
Managing
Information
Technology

Francisco Castillo

Managing Information Technology

Francisco Castillo

Managing
Information
Technology

123

Francisco Castillo
Paranaque
Philippines

ISBN 978-3-319-38890-8 ISBN 978-3-319-38891-5 (eBook)
DOI 10.1007/978-3-319-38891-5

Library of Congress Control Number: 2016940885

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

In 2011, I started my career as CIO of a large Philippine company; during that time,
the first thing I wanted to do was to set the organization right, in terms of its
structure, as well as processes, as this would set the pace for the many years to
follow. Got it wrong, and I would have had to live with that mistake for many years.
What was clear to me at that time is that there were two very different components
in IT: Strategy, which is long term; and tactical and operational concerns, which is
short term. One cannot do without the other, and I was expected to address both,
knowing the fact that I only had a very limited honeymoon period in my hands.
I could not address long term without fixing the operational issues first, and yet,
strategy would always be in the back of my mind.

The other very apparent difference for me was that of managing operations
versus projects, and I wondered if what many companies were doing at that time
was right: Mixing resources to do both. So I did what I always do when unsure,
which is to research to support some of my suspicions, and I came out relatively
empty handed. Yes, I was already aware at that time of some of the industry
standards, but these were high level and difficult to interpret on how to actually
execute them, worst of all, I did not have any time to do that. And so, I did the next
thing I would usually do, which was to roll-up my sleeves, put on my thinking cap,
and try to dissect and understand what really would make sense. This was the start
of my practical experience that is reflected in this book.

The book starts with just that: Discussing the ideal/suggested table of organi-
zation in an IT department, and the rationale of why I have reached such a con-
clusion. It separates distinctly strategy from day-to-day operations, as well as
projects from operations, the two most important functions of a CIO. It goes on,
discussing the most pressing need: Managing operations in Chap. 4. This chapter is
based on some of the best industry standards and their nomenclature in the field,
with a difference: I try to explain exactly what each party is to do, and how it should
be done at a very practical level. The theory exists out there, but how to make it
practical is a different matter. For in operations, once the structure is correct, the
next challenge is how to handle tickets (e.g., requests and incidences), which are the
basic day-to-day of the operations team. This means how to record changes,
escalate them, address them, test them, release them, and possibly roll them back if
necessary. This brings us to the typical lifecycle for operations’ services: Planning

v

http://dx.doi.org/10.1007/978-3-319-38891-5_4

& Design—Release—Maintain—Retire. Each of these phases has its own distinct
aspects which should be monitored and managed, including availability and
capacity management. Operations are also linked to IT strategy, and we discuss
when this strategy translates to a project, or to operational changes, and if the
former, how these project(s) link to operations.

Chapter 5 discusses projects, the other lifeline of IT, and in this chapter we make
a marked distinction between the methodologies to be used in projects with that to
be used in operations. It is not recommended to mix these, and as such discuss IT
project management in detail. We first start with the basic project management
principles, but zero in on the way these general principles are to be used in IT
projects. IT projects are perhaps one of the most difficult projects to manage
because they deal only with intangibles. Furthermore, the people that usually define
the success of a project are the end users which the CIO has no control of, but who
must influence using some special people skills (so-called change management).
We spend time discussing some of the most critical parts of IT projects: Analysis,
design, cut-over period, and go-live and support phases. Each of these requires its
own particular documentation and techniques. Included in this chapter is a
discussion on some of the most failure-prone components of a project:
Customizations, testing, and people change management.

Documentation is discussed at length for both operations and projects, because
adapting to the waterfall standard of project methodology, it is really the lifeline for
IT to be sustainable, as well as projects transferable to operations.

What I also learned during my stint as CIO was that the cut-over from projects to
operations was many times the most critical. People from these two distinct teams
did not like to talk to one another, but is necessary for the sustainability of the
service that has just been designed. Likewise I searched for material and found very
little on this subject, so I decided to develop our own guidelines and procedures,
these are shared in Chap. 6. Starting with a discussion on the typical different
environments (development, testing, training, production), and then aspects which
seem like common sense and are usually taken for granted, but are actually very
much project-specific: Backup and restore procedures, release management pro-
cedures, data migration, data quality, interfaces, and most importantly, roles and
responsibilities of operations, project personnel, and third parties during the go-live
and support phase. We have come up with a checklist of tasks to be undertaken
before the go-live to increase its probability of success, which have been refined
throughout the years, the basis for this chapter.

Once operations and projects are in place and the fire-fighting is finished, the
next thought that should be in a CIO’s mind is how to sustain this, as well as how to
minimize issues. Fire-fighting and addressing issues should consist of less than
20 % of one’s time, but in order for that to happen, the proper governance should be
put in place, which is discussed in Chap. 7. We first start on how company gov-
ernance is related to IT governance, and how these in turn are related to policy, and
international standards such as ISO20000, ISO9001. Operations governance is
actually embedded as part of the processes by which operations works with, but
project governance is somewhat more “loose”, so that the chapter delves mainly on

vi Preface

http://dx.doi.org/10.1007/978-3-319-38891-5_5
http://dx.doi.org/10.1007/978-3-319-38891-5_6
http://dx.doi.org/10.1007/978-3-319-38891-5_7

project governance. Governance in projects refers to what must be ensured by the
Project Manager, and once more, is based on the minimum required documentation
that must be produced at different phases of a project. Documentation standard-
ization is in fact the key in making projects successful, as this is the tool necessary
to monitor status, and manage accordingly. We discuss the proposed four basic
documents for any project: Project plan, issue registry, request registry, and project
deliverables checklist. We also discuss the roles and responsibilities of different
personnel in an IT project, because oftentimes, projects also fail because of unre-
alistic expectations in the project team, or mismatch between expected and actual
skills and roles.

Chapter 8 is an overview on one of the hottest topics in IT project management
methodologies today: Agile-Scrum. The surprising thing for me is that although
many of the topics laid out above do not have much reference material, a lesser (at
least from my point of view) subject like Agile-Scrum has tons of material written
on it. As such, I do not attempt to write about Agile-Scrum in detail, but merely to
contrast it with the waterfall approach (which is the basic precept for much of my
material), and identify when it would be useful to use.

Operations, projects, and governance, how does all this glue together? If the
number of projects and the breadth of operations are huge, it is suggested to have ad
hoc portfolio managers that will oversee these according to specialty. If not, the
ultimate portfolio manager is the CIO herself. From the point of view of the portfolio
manager, he is interested in knowing how his operations and projects are performing,
but would not be interested in the details unless he needs to dive into them (e.g., there
are issues to be resolved). As such, he defines the governance for his set of opera-
tions and projects so that he can get accurate and timely information from which to
act. One of his main tasks as well is to think beyond the projects and see if the
projects are still meaningful or not to the company, and if new projects or operational
initiatives need to be defined in order to align IT to company strategy. The portfolio
management as discussed in the Chap. 9, can be defined as a cycle once more:
Planning and design, assessment and communicating, and portfolio rebalancing. On
top of this cycle is portfolio governance by which the different portfolio components
are to comply with, as well as his monitoring and control tools.

Well, this is all for now. I have written this book to hopefully bridge the gap
which I think still exists today, so that anyone who is in the same situation I was 5
years ago would have a much easier time.

Lastly, anyone interested in receiving a copy of my templates in MS office
format, please contact me at my email below and I will gladly reply.

Many thanks and good luck with all your IT operations!

Francisco Castillo
kikocas88@yahoo.com

Preface vii

http://dx.doi.org/10.1007/978-3-319-38891-5_8
http://dx.doi.org/10.1007/978-3-319-38891-5_9

Acknowledgments

I would like to acknowledge the many people that supported me while preparing
this book.

First, I would like to thank my very supportive bosses, Ricky Vargas and
Herbert Consunji, who gave me the opportunity to apply all these learnings in the
corporate world. Mon Fernandez, who also encouraged me when he took over as
President of the company, and Manny Pangilinan, for giving his employees the
leeway and opportunity to think beyond just the short term.

To my parents, who made all this possible.
To my IT staff Jenny, Noel, Ces, Konch, Jamie, Elaine, Gera, Mac, Jelle, and

Sheena, whom I taught and learned from at the same time.
To my wife Rina and daughter Linda, my main inspiration, and who heartened

me and had all the patience in seeing me toil on this book during many weekends
and holidays.

I also want to dedicate this book to the Filipino engineers and IT professionals,
who bring innovation, order, and process in a country not particularly famous for it.

Francisco Castillo

ix

Contents

1 Introduction . 1

2 IT Areas and Functions . 3
2.1 Projects Versus Operations, Strategy Versus Operations 3
2.2 Systems, Processes, and People . 7

3 Organization and Human Resources . 11

4 Managing Operations . 17
4.1 Information Technology Service Management 17

4.1.1 Service Desk (SD) . 18
4.1.2 Technical Management (TM) 21
4.1.3 Application Management (AM) 28
4.1.4 IT Operations Management (ITOM) 32
4.1.5 Field Support (FS) . 34
4.1.6 Operations Head . 35
4.1.7 Operations Management Office. 36
4.1.8 Information Systems (IS) Head 37
4.1.9 IT Infrastructure (II) Head . 39

4.2 IT Services Lifecycle. 42
4.3 Planning and Design Phase . 43

4.3.1 Change Management . 44
4.3.2 Service Level Agreement (SLA) 48

4.4 Release Phase. 50
4.4.1 Testing . 50
4.4.2 Configuration Items . 52
4.4.3 The Configuration Management Database (CMDB). . . 54

4.5 Maintenance Phase . 61
4.5.1 Event Management . 61
4.5.2 Incident Management . 62
4.5.3 Problem Management . 63
4.5.4 Request Fulfillment . 65
4.5.5 Access Management . 67
4.5.6 Capacity Management . 68
4.5.7 Availability Management . 69

xi

http://dx.doi.org/10.1007/978-3-319-38891-5_1
http://dx.doi.org/10.1007/978-3-319-38891-5_1
http://dx.doi.org/10.1007/978-3-319-38891-5_2
http://dx.doi.org/10.1007/978-3-319-38891-5_2
http://dx.doi.org/10.1007/978-3-319-38891-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_3
http://dx.doi.org/10.1007/978-3-319-38891-5_3
http://dx.doi.org/10.1007/978-3-319-38891-5_4
http://dx.doi.org/10.1007/978-3-319-38891-5_4
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec13
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec13
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec14
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec14
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec15
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec15
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec16
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec16
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec17
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec17
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec18
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec18
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec19
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec19
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec20
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec20
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec21
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec21
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec23
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec23
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec24
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec24
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec100
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec100
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec101
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec101
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec25
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec25
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec28
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec28
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec29
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec29
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec30
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec30
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec31
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec31
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec32
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec32
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec33
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec33
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec34
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec34
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec35
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec35

4.5.8 IT Service Continuity Management 71
4.5.9 Information Security Management. 72
4.5.10 Backup . 74

4.6 Retirement Phase . 75
4.7 IT Strategy. 75
4.8 Continual Service Improvement . 79
References. 84
Further Reading . 84

5 Managing Projects . 85
5.1 Project Management Principles . 85

5.1.1 Basic Principles and Characteristics of Projects. 85
5.1.2 Scope Management . 91
5.1.3 Procurement Management and Contracting. 94
5.1.4 Time Management . 100
5.1.5 Time-Cost-Quality Management 105
5.1.6 Monitoring and Control . 106
5.1.7 Risk Management . 115
5.1.8 Knowledge Management . 119
5.1.9 Communication Management 120

5.2 Project Documentation. 124
5.2.1 Analysis . 124
5.2.2 Design. 124
5.2.3 Cutover and Go Live Phase 130
5.2.4 Closure . 131

5.3 FRICEW . 131
5.4 Implementation Strategy . 133
5.5 Testing . 133
5.6 Test Automation . 141
5.7 People Change Management. 142
References. 146
Further Reading . 146

6 Cut-Over into Operations . 147
6.1 Backup and Restore Procedures . 152
6.2 Release Management Procedures. 153
6.3 Business Process. 156
6.4 Data Migration . 157
6.5 Cut-Over of Transactions and Data Quality 158
6.6 Interfaces . 161
6.7 Support Strategies and Structures . 163
Further Reading . 168

7 Project Governance. 169
7.1 Overall IT Governance . 169
7.2 Project Governance and Operations Governance 171

xii Contents

http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec36
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec36
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec37
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec37
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec38
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec38
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec39
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec39
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec40
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec40
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec41
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Sec41
http://dx.doi.org/10.1007/978-3-319-38891-5_4#Bib1
http://dx.doi.org/10.1007/978-3-319-38891-5_4#BSec1
http://dx.doi.org/10.1007/978-3-319-38891-5_5
http://dx.doi.org/10.1007/978-3-319-38891-5_5
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec8
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec8
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec9
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec9
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec10
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec10
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec11
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec11
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec12
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec12
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec13
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec13
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec14
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec14
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec15
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec15
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec16
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec16
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec17
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec17
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec18
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec18
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec19
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec19
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec20
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Sec20
http://dx.doi.org/10.1007/978-3-319-38891-5_5#Bib1
http://dx.doi.org/10.1007/978-3-319-38891-5_5#BSec1
http://dx.doi.org/10.1007/978-3-319-38891-5_6
http://dx.doi.org/10.1007/978-3-319-38891-5_6
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec7
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Sec7
http://dx.doi.org/10.1007/978-3-319-38891-5_6#Bib1
http://dx.doi.org/10.1007/978-3-319-38891-5_7
http://dx.doi.org/10.1007/978-3-319-38891-5_7
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec2

7.3 Project Monitoring and Control . 173
7.4 Project Team Roles and Responsibilities 178
7.5 Communication Management . 180
7.6 Scope Management (Including Change Requests) 181
7.7 Risk Management . 184
7.8 Asset Management . 185
7.9 Issue Management . 189
7.10 Release Management . 189
7.11 Infrastructure Capacity Management 190
7.12 Request Management for Projects . 191
7.13 Code Development Guidelines . 192
7.14 Test Guidelines. 193
7.15 Training Guidelines. 193
7.16 Backup and Recovery Guidelines . 195
7.17 Pre-go-Live Guidelines . 195
7.18 Post-implementation Support Policy 196
7.19 Service Desk Usage Policy. 197
7.20 Security Guidelines . 197
Further Reading . 197

8 Agile-Scrum Project Management . 199
8.1 Introduction and Basic Concepts . 199
8.2 Basic Components . 199

8.2.1 Product Backlog . 202
8.2.2 Sprints. 203

8.3 Monitoring: Burn-Down Chart . 206
8.4 Scope-Cost-Quality-Time Dimensions 207
References. 210
Further Reading . 210

9 IT Portfolio Management . 211
9.1 Portfolio Planning and Design . 213
9.2 Portfolio Assessment and Communicating 215
9.3 Portfolio Rebalancing . 218
9.4 Portfolio Governance. 222
9.5 Portfolio Monitoring and Control . 224
Reference . 227
Further Reading . 227

10 Appendix A: Sample Terms of Reference (TOR) 229
List of Functional Requirements . 232

Curriculum Vitae . 235

Index . 237

Contents xiii

http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec7
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec7
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec8
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec8
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec21
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec21
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec10
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec10
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec11
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec11
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec12
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec12
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec13
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec13
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec14
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec14
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec15
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec15
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec16
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec16
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec17
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec17
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec18
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec18
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec19
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec19
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec20
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Sec20
http://dx.doi.org/10.1007/978-3-319-38891-5_7#Bib1
http://dx.doi.org/10.1007/978-3-319-38891-5_8
http://dx.doi.org/10.1007/978-3-319-38891-5_8
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Sec6
http://dx.doi.org/10.1007/978-3-319-38891-5_8#Bib1
http://dx.doi.org/10.1007/978-3-319-38891-5_8#BSec1
http://dx.doi.org/10.1007/978-3-319-38891-5_9
http://dx.doi.org/10.1007/978-3-319-38891-5_9
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec1
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec2
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec3
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec4
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Sec5
http://dx.doi.org/10.1007/978-3-319-38891-5_9#Bib1
http://dx.doi.org/10.1007/978-3-319-38891-5_9#BSec1
http://dx.doi.org/10.1007/978-3-319-38891-5_10
http://dx.doi.org/10.1007/978-3-319-38891-5_10
http://dx.doi.org/10.1007/978-3-319-38891-5_10#Sec1

1Introduction

When speaking of IT functions, two distinct ones come to mind: the day-to-day
Operations and Maintenance (what I will refer to as O&M), and Projects. O&M, as
the name implies, deals with maintaining all of the IT services available, keeping
things running, and dealing with the request for changes that are raised by the
different users of the IT systems, whether these are purely internal and within the
company organization, or external customers. Projects, as implied by the name,
refer to new deployments of IT services in the form of systems, applications and
infrastructure. A CIO is expected to handle both, and to know a bit of everything:
software, processes, user change management, servers, networking, programming,
etc., and he is also expected to know how to handle operations, and handle projects.

In truth, handling operations is very different from handling projects, and the
methodologies used and best practices for each differ considerably. Both IT and
Project Management standards exist out there, but as standards, are high level and
fail to tell really how you can practically apply these. Concretely, if one is to setup
an IT organization, immediate concerns would come to mind: how to structure the
organization, what are their roles and responsibilities, how to divide and distribute
work, how and when to specialize, and what are the management tools that need to
be set-up for these.

In this book I have attempted to do just that, take the fundamental principles of
IT Service Management (ITSM) and best practices in project management, and
come up with a single, seamless reference for IT Managers and Professionals.
I have tried to make it as practical as possible, talking about how to actually apply
these principles based on my experience in the industry. Making these practical is
the first and most import step, but is not enough. Long-term sustainability requires
that these principles also be framed in governance policies and procedures, and so I
also discuss what aspects should necessarily be captured in these policies and
procedures.

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_1

1

2IT Areas and Functions

2.1 Projects Versus Operations, Strategy Versus
Operations

Projects and Operations & Maintenance (O&M) are the two distinct, yet necessary
functions in any IT Organization. Projects have distinct properties as compared to
operations. First and foremost, projects have a very distinct start and finish, while
operations are continuous in nature, and this is true no matter what industry it is
being applied on. Because of this, the ways projects are managed are quite distinct
from operations, and yet, that interface between projects and operations is a crucial
link for projects to be ultimately successful, and an area which commonly fails.

Projects also have very distinct phases, in which they initiate-plan-execute and
close, while operations are continuous, and have no distinct phases within them. IT
Project outputs may lead to additional services, which will then need to be sup-
ported by O&M thereafter, and will form part of operations’ service catalog. O&M
can also request and initiate a project as part of its effort to continuously improve
(PDCA), yet the treatment of this project will follow that of standard projects.

Some more differences between the two are shown in Table 2.1.
Though as will be discussed, project governance has its own particular policies

and guidelines, every project is different, so that each project has its own charter,
organization, and goals, its main purpose is in fact to CHANGE something, while
that of operations is more of status quo, with its semi-permanent (though
improvements do exist) charter, organization and overall goals. Projects are put up
to produce a very concrete IT service, while operations are mainly to support and
operate an existing, predefined service that is part of its service catalog. Projects
have a definite timeline, after which they cease to exist, while operations never end.

A very important characteristic is that deliverables or outputs of a project are
progressively elaborated, something which is very important and will be discussed
in detail under scope management, and which means, that unlike operations, the
final detailed outputs are not clear from the very beginning, but are progressively
defined and refined in terms of detail as the project progresses.

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_2

3

Just from some of these differences, it becomes apparent that the way projects
are to be handled differs considerably from that of operations.

On the other hand, strategic decisions need to be made for both projects and
operations, many times, these cannot be made separately (especially so for
infrastructure). Table 2.2 shows a typical matrix of roles in the organization and
their corresponding responsibilities.

Strategy consists of planning and initiating projects or other initiatives that either
improves the service to the end users or provide additional services to them. It must
be aligned with the overall company focus and direction, and must provide some
concrete benefit or address concrete requirements needed by the company. Gen-
erally speaking, a new initiative should

• Increase revenue
• Decrease operational cost
• Improve customer service
• Address legal and regulatory requirements or
• Minimize risk.

These are of course very broad, and it is up to the CIO, Head for Operations, as
well as the Heads for the Portfolios to align and translate business requirements from
the organization to concrete initiatives that need to be started in IT. The portfolio
managers depicted above may be several, depending on the size and structure of the
organization. At the very least, it requires one to handle new applications (Head for

Table 2.2 Roles and responsibilities for Operations and Projects

CIO (overall) Operations Projects

Strategy Head for operations Portfolio managers (information
systems head, IT infrastructure head)

Delivery functions O&M team Project manager

Table 2.1 Projects versus operations comparison

Projects Operations

Creates its own charter, organization, and
goals

Semi-permanent charter, organization, and
goals

Purpose of change Purpose of status quo

Unique product or service Predefined and approved product or service

Heterogeneous team Heterogeneous teams

Definite start-definite end Ongoing (continuous)

Progressively elaborated process deliverables Fully known process deliverables

4 2 IT Areas and Functions

Information Systems - IS), and another to handle hardware and infrastructure (Head
for IT infrastructure - II). For larger organizations, IS and II roles may be further
broken down into separate portfolios. These personnel are the key in conceptualizing,
proposing, and designing new projects. They also are responsible for all the different
projects that fall within their portfolio, as well as applying governance over the
different projects and overseeing Project Managers (PMs) under them.

The operations Head’s strategic initiatives mainly focus on how to improve
operations by reducing costs, making it more efficient, resilient, and minimizing
risk, and in some case how to cater to the different regulatory and legal require-
ments. These improvements may be small in scope and breadth, so that they can be
handled directly by the O&M team, or may be treated as a separate project alto-
gether. In case of the latter, it then falls under one of the portfolio manager’s
responsibility and is treated much like any other project.

Table 2.3 details further the roles for O&M and projects.
As one may appreciate, there are counterparts in projects for the roles in O&M,

except for those roles that really only appear once the system is in operations: IT
Operations Management (ITOM), and User Support (US). The first does not exist
because they are in charge of regularly executing programs that produce outputs for the
end users. As a project is by nature not yet operating, there are no end users yet to speak
of, thus there is no role equivalent for ITOM. The same holds true for User Support.

A portfolio manager may have O&M as part of his portfolio, and this is true as
well for the CIO. Not only is he overall head for the IT Department and drives
strategy, he is also the overall portfolio manager which also contains O&M as part
of his portfolio. Some other organizations do not differentiate their IT structure
between projects and operations, but rather, mix these according to functional area.
This has its own advantages and disadvantages, some of which are discussed in
Chap. 3; however in general, this is not a best practice. Main advantage of a
functional organization is that if the portfolio manager has been long with the
organization, he may have a deep functional knowledge of the portfolio he is
handling, disadvantage is that he will have to learn how to apply two distinct
methodologies, and learn how and when to switch from one to the other. This setup
may be appropriate for very large organizations which require very specialized
functional expertise, and regularly have update projects in that functional area, but
other than that, it is better off to separate projects from operational responsibility.

