray(.4))

13 nlsw88 <- mutate(nlsw88, logwage = log(wage))
14 vars <- c("age", "hours", "ttl_exp", "logwage")
15 pairs(nlsw88[, vars], pch = 20, col = gray(.4))

16 cor(nlsw88[, vars], use = "complete.obs")
17 cor(nlsw88[, vars], use = "pairwise.complete.obs")

18 cor.test(x = nlsw88$logwage, y = nlsw88$age)

Linear regression analysis

The main function for fitting linear models in R is lm()24. This function requires a
formula object specifying the model to fit and a data.frame object containing
the variables involved in the model. The function returns an object of class lm, which
can be printed, summarized or visualized using methods for generic functions such
as summary(), residuals(), or predict() (for the full list of methods avail-
able for inspecting lm objects, run the command methods(class = "lm") and
the corresponding documentation). Of these methods, summary() is by far the most
important since it prints in a neat way the results of the fitted model.

The specification of formula objects may appear difficult to grasp at the begin-
ning since it requires a special syntax. For our presentation here it suffices to mention
two of the available operators (for more details see ?formula), namely the “tilde”
operator ˜, which joins the left and right hand sides of the model equation, and the
“star” operator *, which instead is needed to include interactions between two or
more predictors. To include categorical predictors in a linear regression in R you
must encode the corresponding variable in the data frame as a factor variable.
You can transform a variable’s type to factor using the factor() function.

The following code shows how to fit in R the last model presented in Sec-
tion A.2.7, where we also use the subset argument is used for selecting the data to
include in the analysis:

1 nlsw88$smsa <- factor(nlsw88$smsa)
2 nlsw88$race <- factor(nlsw88$race)
3 nlsw88$married <- factor(nlsw88$married)
4 nlsw88$union <- factor(nlsw88$union)
5 nlsw88$south <- factor(nlsw88$south)

24For a complete discussion of linear regression in R we suggest to see Chapters 3 and 4 of Kleiber
and Zeileis (2008).
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6 nlsw88$never_married <- factor(nlsw88$never_married)
7 nlsw88$occupation <- factor(nlsw88$occupation)

8 nlsw88_lm <- lm(formula = logwage ~ grade + smsa + age +
9 hours + ttl_exp + tenure + race + married + union +

10 south + never_married + occupation, data = nlsw88,
11 subset = (occupation != 9 & occupation != 10 &
12 occupation != 12))
13 summary(nlsw88_lm)

We conclude this brief presentation of linear regression with Rmentioning how to
produce some diagnostics. More specifically, you can check if any of the predictors
are affected by multicollinearity using the vif() function from the car package
(Fox and Weisberg, 2019). To check if the model suffers from heteroskedasticity,
you can instead use the bptest() function from the lmtest package (Zeileis and
Hothorn, 2002).



http://taylorandfrancis.com
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latent class analysis, 48
latent variables

endogenous, 96
exogenous, 96
higher order, 134

LCA, see latent class analysis
likelihood ratio test, 44
linear correlation index, 291
linear regression model, 296

bootstrap, 15
dummy variables, 305
endogeneity, 49
exogeneity, 296
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