Table 2.3 Roles in projects and O&M

Responsible area/function O&M Projects

Overall management Operations head, CIO PM, portfolio Mgr., CIO

Applications Application management (AM) Business analysts

Programming Developers (under AM) Developers

Operations IT operations management (ITOM) n/a

User support, service desk User support (US), Service Desk (SD) n/a

Technical infrastructure Technical management (TM) Technical support

2.1 Projects versus Operations, Strategy Versus Operations 5

http://dx.doi.org/10.1007/978-3-319-38891-5_3

The problem in having both an Operations and a Project hat at the practical level
is that since both methodologies are distinct, the person does not easily “switch”
mentality. Take for example a role in which the team lead for the sales system is
getting a large number of tickets due to incidences in the sales process which has
been now declared obsolete due to circumstances, while at the same time, man-
agement is pushing some new sales modules which need to be developed and
implemented in the next month. Although the team lead has all the necessary
resources: business analysts familiar with the application, developers, technical
architect, he has a problem in allocating resources for each, and making sure that
the project is monitored in accordance with Project Management best practices,
while tickets are replied on time and with full details and documentation as also
required by operations best practices.

On the other hand, having separate teams has one major challenge that of
transferring projects into O&M, what I refer to as cut-over (also referred to as
hand-over, transitioning, etc.), and requires special procedures so as to guarantee its
success.

It is important to remember that success or failure of projects and initiatives is to
be seen from the business point of view, meaning, whether the project has delivered
the intended benefit to the business. Oftentimes, IT Departments have a narrow
vision of success: project completed on time, project completed within budget, and
yet, due to other factors, the delivered service is not actively used by the users.
Common issues include

• People change management issues
• Project does not really reflect the needs of the users
• Project does not reflect the need of the business
• The project is already obsolete due to the new direction taken by the business.

The first point is taken further in its respective section; the second refers to scope
management, while the last two are the main jobs of the portfolio manager, and is
explained in its respective section.

Take for example this typical, real-life situation. A big corporation is given a
huge budget to modernize its IT systems, starting with its reporting system. Having
seen several vendor presentations, they settle for one of the fastest, most sophis-
ticated data storage, reporting system, and corresponding hardware. The project is
awarded and started, making sure all the software components are correctly
installed and the architecture at par with the best performing data storage systems in
the world, however, the consultants and IT manage the whole process from a
technology point of view, having in-depth user requirements defined as an after-
thought. In fact, they apply “Agile” techniques in which the users are presented
with reports and dashboards and asked for their concurrence, to which they do,
however, they fail to go into the details of the different indicators being presented
and how they are calculated. The project hits a major snag when the first set of

6 2 IT Areas and Functions

deliverables is presented to the users, which they reject because they do not concur
in the way several KPIs are being measured. The project team is at a loss and after
tweaking and re-tweaking the reports, gives up after 1 year, when the IT Manager is
fired and the whole project shelved.

2.2 Systems, Processes, and People

It is commonly said that IT is made up of three main components: systems, pro-
cesses, and people. Unfortunately, all three are intangibles, so they are very hard to
define and manage.

• Systems: refers to the applications, infrastructure, and other assets which exe-
cute and automate particular business functions.

• Processes: refers to the way in which the systems are setup to conduct a par-
ticular business function.

• People: refers to the IT Department’s staff, as well as, all end users making use
of the systems in conducting their normal business operations.

Each of these three needs to be managed by IT, and in degree of increasing
complexity (normally) are systems, processes, and people. To explain each by
means of an example, let us take a common application, say a financial application
that handles General Ledger (GL), Accounts Payable (AP), and Accounts
Receivables (AR)

• System—in this case would refer to the specific brand and version of the
financial package bought.

• Process—would refer to the configuration and setup of the different modules in
the system. For example, for Accounts Payables (AP), it would refer as to how
the Accounts Payable processes these accounts and payments, in step by step
fashion and in accordance with how business is conducted using the system.

• People—refers to IT and the finance department using the application.

For any application to succeed, all three need to be addressed, for example by:

• System: purchasing a brand and version that meets the end user requirements in
finance (this means, that the system is CAPABLE of delivering the desired
functionality).

• Process: the specific configurations on the system so that it meets the end user
requirements. These requirements need to be defined in detail so that the con-
figurations match these requirements. If the system chosen must have the
capability to deliver the functionalities, the actual process design and configu-
ration of the system are what enable and deliver the desired functionality.
A system delivered with a certain process in place is referred to as an
application.

2.1 Projects versus Operations, Strategy Versus Operations 7

• People: even though the right system was chosen and the right process mapped
unto it, it is still useless if the people do not understand it and do not use the
application correctly, unless otherwise, the success of the application is doomed.

Systems are bought from a vendor, processes are configured into the system by the
consulting and System Integration companies contracted, and people are trained both
by the System Integrator and by IT in the use of the application. The reason why
people are usually the most difficult component is that first, it is the users that need to
define the process they need. This poses several problems, for one, the users may not
really know or cannot really express what they need. Second, assuming that the
consulting company is very experienced in eliciting their requirements, the users may
not be able/may not want to dedicate sufficient time to this endeavor. This may be
especially true during the testing phase, as it must be the end users to test and verify
whether the system adheres to the specifications that they require. Finally, there is the
people change management aspect. People change management refers to the process
of managing change in an organization, in our case, brought about by a new appli-
cation or new process to be released. People are inherently resistant to change, it
causes insecurity and fear in them, and the natural reaction is pushback. Pushback
manifests itself in making it difficult for the change to succeed, delaying approvals,
continuously raising issues, ignoringmeetings, andmaymanifest inmanymoreways.
It may also be unintentional and the fault of the IT Department, in not explaining
enough (not just about the application, but what It means for the business), not enough
training, or focusing too much in transactional training rather than disseminating to
the users the rationale and know-how on how the processes are designed to work.

In summary, the IT Department needs a strange combination of many skills:
technical, operations, project management, processes, technical management, and
people skills. It is for this reason that many IT initiatives fail; putting all these skills
together in a concerted fashion is a very difficult task indeed. Furthermore, structure
and procedures make a lot of difference in ensuring success, the other being
experience, something which is not taught nor written in any book (but hopefully
addressed, even if partially by this book).

Take the following problematic examples:

Example 1: A new sales system is bought by IT as requested by the Sales
Department. The system is selected based on demos and features shown by
the vendor which were appreciated by the end users, however, when the
project starts, the Sales Department is too busy to dedicate time in sitting it
out with IT and the System Integrator (SI) in defining the correct sales pro-
cesses, sending instead some very junior staff which together with IT, define
the blueprint. Upon going live, the system does not work in accordance with
what sales wants and the whole application is junked.

Example 2: A new enterprise resource planning (ERP) system is bought as
higher management has decided to “modernize” without clearly under-
standing what this means or implies. The services for implementing the

8 2 IT Areas and Functions

system are bid out as a turn-key contract and awarded to an experienced SI.
IT, however, is inexperienced with this type of system, and most especially
the industry best practices in terms of the processes covered. In the course of
the project, some hard decisions are to be made, including streamlining the
invoice payment process from a purely manual process, in which currently
payments are approved by means of an approval form physically signed by
different authorized signatories, to 3-way matching in which everything is
paperless. 3-way matching means matching an invoice received from the
vendor with the actual purchase order released to him, and the acceptance of
the goods upon delivery (Goods Receipt-GR), which guarantees that payment
takes effect only if the 3 “match”. The SI presents this process, however, the
users are very resistant to the change, and IT being unknowledgeable, is
unable to defend the proposed process change. As the SI has a project to
finish, and sensing the mounting resistance, conveniently accedes to the
request of not implementing 3-way matching to avoid lengthy discussion and
conflict, proposing instead a change request for customizing the payment
process based on the users’ liking. This situation is a losing proposition for
the customer in not utilizing the power of an industry best practice, and for
IT, in customizing a very standard process in the ERP, which will get back to
them eventually.

2.2 Systems, Processes, and People 9

3Organization and Human Resources

From the point of view of operations versus projects, there are several variations on
the type of organizations employed. Typical operations-focused organizations have
a very rigid hierarchy, based mainly on the functional roles for each position under
IT as shown in Fig. 3.1.

Functional managers would be concerned with their particular area of respon-
sibility, whether this would be a series of applications, or organized based on the
type a skills they handle. A typical IT operations-focused organization would look
like that shown in Fig. 3.2.

The role and function of each of these teams are explained further in the sections
under O&M, however, to briefly describe:

• Technical Management (TM)—is in charge of the general upkeep of all
infrastructure components. This includes network, storage, servers’ resources, as
well as, technical components of the different software, typically the technical
implementation of the applications, databases, and operating systems.

• Application Management (AM)—is in charge of updating and maintaining all
application configurations. They typically modify these based on incidences and
request requirements. The difference with the involvement of TM in the
applications is that AM handles everything that affects processes and their
behavior, while TM handles all technical aspects.

• IT Operations Management (ITOM)—responsible for the day to day man-
agement and maintenance of the IT Infrastructure, batch processes and other
repetitive functions needed to deliver the necessary IT services to the end users

• User Support (US)—is the interface between IT and the users, so that users
need not know anybody else but the US personnel interfacing with them. It is in
charge of first level support to the users and attempts at their resolution. It
handles all requests and incidences reported by end users.

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_3

11

If we now further define the table of organization one level down, we then have
the TO shown in Fig. 3.3.

Technical Management has its different distinct teams in charge of networks,
system administration, and Database Administration. The Application Management
team will have business analysts specialized in the different applications, and
typically a pool of developers (programmers) in charge of customizations. The
Business Analysts may not be broken down into specialized groups but may also be
a pool, which can service different applications, depending on their skill sets. IT
Operations Management will have different batch operator teams that run and
monitor the different batch processes, and the facilities management team in charge
of the regular upkeep of IT facilities such as data center, common facilities, and the

Fig. 3.1 Functional organizational structure

Fig. 3.2 Typical IT functional structure

12 3 Organization and Human Resources

like. User Support is further broken down to Field Support (FS) Asset Management,
and Service Desk (SD). Service Desk is manned by agents who receive and process
the requests and incidences from the users, and are the users’ single point of
contact. They man the Service Desk system and attempt to address the request or
resolve the customer’s issue immediately, but if unable will then escalate this to the
proper team. Field support refers to personnel that distinct from the rest of the
teams, may actually travel to where the user is in attempting to service a request or
incident. They commonly address requests and issues related to the endpoint
devices, including repairs. The reason for placing field support under user support is
that although it may seem that it is more technical and would belong to technical
management, most requests and incidences are generated directly from the service
desk by end users and need close coordination with the service desk personnel.
Asset Management here refers to the reception, storage, and disposal of IT assets,
which is under User Support as the bulk of these items correspond to end user
requested or assigned devices.

On the other end of the spectrum is the project-oriented organization as shown in
Fig. 3.4.

Wherein each manager is focused toward his particular project(s), and there is no
operational focus whatsoever. This is typically found in consulting companies,
system integrators, and engineering companies which have a very lean internal
operational function (sales, administration, and marketing…). As most IT organi-
zations need a mix of both, the question is what would be the proper Table of
Organization (TO) for an all-encompassing IT organization? My recommended

Fig. 3.3 Typical IT functional structure with details for each team

3 Organization and Human Resources 13

approach is to separate the project organization from the operations organization,
giving the operational organization a structure which follows the IT Operational
structure above, while the project organization is focused toward a pure project
setup, similar to what is shown in this last TO. The project heads would have a
more strategic role, in coming up with medium and long-term plans, and translating
these into actual projects that are aligned with the company’s overall (changing)
strategy. These project heads would be managing the portfolio of projects and
continuously aligning them to the company strategy. An example of this organi-
zation is shown in Fig. 3.5.

In this organization, the head for IS is in charge of strategy and new projects
related to software applications, while the Head for IT infrastructure is his

Fig. 3.4 Typical
project-oriented structure

Fig. 3.5 Project and operations combined IT structure

14 3 Organization and Human Resources

counterpart for infrastructure, which includes all hardware and technology com-
ponents. The IT infrastructure Head must coordinate very closely with the technical
management team under O&M due to their interrelationship, and definitely all
projects must be closely coordinated between Projects and O&M for turn-over.

The philosophy of the company in undertaking projects should also be con-
sidered. If projects are fully contracted out, then each of the PMs will interface with
each vendor PM and have no personnel under it. If projects are done in-house, then
the PM will have to “borrow” resources from the line organization either full-time
or part-time. This is only possible if the company’s IT headcount is considerable, so
that the O&M team can afford to lend to the project teams, but is rarely the case.
Part-time borrowing has the problem mentioned during the book’s introduction, in
which the personnel will lack focus and would be confused as to the methodology
to use. In this case, he shall also be reporting to at least two bosses, and may not
actually be evaluated by both, nor the boss from O&M appreciative of his work in
the project. Due to these reasons, and unless the company is developing its own
software platforms for outside sale, it is recommended to fully contract projects.
This also has the advantage that the project can be contracted to a specialist in the
project products without having to hire them full-time (as the project has a definite
duration anyhow).

3 Organization and Human Resources 15

4Managing Operations

4.1 Information Technology Service Management

IT service management (ITSM) is the process of aligning enterprise IT services
with the business needs with the intention of delivering to the end-user a service at
its desired performance level. ITSM ensures that the right processes, people, and
technology are in place so that the organization can meet its business goals through
the service provided by IT. One standard that has become a sort-of de facto in the IT
industry is ITIL (Axelos 2011) which defines many of the nomenclature used in the
IT industry today for managing IT operations including much of the nomenclature
used here, as well as the philosophy of how to handle operations. In this chapter, we
adapt many of these principles but recommend concrete and practical ways of
setting-up and managing your operations which most of the current standards do
not define [some other relevant standards includes Microsoft Operating Framework,
ISO 20,000 (ISO 2011), and COBIT (ISACA 2015)].

We shall limit the use and definition of ITSM to cover that of operations only,
and exclude projects as these have their own distinct methodology. We shall also be
using the Table of Organization shown in Fig. 3.5 from here onwards as our
reference, and refer to operations as O&M to contrast it from ITOM (IT Operations
Management).

It may seem obvious, that O&M should have precedence over all decisions made,
especially with respect to managing releases (changes) into production, yet some-
times this is not practiced to the letter. Since O&M has a commitment in delivering a
certain Service Level Agreement (SLA) to its end-customers, it has to ensure that no
disruption to operations occurs. Projects, once cut-over into production almost
always have some risk and disruption, so the timing, manner and preparation for the
cut-over needs to be carefully worked on, and coordinated with O&M. Any release
by any project will always need to be cleared with O&Mbefore proceeding. For now,
it suffices to say that under all circumstances, the Head of Operations needs to be
consulted and should be in agreement with the cut-over of the project into production,
more of this is discussed in detail in Chap. 6 under cut-over strategy.

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_4

17

http://dx.doi.org/10.1007/978-3-319-38891-5_3
http://dx.doi.org/10.1007/978-3-319-38891-5_6

Below, we discuss the specific and detailed roles and responsibilities of each
team shown in the Table of Organization.

4.1.1 Service Desk (SD)

Service Desk is the single point of contact for all users within an organization with
IT for any request or incidence. This means that from their point of view, they need
not understand the underlying Table of Organization, roles and responsibilities of
each individual within the IT organization, but merely be aware of service desk, due
to its customer-facing roles and responsibilities. When a user has an inquiry, request
or incidence, he only needs refer to the service desk to obtain the necessary
explanation, service, or resolution. A user would also expect that this is done within
a reasonable amount of time. A service desk is handled by agents which would
open tickets in accordance with what is being reported.

Different channels may be used for contacting the Service Desk

• Phone
• Email
• Web (self-service)
• App (self-service)

The service desk is also responsible for attempting First Call Resolution; this
means its ability to resolve the inquiry or incident right on the instant when reported
by the user. This means that the ticket can be closed much faster than if it is
escalated, and also uses less technical and expensive resources (Service Desk
agents) handle the resolution versus more expensive and specialized ones if esca-
lated (AM, TM personnel).

Tickets opened by the Service Desk should follow the following classification:

• Incidence—any event which impairs the use of a service. It may also be an
event that has not yet impaired service, but will do so if left unattended.

• Request—User’s request for information, advice, for change, or for access to an
IT Service.

Tickets may be generated by both end-users, or internally by the IT staff. Best
practice is that once the ticket is resolved, it goes back to Service Desk for con-
firmation of closure from the user thus closing the loop in making the Service Desk
the single point of contact.

The Service Desk is responsible for ensuring that tickets are opened with all the
necessary information before escalation

• Complete description of the incidence or request. This may include screen-
shots and detailed description of the issue, or a complete description of the
request. It is the Service Desk’s responsibility to understand what information is
needed before escalation, so as to avoid the ticket from delaying

18 4 Managing Operations

• Understanding who is requesting for the ticket. This may be automatic (if
through Web or email), but will not be if by phone, for example.

• Classifying the ticket correctly. Service Desk determines (either automatically by
the Service Desk (SD) system, or manually by the agent) the team towhich the ticket
should be escalated, the approver, the information details required for the ticket, and
this also sets in motion the count which will be used in calculating the SLA.

In order to maximize the amount of tickets resolved via First Call Resolution, an
FAQ is usually facilitated to the Service Desk along with training and regular
updates. Incidences are highest whenever a new project is released into production,
so that Service desk agents must be trained thoroughly before the go-live of a
project.

Once the ticket is escalated, it will follow its normal pre-determined flow until
the ticket is resolved or canceled. Incidences should be resolved within the
allowable time, however, it may be that the incidence’s root cause cannot be easily
identified either because it is totally new, is of a complex nature, or may be due to
many possible factors. In such a case, a problem ticket is created by the assigned
team (AM, TM, ITOM, US) and will remain open until the final root cause is
identified. A problem ticket may also be referenced by several incidences, wherein
all these incidences are related to a common problem (More of this is explained
under Sect. 4.5.3).

Even if the problem ticket remains open, it is important to resolve the incident as
soon as possible, and that means that work-arounds may need to be applied, so that
at least the service can still be delivered. Thus, once the work-around is effectuated,
the incidence ticket is closed, but the problem ticket shall remain open. If, upon
further investigation, the root cause of the problem ticket can still not be identified,
several options exist (which may also be undertaken simultaneously)

• Consultation between different teams. As the root cause may reside in a gray
area between the different responsibilities.

• Escalation to next level support. This may be to the software or hardware
vendor’s technical support team.

• Recreation of the scenario in a sandbox environment for simulation and testing.

It is important to fill-out details of resolution of incidences and problems in the
company’s Knowledge Base (KB). These resolved problems and incidences with
work-arounds are called Known Errors, and help in applying the resolution iden-
tified whenever the same incidence is encountered again. A properly designed
Knowledge Base allows the different IT teams to search through it by content, ticket
type, date, user, etc., quickly identifying past issues which are similar to the current,
accessing the work-arounds and root cause and applying these to the current issue
for final resolution. On the other hand, the process for the handling of problems is
called Problem Management.

Not all requests and incidences are treated equally nor should they be given the
same criticality, due to

4.1 Information Technology Service Management 19

• Impact on services (severity). Incidences which have a higher impact are more
severe. As an example, a network incidence may affect only one user, a whole
department, or the whole company, and therefore the priority given based on
these should correspondingly increase.

• User. Not all users are created equal, and thus, requests and incidences reported
by top management have a higher priority overall (VIPs), followed by man-
agers, and rank and file, for example.

• Type of incident or request. The type of ticket being requested may also have
an influence on the priority, this may be due to the known impact such a type of
ticket may have over the business (affects customer service, for example), the
expected response time for such type of tickets (request for password email reset
for example should not take very long). It may also be related to the complexity
of what is being asked, for example, a modification on the functionality of a
program (which goes to AM), typically requires several man-hours analysis and
therefore is not immediate, so it is of little avail to assign it a high priority.

The usual way for calculating the overall severity of the ticket (High–Normal–
Low, or whatever other classification has been designed) is to come up with a
matrix that calculates the overall criticality based on the priority assigned (from the
above) as well as severity. See the example shown in Fig. 4.1.

The severity would be dependent on another similar table classification as shown
in Fig. 4.2.

Thus, the overall severity will be based on a formula or table which defines the
overall classification based on the above. For example, the formula may say that
severity will be urgent for as long as the impact level is high or priority is high, minor
severity incidences may be those with low priority, and so forth. It is important that
once the ticket is routed, all users accessing the ticket have visibility over its clas-
sification, so that they can give due priority. Even better if the service desk system
automatically calculates the due date and displays this information as well.

Proper training of service desk personnel is crucial for the process flow to execute
correctly. It is the service desk that will identify the impact the ticket has by means of
their understanding of the issue, through interactive dialog, as well as whether the
requestor is a VIP or not. Though the VIP tag may be automatically calculated
depending on the ID of the user, take note that VIPs may not be the ones personally
reporting to the Service Desk (i.e., their secretary or staff), so that needs to be captured
correctly. It is also the Service Desk that will classify the ticket correctly so that the
overall severity calculation takes place and proper routing is done by the system.

Consider the situation in which a new proxy server was deployed by TM’s
networks group and propagated the change to the end-users’ web browser,
but failed to properly inform Service Desk. Upon going live, some users have
issues with the change and are unable to connect to internet, so they report
this to SD, however, because SD was not properly briefed, it merely escalates
the issues to TM, which is now swamped with tickets. This could have been

20 4 Managing Operations

avoided by simply devoting sufficient time in briefing SD, which would then
be able to resolve this under first call resolution.

4.1.2 Technical Management (TM)

The technical management team, as it’s name implies, is in charge of the IT
infrastructure. Normally this includes

• System Administration. In charge of Operating systems and applications.
• Database Administration

Fig. 4.1 Sample category matrix for a service desk

4.1 Information Technology Service Management 21

• Network Management
• Management of Servers and Storage

Some of the functions above, depending on the size and complexity of the
organization, may be shared by different team members, such as the system
administrator also performing functions related to the management of servers and
storage, but take note that the skills required for each is quite distinct.

Two of the main preoccupations of TM are

• Availability Management
• Capacity Management

Fig. 4.2 Sample severity
level calculation based on
impact, priority, and type of
user

22 4 Managing Operations

Which are explained in more detail in Sects. 4.5.6 and 4.5.7, however, to
describe them simply, TM’s first and foremost role is to keep things running, with
minimal disruption to the service (availability management). On the other hand,
capacity management refers to the allocation of resources to the different applica-
tions so as to ensure that there is no performance degradation to the service.
Capacity management is especially relevant during the go-live phase of a project as
it is the moment of truth in terms of how much resources are actually needed by the
new system. During the lifecycle of a service, capacity requirements will also
change due to the changing environment in which the service is used. Some of these
aspects will be explained briefly in the next few sections.

4.1.2.1 System Administration
Main functions of the System Administrator (SysAd) are related to availability
management and security. As new patches and versions are released for many of the
different Configuration Items (CIs) periodically, the System Administrator needs to
determine whether these need to be installed or not and when. Priority are security
patches, installation of modules or versions which are to become outdated or
support is to be ceased, as well as patches to address known issues. Next in the
priority list are new versions which have functionalities required by AM due to a
request or a planned change. Other patches and upgrades may be set aside until a
more relevant event triggers their required deployment.

These activities are related to Availability management as failure to install and
deploy these changes may result to incidences, or security breaches, as the case may
be. It must be kept in mind that all new releases, and to a lesser extent patches, must
be properly tested before release to production, and such testing, depending on the
application, may be quite complex. If testing is complex, a comprehensive upgrade
and test plan may be required.

In complex systems such as ERPs or core banking, modules within these
applications are interdependent, so that a change in one module affects the other. It
is for this reason that failures will most likely be in the FRICEW (see Sect. 5.3)
when upgrading, as these customizations divert from the standard modules (and
therefore interfaces between modules) released by the vendor (which of course, we
hope were properly and exhaustively tested by the vendor before release, but
actually may not be so). The proper planning for release management and upgrades
is beyond the scope of this book, and is in fact quite dependent on the application,
but take note that all customizations have a higher risk of failure when being
upgraded as compared to standard functions.

One other very important function of the System Administrator (SysAd) is
releasing changes into the different environments (QA, PROD), keeping track of
these, and having readily-available roll-back procedures. One particular special
release is user roles and authorizations. These are not normally authorized, nor
determined by the SysAd, but are necessarily executed by him.

As an example of an incident related to improper testing, take the case of a patch
being released by the ERP vendor to address known issues in its Java components.
The patch update is then deployed by the SysAd immediately in the DEV, QA, and

4.1 Information Technology Service Management 23

http://dx.doi.org/10.1007/978-3-319-38891-5_5

PROD servers, only to find out that some customized Java displays in the portal that
interfaces to the ERP are now not functioning.

Ideally, the O&M team needs to assess beforehand what is easier to undertake,
either a straight deployment without thorough testing (maybe some very basic
testing only of commonly used affected transactions), or a staged DEV + checking,
QA + thorough testing, and then deployment to PROD once all the testing has
passed. If the former is selected, a simple roll-back procedure should be identified
prior to the deployment of the patch. If the latter, then a complete test plan and test
scripts should be developed as well. The final selection of release strategy will
depend on the risks, impact, and overall effort. Obviously if the risk and impact of a
nonworking deployment is small but the testing effort is big, then a straight-through
deployment makes sense, while if either the roll-back procedure is complicated or
the impact of wrong transactions is high, then thorough testing should be done
before deployment to PROD.

4.1.2.2 Database Administration
Database performance, after proper allocation of server resources, is perhaps the
second most common reason why a system performs poorly. Unlike most of the
other resources which may need to be revisited as part of the capacity management
process, DB administration is not as much related to capacity management as it is to
regular tuning and maintenance activities. Database tuning and indexing are
functions that should regularly be performed by the Database Administrator (DBA).
Indexing also has to be taken into account by the programmers in the form of best
practices for coding, otherwise no matter how much tuning and indexing is done by
the DBA, performance will still be bad (again, a topic beyond the scope of this
book). Wherever possible, the DBA may also flag to the developer (through AM)
issues and improvements he/she sees that can be made on the code. A variety of
tools exist for determining when and how DB tuning and re-indexing is to be
performed, and are generally application and DB brand-dependent. In general, the
way these tools work is that they generate statistics as to the usage of different DB
tables in terms of frequency, and their corresponding response time. Tables that are
commonly accessed but are slow are prime candidates for indexing. Again, the
DBA can only do so much as the manner of coding is equally important. Expensive
statements which have many conditions on table entries while searching through
many entries are very expensive, and may have to be written in a more efficient
manner.

It is important to note that it is of tremendous help if the DBA understands the
nature and behavior of the application that is accessing the DB. Different appli-
cations behave in different ways, and this helps in understanding the patterns of
reads and writes that go into the DB, tables being accessed. For example, take a
datawarehouse setup which extracts data from a transactional system as shown in
Fig. 4.3.

In which the Extraction Transformation Loading (ETL) program extracts raw
data from the ERP system and loads it into the Datawarehouse. Afterwards, the
report generation kicks-in, transforming the data into a format the different

24 4 Managing Operations

reporting tools need, and stores these report formats into the DWH database. If, for
example, the following schedules are observed:

• ETL: 1:00–6:00 am, weekly
• Report generation: 6:00–8:00 am
• Access to the reports by users: 8:00 am

Then, this will help the DBA understand that massive writes into the
datawarehouse will occur during 1–6 am period that is run weekly, report gener-
ation which is a combination of read (mainly) and writes at 6–8 am, and massive
read transactions at 8 am. He/She can also drill down to understand what tables are
accessed by each process, and relate this to when slow performance occurs and in
which part of the process.

The system administrator, now understanding the patterns may make sugges-
tions on how to improve performance

• Tune commonly accessed tables by each process
• Suggest on how to segregate different ETL batch processes. For example, if two

batch processes are reading from the same set of tables, it would be faster to run
them separately rather than concurrently so as to speed them up, as accessing the
same tables simultaneously usually results in performance degradation. He/She
may also opt to run some of the ETLs which have no interdependence in
separate application servers while running them in parallel, in this way taking
advantage of parallelism capabilities of your hardware infrastructure.

• Can suggest that certain reports be generated immediately after their ETL batch
processes have finished, even while other ETL processes are still running but for
which the reports’ data are not dependent on, reducing the overall execution
time for the whole process.

These are just examples, the specific architecture, ETL jobs, reports, and the
manner the tools work will determine the approach to take.

Fig. 4.3 Sample datawarehouse architecture

4.1 Information Technology Service Management 25

4.1.2.3 Network Management
This involves both availability and capacity management. Nowadays with the advent
of many tools used for monitoring network traffic, actual usage can easily be deter-
mined, this, however, requires quite a bit of analysis, as network traffic may not be all
legitimate and not always readily identifiable. Proper network availability management
is a combination of technical, analysis, and policy, all three being intertwined, there is
no point in defining a policy that cannot be implemented because either the proper
tools are not in place or there is no capability to analyze the traffic. Without proper
policy and enforcement (also proper network design), the traffic will always grow to
saturate the network, every upgrade being insufficient shortly after deploying.

For availability management, tools exist now which send SMS and emails to
personnel whenever a link or switch goes down, facilitating response time. Most
important in network management is the proper configuration of the switches, as
well as the network topology and configuration. Nowadays with Network Man-
agement Tools, the job of identifying the CI details for each switch and router is
made much easier, as well as the deployment of changes remotely. New patches and
firmware versions are deployed according to priority (similar to what was discussed
for the SysAd). One of the difficulties in network management is that the depen-
dencies are network-wide, such that a change in one switch can actually affect the
whole network. Another difficulty is that although lab deployment and testing is
recommended for major changes, lab environments cannot capture the full condi-
tion of the actual environment once deployed, so that testing is limited at best.

An actual experience we had with a firewall was that although it worked
perfectly well in a contained environment, once deployed it started degrading
over time due to ever increasing memory utilization in the firewall appliance.
This was in fact due to a memory leak (memory which would not release after
it ceased to be utilized by a process), and after much investigation, was found
to be due to blocked web pages’ memory not being released properly. This
was not detected in the contained environment as the number of such trans-
actions was relatively small, but in the real-world example, was huge enough
to make the problem apparent after a few days of having a lot of pages
blocked. The bug fix was then released by the vendor’s support and applied.

Sufficient capacity, on the other hand, should always be cross-checked to
determine if the traffic is

• Legitimate
• Due to a security breach/oversight
• Due to improper network configuration, especially loops or traffic taking very

long routes
• Defined Quality of Service is proper (or necessary)

26 4 Managing Operations

These should be addressed first before allocating additional bandwidth. Aside
from capacity in terms of MBps, another important parameter that needs to be
inspected is latency, which may also be due to

• Improper configuration: switches, routers, and appliance involved in the path
need to have their configuration properly set, any one of them along the path
causing the delay, delays the whole path.

• Non-optimal network design: wherein for example the paths traveled through
the network are very long, having to go through many switches before reaching
the final destination.

• Overcapacity: switches may have been undersized (e.g., an edge switch used in
distribution switch configuration), or appliances in the path having reached their limit.

Sometimes, the latency may be thought to be purely network-related, but may
reside in a gray area and not be so apparent. This may be especially true for
intermittent slowdowns experienced by users. A good example of this is a prob-
lematic DNS server which takes very long to respond, affecting users intermittently.
This issue normally cannot be seen by simply monitoring network traffic, and if no
proper tools are available, will require lengthy analysis, also with the SysAd team
until finally identified.

Also, illegitimate traffic may not be so easy to detect. Take for example a
network in which policy allows the downloading and sharing of videos due to the
nature of the business. Though firewall policy may be in place, this is still no
guarantee that the videos being shared (which eat a lot of bandwidth) are in fact
work-related, unless one physically inspects the videos themselves. This is where
policy is important, as it is impossible to police all traffic 100 %, but policy should
state that any infraction to which a user is caught shall carry severe penalties.

4.1.2.4 Management of Servers and Storage
These are most important during the go-live of a new service, since as indicated
before is the moment of truth, in which the hardware requirements defined during
the design phase are confirmed to be those actually needed. After going live, server
and storage resources need to be monitored and tweaked, until the desired per-
formance is attained. It is very important, however, that proper design be conducted
from the very start before deployment, as is for example the proper design of the
storage LUNs, or a very common mistake: assigning the wrong drives for the data
and logs (C: is commonly used as the default, which is where the OS resides, and
therefore not appropriate).

Unless environmental conditions change dramatically (e.g., number of users,
patterns of usage) then availability should not degrade over time. Capacity man-
agement is, however, very important and though it also does not commonly change
very fast, it is susceptible to a number of factors

• Change in the number of end-users
• Growth of data over time (disk storage)

4.1 Information Technology Service Management 27

• Additional application modules being deployed
• Change in the schedule of batch processes. New schedule may coincide with

some other operations that consume a lot of CPU and memory.

Part of IT Service Continuity management as well roll-back procedures is reg-
ular backup. The definition of the backup procedures will still reside with TM,
including restoration procedures.

4.1.2.5 Technical Management
The head of the technical management team has a very important role which includes

• Making sure skills are up-to-date and relevant. If necessary, conducting hand-holding,
internal and external sessions and ensuring these are scheduled and conducted.

• HR resource capacity management. Should be sufficient for the work on hand,
and should have sufficient resiliency and redundancy in case of resignations or
prolonged sickness

• Overall understanding of the technical architecture, including management of its
corresponding documentation

• ITSM documentation custodian and overall Quality Assurance supervisor
• Compiling all major CIs requests that translate into additional procurement requests
• Assignment of tickets to personnel within the team, in case these have not been

routed directly
• Monitoring of team’s compliance to the SLAs

Aside from this, he has to interface exhaustively with the Head of IT infras-
tructure, in assisting projects that will be phased into production. Unlike software
projects, infrastructure projects cannot usually be separated from existing opera-
tions as they need to take into account the overall existing architecture and design.
Testing for infrastructure projects before deployment will also be a major
time-consuming role for TM.

As an example, imagine a project which needs 10 new servers to be provisioned.
Though the existing capacity may be able to meet this new requirement, TM needs
time to understand the requested architecture and scrutinize the requirements before
proceeding to provision these. The project may also be competing with other
projects for the infrastructure or even the time devoted by the TM team.

4.1.3 Application Management (AM)

The Application Management (AM) team is in charge of all CIs related to software.
They also have a very important role, which is to act as the bridge translating business
requirements into technical specifications. They must be knowledgeable of the
functional aspects of the different applications, including possibilities and limita-
tions, so that when translating these functional specifications, they are aware on what
can be done, and how it can be done, with minimal customizations if possible.

28 4 Managing Operations

An AM team can be structured according to application type as shown in
Fig. 4.4.

So that specialists occur for each particular application 1, 2, 3, and also a general
pool of programmers exists that can work on specific tickets (versus applications),
depending on the programming technology required. If the changes for the different
applications are few, then a full-time head per application may not be required, and
resources may be shared, thanks to cross-skilling, so that Business Analyst 1, for
example, may be the same person for both Application 2 and 3, as the number of
tickets for these two applications is low, and he/she has the skills to maintain both,
resulting in the structure shown in Fig. 4.5.

Availability management is not very relevant to the AM team, and capacity
management only in terms of resources. On the other hand, ticket handling by the
AM team is of crucial importance as incidences and requests sent to this team are

Fig. 4.4 Structure for application management team

Fig. 4.5 Alternate structure
for application management
team

4.1 Information Technology Service Management 29

usually more complex in nature and require more analysis. Let us analyze inci-
dences and requests separately.

4.1.3.1 Application Management: Incidence Handling
Most application-related incidences occur after the go-live of a project due to the
novelty of the application and system, in which the only incidences already iden-
tified are those discovered during the testing phases, which seldom are really very
complete in nature (as explained under the testing section). Long after going live,
additional incidences may occur due to

• Not commonly used transactions or data-transaction combinations being used
for the first time

• Upgrades in some of the technical CI components
• Modifications undertaken in some of the applications’ modules which affect

others

As an example of a modification which affects other modules, take a utility
billing system where new potential customers are created upon their appli-
cation for a service. Provisioning of the utility service, however, requires an
initial payment from the customer AFTER it is ensured that the customer’s
location can be provisioned with the service. Inadvertently, if this initial
payment is created as a receivable in the finance module and it takes a
considerable time to validate the application and receive the payment, this
may cause a bloating of receivables which may not necessarily reflect the true
state of the business. Eventually either this is paid after a considerable amount
of time, or may need to be reversed due to nonavailability of the utility
service or failure for the potential customer to pay. This means that they were
not actual receivables in the true sense of the word, but actually more of an
anticipation of payment from the potential customer.

Incidences may be of differing nature

• Program gives an error and cannot proceed
• Program does not perform intended functionality, giving a different output from

what is expected

The second type of incidence is usually harder to analyze and resolve.
Take a timekeeping system which feeds into payroll. Imagine that its configu-

ration is such that employees working overtime are to be paid a special rate, and
that the timekeeping system is built such that all extension beyond 8 am–5 pm
period is calculated as overtime pay. It is, however, overlooked that there is a night
shift which actually starts work at 5 pm, which is not entitled to this overtime pay,

30 4 Managing Operations

but an altogether different pay scale. This is an example of a program failing to give
the desired functionality, but not a hard error.

AM-related incidences are usually harder to resolve as they may occur only
based on certain conditions (data), and this data may not be always used by the
transaction that is failing. It may be necessary to reproduce (simulate) the error for
the purpose of testing and analysis, and sometimes this may not be so easy. In case
the incidence cannot be resolved immediately, workarounds must be given until the
final resolution is determined. A problem ticket may also need to be raised if the
root cause is not determined within a reasonable amount of time, and assistance
may be sought from second level support.

As for requests, these also require sufficient effort to analyze, oftentimes because
the request is incomplete in terms of specifications, and then requires an interaction
between the business analyst and the end-user to determine exact requirements. For
this purpose, documentation on the request is to be filled-out, together with details
filled-up by the analyst in terms of implication, whether this is a configuration, and
what needs to be done in order to address this request, and if it requires some
customization, at what level: code, fields, tables, objects, and the corresponding
man-day effort. Oftentimes, the code may be a modification over an existing
standard code, so that the standard code is referenced. More information on the
suggested documentation is specified in Sect. 4.4.1.2.

Any modifications related to the application will raise a change request (CR) and
trigger the change management process, which normally should also be handled by
the service desk system. Change management triggers an approval process which is
dependent on the company’s IT policy. This is discussed in detail in its corre-
sponding section.

4.1.3.2 Application Management: Development
It is best practice that developers be shielded from the end-users and should only
receive instructions on what is to be coded from the corresponding Business
Analysts. As the developers are usually a pool (unless many of the applications are
custom-coded and require an almost full-time dedication), their assignment to
different applications will be on a case to case basis based on the tickets generated,
programming skills required, and the load of each developer. Best practices in terms
of coding standards and security should be imparted by the developers’ head and
disseminated and improved by the team.

4.1.3.3 Application Management: Overall
Among the roles of the AM Head are:

• Making sure skills are up-to-date and relevant. If necessary, hand-holding,
internal and external sessions are to be scheduled and conducted

• Personnel capacity management. Should be sufficient for the work on hand, and
should have sufficient resiliency and redundancy in case of resignations or
prolonged sickness

• ITSM documentation custodian and overall Quality Assurance supervisor

4.1 Information Technology Service Management 31

• Assignment of tickets to personnel within the team, in case these have not been
routed directly

• Monitoring of team’s compliance to the SLAs
• Maintaining coding standards
• Maintaining configuration standards and guidelines
• Improving on the documentation needed in determining scope
• Assignment of tasks to developers (if there is no development head)

4.1.4 IT Operations Management (ITOM)

IT operations management is the “heart” of IT, as it manages all aspects that
directly concern the end-users: the day-to-day activities that ensure to the users the
availability of the different IT services. Of all the teams, it is perhaps the least
technical, and yet, is the most critical in terms of perceived impact by the users.

It has two main functions

• IT Operations Control, which can be further subdivided into

– Console Management
– Job scheduling
– Backup and restore
– Print and output
– Report generation
– Data investigation and resolution

• Facilities Management

– Data centers
– Recovery sites
– Contracts (for the facilities)
– Consolidation
– Common facilities management

In other words, the first set of functions under IT Operations Control are func-
tions related to batch processes that are scheduled and run as part of normal IT
Operations. ITOM checks for the successful completion of these as part of its
functions, and analyzes errors, reports them for resolution (usually to AM or TM if
they cannot get to the root cause) and rerun these batch processes as required. An
important function as well is to investigate issues which are data-related that impede
from some ITOM job from proceeding. Incorrect data is usually attributed to causes
at the source (end-user or external third party) and are typically due to

32 4 Managing Operations

• Incorrect transactions being undertaken
• Wrong procedure by the end-user
• Incorrect data being provided by a third party (such as a bank, outsourced

provider, etc.)
• Errors in some of the source files being utilized

ITOM will investigate the source of the data error and either fix it directly, or
coordinate with the concerned party for them to correct.

On the other hand is the facilities management function. In many organizations,
this function has not been fully turned-over to the ITOM group and may still reside
with TM due to the skill set, as well as for historical reasons. End-user common
facilities that should also be handled by ITOM are those common to many
end-users

• Timekeeping systems
• Deployed general-use PCs (versus those assigned to specific users)
• Displays and PCs in common-use areas of the company
• Others

ITOM should ensure their availability in terms of the hardware, as well as their
content.

The table of Organization for ITOM is typically that shown in Fig. 4.6.
In this diagram and depending on the number of batch processes, operators may

be separated into different teams, with or without a head per team. If the number of
batch processes is few, then all operators are placed in a common pool, and each
operator may undertake different functions.

Fig. 4.6 Structure for IT
operations management team

4.1 Information Technology Service Management 33

The facilities’ technicians will also work according to specialization, as for
example, those assigned to the data centers will monitor data center parameters like
air conditioning, electricity consumption, etc.

4.1.5 Field Support (FS)

This refers to the team that conducts the troubleshooting, configuration, and repair
of endpoints (user’s assets such as PCs, smartphones, laptops, printers, and other
peripheral devices). Common functions of the field support team are

• Configuration of endpoint devices. This may be done

– On-site: meaning, the technician will be physically present where the user is
– Remotely: by means of remote support tools, such as

Remote desktop
Remote patch deployment software
Remote antivirus deployment engines
Etc.

• Repair of endpoint devices. This may be first level support and repair for
out-of-warranty devices, especially for small repairs like replacement of com-
mon components (capacitors, resistors), replacement of power supply, cords,
etc. This may include pulling out of the units and bring to the repair shop.

• Installation of baseline configuration (the standard software and configurations)
for new endpoint devices before releasing to the users

• Assistance to end-users on field if service desk is unable to service the request or
address the incidence remotely

• Coordination with suppliers of endpoint devices for their repair or replacement
• Receipt of IT equipment deliveries from vendors, storage, and subsequent

release to the end-users
• Proper disposal or resale of end-of-life IT equipment
• Regular Endpoints’ Preventive Maintenance. This may include cleaning of PCs,

laptops, and printers, as well as running of diagnostic tools and defragmentation
of endpoint devices.

• Installation of endpoint equipment (for those that cannot be simply done by the
users), as well as installation of additional hardware to endpoints (such as
memory cards, graphic cards, etc.)

In the table of organization proposed, both the service desk and field support
report to the User Support group, which in general is in charge of all interactions
with the end-users.

34 4 Managing Operations

4.1.6 Operations Head

The operations head is the person overall responsible for O&M as depicted in the
Table of Organization shown in Fig. 3.5. The duties and responsibilities of the
Operations Head are

• Overseeing the Service Level Agreement (SLA) that measures the effectiveness
of the O&M team toward the end-users.

• Overseeing and managing the Operational Level Agreement (OLA) that mea-
sures the internal agreement between the IT Management and the O&M team.
This OLA is typically more stringent than the SLA to allow for some buffers and
slippage.

• Ensuring compliance to Operations’ governance policies, as well as tuning and
improving these policies and implementing guidelines in order to make opera-
tions more effective and responsive to end-user needs.

• Overseeing competencies and skills of the O&M team, ensuring they are attuned
to the needs of operations, identifying skill gaps and conducting actions that
decrease these gaps. These may include internal trainings, hand-holding,
external trainings, immersion programs, etc.

• Planning for and managing trainings, in accordance with the skill gaps identified
previously.

• On-boarding for new team members. Consists basically of the preparation of
material for quick on-boarding, as well as a training and hand-holding plan for
them to quickly ramp-up and be productive in the shortest possible time.

• Regular performance review of team members, and identifying corrective
actions for those with deficiencies.

• Skilling-up, researching for new techniques to further improve operations, and
implementing these.

• Driving continuous improvement to the team via PDCA (see chapter 4.8 for
more details).

• Fostering an environment of learning and growth, as well as good team
relationships.

• Coordinating with the IS and II Heads on projects that are being transitioned
into Operations, and identifying the correct O&M resources that need to be
involved in the cut-over.

• Providing the necessary resources to IS and II for support to projects which
necessitate O&M involvement.

• Overall caretaker of the Business Processes that all the different applications are
using. In this aspect, the Operations Head should ideally be very familiar with
the existing Business Processes so that he/she can critique any new change to
the existing BP and see if applicable.

Of all the three heads, Operations Head, IS Head and II Head, the Operations
head has the most power as she/he has the authority to veto any project or initiative
from IS and II which may go into production, or affect operations. This is because

4.1 Information Technology Service Management 35

http://dx.doi.org/10.1007/978-3-319-38891-5_3

ultimately he/she is responsible for the SLA to the end-users and must ensure that
these are met.

As indicated, the operations head is also in charge of governance and ensuring
that O&M complies with it, this means

• Ensuring ITSM policies are strictly enforced
• Ensuring security policies are complied with both the IT team, as well as the

end-users.
• Reporting and communicating any breaches to the CIO

Communication to the CIO on the above is done on an as-need basis, however,
day-to-day monitoring and management of operations usually involves:

• Regular operations meetings with the O&M team and CIO (usually weekly), in
which the tickets for the last time period are reviewed and analyzed. This
analysis includes

– Number of tickets created: incidences, requests, and problems
– Number of tickets resolved. Operations needs to ensure that there is no

increasing backlog of tickets, which will result in an ever increasing backlog
as time goes on.

– Analysis of tickets per team. These are monitored for unusually heavy
activity and analyzed for the underlying reason.

– Repetitive incidence tickets which usually point to an underlying problem
causing multiple generation of incidences.

– Status of incidence tickets after a major project has been implemented.
Usually, incidences will spike after go-live but should continuously decrease
afterwards.

– First call resolution. FCR should be maximized so as to avoid escalation
which results in delayed ticket closure.

• Team leads’ Operational reports, which normally is done as part of the Oper-
ations meeting, in which each team reports activities conducted for the period,
issues, and resolutions. Team may also ask for guidance on matters they are
unsure on how to proceed.

• PDCA or continuous improvement.

4.1.7 Operations Management Office

This is the office wherein the head for Operations is, which oversees all operations
under her. This office is composed of:

36 4 Managing Operations

• Operations Head: in charge of the whole O&M to which the AM, TM, ITOM,
US heads report to

• Support staff

The support staff functions include:

• Producing all SLA and regular operations reports
• Design, drafts and implements the different operational policies
• Internal audit (for the O&M group) to ensure compliance
• Regular review of policies
• On-boarding to new members coming into the team
• Debriefing and clearance for departing team members

On the other hand, the Operations head is the primary responsible party for
managing and ensuring that the O&M team complies with the prescribed SLA. Her
primary duty includes:

• Regular reporting to the portfolio manager. He/She ensures also the accuracy of
the reports; this also entails discussion and finalization of the SLA KPIs attained
by the team.

• Internal Billing and availability reporting
• Ensuring that the skills needed by O&M are met. This includes resource

matching, sourcing and releasing of human resources.
• Updating the O&M team on policies.

4.1.8 Information Systems (IS) Head

As described in Sect. 2.1, a best practice is to separate day-to-day operations from
strategy and especially, projects, reason being that the methodologies for managing
IT operations and projects differ considerably. Also, software projects can in fact be
totally isolated (usually) from operations, in a different environment, a different
team, and even in content and scope, so it makes more sense to have a separate team
in charge of these altogether.

The Information Systems Head is in charge of all software-related projects, and
therefore is its portfolio manager. He is in charge of managing these from con-
ceptualization through development and execution until these projects go-live and
is transitioned to O&M during the support phase.

His main duty for all software projects includes

• Planning and strategizing: determine what new projects are needed in order to
meet the company’s plans, objectives, and strategies. This is a normal function
of a portfolio manager, and is a continuous process.

4.1 Information Technology Service Management 37

http://dx.doi.org/10.1007/978-3-319-38891-5_2

• Overseeing the portfolio of projects. This includes all those responsibilities
described under portfolio management for its whole lifecycle of the portfolio.
Most importantly, the monitoring and control of the projects, regular commu-
nication with the stakeholders, as well as ensuring that portfolio governance is
followed.

• Coordination and proper turn-over to O&M. This is done from an IT
technical and functional aspect as discussed in chapter 6, but also from a
business aspect, meaning, he/she has to maximize the success of the project
once it goes into operations in delivering the business benefit(s) it was designed
for.

With regards to human resources, the IS Head may dispose of full-time project
managers under him, or just manage Project Managers (PMs) as their respective
projects are assigned under his portfolio (part-time resources for the duration of the
project). As for resources under their respective PMs, these may be fully contracted
out as turn-key projects, may be using in-house resources which have been
mobilized and assigned for the duration of the project, or a combination of in-house
and outsourced. Only in the first case are resources wholly managed by the con-
tractor’s PM, for all other cases (and sometimes even for the first), the project
resources will have to be fully managed by the customer PM.

Governance is an aspect of outmost important to the IS Head, as it determines all
aspects in which his/her portfolio is to be managed (more in Chaps. 7 and 9)

• How projects are to be monitored? These are the tools given to each PM in
monitoring and controlling the projects, which in turn are reported to the
portfolio manager (IS Head).

• How results are communicated to stakeholders? In which manner, periodicity,
and channels used are defined.

• Conditions and steps in starting a project. A project may be requested from an
end-user organization or internally initiated, the procedure and conditions for
initiating a project need to be properly defined.

• Minimum documentation and deliverable requirements. These should be in the
form of templates which the PMs can easily adapt to their respective projects.

• How changes in scope (and change requests) are to be raised, analyzed, and
approved.

• How to transition a project into operations
• Project closure

Software projects affect both operations and hardware projects, so that there
needs to be close coordination between all three. Specifically for operations the
turn-over activities specified in Chap. 6 need to be followed by all PMs.
Specifically,

• During the start-up phase of the project, O&M needs to be informed of the
project and given a high-level overview of the project

38 4 Managing Operations

http://dx.doi.org/10.1007/978-3-319-38891-5_6
http://dx.doi.org/10.1007/978-3-319-38891-5_7
http://dx.doi.org/10.1007/978-3-319-38891-5_9
http://dx.doi.org/10.1007/978-3-319-38891-5_6

• All infrastructure requirements need to be discussed with TM and/or II Head for
the provisioning and capacity planning during the beginning of the project. This
also includes operational aspects such as backup and restoration procedures,
security, among others.

• Training and hand-over right before going live (with TM, ITOM, AM)
• In-depth discussion of technical and process information also before going live

with the O&M team
• Briefing to SD before going live
• Post go-live Support scheme to be used involving the project team, O&M, as

well as first and second level product support from the principal.

The infrastructure requirements of the different projects under the IS Head need
to be discussed even before the project has started, so that planning, provisioning,
and in some cases purchasing of additional capacity or special hardware can be
done in time for the project. This discussion needs to take place with the IT
infrastructure Head (next section), as he/she will ensure the overall technical
architecture to meet the projects’ requirements, while at the same time ensuring
operations, as well as TM, which will be the team to do the actual provisioning.

4.1.9 IT Infrastructure (II) Head

The IT infrastructure (II) Head is the direct counterpart of the IS Head. In the same
manner that the IS Head is in charge of all software projects, the II Head is in
charge of all infrastructure projects. This includes, but is not limited to

• Servers
• Storage
• Network devices
• Security appliances and software
• Databases
• Virtualization
• Cloud technology
• Operating systems
• As well as all components that may fall into the above

Besides projects, the II Head has to ensure coherence of the overall architectures
for the different applications, whether these are in operations, in projects, PROD,
QA, or DEV. For this reason, his responsibility spans across both operations and
projects.

Among his duties are

• Planning and strategizing: defining what new projects are needed in order to
meet the company’s plans, objectives, and strategies. This is a continuous
process, and he is responsible for the portfolio of all infrastructure projects

4.1 Information Technology Service Management 39

• Overseeing the portfolio of projects. This includes all those responsibilities
described under portfolio management for its whole lifecycle. Most importantly,
the monitoring and control of the projects, regular communication with the
stakeholders, as well as ensuring that portfolio governance is followed.

• Capacity planning. Reviewing current capacity, usage projections, and trig-
gering procurement for additional capacity as may be needed. This applies to
servers, storage, network, as well as software components.

• Availability management. Reviewing availability of infrastructure components
with TM and O&M in general, and proposing new strategies in order to meet the
required availability.

• Security. Reviewing and proposing new security policies, guidelines, as well as
appliances and software that may be needed in order to meet the security
requirements of the organization.

• Resource skills management. Ensuring that the skills and competencies of the
team (both O&M and projects team) are commensurate with requirements, will
flag and plan for required trainings, additional personnel whether long-term or
contractual, as well as personnel which may be taken out of the team (if
outsourced).

As all IS projects require infrastructure, regular meetings should be held with the
IS Head to plan for the necessary capacity

• Annual capacity review. This may be done more often, depending on the speed
in which requirements come, and is conducted together with the IS and Oper-
ations Head, ensures that for the next time horizon, hardware capacity will be
sufficient, or if otherwise, will initiate a procurement process.

• Provisioning based on IS Project requirements. Any new project will require
additional hardware resources, and so these will be requested formally through
an infrastructure request form which will trigger review and provisioning. It is
recommended, however, that a meeting at the start of the project be conducted to
review the proposed architecture, hardware requirements, so as to ensure that
these are acceptable and a good understanding on both sides occurs. It is very
common for project teams to overdesign the specifications, so this meeting is
conducted in order to rationalize these.

Another important duty of the II Head is with regards to security. Security is a
concern that spans the whole organization, and cannot rest only on one individual
or group; however, the II Head together with the CIO must take the lead in pro-
moting good security practices. Ensuring a secure environment is a combination of

• Overall Policy
• Governance and oversight
• Implementation of the policies
• Configuration of the different servers, applications, and appliances

40 4 Managing Operations

• Architecture
• Use of security appliances, software

Thus, if only a few of the above is addressed, this would not be sufficient to
guarantee a secure environment. In spite of security being everyone’s concern, most
of its implementation resides on the infrastructure side, so it is logical that the II
Head be the lead in defining and implementing security, unless a full-time Chief
Security Officer is deemed necessary by the organization, which would normally
report to the CIO. A Chief Security Officer (CSO) is also called for in business
environments where security are of primary importance, such as in banks, financial
institutions and retail which regularly transact and hold confidential customer
information. Whatever the case, these would have to coordinate together with the
Head of Operations and IS Head, to ensure that the policies are viable, as well as to
regularly review the security policies and their enforcement.

Similar to the IS Head, the II Head is in charge of all hardware-related projects,
and is therefore its portfolio manager. Once more, he/she is in charge of managing
these projects from conceptualization through development and execution until
these projects go-live and is transitioned to operations during the support phase.

His/Her main duty for all infrastructure projects includes

• Planning and strategizing: defining what new projects are needed in order to
meet the company’s plans, objectives, and strategies. This is a normal function
of a portfolio manager, and is a continuous process.

• Overseeing the portfolio of projects. This includes all those responsibilities
described under portfolio management for its whole lifecycle of the portfolio.
Most importantly, the monitoring and control of the projects, regular commu-
nication with the stakeholders, as well as ensuring that portfolio governance is
followed.

• Coordination and proper turn-over to O&M. This is to guarantee that from
the moment of go-live, the infrastructure can be taken over and maintained by
TM. Proper training as well as hand-holding is necessary for this to become a
reality.

Similar to the IS Head’s setup, resources may be full-time or part-time
depending on the philosophy and Table of organization. Another similar, important
aspect is that of governance, which for infrastructure projects, again resides with the
II Head. Governance rules and project templates should generally be the same as
that for IS so that they are in concordance, but may have its own, small particu-
larities. Generally, the II templates are much simpler than that of IS’. Refer to the
governance roles described under the IS Head, as these are directly applicable as
well for the II Head.

Important aspects on II projects (or infrastructure components in IS projects) that
need to be coordinated with O&M (TM specifically) are:

4.1 Information Technology Service Management 41

• During the start-up phase of the project, O&M needs to be informed of the
project and given a high-level overview of the project

• Overall architecture of the new project being initiated. This must be approved by
both the II Head and TM.

• Also during project start, discuss with TM all infrastructure requirements for
provisioning.

• Backup and restoration procedures for the specific application being
implemented.

• Release management procedures. These are going to be executed by TM, so it is
imperative that TM understand and approve these.

• Training and hand-over right before going live (TM, ITOM, AM)

4.2 IT Services Lifecycle

In general, IT services are planned, designed, created, released, maintained and
operated, then retired, so these can be broken down into four distinct phases:

• Planning and Design phase
• Release phase
• Maintain phase
• Retirement phase

These can be represented conceptually by the diagram shown in Fig. 4.7
Initially, a service is planned for and designed accordingly; this may come from

a user’s request, may be internally escalated, or may be a transition from a project.
Release phase refers to that of placing these new IT services or changes into
operations as part of the roster of applications in production, which render the
service to the end-users. During the course of delivering this IT service, the service
needs to be supported and from time to time enhanced (maintenance phase), which
may entail additional releases. Finally, if there is no need for the IT service, it is
uncatalogued and decommissioned under the retirement phase.

Maintenance phase

Fig. 4.7 The IT services lifecycle

42 4 Managing Operations

IT services are therefore created, deployed, maintained and improved, and
eventually, retired.

What is exactly an IT service? The key to the answer is in thinking not from the
point of view of IT (technical perspective), but from that of the users’, which is IT’s
customer. The service must be something of value to the users. Thus, for example,
the servers and storage being maintained by IT may be thought of as a service by
IT, but indeed, it is not from a customer’s perspective. This is because the customer
does not care about the availability of the storage, servers and their components, her
concern will be on the availability of the financial management system application
(for example) which runs on servers, storage and the network, and which she needs
in order to conduct her work properly. Thus, from the customer’s perspective, it is
the availability and adequacy of the financial management system as a whole that is
a service to her. To understand this further, take a look at Table 4.1 which shows
some examples (note that the left hand column does not have a one to one corre-
spondence with the right hand column).

So, in fact, for every service indicated on the right hand side of the table, their
availability and usage actually depend on many different technical services in order
to be able to render the desired and expected performance. Thus, for the example
earlier, the financial management system, if the concern is availability and response
time of the application, it in turn depends on the availability of the network, servers,
storage, application, as well as their corresponding aggregate response time.

The compendium of all services which are delivered to the end-customers is thus
called the service catalog, and it is this list of services in the catalog which are
maintained throughout the whole service cycle (planning/design-release-operate/
maintain-retire).

4.3 Planning and Design Phase

Services are created for the purpose of servicing a demand by the users, and in this
sense, must be planned and designed accordingly. A service catalog is that com-
pilation of IT services being offered, which is added, modified and deleted
accordingly. However, offering the service is not enough, the performance of the
service must be guaranteed as needed by the users, and this performance agreement
between the users and IT is called the Service Level Agreement (SLA) which

Table 4.1 IT versus end-user point of view in the delivery of services

Example of technical services (IT’s viewpoint) Example of IT services (users’ viewpoint)

Network availability Email

Servers’ availability Financial Management Sys

Storage response time Billing services

Report application’s availability Reports

Firewall availability Internet

4.2 IT Services Lifecycle 43

governs the levels of performance for each service being rendered. This will be
expounded more under its corresponding subsection, so we park it for now.

In planning and designing for a new service, several questions come to play

• What need will it address?
• What service level must be guaranteed?
• What is the needed infrastructure? Is it available and should just be provisioned

or should it be procured? This may trigger a capacity planning review.
• What resources are needed? (High level) Are they available? By when? How

many man-days effort will this be?
• What will be the approximate duration to deliver the service?
• Will this be treated as a change request for O&M to handle or a new project?

This would depend on IT’s policy. Generally speaking, anything beyond a
certain number of man-days or anything requiring a new system or major
infrastructure (not just provisioning) would be treated as a project.

Two possible outcomes when designing

• Project. If the number of man-days to undertake the change is significant
(depending on policy), then it will be treated as a project and shall follow the
normal path for a project (normally outside the scope of O&M); or

• Change. In such a case, it will follow the change management procedure as
described in the next section.

New services may be the result of a planning exercise or may be due to a request.
Take the two following examples:

Example 1: The finance department requests for the enablement of online
payments. In this case, it has been an end-user department to request for the
service, the enablement of this service may be treated as a project or merely as
a change request to O&M, depending on the effort, complexity, as well as
policy for treating requests as projects or changes handled by O&M.
Example 2: At the end-of-the year during the planning session, it was
decided to offer by Q2 of the following year a new service allowing cus-
tomers to view their bill online. This was subsequently treated as a change
request which O&M handled.

4.3.1 Change Management

Change management (Schiesser 2001) refers to the process of changing any Con-
figuration Items (CI) in accordance with a request that may be either initiated
internally by IT, or by the user through a request ticket. It defines the process for

44 4 Managing Operations

handling the request for change, while ensuring that the change requests follow
proper procedure.

All request for changes normally originate from the Service Desk System in the
form of a ticket assigned to a Business Analyst under the AM team (or a TM
personnel). The Business Analyst then comes up with a design document which
basically records:

• Reason for the change. This should be explained in simple, nontechnical terms.
If the user is initiating the change, then he should be interviewed to understand
the reason for the request, and whether this is due to an incident, or is an
enhancement.

• Applications and infrastructure affected by the change. In other words, this
should explain the configuration items that will change. It should necessarily
include a nontechnical explanation of how the CI will be affected, as well as a
technical portion for subsequent reference by the technical team. If the change is
at its initial analysis phase, the technical portion may not yet be complete, but will
be successively refined. The technical portion should contain information such as

– Application affected
– Module
– Table and field affected/created/modified
– Code utilized (if any)

• Initial effort estimated in man-days and type of resources needed
• Information needed by the Change Advisory Board (explained later) should be

clear so that approval can proceed without delays. This will include:

– Change due to request or incident?
– Impact: companywide/department wide/limited impact. This will include a

description of the impact
– Risk in releasing the change

A change will undergo the normal evaluation and approval process as defined by
the policy. Approval may be needed from the Change Advisory Board
(CAB) (Burges 1984) as explained hereafter.

The CAB is the body which approves/disapproves changes on all Configuration
Items that are of primary importance. Not all CI changes need to be approved by the
CAB, and would depend on the organization’s policy. Changes that are routine and
known to have little negative risk can be approved at the lower levels (Operations
Head), but if there is an inherent risk in the change or if it has a major impact to the
organization, then these shall require CAB approval. The overall approval process
may be illustrated by the diagram as shown in Fig. 4.8.

The CAB will usually be composed of the Head for AM, Head for Operations,
and if required, the CIO herself, other members may be called to participate as the
need arises. Among the aspects evaluated will be:

4.3 Planning and Design Phase 45

• Risk in conducting the change.
• Cost of the change (either in $ terms or in man-hours)
• Need for the change
• Complexity of the change (which normally affect both risk and cost)

Some of the criteria determining the complexity of the change are:

• Does it affect more than one department?
• Does it divert from standard process?
• Does it necessitate customization (FRICEW)? (FRICEW is explained in Sect. 5.3

but basically refers to customizations on the application)
• Does it require policy change?

Fig. 4.8 Change request approval flow

46 4 Managing Operations

http://dx.doi.org/10.1007/978-3-319-38891-5_5

• Does it need approval from other departments (especially important would be
finance, legal, HR, and procurement)?

On the other hand, factors that are taken into account in evaluating risk are:

• Inherent risk in disrupting operations
• financial impact to the organization
• legal or regulatory impact
• Changes that require customization. Because customization is an expensive and

error-prone process, this is inherently riskier than a mere configuration change.
• Requires Interfaces to different systems, again due to their inherent complexity

(and therefore, risk).
• Major changes in master data structure
• Requires access to confidential or restricted data

The CAB may decide to approve, reject or defer the change. Deferment may be
just a delay in its deployment, an instruction to seek further clarification from the
user/analyst, or a request to consult second level support. This may be due to

• Insufficient clarity on the possible impact (and risk)
• Insufficient justification on the need for the change
• Insufficient clarity on whether a customization is really needed
• Insufficient documentation

As an example of a request with insufficient detail, take a request lodged for
serializing the official receipts generated by the system, wherein the number
series depends on geographic location, with no clear indication on why this
change is requested, other than this being a finance request. This change has a
very large impact and effort, as well as a major risk (affects tax compliance).
It was also flagged as a customization, and offhand would seem like a major
one, especially taking into account that exhaustive testing would be needed so
as to minimize possible negative impact, that has possible regulatory penalty
implications. The decision to approve this was therefore deferred pending a
more complete explanation on the reason for the need, analysis of its impact,
as well as a need to explore alternative ways of doing this without the use of
customization.

In the case changes need to be applied urgently, and Emergency Change
Advisory Board (ECAB) may be called just for the purpose, and if justified, the
documentation may be done after release.

4.3 Planning and Design Phase 47

As an example of how the CAB may work, take a request for change
involving the modification of the address master to add a special subcategory
called “Sub district” which is non-standard, and necessitates the use of a table
and field in the address master. AM’s Business Analyst suggests the use of a
table and field designed for another purpose (Block area). The CAB convened
and discussed this at length, this being a customization which involves the
use of a standard field but for other purposes. Given this, the CAB decided to
disapprove it, due to the possible risk that this field may be needed some time
in the future, even if unused today.

4.3.1.1 Prioritization
As several request for changes will arrive simultaneously, a prioritization should be
made at the very beginning when capturing the details of the change.

Prioritization of changes should take into accounts several factors:

• Is it to address an incident or a problem? Or is it an improvement or request
from a user?

• Perceived urgency by the line organization
• Possible disruption to Operations in case of not proceeding

If the priority cannot be well-established by the Business Analyst, then it will be
escalated for consultation to the AM Head, and if still not determined clearly, to the
Operations Head.

Again, highly urgent changes can be routed directly to the Emergency Change
advisory board (ECAB) for immediate action, and if very urgent, it may be decided
that the corresponding documentation be deferred till after deployment. Take note,
however, that these should be exceptions rather than the rule; otherwise, it defeats
the purpose of having a proper Change Management process.

4.3.2 Service Level Agreement (SLA)

Again, the agreement should capture what the users require, and also what IT can
provide. In other words, it is useless to target (and invest in) very high service
levels, if the users do not in fact require it, while on the other hand it is futile to
target very high performance if IT (people, infrastructure, etc.) has not been
dimensioned accordingly (nor IT’s budget). Take as an example the availability of a
reporting system. If this system is not to be used over the weekends, there is no
point in targeting 24 × 7 availability when in fact the weekends may actually be
used for maintenance purposes of the application and related components.

The SLA is a covenant agreement between the two parties, and a commitment
for IT to provide the necessary performance levels described in it. Common per-
formance metrics used for service level include:

48 4 Managing Operations

• Availability —indicates the (usually %) amount of time that the application is
available for use.

• Response time—the time for the application to return the requested output.
• Correctness—of reports, data uploads (for example, from external systems)
• Resolution time—time needed to resolve an issue
• Timeliness—delay or % of time a particular output is available
• Completeness—usually of documentation that is used in supporting operations

such as Knowledge Base documents, work-instructions, manuals, etc.
• Customer Satisfaction–by means of surveys

Thus, all services must be designed according to the agreed-upon SLA, which
means that all the different components needed in order to deliver the necessary
service level must also be designed accordingly. Thus, for response time, resolution
time and other metrics which use time, the following calculation is used:

Total time for delivery of the service ¼ t1 þ t2 þ t3 þ � � � þ tn

This means that the total time for delivering the service is equal to the sum of
each component. Similarly, the overall availability will depend on the product of
each individual’s availability component:

Overall availability for the service ¼ A1 � A2 � A3 � . . .An

The formula above is applicable when nonredundant/non high-availability
components are used. Thus, for example, the overall availability of the financial
management system will be the resulting availability of the product between the
availability of the network, availability of the servers, availability of the storage,
and availability of the application itself. On the other hand, its response time would
be the response time of each individual component: network (summation of each
switch’s latency involved in the routing), server response time (application server,
database server), and other components utilized.

The service catalog is thus a list of services that is provided to the end-users as
defined in the SLA between IT and the users. It is imperative that this SLA be
presented and approved by higher management, as it comprises of IT’s commitment
to deliver. As services change with time, the service catalog needs to be updated by
adding services, deleting them, as well as updating the SLA based on new
requirements, changing strategy, or changing environment.

IT in turn may be contracting several parties to undertake the services being
delivered. As such, these subcontracted services need to also commit to certain
service levels that conform to the overall SLA. These underlying contracts are thus
governed by a similar mechanism, but are called Operational Level Agreement
(OLA) which should be more stringent than the overriding SLA so as to allow IT to
meet the SLA commitments with some buffers.

Suppliers that may form part of the delivery of the agreed services includes
outsourced service providers, hardware maintenance providers, network and

4.3 Planning and Design Phase 49

telecommunication providers, software developers, and the like, and each should
have its OLA governing their services which should tie-up to the overall SLA. This
is shown diagrammatically in Fig. 4.9.

4.4 Release Phase

The release phase refers to the different tasks and aspects that need to be undertaken
before and during the release of the change into production. This release may be a
new service or a change to an existing service.

A change must be managed properly, in that it:

• Be conducted with the right quality, time and cost
• Have minimal unpredicted impact on production
• Reduce errors and minimize risks due to transitioning to the new or changed

services

Any change undertaken means that a corresponding configuration item (CI) has
changed. A configuration item refers to any asset, service component or other item
which needs to be controlled in order to deliver a service or services. Thus, any
deviation from the baseline situation is considered a change that has to undergo
proper release management.

In order to minimize the impact to production, releases must be tested thor-
oughly and properly before release. This means that aside from the production
environment, proper development and testing (also called Quality Assurance)
environments should be used, and this brings us to the topic of testing.

4.4.1 Testing

Testing is explained more exhaustively in Sect. 5.5; however, there are some basics
of testing worth mentioning here. Firstly is the need to have separate environments
for Development, Quality Assurance (Testing) and Production. Under absolutely no
circumstances will any releases be done directly into the production environment

Fig. 4.9 SLA versus OLA

50 4 Managing Operations

http://dx.doi.org/10.1007/978-3-319-38891-5_5

without prior testing in the QA environment, while at the same time, all changes are
to be initiated in the DEV environment. The diagram in Fig. 4.10 depicts a typical
release’s lifecycle.

A typical change is initiated in DEV by the Business Analyst and/or developer,
and unit testing is undertaken here. If successful, then the release procedure is called
(and executed by TM) so that the change is now released into the QA environment,
where he will proceed with a more exhaustive testing (unit testing, regression
testing, integration testing, and whatever else has been determined to be necessary).
If and when it passes all these testing by the Business Analyst, he may then call
(depending on the type of change) for the users for their round of testing. As a rule
of thumb, users should generally be called for them to test when:

• They were the requestors for the change; or
• They are the ones commonly using the said transaction or function; or
• Involves transactions too complex for IT to understand or recreate due to

unfamiliarity with the data, or manner in which the transactions are to be
conducted.

• If unsure, the best rule is that it be the end-users to test

In other words, since the users are the experts in using these transactions and
measuring their impact, they should be the ones to determine whether the change
has been successful or not. Failure to involve the users during testing can result in
grave consequences.

Take as an example a report produced with written-off accounts. This report was
requested by finance for use by different departments including sales, however,
the rules of how to write-off the accounts necessarily needs to come from finance,
as they are the only ones capable of attesting to the veracity and accuracy of the
reports, and also have intrinsic authority in officiating these reports.

Fig. 4.10 Typical release lifecycle

4.4 Release Phase 51

Once all testing has passed in QA, then the final release to production may be
initiated, this has to be in accordance with the plan determined, especially if there is
downtime involved.

It is TM that actually undertakes (executes) the release, but it is normally AM and
ITOM (or projects) that initiates the request for release into QA, PROD. From the
description of how the different environments work, take note as well that normally:

• DEV: contains all changes that were initiated, regardless of whether these were
released, were canceled or deferred. For this reason, it is important to have a backup
of the configurations stored in DEV. The data, however, is relatively irrelevant, as it
is usually scant, and created by the testers only for the purpose of simple unit testing.

• QA: should be a reflection of PROD in terms of configuration (except for those
changes in QA pending release to PROD). It should normally contain data that
is quite similar to PROD for testing purposes, and this is why many times, the
data from PROD is copied regularly into QA, so as to maintain it current so that
the testing can be more accurate.

There are several risks in having DEV and QA not properly maintained. Con-
sider the following problematic scenarios:

• QA does not have some of the Configuration Items that are in PROD (aside
from the CIs being tested): that means that the testing environment in QA does
not reflect the same as PROD, which defeats the purpose of testing, as you wish
to test in an environment as close to as possible to PROD, before you release
into PROD. This has the implication that although testing may pass in QA, it
may ultimately fail in PROD.

• Data in QA is very old: data, same as CIs, affect the behavior of the envi-
ronment. Though it is impossible to have all PROD data in QA at any given
time, the data in QA must be refreshed periodically so that the environment
stays relevant (and similar to PROD), to make the testing effective.

• CI in QA did not come from DEV: In this scenario, the QA was properly
configured directly without it coming from DEV. This means that the devel-
opment package is not tracked (it should always originate in DEV) and may be
lost in the next QA refresh. Ultimately this means that something in PROD will
not be reflected in DEV and QA which may cause errors in the future. Fur-
thermore, these CIs will be hard to trace and if and when identified, will need to
be manually reproduced in DEV, and subsequently released to QA.

4.4.2 Configuration Items

As explained, changes mean modification on configuration items, where configu-
ration items mean the details on the setup of an application, system, or asset to
deliver an IT service(s). Examples of configuration items are:

52 4 Managing Operations

• in a server: the operating system used, patches and versions applied, memory,
number of CPUs

• in a network switch: operating system used, its version, firmware version,
Network Access Tables, number of ports, connectivity of the ports to other
devices, etc.

• in an application: the different modules, tables with their configuration entries,
custom programs used, tables and fields in the DB, etc.

Configuration Item changes must form part of the documentation produced
during the planning and design phase, and must be updated subsequently if any
additional changes are made. It is also important to note that Configuration Item
changes have the effect that they may in fact affect more than one asset, so that the
impact of such changes need to be analyzed and tested thoroughly before actually
releasing to production.

As a particular configuration item may affect many different assets or services,
the relationship between configuration items is to be recorded in a so-called Con-
figuration Management Database (CMDB) (Michael Brenner 2006; Axelos 2011).
This database records the relationship between all the different configuration items.

An example of a configuration item change that affects others is shown in
Fig. 4.11, which depicts a network switch attached to two servers.

Any change on Switch 1 (say the routing rules) therefore has a potential impact
on server1 and server2, which in turn have a relationship to the FMS and pro-
curement systems, and the HR system, respectively. Thus, ideally this relationship
between the switch and the other assets should be captured (as part of the CMDB),
along with the properties and characteristics of each component.

Fig. 4.11 Example for a
switch and the effect of a CI
change

4.4 Release Phase 53

4.4.3 The Configuration Management Database (CMDB)

A Configuration Management Database (CMDB) refers to a record of all Config-
uration Items (CI) for the company, meaning, all assets and their respective con-
figurations as well as their interdependency with other assets and in turn their own
CIs. As an example, a software called “Easy software” version 1.2 is related to other
assets, for example, the server it resides on, a Dell PowerEdge R220 Rack Server,
the O/S it is running on, Windows 7, the DB which is MS-SQL 2014, and so forth.
These assets by themselves will carry more details, such as the MS-SQL 2014,
which would have information on its version, patches applied, etc. Relationship
between assets may be quite complex, as for example in the case where we have a
switch connected to several servers, the connection between these assets needs to be
captured as well.

CMDB for the longest time has been a panacea and has been tracked by means
of manually recording this information. However, new tools are now available in
the market which allow for the “auto discovery” of these assets. CMDB software
scan servers, network, as well as endpoint devices to display the interrelationship
between them, and the CIs for every asset.

In its conceptual form, the CMDB is a logical representation and relationship
between services, assets and the infrastructure and which records the relationship
between configuration items. This is conceptually shown in Fig. 4.12.

In many cases, however, the CMDB will not be a one and unique central
repository, because for all practical purposes, different tools will be more efficient in
discovering different types of assets:

• Network Management system (NMS): will act as the CMDB of all
network-related assets such as switches, routers and the like. The NMS’ CMDB
is in fact just a subset of the NMS’ main function, which is to manage the
network seamlessly from a single console.

• Endpoint Device Management System: system that manages the endpoints
(mainly PCs and laptops, but nowadays also tablets and smartphones), and
deploys patches and upgrades to them.

• Mobile Device management system: This is an endpoint device management
system specific to mobile devices (e.g., tablets and smartphones).

• Asset Management system: may encompass some of the above functionalities,
but additionally also servers.

• Excel sheets: these may have information on the above (especially if no system
is used for them), additionally, contractual and supplier information and
maintenance information (such as when it will expire) will be stored here.

• Integrated CMDB software: in which all the above functions are encompassed
by means of auto discovery agents.

54 4 Managing Operations

Benefits of a complete CMDB are:

• Easier troubleshooting
• Easier renewal of maintenance
• Management and control of licenses
• Easier release management and impact analysis

Again, pros and cons need to be evaluated in determining the extent and depth in
which to deploy a CMDB solution.

Another important and related concept is that of the Baseline Configuration.
A configuration baseline is defined as the configuration of a service, product or
infrastructure that has been formally reviewed and agreed upon, and that thereafter
serves as the basis for further activities that can be changed only through the formal
change management procedures. A configuration baseline can be obtained for most
assets through a “snapshot” of their CIs at a particular moment. This may be done
manually if the number of assets is small, but this quickly becomes unmanageable,
so that the asset discovery tools described earlier may be needed in order to display
the different CIs.

Fig. 4.12 Sample CMDB logical structure (partial structure only)

4.4 Release Phase 55

Special mention needs to be made for endpoints (laptops, PCs, tablets and
smartphones). These, if company-issued are also managed by the company, and as
such, it is the desire of IT that they all have the same deployments and configu-
ration. Whenever new units are procured, these should be deployed with their
corresponding baseline configuration before issuance. As such, it is the task of the
US group to regularly update these baseline configurations so as to ensure that new
issuances are updated with the latest patches and versions of the software. Before
these are made part of the new baseline configuration, they may need to be tested so
that no issues occur to the users as shown in the diagram of Fig. 4.13.

A similar yet more limited approach may now also be undertaken for servers,
thanks to virtualization technology, allowing for the fast provisioning of servers.

Let us now go back to the switch example used in the previous Configuration
Item section. For the CMDB, the switch, its brand, ID, model, firmware version,
O/S version are important and should be captured, together with the specific con-
figuration of the switch. At the same time, the relationship with each server,
including the port in which it is connected and the characteristics of the port
(number, speed, etc.) should also be captured. Any modification of the switch from
this baseline shall call for the change management procedure.

Fig. 4.13 Endpoint baseline
configuration deployment
workflow

56 4 Managing Operations

Service Assets refers to different tangible and intangible resources and capa-
bilities that the IT organization owns and uses in delivering the different IT services.
They are the value the IT organization possesses in creating a greater value (IT
service).

IT Assets may be of differing forms:

• Management
• Organization
• Process
• Knowledge
• People
• Information
• Applications
• Infrastructure
• Financial Capital.

Configuration Management (Watts 2011) is a subset of release management that
delivers a model of the services, assets and infrastructure by recording the infor-
mation about components (Configuration Items), the relationship between these
items, and how these will change based on the release. This enables other processes
to access valuable information, such as the impact of proposed changes.

The main asset or system for this purpose is the so-called Configuration Man-
agement Database or CMDB.

4.4.3.1 Release Approval
Part of the approval may also involve determination on the right moment to release.
In some organizations, specific weekly or monthly windows for releases may have
been defined, especially if there is downtime or risk of conflict.

Regardless of whether such a window exists or not, the planning should take into
account the timing for the release:

• Downtime (if any) for the release, and how this will affect the users
• Locking-out of certain users and transactions, if necessary
• Transactions that may “hang” due to the old process not being accessible or

possible after the change. It is important to identify the best time to release, so
that the number of “hanging” transactions is minimized. It is also important to
identify what the proper procedure for the hanged transactions should be,
whether:

– These may be left hanging
– These need to be deleted, and by whom (system administrator?)
– Needs direct configuration into the DB (very risky! Should be minimized)
– Needs a special procedure
– Need to be manually canceled by the user, and re-created again after the

release of the change

4.4 Release Phase 57

To illustrate the situation of a hanged transaction, take for example a
self-service HR system in which employees file their leave requests. Because
of a change in the leave request process, all the old requests pending approval
or cancelation before the release result to be hanging, and do not proceed for
approval in the system. As such, users need to be advised on what will be the
effect and action to take. For example, they may need to refile all these leave
requests that remain pending approval after the release. To fix this, a typical
procedure may be:

• System administrator cancels old transaction
• HR informing the users to recreate
• HR informing the approvers to re-approve

Depending on the release, if it affects many users, this may necessitate a cut-over
plan taking into account:

• Testing and even pilot release (if applicable)
• Advisory to affected users
• FAQ to Service Desk for easy and speedy resolution of queries and incidents
• Training (if any)
• Hand-holding for special users
• Back out procedure

In a way, this is a mini version of the cut-over activities during project
deployment as described in Chap. 6.

The manner of the release is dependent on the type of application and what type
of release management it supports, as each has its own release strategy, and may
vary from the primitive to the sophisticated. Different ways releases are managed
from one environment to another are (in accordance with what the application itself
supports):

• Manual. Such that changes made in one environment need to be manually
configured in the one being deployed to.

• Copy of the configuration file from the current to the deployed environment.
This is for example used by MS Dynamics 2011.

• Releases are deployed by means of a tool within the system to the target
environment without generally causing any downtime. Example of this is SAP.

Furthermore, some releases necessarily need to be done manually (many tech-
nical items, for example, as well as some master data in some systems), so the
possible impact of the release needs to be assessed well before undertaking. A more

58 4 Managing Operations

http://dx.doi.org/10.1007/978-3-319-38891-5_6

exhaustive explanation of release management is in Sect. 7.9 as explained under
projects.

4.4.3.2 Documentation and Knowledge Base (KB)
All releases need to be properly documented in terms of what they are, how they
have been undertaken, and the reason for the change, among other details. Two
types of releases:

• AM-related releases which refers to CIs of the applications
• TM-related releases which refers to CIs for the infrastructure

Each has its own type of documentation. The knowledge base documentation for
AM-related changes would generally comprise of two components:

• Business requirements document: describes the user’s requirement that trig-
gers the change request. This document will be needed only when the user’s
request contains some degree of complexity which necessitates a document
describing these requirements with some degree of depth, otherwise, a simple
description in the body of the ticket will suffice. This document needs to be
signed off physically or electronically by the requesting user before proceeding
with a more detailed analysis.

• Request for Change Functional specification: this is a mandatory document
which among other things contains:

– Translation of business requirements into a language that the BA under-
stands in order to configure, rationale for the change, as well as other rele-
vant information. (*)

– Would contain specific fields describing how it has to be undertaken,
depending on whether this is a:

Report
Interface

– Technical specifications
System affected
Module involved
Program or object name affected
Description of program or object name
Type, such as:

Java
ABAP

4.4 Release Phase 59

http://dx.doi.org/10.1007/978-3-319-38891-5_7

.net
Others

New/modification
– Configuration description, including code affected, parameters and

description
– Database modification, including:

Table name
Fields affected
Details on the changes or configuration on the fields

– Data modification: this is if there is a direct data modification that needs to be
undertaken

– Should include screenshots and other information that describes the issue,
limitation, or other information that needs to be addressed. (*)

– Registry of effort involved in undertaking the change
– Signatories(*)

• Release to production information form (*). Shall reference:

– Release code (if any) for audit trail purposes
– Ticket information
– Date
– Other relevant information for the release to be tracked

• Test plan and test scripts with results(*)

Those marked above with (*) are mandatory, the rest are dependent on the type
of change being requested.

For TM-related changes, three general types:

• Incidents
• Problems
• Requests

In all cases, if the configuration needed is simple, then an explanation in the
ticket itself of what is to be done is enough. For more complex requests, a Work
Instruction level procedure needs to be produced describing how the change is to be
executed.

For simple incidence resolution, description of the resolution in the ticket may be
sufficient. On the other hand, for complex issues and for problems, several actions
may be tested before the final resolution is attained. As such, all these attempts and
work-arounds need to be documented at the work instruction level into the

60 4 Managing Operations

knowledge base. All incidences related to the same issue will then be referenced to
the problem ticket and the Knowledge Base (KB) document, which should also
contain the list of other incidences related to it that were raised.

4.5 Maintenance Phase

The maintenance phase refers to the day-to-day activities that are conducted in
order to meet the defined Service Levels. This normally means:

• Managing the infrastructure so that it is performing according to its required
service level

• Running the different batch programs that are needed in order to produce the
intended outputs

• Receiving and processing any requests for changes
• Analyzing and proactively managing events detected
• Managing and resolving any incidences detected/reported

For infrastructure, the following specific aspects also need to be addressed:

• Capacity management
• Availability management
• IT Service Continuity Management
• Information Security Management

These are explained in detail the next sections.
Normal service operations need also to take into account the following

processes:

• Event Management
• Request Fulfillment
• Incident Management
• Problem Management
• Access Management

Let us now discuss each of these separately.

4.5.1 Event Management

Events refer to some condition which require attention, and may also be called alert.
It may be generated by an IT Service, Configuration Item or Monitoring tool. It is
not yet an incident, but may lead to one, and thus, a request ticket may be opened to
address this, or a request ticket must be raised for investigation of the event.

4.4 Release Phase 61

Examples of events are:

• Disk has reached 80 % threshold—the capacity management monitoring tool for
the disk determines that the disk will reach full capacity in 3 months; it thus
raises an alert so that it is properly addressed.

• A batch process failed to finish within the usual 3–4 h runtime, though it did
finish without incidence in 6 h. The IT Operations Management team may raise
this for investigation, as this could repeat, or worse, further deteriorate.

• The configuration of a server was detected by TM to be incorrect. The data
being downloaded is being written into c: drive, which is normally reserved for
the operating system. This is not causing any issue at the moment, but is an
event that can eventually cause issues in terms of capacity management.

Events, once detected, need to be investigated and/or addressed by the corre-
sponding team. Root cause of the problem needs to be evaluated, and the team will
subsequently release a request for change to address the issue. Thus, an investi-
gation ticket or a change request ticket may thus be raised to analyze or address the
event, as the case may be.

Events, if they cannot be addressed immediately, may also form the basis for the
continual service improvement, so that they be eventually addressed.

4.5.2 Incident Management

Incidences are events that actually disrupt a service from normal operation and
service level. Incidences may be raised by different entities:

• Users when they detect the issue
• Any member of the operations team as well, when detected
• IT Project members that report an issue that is already under operations’

responsibility

Incidences that are reported should be resolved within the timeframe as specified
by the SLA. These may be treated generically (all type of incidences) or specific
(depending on the type of incidence). The most immediate concern when an issue is
opened is in restoring the service to its original level. This means that if the root
cause may take time to be identified, work-arounds can be applied in order to do
this, while the root cause is still being sought for. All these actions need to be
necessarily recorded in the knowledge base (see later section), so that it be a clear
reference on what were the actions taken, including work-arounds, what the root
cause is, and the final resolution. Incidence tickets should not be closed until the
proper knowledge base document has been produced. Take note that if the inci-
dence’s root cause cannot be identified, a problem ticket may need to be opened, as
is discussed later. This allows for an in-depth analysis of the root cause, as problem
tickets are not time-bound till resolution. All incidences related to the same problem

62 4 Managing Operations

ticket will be tagged as such, so that the problem ticket references all the associated
incidence tickets.

Take an example of a reported incident from a user which cannot log on to the
different corporate applications as the login via Active Directory does not
work for him. As these cases were encountered before, SD instructs the user
to lock his screen, and after a few seconds attempt to login again. If this fails,
he is then instructed to restart his PC, which again fails to resolve the issue. It
then becomes a problem, as this situation has not been encountered before
and needs further investigation to pinpoint the underlying issue. As the user
however, cannot be kept hanging without his access, a work-around is
effectuated, in which his PC is whitelisted in the Active Directory, allowing
him access to all the different systems. In this case the incident ticket is
closed, but the problem ticket remains until root cause is identified.

Incidence tickets normally carry different weights depending on their severity,
major incidences are those that:

• Have a high potential business impact
• High urgency
• Impairs many business units

This is also explained under the Service Desk section. Severity should be
identified at the point of reporting, which is normally Service Desk, major tickets
would have a higher priority for resolution. Service Desk will also collapse several
reported incidences into a same one if they are in fact one and the same, but
reported by different users.

Incidence tickets will then be routed using their pre-defined escalation procedure
to the correct Service Team for analysis and resolution. All incidences will remain
open until such time they are resolved (totally or by means of a work-around), or if
canceled. Cancelation of incidences may be due to the realization from the user that
it is not a true incidence (he undertook the wrong procedure, for example), may
have been discovered by the service team to be due to wrong procedure or data, or
simply that the service was restored to its normal condition without any action (as it
sometimes mysteriously happens! However, this is usually due to wrong user
procedure being used).

4.5.3 Problem Management

Problem tickets are always the result of an incident or several incidences. In other
words, an incidence is first detected and attempted to resolve, but then a problem
ticket is created when:

4.5 Maintenance Phase 63

• Many incident tickets of differing nature result, but are due to the same
underlying root cause. For example, a network problem related to a faulty
switch causes different type of incidences including slow response time,
unstable network and unreachable servers.

• The root cause is not known beforehand nor is it resolvable within a reasonable
period of time due to its complexity (it does not appear in the Knowledge Base)

• May require the analysis, involvement and participation of many of the service
lines, not only one.

Problem tickets may be opened by any service team that is in charge of the
original incidence ticket(s), and this will be automatically assigned to the team
creating the problem ticket. Though the service team may require involvement and
assistance from other units, principal responsibility still resides with the team
handling the original incidences. Several steps may be taken from this point
forward:

• Attempt to recreate the problem. Sometimes the most difficult incidences are due
to the fact that they appear randomly or in circumstances that occur infrequently.
If there is a sandbox environment, the team may attempt at recreating the
incidence and then analyze logs, variables, etc., to try and identify the root
cause.

• If the problem is related to a customized CI, then most likely this is due to the
way the customization was done, so the first step is to analyze this CI’s pro-
gramming and related configuration.

• Consultation of internal knowledge base. This is to ensure that no similar
incidence occurred in the past, which may give clues to the current problem.

• Consultation with the supplier’s knowledge base and forums. To check if such
issue was encountered before, and as to resolve faster.

• An incidence ticket may be raised to the hardware or software provider. It may
be determined that the root cause is due to a bug or faults from the provider, so
that once enough information is collected, it is then escalated to the provider’s
technical helpdesk for analysis and resolution. The Service team may also be
unsure if it is indeed due to the provider, but reasonable suspicion warrants the
raising of such a ticket to them at the earliest possible time.

• If still there seems to be no resolution after the steps above, a more lengthy
analysis may be needed. If the problem ticket is of certain importance, the
operations team may invoke the involvement of specialists, either from the
provider or from external consultants, so as to resolve the issue.

Once the possible resolution has been identified, this shall undergo the regular
change management procedure including testing and identification of roll-back
procedures.

As explained for incident management, problem management needs to first and
foremost address the issue of restoring service to its normal level. This means that
while the root cause is being identified and addressed, a series of work-arounds may

64 4 Managing Operations

be applied in the meantime. It must be ensured, however, that such work-arounds
do not mask the issue from being resolved permanently, or in other words, does not
hamper the investigation into the final root cause of the problem. Common
work-arounds are

• Restarting of the server or router (an all-time favorite of IT teams)
• Restarting of a service
• Rerun
• Rerouting of network switch
• Roll-back of a change
• Work-around procedure to address the issue
• Data modification

Again, it must be emphasized that these are only work-arounds and should not
be abused. Restarting of a server is really a very bad way to address an underlying
issue because it just temporarily defers the issue. Take for example the case in
which the server is swamped with transactions that eat-up its resources, causing it to
eventually fail or slow down to unacceptable levels. Of course resetting the server
frees-up the server’s resources, but only temporarily as it has terminated all pro-
cesses handled. The root cause may actually be insufficient capacity or the incorrect
utilization of the server by an application.

It is important that all work-arounds, successful or not, be recorded in detail in
the Knowledge Base for future reference. If a similar incident occurs again in the
future, it will then be easy to know and apply known good work-arounds, while
avoiding those that are known not to work. All errors which have been resolved and
are recorded in the Knowledge Base are referred to as Known Errors.

4.5.4 Request Fulfillment

Requests are tickets that are also filed through the Service desk, but unlike inci-
dences and problems, are not considered issues, but form part of normal operations.
Requests will have their own SLA, distinct from that of an incident. Generally
speaking, not all requests will be treated equally in terms of priority (see Service
Desk section) but will depend on the type of user, type of request, and as will be
discussed here, the service line affected.

Requests related to TM, ITOM, US are usually straightforward to fulfill and can
be met relatively fast (unless requiring field work), requests for information should
also be straightforward, however, requests related to Application Management can
be quite complicated in nature, especially if this involves the request for a totally
new configuration or functionality in a particular service. Such requests will typi-
cally give rise to a request for change, which, as it may need sufficient man-days of
work, will need a fulfillment date that is agreed upon with the requestor. Typical
steps for fulfillment are:

4.5 Maintenance Phase 65

• Pre-analysis of the request. Will be determined by the corresponding AM
business analyst. Will first determine if the request cannot be met by any
existing function or procedure, and whether it warrants opening a request for
change. The business analyst will also determine whether the request needs to
go through CAB or ECAB, as per IT policy. Depending on the gravity (ur-
gency), it may already be raised to ECAB for approval, even without full
documentation of the requirements.

• Analysis of the request. Once validated, the business analyst shall proceed with
the detailed analysis and design of the request. He shall coordinate with the user
in filling-out the design specifications documentation to ensure that the request’s
scope and details are captured correctly and entirely. This may entail:

– Request for further information from the user by email
– May require a sit-down meeting with the user
– Once the design document is filled-up, a sign-off will be needed from the

user. This signifies the correct capture of his requirements. This document
will also contain details such as man-days estimate and resources required,
tables, fields and objects used, as well as details on the customization (if
any). Nothing should proceed after this unless sign-off is obtained.

– CAB approval if required. If not, this will follow the normal ticketing pro-
cedure for approval process.

• Execution/Build
• Testing
• Deployment

These are the normal procedures for release management (see pertinent
Sect. 4.4).

Some examples of different type of requests and their escalation and approval
level are:

• Request for internet: approved by user’s Department head
• Request for installation of a software existing in IT’s catalog: pre-approved
• Request for transfer of files from old laptop to new laptop: pre-approved
• Request for access to the ERP: approved by his Department head/Business

Process Owner or both
• Request to install a new trial software: approved by the II Head
• Request for a project: approval by the CIO

These approval levels are best configured inside the Service Desk, so that
depending on the category, the ticket is escalated to the correct approver
automatically.

More of this is explained in the next section.

66 4 Managing Operations

4.5.5 Access Management

Access management is the process of granting authorized users the right to use a
Service (including data or an asset), while preventing access to non-authorized
users. Access management may be grouped into two general categories:

• Pre-approved: in which access can be granted to the requestor immediately by
the Service Desk due to his position or role, as the access being requested is
pre-approved as per IT policy.

• Requires approval: again, the basis is policy. Approval may not only be from
IT, but may also require approval from the line organization to which the user
may be reporting to.

As an example of the first, say that company policy is to grant email uti-
lization to any company employee, as such, a call from an employee
requesting for email service is automatically granted by the SD. The SD then
creates a ticket which is routed to the corresponding service team that will
physically create the account. Supposing now that company policy is to
restrict use of social networks unless properly justified and approved by the
user’s department head. An employee filing a request for the use of twitter
would therefore have to seek his department head’s approval before the
request proceeds.

Some services may be quite complex and authorization on their use may not be
apparent. This may be the case for example when requests for certain functions or
roles in an ERP or a CRM system. Data may be confidential and should only be
accessible to personnel with certain roles. As a best practice, there should be
Business Process Owners (BPOs) defined for each major process, and these should
be the ones to determine whether authorization should be granted or not. A Busi-
ness Process Owner (BPO) is a role given to certain key users in the organization,
their duty is that of caretakers of a process(es) which they are accustomed to as they
normally either execute this process or are the managers of people who are the ones
executing these processes. He is expected to know the process very well, including
its intricacies, limitations, and find ways of improving it. In effect, IT is the entity
that implements the process, but the relevance and use of the process is something
the BPO is in charge of. These persons should regularly coordinate and meet,
together with IT, to see what more can be done to improve the efficiencies of the
processes; they are also in charge of the data that these processes produce.

As an example, take the head of Customer Service who is the identified BPO in
charge of the CRM’s customer data. A request from a user within the organization
to access customer data in the CRM may only be authorized by the BPO after
careful justification. The justification may be apparent, as for example, due to the

4.5 Maintenance Phase 67

position or role of the requesting user, but in cases it is not, he may have to explain
why and what data he needs access to.

4.5.6 Capacity Management

This refers to the ability of the different components of a service to have sufficient
capacity to deliver a service with the agreed performance as defined in the SLA.
This is commonly thought of for infrastructure, but also holds true for human
resources. Capacity management as a process refers to the continuous planning,
monitoring and adjustment of available capacity in order to meet the overall SLA
now and in the future.

• Planning—refers to the initial definition and allocation of resources needed for
the service. Common type of infrastructure capacity applies to servers, their
memory, CPUs, as well as disk size, network bandwidth required, as well as
particular skills (people) needed to keep the service running. Capacity planning
may be initially designed on a per service requirement, and then rolled-up to a
total which will define the total capacity needed by the organization.

• Provisioning—in which specific assets and services are assigned specific
resources.

• Monitoring—in which the different resources’ utilization are observed during
normal and peak operations in order to detect if any saturation occurs, which
may impair performance.

• Tuning—in which additional resources may be added and configured until the
desired performance is attained

• Procurement—in case no additional resources are readily available, then the
procurement or availing of additional resources from external suppliers trig-
gered. Alternately, resources may be reallocated from services or assets, if
possible.

Capacity management used to be a difficult endeavor in the past, but due to the
rapid advancement of current tools, work has been made easier:

• Capacity management analysis tools—these is a wide array of tools available
to analyze allocated resources versus current performance. These monitor CPU,
memory, network, and disk storage utilization. Some of the more advanced tools
also have predictive capabilities, in which they predict when certain resources
will fall short based on current trends (for example, hard disk based on current
growth).

• Virtualization—previous to virtualization, hardware resources were all physi-
cal, nowadays, with the advent of virtualization and cloud technologies,
resources can be allocated on-the-fly as the need arises, without the need to wait
for the lengthy procurement and delivery processes to finish.

68 4 Managing Operations

Capacity management reviews should also be called for regularly, so as not to be
caught unaware on the capacity situation, and pre-empt requirements and procure
additional assets if necessary.

4.5.7 Availability Management

Availability is the ability of an IT asset or IT Service to perform its agreed Function
whenever called for. It refers to a general indicator of the % of time it is available
for use versus total time. Take note that when we refer to available for use, it does
not mean actually used. Also, the total time to be used in the denominator of
availability refers to the total time DESIGNED for use.

As an example, take a certain service which is to be up and running 8 × 5. Thus,
during the week hours of every working day, it should be up and running for use,
even if it is not actually used. If there is downtime during the weekend, this does not
matter, and is not counted against its availability because it was not designed for use
in the weekend.

As such, it is of no use to overcommit on the availability (and thus, overcommit
on resources), if it is not actually needed, resources are to be allocated only
according to the expected service levels as per their availability metrics, which
should in turn reflect reality and expectations for the service using them.

Though it may be obvious, availability must also factor-in downtime required for
maintenance and upgrade, and this includes time needed for patch updates, DB and
OS upgrades, application upgrades, etc.

Additional metrics that may be relevant are:

• Reliability—refers to the ability for a service or IT asset to perform without
interruption. This can be measured by the Mean Time Between Failure (MTBF)
or Mean Time Between Service Interruption (MTBSI). Depending on the case,
this measure may also be important, and not just availability, as the service may
be so critical that it needs a guaranteed reliability measure. As an example, take
a particular service, say an ftp server that is expected to be up 99 % of the time
(availability) which is actually met. However, this service has repeated dis-
ruptions, each of which lasts very few seconds so that the even if the total
availability is met, its reliability is very low. Because of the frequent disruptions,
very large file copy transactions to the server are disrupted and do not finish, so
that these need to be restarted again. In this case, poor reliability has a direct
effect on the service.

• Maintainability—A measure of how quickly and effectively an IT asset or
Service can be restored to normal working condition after a Failure. This is
commonly measured using Mean Time to Restore Service (MTRS).

4.5 Maintenance Phase 69

Availability and related metrics in general depend on a number of factors

• Adequacy of resources allocated to the different CIs—say for example,
memory, CPU, network bandwidth and hard disk must be sufficient for a server
to conduct its functions correctly. Incorrect sizing will degrade the performance
of the server to levels making it slow and eventually, unavailable. The same
holds true for human resources, in which sufficient levels (number of
man-hours) of properly skilled resources should be applied to keep it running.
For example, Database Administrator (DBA) hours needed for tuning the DB, as
well as time for applying patches to the applications as required.

• Redundancy—This may be used to increase the availability of the CI and
service. Common practical redundancy measures includes clustering, having
redundant application servers, redundant network path links and switches, and a
multi-skilled workforce.

• Spares—in general, having spares is a second level approach needed to meet
the availability requirements. By having spares, maintainability in the form of
MTRS will be relatively lower (versus redundancy). Again, with today’s vir-
tualization technologies spare servers can be restored in a very fast fashion. With
cloud technologies restoration is not only fast, but also at a fraction of the cost of
having procured the spare altogether.

• Backup—is also a second level approach, which ensures if something goes
dramatically wrong, the application and data can be restored in the fastest time
possible. Backups can be done in a variety of ways, and is explained further in
4.5.10

• Third party High-availability spares—is a 3rd level approach, in which,
instead of having the spares on hand and having procured them, a service
contract is signed with an external third party for them to provide the spares on
an as-need basis, in which the third party guarantees its particular availability of
spares and time to restore. These third parties are either resellers/distributors of
the product, or companies specializing in these kinds of services, and normally
charge a percentage of the actual cost of the spare. Spares may be new or
refurbished the last especially true for outdated technologies.

• Security—security breaches may cause downtime, some of them significant, so
that security must be properly addressed. More of this is discussed in
Sect. 4.5.9.

Poor availability is usually the first sign of poor IT practices, and the most
obvious shortfall from a user’s perspective, and yet, if bad practices have been
running for a long time, it is also difficult to address, requiring cultural change and
time for them to take effect.

70 4 Managing Operations

4.5.8 IT Service Continuity Management

This refers to the management of risks that could seriously impact and impair IT
Services. In other words, it refers to the ways and means to reduce risks due to force
majeure (usually natural calamities) that could impact severely on the ability to
provide the required services. Some important related concepts need to be kept in
mind:

• Business Continuity—Overall business needs to ensure continuity of service in
case of disaster or security breach. Since IT is well and part of the normal
operation of a business, it needs to be aligned with the business requirements.
As an example, if the priority of the business is to be able to keep invoicing even
if in times of disruption, but it is acceptable for functions related to human
resources to be impaired somewhat, then the IT services must take this into
account. It is of no use to over allocate and over meet the overall expected
service level, as this has a cost implication. IT’s SLA must be aligned and
support the overall service level of the business. The diagram of Fig. 4.14 shows
an example of an interrelationship between the overall business service level and
IT’s in case of a disaster.

As you can see from the above diagram, the IT portion is just part of the overall
business continuity plan (shaded globe) but an important component to meet the
overall (impaired) SLA.

• Risk Analysis—a risk analysis should be made for the purpose of identifying
possible impact the risks may have, and the probability of the risk. This should
again be done preferably at the corporate level first in order to identify what its
perceived risks are, and then perform this same exercise at the IT level. At the
business level, not all the risks that are relevant at the IT level may have been
identified, so that these necessarily have to be again identified using a more
detailed analysis for IT. Please refer to Sect. 5.1.7 for more details on risk

Fig. 4.14 Example
illustrating relationship
between corporate Business
Continuity and IT service
continuity

4.5 Maintenance Phase 71

http://dx.doi.org/10.1007/978-3-319-38891-5_5

management. Risks will be mitigated in a variety of ways, and some risks which
cannot be totally eliminated and are still significant need to be addressed by
means of concrete actions in the service continuity plan.

• Plan—this is part of Planning and Design phase in which the different Services,
their SLA during the Disaster are determined, and the corresponding mitigation
actions identified. This should include a very detailed Disaster Recovery plan
which should go all the way up to the transactional level of what steps need to
be executed upon the trigger of a major disaster. The basic principle guiding it is
the restoration of services within time so that it complies with the Business
Continuity SLAs

• Business Continuity SLAs—when disaster strikes, the regular IT SLAs nor-
mally cannot be met. As such, a different set of SLAs takes effect until final
recovery from Disaster.

• Disaster Recovery Site—fires, tornadoes, typhoons, and most especially
earthquakes and floods are local in nature but may affect a large area. As such, it
is best practice to have the standby infrastructure in a location far from the main
location of the servers, normally 30 km or more. In case of total failure of the
main data center, the DR site is to enter into production.

As a plan is best when it is tested, the IT Service Continuity Plan should be
executed by simulating a disaster. By executing the plan, the different steps that are
to be undertaken are followed and the times to execute measured. At the end-of-the
exercise, things that were not accounted for or that can be improved are then used to
refine the plan further. This disaster simulation should be done at least once a year,
and should be selected at a date and time that minimizes possible impact to
production.

4.5.9 Information Security Management

This is a whole topic just by itself due to the very fast and changing nature of the
threats to which IT systems are exposed to.

Information Security refers to policy, execution, applications, and infrastructure
that guarantee:

• Confidentiality of data. In which only personnel authorized to access such data
are allowed to access it.

• Integrity. In which information, applications and systems remain unadulterated
or altered from the original intended form.

• Availability. In which information, applications and systems can be used
whenever needed in accordance with their design.

• Reliability of systems and applications, so that these perform in accordance
with their design, and have not be altered or unadulterated by unauthorized
personnel compromising their performance.

72 4 Managing Operations

Information Security relies on many different components for it to be attained:

• Policies which determine the do’s and don’ts, as well as the how to go about
requesting and executing aspects which have an impact on information system
security.

• Guidelines and procedures which determine at the working (operational) level
how these policies are to be executed. While policies apply to the general
populace including users and IT personnel, guidelines and procedures will be
specific depending on the type of personnel, whether a user, or to which specific
team in operations the guidelines will apply.

• Configuration Items which apply the different security settings in the assets so
as to guarantee that the security aspects are addressed. Examples of these are
patches, security upgrades, as well as settings in the application related to
security (password lockout on the third try, for example)

• Architecture of the network. As there are best practices in terms of designing
the network architecture so as to ensure its security.

• Security infrastructure. May be both at the network level, as well as on the
server side. This may include security appliances (Intrusion Prevention Sys-
tems), firewalls, and the like.

• Security software that addresses particular security concerns, these may be at
the server side, at the endpoint, or in-between at the network level as well.
Includes anti-viruses software, whitelisting software, among others.

• Code. That is in accordance with policy and procedures, which should in turn be
in accordance with global best practices in ensuring secure code.

Information Security management implies the proper application and manage-
ment of all of the above. It is not enough to just focus in one area, all these need to
be in sync and continuously monitored and adjusted so as to ensure that they
address the changing landscape of security threats. Forgetting one of its compo-
nents can result in serious consequences. As an example, having good network
architecture, proper policies, as well as advanced security applications and appli-
ances may not be good enough if the proper work-level implementation of security
procedures is forgotten.

Although commonly thought of just as technical threats and vulnerabilities, most
successful security breaches also carry some social component, such as:

• Phishing—in which a user voluntarily gives out personal or company infor-
mation by being made to believe that the requestor is legitimate. These include
emails which supposedly come from legitimate sources and request you to
perform an action the user would normally not do so (such as entering his admin
account and password in a false website).

• Social Engineering—refers to psychological manipulation of people into per-
forming actions or divulging confidential information. For example, by
befriending the person and extracting the information needed during conver-
sation or by accessing his/her personal laptop.

4.5 Maintenance Phase 73

• Physical access—to servers, switches, or other devices which normally would
be physically isolated and protected from access.

Breaches in Information Security have several possible implications:

• Access and use of confidential systems and data.

– This is especially critical in a financial, retail environment where financial
information is kept. A breach may mean that the hacker can now reuse this
information to conduct financial transactions using customer’s details.

– Sometimes the data may not have financial value directly, but may be used to
blackmail the user or may be sold to others that may have a use for this
information, including competitors.

– Espionage and intellectual property theft.

• Destruction of data. In which the user or company is blackmailed if he refuses to
accede to certain demands, which may be monetary or of other nature.
Destruction of data may also be used to undermine a company or individual.

• Disruption of operations–either by destruction, denial of a service or decreasing
dramatically the reliability or response time of an application. This is commonly
found in internet-facing applications which are inherently exposed.

• Destruction of machinery. This is especially true for applications used in con-
trolling machinery. If the application is made to control the machinery in a
manner that causes it hazard, then it can actually destroy the machinery or the
production it is handling.

• Taking over of the machine. This is when a server or endpoint is compromised
so that it comes under the control of a remote, unauthorized user. This is usually
the first step in using the machine for further intrusion within a company’s
network, or its use to launch attacks through the internet. By using a third
person’s machine, the originator of the attack can remain anonymous.

4.5.10 Backup

Backup policy will be determined by IT in accordance with the application, as well
as backup resources available for that task. Backup may be undertaken by ITOM or
TM, but policy should be determined primarily by TM. Backup policy should
ensure that all systems and data be regularly and properly backed-up. Take note that
there are diverse ways of backing up, and that the strategy will again depend on the
type of application, data, and tools available.

Aside from the regular backup, policy should dictate that a special backup be
expressly requested before any major change is released, so that in case of failure,
restoration to the original configuration can easily be done.

74 4 Managing Operations

Backups should also take into account physical location of the backup media, so
that if for example a disaster occurs (fire, earthquake, etc.) the media is not in the
same location as the servers backed-up, so the backup media does not get
destroyed, or it becomes a time-consuming endeavor to retrieve the backup media.
Media may be rotated physically (by getting a copy of the tapes) or may be means
of a “hot” or “warm” replica offsite.

Backups may be incremental for a certain period of time (say a week), after
which a full backup is performed. Incremental backups are much faster than full
backups to execute, however, regular full backups are needed in order to ensure that
the whole system can be restored to in case media becomes corrupted (in one of the
incremental backups, for example).

4.6 Retirement Phase

At some point in time, services may become obsolete for a variety of reasons:

• An alternative technology has replaced it
• The business process it is supposed to address is obsolete and no longer used

When such circumstances occur, then the service will be flagged for retirement.
Normally, retirement of a service is discussed long before it is actually undertaken,
most especially with the end-users, so that their transition to the new system is as
seamless as possible. A normal procedure for retirement would be:

• Advisory to all concerned users on the retirement of the service
• Final backup of the complete application, just in case there is a need to revert,

for whatever the reason
• Decommissioning of the application and related software and infrastructure

components.

4.7 IT Strategy

The main role of strategy is to update the service catalog with new services relevant
to the business, as well as finding ways of improving the service levels and
reducing the costs in delivering these services. IT Strategy provides the guidance on
how to design, develop, implement and improve service management, aligning it
with overall company strategy.

The overall aim of IT strategy is to ensure that IT services are strategic in nature
and are aligned and contribute to the overall company direction and objectives.
Mainly, the roles of IT strategy are:

4.5 Maintenance Phase 75

• Identify the market for new IT services (for external customers)
• Design and develop these new IT services
• Guide on the service management improvement process so that it better fits and

is aligned to company strategy. This includes reducing costs, having better
service, and increased efficiencies. Such improvements may be significant,
especially if the IT clients (whether internal or external) need to pay for these
services. By making the services more cost effective, these will in turn be more
attractive.

• Develop policies, guidelines and processes that will assist in the above.

Designing new services has a direct relationship with portfolio management. The
portfolio manager will have a series of projects under his responsibility, which may
also include O&M. Oftentimes this portfolio manager is the CIO himself, who
continuously aligns the different portfolio components with the overall company
strategy (see Chaps. 7 and 9). One of these portfolio components is in fact Oper-
ations itself. It is thus the duty of the Operations Head to inform the portfolio
manager (i.e., CIO) of his perceived needs, so that the portfolio manager can
prioritize on the different improvement actions and projects to design. At the same
time, the portfolio manager must also inform the Operations Head on the com-
pany’s strategy and how this needs to be operationalized.

Take a few examples:

Example 1: Improved collections

During the last management committee meeting, it was determined that the
accounts receivables have been bloating to unsustainable levels. Upon analysis,
this was due to several factors, but one being the lack of collection agencies
accredited by the company for the payment by customers of their regular bills. As
such, the commercial department initiated a program of accrediting new agencies,
and this in turn requires that IT expand its coverage to integrate these agencies, as
well as reduce the collection clearing process from the current 8 to 2 hours.

In this example, there is a practical and direct effect of what company
strategy and direction requires from the portfolio, affecting all the way down to
operations. For operations, this means having to find ways of improving the
collection process in terms of performance. After some analysis, it appears that
the program for posting the collections into the system is not optimized, plus a
higher priority needs to be assigned to this batch process in the application
server. In this case, there is a direct improvement on one of the SLA’s KPIs, that
of posting collections, and it was determined that the Operations team is able to
address the above by opening a pair of tickets, assigning the optimization of the
posting program to AM (and subsequently to a developer), and then to TM and
ITOM for the prioritization of the batch process.

76 4 Managing Operations

http://dx.doi.org/10.1007/978-3-319-38891-5_7
http://dx.doi.org/10.1007/978-3-319-38891-5_9

Example 2: online collections

Along the lines of the above issue that affects company strategy, imagine
another scenario in which it was decided to come up with an app that allows
for real-time, online payment which will now link with the backend. It was
determined by the portfolio manager that this requires a payment gateway to
be setup, with all the different validations, before sending the collection
information to the backend. In this case, this payment gateway needs to be
developed from scratch and was launched as a new project.

As you can see from the two examples, a change in company strategy may result
in a modification for Operations strategy, or in a new project, depending on the
scope and nature of the solution. More of this discussed in later in this section.

For operations, IT strategy is one of the main roles of the Operations Head, as
well as the Portfolio Manager handling the operations, and if the latter is not the
CIO, for the CIO as well. As you can see above, it is important that the strategy at
each level be aligned, because otherwise, the effort becomes useless. A service may
be improved way beyond its SLA, but if not required, it does little to contribute to
the company’s general strategy and objectives as well as its business.

IT strategy is also linked to continuous service improvement, in that it can also
set the direction and guidance for the service improvement. Along these lines,
projects may also be defined for the benefit of operations. This means that projects
may also be put in motion for the specific purpose of improving operations, and
consequently, operations’ SLA. This may altogether be different from the project
defined in example 2, as the project in this example was to provide a new service
altogether. Operations’ projects do not usually result in a new service, but rather,
the improvement of an existing service. Take the following example

Example 3: automated testing of collections’ posting processes

It was also identified that one of the more time-consuming aspects of inte-
grating new collection agencies is the testing of their batch collection data and
testing for the correctness of their algorithm. As such, a new project was put
in motion to automate the testing of the entire posting process, and it involved
the installation and setup of a test tool, definition of the test scripts to be used,
and the automation of these. The testing effort was thus reduced from an
average of 3 days to just 20 min.

As you can see, the installation of the test tool and deployment for the collec-
tions’ posting did not create a new service, but rather, improved on the delivery of
an already existing service. It thus improved operations.

4.7 IT Strategy 77

Linking it all together, Fig. 4.15 represents a typical interrelationship between
projects, portfolio and Operations with company and IT strategy:

What Fig. 4.15 shows is the typical process that would be involved in cascading
strategy throughout the IT organization. Company strategy, usually defined in
business terms, needs to be translated by the CIO into IT strategy and objectives.
These are then cascaded as IT’s strategy and direction to the different portfolio
managers. As portfolio managers are continuously realigning their portfolio to meet
company and IT strategy, they take this into account to create one of either two:

• An updated operations strategy which will further be refined by the Operations
Head into new or updated guidelines and procedures. In turn, as there may be
work that needs to be done to align operations to the new strategy, a set of
improvements may be identified for execution by the O&M team. Once this is
finished, it results in either a new service, or most likely, an improvement over
an existing service. This improvement may be internal and thus requires only an
update on the OLA, or may go up all the way to an improvement in a service’s
SLA. In case of the latter, this is then cascaded by the CIO as an update to the
whole organization.

Fig. 4.15 Relationship between IT strategy, operations, and projects

78 4 Managing Operations

• A new project is identified by the portfolio manager. This new project may be:

– An improvement for operations, thus enhancing its OLA (example 3 earlier);
or

– A totally new service (example 2)

In any case, the project is then assigned to a corresponding project manager to
handle. Once the project is completed, the new service is updated into the service
catalog, and the OLA and (if applicable) SLA updated, together with the transition
of the service into operations (as shown by the dotted line in the figure).

In other words, new strategy may translate into additional operational
improvements or changes, or into a new project which will eventually be phased
into operations.

4.8 Continual Service Improvement

Continual Service Improvement is also referred to as the PDCA (Pyzdek, 2003)
cycle, which stands for:

• Plan for the improvement
• Do the action
• Check the results
• Act to adjust the plan based on the results

It is referred to as a cycle because improvement is continuous and never stops,
and may be represented by a diagram such that shown in Fig. 4.16.

Applied to operations, this is the process that leads to its continuous improve-
ment. Normally, and in order to institute continuous improvement, this would have
several phases, depending on the maturity of the organization:

Fig. 4.16 The PDCA cycle

4.7 IT Strategy 79

• Phase 1, Stabilization: the day-to-day operations must first be stabilized. One
cannot think of strategy and strategic improvements if the basics are not yet
addressed. A person firefighting cannot possibly devote time to more beyond to
resolving his immediate problems.

• Phase 2, Top-down driven improvements: in which the more senior personnel
(CIO or Head for Operations) identifies the areas for improvement, designs the
actions and delegates his team for the execution of the improvements.

• Phase 3, Collegial body improvements: in which every person in the opera-
tions organization proposes new ideas for possible incorporation as an
improvement. This is the final objective, in that all the employees devote time to
think of ways and means to improve, and work in an open ambiance in which
they can suggest ideas without fear of retribution.

The reason why the last is ideal is

• That it opens up a plethora of possible improvements because it is not just 1 or 2
people thinking of improvements but a whole team

• The best suggestions on what to do are from the people directly exposed to the
work they do, because they are able to perceive of better ways of doing these.

• Using a top-down approach eventually stifles innovation and creativity because
people have no room for expressing themselves as they believe the boss will
always be the one to address and resolve the problem

• Ownership. In which people own the ideas, believe in what they do and execute
it till the very end.

PDCA sessions when trying to achieve the most advanced stage should be
formulated in such a way that there is open discussion, in which no idea is bad and
should therefore not be shut down. People need to keep an open mind about ideas
and not make pre-judgements. An improvement idea may contain several phases, so
it is important that not only the end result is measured, but most importantly, the
actions leading to the expected improvement are also measured in terms of pro-
gress. Each of these can be measured by means of indicators. Two types exist:

• Lag indicators—these are the RESULTS from applying an action. These are
usually simpler to measure as they can easily be quantified. Samples are cost
reduction, increase in revenues, capturing of more clients, etc.

• Lead indicators—these are the indicators (i.e., actions) that are really within the
control of the person executing the plan, and these actions should lead to the
improvements that will be seen in the lag indicators. They are generally more
qualitative than lag indicators, but they must be executed for the final results to
be achieved.

A good way to measure the progress of the continual service improvement
mechanism is to use a scorecard. This scorecard will contain a mix of both lead and
lag indicators so that they can be monitored in terms of their progress. Lag indicators

80 4 Managing Operations

need to be represented as these are really the actions within the control of the team.
These need to be reported on a regular basis, until the final objective is achieved.

As a general rule, indicators chosen must be

• Specific
• Measureable
• Achievable
• Realistic
• Time-bound

Actions should be measured as they go through different phases of execution so
that progress can be measured. Thus, for example, if the action consists of coming
up with a new program that shall reduce the calculation time of a complex problem
from 5 to 1 h, its different phases may look like that shown in Table 4.2.

As an idea is discussed by the team and accepted as the next improvement to
focus on, a follow-through must be done. This means that its progress is to be
monitored as it is executed until final results obtained. It is thus important that these
initiatives be reported regularly, and the best way to report them is by means of
visuals: graphs, displays, dashboard or color codes which shows the progress of the
scorecard. Samples of these are shown in Fig. 4.17.

Simple use of colors such as red-yellow-green show the progress in the attainment
of the initiative, or alternatively these can be represented by means of a signal light, a
speedometer, or other eye-catching visuals. It is best to display these visuals in a
location in which all involved employees can see them, and appreciate the progress
being made.

A session for discussing these initiatives needs to be conducted regularly (weekly,
every 2 weeks, etc.) and the initiative presented and discussed. The initiative should be
aligned towards what the company’s overall direction and objective is, or if this is too
abstract, then at least to IT’s specific objectives and strategy. These change from time
to time, so that it is the CIO’s task to give direction and indicate what is the updated
strategy, and what are IT’s priorities. When initiatives are presented, these should be
analyzed for relevance by the group, and if the decision is to pursue them, then the
regular meetings should indicate the follow-through progress. These meetings are also
a chance to involve different departments, especially if help and/or collaboration are
needed from them, so that it can be formally requested from them. In this sense, this
discussion of initiatives involves the whole group, so that accountability is not only to
the direct boss, but also to one’s peers.

Table 4.2 Example of Lag
versus Lead indicators

Lag Lead

Optimized service rate calculation program
(calculation time reduced from 5 to 1 h)

Analysis and
design

Coding

Testing

Deployment

4.8 Continual Service Improvement 81

The regular Continuous Improvement Plans meetings should be brief and con-
cise, discussing what new initiatives have been thought of, what are the steps in
executing these, and what assistance is needed from other groups. Regular meetings
discussions should update on what was done in the last time period, what will be
done in the next time period, as well as any issues faced, and an acknowledgement
on help received from another group in resolving the issue. This meeting should not
turn into an operations meeting, and needs to be focused, hence a short time
allotment of 5 min will be given for each person to discuss her particular initiatives.
Too long a meeting will make it boring and will make other people drift from the
meeting.

Take note that an initiative may take a long time period to attain its objective
because of its complexity or number of tasks involved. It is not expected that the
initiative be finished in the next time period, but it is expected that it be broken up
into chunks of actions of which progress can be reported regularly. This is aligned
to the expectation that all actions and initiatives be measureable.

Another important aspect is that indicators be realistic and achievable. It makes
absolutely no sense to target initiatives which are way beyond comprehension,
capability, capacity or responsibility for one to undertake. Continual improvement
means taking small but successive steps for improving the performance or effi-
ciency of IT’s services, but given time, and as a whole, they make a big impact on
the overall performance. Time-bound means that whenever a target is identified,
there must a commitment by when this will be attained, and should be kept as such.

Fig. 4.17 Sample of dashboard display items

82 4 Managing Operations

Lastly, we differentiated between lead and lag indicators. As lag indicators are
those which are the result of the lead, they give evident benefits to the organization
because they can be measured in ways that directly impact the service level: faster
by, reduced cost by, reduced manpower by, increased revenue by, improved cus-
tomer satisfaction, are some of the sample measures that can be used. As these,
however, are the result of several lead indicators, they are not directly controllable.
It is the lead indicators that are controllable, and usually, these are the ones being
reported by the line during the continuous improvement meetings. Figure 4.18
shows a sample report with initiatives.

Fig. 4.18 Sample report of
improvement plan showing
initiatives

4.8 Continual Service Improvement 83

If there is an initiative which merits a lengthy analysis and/or discussion, this can
be taken up in a separate meeting with the concerned parties, so as not to unnec-
essarily burden the whole group discussing details not relevant to them.

Continuous improvement guarantees that the organization dynamically adapts to
the changing environment scenario, including changing strategies and focus.

References

Axelos, 2011. ITIL Service Lifecycle Publication Suite. 2011: Axelos.
ISACA, 2015. http://www.isaca.org/COBIT/Pages/default.aspx. [Online].
ISO, 2011. IOS/IEC 20000-1 International Standard. Switzerland: ISO.
Microsoft Corporation, 2008. microsoft.com/technet/SolutionAccelerators. [Online].

Further Reading

Cavalleri, A., Manara M., 2012. 100 Things You Should Know About Authorizations in SAP. 1st
ed. Boston (MA): Galileo Press.

Burges, J., 1984. Dseign Assurance for Engineers and Managers. 1st ed.: CRC.
CompTIA, inc, 2013. CompTIA Network+. 1.1 ed. Rochester (NY): Logical Operations.
Hinde, D., 2012. PRINCE2 Study Guide. 1st ed. Wiley.
Knapp, D., 2010. The ITSM Process Design Guide: Developing, Reengineering, and Improving IT

Service Management. J. Ross Publishing, Inc.
Kunas, M., 2012. Implementing Service Quality based on ISO/IEC 20000. 3rd ed. IT Governance

Publishing.
Mora, M., Raisinghani M., O’Connor, R., Gomez, J.M., Gelman, O., 2014. An Extensive Review

of IT Service Design in Seven International ITSM Processes Frameworks: Part I. International
Journal of Information Technologies and Systems Approach, 7(2), pp. 83–107.

Brenner, M., Garschhammer, M., Sailer, M., Schaaf T., 2006. CMDB – Yet Another MIB? On
Reusing Management Model Concepts in ITIL Configuration Management. In: S. v. d. M., D.
O. T. P. Radu State, ed. Large Scale Management of Distributed Systems. Springer Berlin
Heidelberg, pp. 269–280.

Chemuturi, M., Cagley Jr, T.M., 2010. Mastering Software Project Management.: J. Ross
Publishing.

Pyzdek, T., 2003. Quality Engineering Handbook (Quality and Reliability). 2nd ed. CRC Press.
Schiesser, R., 2001. IT Systems Management: Designing, Implementing, and Managing

World-Class Infrastructures. 1st ed. Prentice Hall.
Thejendra B.S, 2014. Practical IT Service Management - A Concise Guide for Busy Executives.

2nd ed. IT Governance Publishing.
Rogers, T., Esposito, A., 2013. Ten Steps to ISM Success. IT Governance Publishing.
Watts, F., 2011. Engineering Documentation Control Handbook, Fourth Edition: Configuration

Management and Product Lifecycle Management. 4th ed. William Andrew.

84 4 Managing Operations

http://www.isaca.org/COBIT/Pages/default.aspx

5Managing Projects

5.1 Project Management Principles

Much of terminology used here is based on the PMP standard as described in the
Project Management Book of Knowledge (PMBOK) (Project Management Institute
2013). This terminology is widely accepted in the project management field, but as
it is generic across all industries, we elaborate on the specific project management
methods that are used in the IT field. All of this is based on a waterfall methodology
approach and discusses techniques that I used and refined after many years of
experience of working in this field.

5.1.1 Basic Principles and Characteristics of Projects

As already indicated in the introduction, projects have distinct properties as com-
pared to operations, perhaps the most important being that projects have a very
distinct start and finish, while operations are continuous in nature. As such, IT
projects have distinct phases which can be described:

• Mobilization
• Analysis and Design
• Build
• Post-implementation support (which may or may not be part of O&M)
• Closure
• Monitoring and Control

Although these phases typically overlap, they can be distinctly identified as the
tasks being undertaken are different for each phase. In general, these phases may be
represented by a graph as shown in Fig. 5.1.

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_5

85

Below we explain each of these phases:

• Mobilization—typically this consists of the preparation activities for the pro-
ject, and includes preparation and signing of contract, mobilization and readying
of the resources, procurement of necessary software and hardware, preparation
and on-boarding of team members, provisioning of resources, etc. This may also
include a more detailed analysis of the customer’s environment, needs, and may
be accompanied by some interviews so as to quickly refine the project plan and
some of the ambiguities in the scope of work.

• Analysis and Design—During this phase, a detailed analysis of the user
requirements is initiated with the objective of having a full and complete design
signed off by the users by the end of the phase. The idea here is that no
configuration or coding work should start until concurrence from the users is
received, in the form of the corresponding signed-off design documents.
Installation and setting up of the O/S, DBs, environments, and applications may
be part of this phase, however, only after the corresponding technical archi-
tecture document is also signed off by the users. Among the activities under-
taken in this phase are:

– Project kickoff presentation: in which a presentation is given to all those
involved in the project, from both the vendor and the client organization to
get concurrence and agreement. It usually contains the following:

Table of Organization: in which the roles and responsibilities are
defined including that of the vendor’s project team, involvement, and role
of identified counterparties from the customer organization (typically,
counterpart project manager, business experts, users, etc.), as well as their
concrete role in the project. This can be represented in a RACI
(Responsibility Assignment Matrix) chart, if appropriate.
Project plan: this should be a more refined version of the project timeline
and tasks that will be undertaken for the project based on interviews as

Fig. 5.1 Graph showing the
typical phases in an IT project

86 5 Managing Projects

well as more details obtained during the initiating phase, which allows
the project manager to have a clearer grasp of the scope, current situation
and environment in which the customer operates.
Project scope: even before the start of the project, the project scope
should be clear to both parties, otherwise this may cause misunder-
standings, costly change requests, and/or nonagreements which are
detrimental to the project timeline and cost, not to mention the rela-
tionship between the customer and the vendor. However, there will
always be gray areas which need to be further clarified, and the sooner
these are clarified and an agreement is struck, the better. Remember, the
later the change request comes in, the more costly overall to the project in
terms of time, cost, and quality. Thus, the kickoff presentation and all
related meetings should serve to tie down any loose ends that may
remain. If these cannot be totally cleared, they should be flagged as such
for further, early clarification and agreement.
Deliverables and acceptance criteria: same as with scope, this is the
right moment to make it completely clear (if not yet clear) to both parties
what are the exact deliverables and acceptance criteria for the project.
Communication plan: when, how, and who will be communicated what.
This is further explained in the communication management section of
this chapter. What is important is that this be discussed and accepted by
all parties at this early stage, including the end users. It may be hard to get
the end users’ presence and acceptance at any other time, so this is the
moment to do so.

– On-boarding session. This is a session conducted between the two Project
Managers (PMs), as well as the lead personnel from the vendor’s side. It
serves as a discussion of important points for the project and normally
includes the following:

Review of policies and guidelines. The project team is updated by the
customer PM on the customer’s guidelines, policies, and procedures to
which the project must adhere to. This would include release manage-
ment procedures, security guidelines, procedures for raising requests,
procedures for raising change requests, among others.
Deliverable checklist. The deliverables should have been indicated in the
Terms of Reference (TOR) at the time of tendering, however, every project
and every application are different, so that there also needs to be an
agreement on what deliverables are applicable for the project (more of this
discussed in 7.3). This will not only include documentation, but also
trainings, workshops, major sessions, and other “outputs” expected from
the project. A checklist is the final list of deliverables agreed by both parties.
Documentation format: Part of the discussion during agreement on the
deliverables checklist is the format of the documentation to be used.
Again, typically, the customer will have its own formats, but because

5.1 Project Management Principles 87

each application has its own intricacies, adoption of vendor’s format or
tweaking of existing documentation may be needed.
Authorized signatories. This should have been discussed with the users
during the kickoff; however now with the customer PM, the signatories
for each deliverable will be identified. This is because aside from the
users, there are documents which only IT needs to sign-off (such as
technical architecture, technical documentation, code documentation), so
it must be clear for each deliverable who and up to what level should
these be signed off.
Escalation procedure. This may have been touched briefly during the
kickoff, but will now be discussed in detail. It is important that the
procedure be clear from the very start so as to avoid dragging of the
issues affecting both time and cost.
Change Request (CR) procedure. Again, may have been touched
during the kickoff, but since IT is normally the party that has to shoulder
any additional costs, there should be a discussion on how CRs should be
raised and approved.

– Requirement gathering meetings. These meetings with the end users are for
the project team to gather the specific requirements from them and successively
define and refine the specifications until these are finally drafted in the form of
design documents. Design documents are then drafted and presented to the
users for their sign-off, signifying that the project team has been able to cor-
rectly capture their requirements. This is probably the most important part of
the project, as mistakes here result in loss of time and effort, so the documents
used specifically in this task are explained in more detail in Sect. 5.2.

– Design Sign-off: Needless to say, in order to proceed with execution, all of
the design documents need to be acknowledged by the different parties as
being final and binding. This works both ways, it is binding to the vendor in
his commitment in producing what has been signed off, and it also means
that any divergence from what has been signed off is a Change Request
(CR) regardless of whether it has a cost implication or not. It is both the
PMs’ duty to manage and control CRs so that they do not become a cause for
project creep which will cause further delays and possible cost overruns.

• Execution (Build)—in IT projects, execution can further be subdivided into
subphases, these typically are (using a waterfall project management
methodology):

– Build: Once the analysis and design documents have been signed off, the
build phase commences, this is where the configuration of the systems, and
programming (if any) is undertaken. This is the technical part, undertaken
mainly by the vendor that now translates functional requirements into
technical specifications which are to be put into the application. Here the
customer PM takes a more relaxed mode, and will just check from time to

88 5 Managing Projects

time the progress of the build phase versus schedule and inquire whether any
issues have been encountered.

– Testing. Testing is composed of many different types of testing as explained
in Sect. 5.5. In its most basic form, unit testing and integration testing are
first conducted by the vendor team to check everything is working correctly.
After this has been confirmed, then the end users are called for their vali-
dation, in the form of UAT (User Acceptance Test). Several UAT iterations
are usually needed (2–3 typically) before the application is threshed out of
errors and can proceed to go live.

• Go live: refers to the transfer of the application from the project environment
(development and testing) and into production so that the users can start
accessing and transacting with the system. This is the most critical in terms of
impact, user’s perception and acceptance of the application. Most critical here is
proper cutover, for which we have a whole chapter devoted to it, but here is a
brief description:

– Cutover: refers to the activities required before, sometimes during and
shortly after going live in order to guarantee a painless transition from legacy
to the new system. It includes technical and nontechnical aspects, and is
usually the most risky phase in a project. Examples of activities include data
migration, familiarity of the users with the new process, training, manner in
which old transactions in the old process will be moved to the new process
(if not automatic), etc.

• Post-implementation support: once the project goes live, there are typically a
large number of incidences, technical, functional, and user-related which need to
be addressed as soon as possible. During this phase, both the project team and
O&M need to be on standby furnishing first- and second-level support (who is
in charge of which support level is discussed further in Sect. 6.7). This phase is
one also commonly underestimated and requires careful planning and foresight.
Good testing always minimizes the need for more post-implementation support,
but it can never be eliminated.

• Monitoring and Control: this occurs during the whole duration of the project,
principally the project managers (customer and vendor side), to ensure that the
project is within scope, time, cost, and quality. This again requires extensive
discussion, so that we have devoted an entire section to it.

• Closure: signifying formal project end. Formal closure is done after all reported
project incidences detected under the warranty period have been resolved, all
deliverables submitted and accepted, as well as training and documentation
submitted.

Effort exerted by the customer side differs considerably from that of the vendor;
if we were to represent the effort from both sides in a chart it would look like that
shown in Fig. 5.2.

5.1 Project Management Principles 89

http://dx.doi.org/10.1007/978-3-319-38891-5_6

What this graph shows is the typical involvement in terms of resources. As is
apparent, vendor resources peak and plateau during the build phase, as all the work
defined during the analysis and design are to be implemented. On the other hand,
customer resources have two distinct peaks: one during the analysis and design
phase, the other right before going live during the cutover phase. The first is due to
the deep involvement from the customer side, typically end users and business
experts, in defining clearly the detailed design of the system that will be built.
During cutover, the typically heavy involvement from the end users is testing
(which should be done by them), and in some instances, additional cutover activ-
ities (please see relevant section in this chapter) that are needed for a successful go
live. Examples of the latter are data preparation, recreation of live data in the new
system from the legacy system, etc.

Projects have distinct characteristics if compared to operations as shown in
Table 5.1.

One of the distinct ironies in projects is that they evolve from a less to more
defined state in terms of scope definition, while at the same time, the ability for the

Fig. 5.2 Graph showing
resource allocation per phase
of a typical IT project

Table 5.1 Projects versus Operations

Projects Operations

• Creates its own charter, organization, and
goals

• Semipermanent charter, organization, and
goals

• Purpose of change • Purpose of status quo

• Unique product or service • Predefined and approved product or service

• Heterogeneous team • Homogeneous teams

• Definite start–definite end • Ongoing (continuous)

• Progressively elaborated process
deliverables

• Fully known process deliverables

90 5 Managing Projects

project manager to direct the course of the project (and thus, its success) goes from
high at the start of the project, to low toward the end, as the project takes its own
course. This means that the project manager’s ability to direct the project is in fact
highest when his knowledge of the project’s scope is lowest!

Uncertainty (and therefore risk) is also high at the start of the project, and tends
to decrease as the project progresses due to proper monitoring and control. If
properly managed, risk decreases with time, while the cost of any change increases
dramatically as the project progresses. Changes are more costly as the project
approaches the go live, as any change means additional scope which needs to be
reanalyzed, built, and tested, and may have a high impact on the other project
components.

One common mistake made by organizations in their IT structure is to mix
resources from operations to handle projects. Though in principle it would seem to
be logical (make a person handling the operations of a particular application handle
projects which have a direct relevance to that of the application she is handling), it
is in fact one common reason why projects are dysfunctional. Project management
is a distinct methodology from operations management, and as such, a special team
should be trained to become acquainted with them and have the discipline in
applying and executing these. If IT personnel are to handle both, then there will be
confusion as to what to prioritize, and even what methodology should be followed.
Is the ticket an operations ticket? Request for a project? If there is a conflict, which
should be prioritized? How do I assign my personnel? Who should handle the
operations incidence tickets and who to work on the long-term fix that the project
addresses? It is just but to be expected that urgency (short term) will always be
prioritized over long term, and that usually means that incidence tickets will absorb
the team’s time, to the detriment of the project.

In the next sections, we take a look at all the different important dimensions and
aspects in IT project management, many of these dimensions were patterned after
the terminology used in PMP (Project Management Institute 2013), which is a very
good standard for project management, though in this chapter we focus to project
management dimensions which are specific to IT Projects and how these need to be
handled (unlike in PMP which is generic for all fields).

5.1.2 Scope Management

Perhaps one of the most important features of IT projects is that the scope is not
100 % clear during the project start. This is especially more true for IT software
projects because they in fact have a lot of intangibles (software process is in itself,
an intangible). This means that scope is in fact successively defined during the
progress of the project. This poses some distinct dangers and risks, first and fore-
most, since scope is not completely clear during the project start, it may lead to
assumptions which may not be true or acceptable to the customer, there may be a
mismatch between what the software can actually do and what the customer desires,
and further down the project implementation, this ambiguity in the scope may lead

5.1 Project Management Principles 91

to a protracted argument and discussion as to whether a particular scope is part or
not of the project in the first place.

As a general rule, the more detailed the scope at the start of the project, the
better. Incomplete, incorrect scope is perhaps the single biggest cause for project
failure, as there is no alignment between vendor, customer, business users and
sometimes top management, in terms of what should actually be the outcome of the
project. In order to address this, several techniques can be used:

• Have a clear-cut understanding of what the project is to deliver. Needless to
say, this takes time to develop, as it may need the vendor’s IT organization to
interview the business users as to what they need. Many times, the business
users have a hazy idea of what they want, so it requires a major effort to translate
these into writable specifications that can be attached to the terms of reference.
Ideally, the requirements shall appear in a clear, objective, written list of
requirements which vendors shall have to answer comply/noncomply, and
which shall be contractually binding.

• Research and vendor presentations. As stated above, requirements gathering
is an iterative process. It thus requires a lot of work before the actual tendering
takes place. Research via Internet, reviews, and publications from research
companies, as well as vendor presentations to both IT and the business orga-
nization are of great help in further developing these specifications.

• Gap analysis. Helps in defining current state versus to-be state as desired by the
business organization. Gap analyses may be conducted in-house or contracted to
a specialist consulting company.

• Contracting of design specifications. With this approach, the analysis and
design phase is contracted separately from the main “build” part of the project.
This has its advantages and also disadvantages, and may not always be appli-
cable. Advantages are:

– No ambiguity. As the detailed design specifications shall be the main output,
the build phase need only to comply with a very detailed scope of work.

– Cost. Once the detailed design is out, this may be used in tendering the build
phase separately. As less assumptions are to be made, and less risk (which
means less cost buffers) are to be covered for by the bidders, this should
typically result in a more competitive price.

Disadvantages however include:

– Disconnect with the software. If the analysis and design has been contracted
out without specifying the software that will eventually be used in implementing
the project, there is a major risk that the design becomes too theoretical, and
may not be supported by the software.

– Capabilities of the consulting firm. As analysis and design without actual
implementation carries little risk from the vendor’s viewpoint (unless of course
the customer organization already has a deep understanding of the processes

92 5 Managing Projects

being designed, as well as the software product being implemented), the vendor
may not put its best resources in this endeavor, may not exert all the necessary
effort, or may not even have the necessary skills to actually conduct the work on
hand. There is very little risk of exposure because their contract would end
before actual realization of the project, so there is no good way of checking if
their design is accurate and of quality.

– Involvement during the build phase. As stated earlier, if the consulting firm
involved in the design is not involved in the actual build, the customer actually
may be getting a very poor design. One way to overcome this is to let the
organization that designed it bid and participate as well during the build phase.
This may or may not be acceptable, depending on the procurement policy of the
customer organization. If allowed, it also follows that the vendor that formulated
the design is in fact in the best position to conduct the build phase, as they have
the most complete information on the situation of the customer, need to make
less assumptions, and would already have a very clear idea as to how much
effort the build phase would entail. Again, this may or may not be acceptable to
the customer organization.

As mentioned during the introduction, as a project progresses:

• Uncertainties decrease
• Scope certainty increases
• Cost of any change increases
• Stakeholder influence decrease

In summary, the dilemma may be summarized as “As the project progresses,
scope becomes clearer and there are less uncertainties, but the ability to influence its
direction decreases, and any wanted change in the project increases dramatically in
overall cost.” As the ability to influence and direct the project is greater during the
beginning of the project, and it is also during this time that risks are highest and cost
in changes in scope are lowest, it is best to devote the most time to properly define
scope at the beginning of the project. This may seem obvious but is shortcut many
times in the interest of expediting the project, which actually produces the opposite
effect. Any man-day (and $) invested in the beginning of the project ultimately
means savings in man-days and costs further down the project timeline.

During the analysis and design phases, previously agreed-upon design docu-
ments should be used to capture these. Discussion on analysis and design docu-
mentation is discussed further in Sect. 5.2.

During the course of the project, milestones which properly narrow down and
detail the scope should be signed off before the next related task is initiated. This is
especially true for analysis documents that lead to design, and design documents
which lead to build tasks, test design documents before user acceptance testing, and so
forth. It is a waste of time to progress to the next dependent tasks if acceptance has not
taken place for the documents which specify HOW these tasks are to be undertaken.

5.1 Project Management Principles 93

Risks to project scope are many and varied, and they may come from many
different sources. Some common ones include:

• End user changing his/her mind
• A senior executive having different ideas on what should be done
• Project creep—in which small incremental changes are accepted due to the

small nature of the change, however, due to the many small changes, these add
up to become a significant change

• Person approving is not the right person to approve (or does not understand the
actual needs)—a key user which may be approving design documents and
deliverables turns out to be the incorrect person due to many possible factors
including his role being wrongly assumed by the customer’s PM, inability to
understand what is being discussed, or even having no credibility with the rest
of the users (even though he/she may possess the formal title)

• Unruly behavior by the end users—includes nonstandardization of processes,
such that obtaining approval to standardize design and process across the
business organization becomes difficult or is iteratively changed by the users.

• Supplier starts development work without getting a sign-off from the users.

From the above list, it is clear that the only person capable of identifying
and managing these risks and the overall scope is in fact the project manager,
highlighting once more his important role.

Take an example of an executive changing his mind causing the project to
delay. During the discussion on the procurement process to be implemented in
an ERP, it was decided that Purchase Requests (PR) once created by the dif-
ferent authorized division heads, would immediately proceed to procurement for
processing and eventual release of the Purchase Order, this was presented and
agreed at in the steering committee meetings. At a later phase however and well
into the development stage, a key executive in the organization decided that an
additional approval was needed even at the PR level before proceeding to
procurement, so that the development had to be redone and retested altogether.

5.1.3 Procurement Management and Contracting

The procurement and contracting of IT projects is quite different from that of other
goods and services for the same reason as that of scope management: IT almost
always deals with intangibles, and even when there are tangible assets involved, the
intangible component (firmware, software, configurations) is just as important as
the main asset itself.

What this really means in practical terms is that there must be a considerable
effort to define and pin down requirements before tendering. Failure to do so will

94 5 Managing Projects

result in gray areas open to interpretation from both the customer and the con-
tractor’s side. The most important document here being the Terms of Reference
(TOR) which is the main document used in requesting for proposals from the
vendor, regardless if the tendering procedure is an open bid, price quotation only, or
any other form. The TOR must be written in clear and concise wording, specifying
what is required from the vendor, and asking that they comply with them, or if
unable to comply, to indicate the approach they will take in addressing the
requirement.

An example of a TOR is presented in Appendix A: Sample Terms of Reference
(TOR). The best TORs are those in which the vendor is to answer “yes” or “no” in
terms of their ability to comply with the requirement, leaving no room for ambi-
guity. As such, aside from the main TOR body which explains the requirements and
explains the background of the project, it is recommended that it can be accom-
panied with a tabular list of requirements, a sample of which is also shown in
Appendix A: Sample Terms of Reference (TOR). This list shall generally contain
the following main sections:

• Functional specifications: which describe the functions the solution provided
by the vendor must adhere to. This shall be answered by the vendor with a
simple “yes,” “no,” or “work-around provided” to the table which asks whether
they comply or not to the requirement. Under remarks, they are to fill this up
with details on how they address the requirement, and if addressed by a
work-around, how the work-around will address it. Optionally, the customer
may opt to indicate in a column the importance of the requirement with a
Mandatory/Optional indication or if one wishes, High/Medium/Low
categorization.

• Technical specifications: describing the technical requirements for the solution.
This would usually include technical specifications for standard software and
hardware currently being used by the customer, which you would like that the
vendor adhere to, typically:

– O/S and its version
– DB and its version
– Preferred programming language
– Virtualization software and version
– Servers
– Use of LDAP or Active Directory
– Network Switch brands and acceptable models
– Required environments (DEV, QA, PROD) and their recommended server

sizes (RAM, CPUs, disk)
– Warranty period required for the hardware
– Software license support period required for the software
Filling up of the technical requirements shall be the same as that of the func-
tional requirements.

5.1 Project Management Principles 95

• Other requirements: usually pertaining to particular training, testing, or other
aspects the vendor should take into account.

• Curriculum vitae: one commonly forgotten aspect is that services are the make
or break for a successful project, the hardware and software components being
only half the story. Thus, one may require a minimum compliance on the
resources being assigned to the project, or if left open, vendor should include the
CVs of key personnel with enough details for the customer to evaluate their
adequacy.

It is also worth noting how different IT items affect tendering:

• Procurement of commodity items: includes laptops, PCs, printers, servers,
memory, Microsoft licenses, etc. In this case the TOR indicates the desired
specifications and the vendor replies whether he can comply. Award goes to the
lowest complying bidder.

• Tendering for a new hardware or application project: in this case, the
specifications for the required hardware and software are indicated in the TOR,
however, due to the nature of the project, this is not just equipment delivery, as
these components require a significant services component in order to be set up
for the hardware and/or software to deliver the desired functionalities, working
condition. In such cases, both the product and the services should be evaluated
for compliance.

• Consulting services tender: in this scenario either the software application
licenses have already been procured, are procured in a separate tender, or are not
necessary. Desired here from the vendor are just pure services to implement a
particular configuration or provide advisory services. In this case, the customer
specifies exactly what he wants and the vendors must comply with the scope.
Only CVs, methodology, and references are then evaluated in this scenario. The
vendor may have a chance to propose an alternative approach to the vendor, but
it is at the customer’s discretion to accept such an alternative.

As mentioned before, good TORs take time and effort to build, and oftentimes
the customer may not be fully aware of what is in the market, nor what exactly the
end users want. Similarly, the end users may not really know how current tech-
nology can address some of their needs and they look up to IT for guidance. One
way to build an effective TOR is by means of a Request For Information (RFI), as
well as through research as shown in Fig. 5.3.

In the above flowchart, a Request for Information is used to get nonbinding
proposals from vendors given some very generic requirements. This can be fol-
lowed up by presentations from these vendors. Other sources of information are the
Internet, research, analyst reviews, as well as by means of attending seminars,
workshops, and presentations on the topic. Of course, essential to all of this are the
end user requirements, which need to be captured by IT and put into a document.
An RFI may help the users if followed up by presentations from the vendors in

96 5 Managing Projects

which the users are part of the audience. This gives them insight and ideas on
possible functionalities and approaches to their desired goal.

If the requirements can be interpreted directly by IT from the users and com-
plemented by research, then the RFI may be omitted to save time and the TOR
drafted directly. The TOR may then be validated with the users for concurrence
before tendering.

Once tendered (Request for Proposal: RFP), the vendors are given a chance to
submit their technical and commercial proposal, by answering to the TOR
requirements. It is typical for vendors to stretch the truth in answering to the TOR
requirements and be tempted to answer “comply” to all. In order to avoid this
situation, a best practice is to make this proposal and answers to the TOR con-
tractually binding, by including them as part of the contract. Nonadherence to their
proposal can then be cause for cancelation of the contract, as well as application of
penalties.

Evaluation of proposals can take many different forms, depending on the pro-
curement policy of the company; however, one commonality is that any vendor
considered for award must pass at least the minimum technical requirements
specified in the TOR before any commercial consideration. Commercial terms must

Fig. 5.3 Typical tendering process

5.1 Project Management Principles 97

never be discussed by IT without procurement’s presence, and it is always the last
aspect to be discussed with any vendor.

First and foremost, IT has to select the vendors that meet the technical criteria,
and to do this, it will usually seek clarification from the vendors or ask for pre-
sentations from them. Two approaches exist:

• Start from the lowest priced bidder. Ask for clarifications and presentations to
ensure that his proposal meets the technical specifications and all aspects are
clear and covered. If he results to a complying bid, then proceed with negoti-
ations (with procurement) leading to award.

• Shortlist all those technically complying bidders. Request for clarifications
from all bidders to ensure that they really do meet the specifications before they
are shortlisted. Once shortlisted, open the commercial proposal and start
negotiations with the lowest complying bidder.

In both cases above, if there is no agreement during negotiations, be that due to
some technical aspect which they do not want to agree to, the terms and conditions
of the contract, or due to commercial reasons, then one must then proceed with the
next lowest complying bidder, and so forth, until award is attained.

The advantage of the first method is that it is much faster; you only ask for
clarifications from the lowest priced bidder and move up. Its disadvantage is that
there is always some room for favoritism from IT personnel, as they can already
clearly see the pricing. It is however recommended for complex projects where lots
of clarifications are essential before award due to the nature and complexity of the
project.

Negotiations should always be led by procurement; IT will then support it with
technical information and validation in the negotiations, in order to make these
much more effective. As an example, supposing that a certain level of discount is
being pressed for by procurement, and upon inspection, IT saw that the vendor was
proposing 24 × 7 warranty support for the whole project when only 8 × 5 support
is in fact necessary, the customer then used this fact to seek further price reduction
by having the vendor commit to a much less stricter support framework. Such
discounts would have not been detected if procurement acted alone without IT’s
involvement.

It must again be emphasized that commercial (price) negotiations should always
be left for last, it is important to be totally satisfied with the technical proposal being
offered before talking of price or any discounts. If during the course of clarifications
IT detects points which may be used as a leverage for price negotiations (such as in
the example above), then these are noted and then brought out during the price
negotiations, but not before.

Concurrence and agreement during price negotiations lead to the award. It is
important that all points raised during the presentations and technical clarification
meetings are not be forgotten. As such, these minutes of meeting should also be
binding and made part of the contract, and should supersede the vendor’s original

98 5 Managing Projects

proposal in case of conflict. With these, the vendor cannot escape with empty
promises in which he fails to deliver later on.

Lastly, it is important to note when to use a standard Purchase Order (PO) and
when to use a full contract in awarding to a vendor. Purchase Orders are contrac-
tually binding documents which place an order to a vendor. They carry a standard,
albeit simple set of Terms and Conditions, usually the expected time of delivery of
the goods, payment terms, general corporate quality guidelines, and the like. They
are appropriate for the procurement of equipment and software which require
minimal services component, as the delivery of the goods in good state are enough
for payment to be released. For projects which have a significant service component,
the terms and conditions of a contract are very important, and thus, these would
always require a contract to be signed by both counterparties (and not just a PO).

Two general types of services and project contract exist:

• Turnkey projects. In which the total project is of a fixed amount and vendor
gets paid a % of the total whenever a specific milestone is attained; and

• Time and Material (T&M) contracts. In which the vendor proposes hourly or
daily rates for different types of resources to be assigned to the client, and gets
paid according to the number of days work they perform for the client. Addi-
tional expenses may also be reimbursed from the client such as airfares, hotel,
taxis, per diem, etc.

As is apparent, T&M contracts are much more risky for the client than turnkey,
so that turnkey projects should be preferred by the client. Of course, turnkey
projects necessitate a very detailed level of scope so that vendors can cost their
proposals effectively. T&M contracts are appropriate only when:

• The scope is too difficult or impossible to define exactly. Take for example a
problematic system which produces downtime, the customer has no clue
whatsoever as to what is the underlying problem and decides to hire an external
expert organization to help it troubleshoot, it is therefore impossible to know
beforehand if the work entails a few days or several weeks.

• Consulting projects in which it is difficult to know beforehand how much work
will actually be devoted to the endeavor.

• Support contracts which will be based on the actual number of work hours
or days utilized. It may be that actual support days may be zero or little, so it is
also in the customer’s interest to use a T&M contract.

Of course, in order for the billing not to bloat without limit, it may be wise to
place a cap on the amount approved for the T&M and/or place checks and balances
such that any work that is to be performed by the vendor must be estimated in
man-days and preapproved by the customer PM before proceeding.

5.1 Project Management Principles 99

Sometimes in the desire to limit risk, the opposite is sometimes achieved.
Take as an example a particular government-owned corporation wherein all
major projects would have to be tendered and the lowest priced complying
bidder awarded, including that for consulting services. In this particular case,
this organization was to implement its first ERP system, and following
government procurement rules, required that the consulting for the design of
the ERP would come first before the procurement and setup of the ERP itself.
This meant that the consulting design would have to be made generic, without
actually knowing what product would actually be implemented. The award
and work proceeded for the consulting work, was finished and became the
blueprint specifications for the ERP. The result was disastrous as the design
did not take into account particularities of the ERP application itself, so much
so that certain designs were not implementable off-the-shelf and required
extensive customization, and led to a protracted fight between the customer
and implementer as to the manner in proceeding with the implementation.

5.1.4 Time Management

Project time management can be undertaken in many ways, however, due to the
availability of many project management software, these can now be used, making it
much more effortless than doing this with excel sheets or the like. These softwares
allow interdependencies between tasks to be defined, and adjust automatically in
accordance with precedence and interrelationship rules, which would otherwise need
to be handled manually. A very useful technique for drawing project dependencies is
the use of the Precedence Diagramming Method (PDM) (Fondahl 1987), which can
be entered into these softwares, or reproduced from a Gantt chart, which is usually
easier to enter. Many of the other measures we will discuss in the succeeding
sections can also be automatically handled and calculated by PM software. It is
however very useful to have at least a basic understanding of the theory behind the
use of PDMs, so we shall be discussing this thoroughly in this section.

A PDM is a graphical representation of project tasks wherein:

• Activities are represented by a Node in the form of a RECTANGLE
• Dependency is represented by an ARROW

In the example shown in Fig. 5.4, tasks A to H are represented by their corre-
sponding nodes.

As is evidenced by the arrows, task H is dependent on task G finishing first,
which in turn depends on both tasks D and F finishing. While task D depends on
task B finishing, and task F depends on task C. Both tasks B and C depend on task
A. By means of this diagram, one can easily appreciate dependencies between tasks.

100 5 Managing Projects

In order to appreciate the power of PDM further, we first need to understand
some more concepts. First, we can represent inside each node the amount of time it
takes for that particular task to be executed. This shall be represented by a number
in the duration side of the node’s box (upper middle portion) as shown in Fig. 5.5.

The duration is expressed in number of standard time units, in accordance with
that used for the project (hours, days, weeks…). The other numbers will be
explained in a short while.

In some cases, though a task is dependent on a previous one, it may not be
necessary for the previous task to finish completely before starting the new task, as
it may in fact start a bit earlier. Or it may be the opposite; a previous task needs a
certain “rest” period before the next dependent task is started. In order to account
for such cases, a number is added on top of the arrow with a (-) minus sign if it is a
lead precedence, meaning, it can start early by the number of units expressed above
the arrow, or if a (+) positive sign is used, then it is a lag precedence, which means
the dependent task can only start after the previous task has ended, plus an addi-
tional such time units. Take Fig. 5.6 as an example, in the diagram task D can start
2 time units even before task C has ended, while for task F, it must wait 2 time units
after task E has ended before starting.

Let us now take an example and build the PDM, given the tasks and precedence
defined in Table 5.2.

The resulting PDM would look like that of Fig. 5.7.
We now conduct a series of calculations:

• Forward Pass—Starting at the beginning (left) of the network develop early
start and early finish dates for each task, progressing to end (rightmost box) of
the network.

Fig. 5.4 PDM diagram

Fig. 5.5 Components of a
node in a PDM

5.1 Project Management Principles 101

• Early Start Date (upper left number)—Earliest possible point in time an
activity can start, based on the network logic and any scheduled constraint. In
other words, for each activity, determine if it has a predecessor, if none, the early
start date is 0. If it has a predecessor, then get the preceding activity’s early
finish and add the lag/lead that is in the path, to determine the early start date. If
the activity has several predecessors, then do the calculation for each path, the
early start date then will be the greater (latest) among all those calculated along
different paths (as all preceding activities must finish before it can start).

Table 5.2 Sample activities
with their duration and
preceding activity

Activity Duration (days) Precedent activities

A 2 –

B 1 A

C 2 –

D 2 B, C

E 3 D with 2 days lag

F 4 D

G 3 E

H 2 F

I 1 H, G with 2 days lead

Fig. 5.7 Resulting PDM from the example in Table 5.2

Lead indicates subsequent activity can be started early

Lag indicates subsequent activity should be started late

Fig. 5.6 Lead and Lag
delays between activities

102 5 Managing Projects

• Early Finish (upper right number)—Earliest possible time an activity can finish,
which is calculated by adding the early start date to the duration of the activity.

For the sample example, and applying the forward pass then Fig. 5.8 will result.
A similar calculation is then made but in the opposite direction, starting from the

rightmost activity toward the left, this is called the backward pass:

• Backward Pass: Calculate late start and late finish dates starting at project
completion, using finish times and working backwards.

• Late Finish (Lower Right number): Latest point in time a task may be
completed without delaying that activity’s successor. In this case, and starting
from the rightmost node, we annotate the late finish in the lower right-hand side
of the activity node. If the activity has no succeeding one, then its late finish is
equal to its early finish. If it does have a succeeding activity, then its late finish
will be equal to the succeeding activity’s late start plus the lag/lead delay in the
path. Take note that this time the sign of the lead/lag is inverted with respect to
the forward pass’ calculation, such that if there is a lag delay (+ in sign), we
subtract to obtain the late finish, but if the relationship between activities has a
lead delay (− in sign), then we add to the late start of the succeeding activity to
obtain the late finish. Once more, if there are several activities that are suc-
ceeding it, we then calculate the possible late finish using all different paths, but
select that which is smallest (earliest).

• Late Start Date (lower left number): refers to the latest point in time that an
activity may begin without delaying that activity’s successor. This is calculated
by subtracting within an activity, the activity’s duration from its late finish.

If we apply the backward pass to our example, this results in that of Fig. 5.9.
Lastly, we can calculate the float (Martino 1968) (lower middle number) by:

Float = Late Start − Early Start

For each activity, and annotating these where there are X’s in the boxes above.
The resulting diagram is then shown in Fig. 5.10.

Float gives a lot of interesting information about the project activities. First, it is
defined as the amount of time a task may be delayed from its earliest start date
without delaying the project finish date. Any activity which has a nonzero float has

Fig. 5.8 PDM with forward pass applied

5.1 Project Management Principles 103

a certain “slack,” which may be used in the project as will be discussed later on. In
the example above, only task C has a nonzero float, of 1 week. This means that
instead of starting task C on week 0, we may actually opt to delay it for a week and
start on week 1, and it will still not cause any delay on the overall project timeline.
How can this be used for practical purposes? Well, if for example, task C demands
the use of a resource which cannot be easily obtained from the very start of the
project, his involvement can be delayed by 1 week without causing any negative
impact. Many other possibilities can be evaluated for different project situations and
resource situations. In cases where slack is significant and there is a commonality of
resources, resources that are in activities with slack can be assigned to do other
activities first instead of those with slack, as a delay in these activities need not
affect the overall project timeline.

This brings us to the concept of critical path (Weaver 2014). Critical path are
those activities which when delayed, will cause a delay to the whole project
timeline. Activities in the critical path are those with 0 float, and so, these are the
activities which should be given more attention by the PM due to their (pardon the
redundancy) criticality. To define it formally:

Critical path is the successive list of activities (path) which affect the overall finish date of
the project if any of those activities delay.

In our PDM earlier, the critical paths are both A-B-D-E-G-I and A-B-D-F-H-I.
From the point of view of risk management, it makes more sense usually to devote
resources to critical path activities (vs. other activities), as these will have more
impact overall.

Fig. 5.9 PDM example with backward pass applied

Fig. 5.10 PDM example with float calculated

104 5 Managing Projects

Some other important terminology to take into account is:

• Duration: Number of work periods, excluding holidays or other nonworking
periods, required to complete the activity, expressed as workdays or workweeks

• Elapsed time: Number of work periods, including holidays or nonworking
periods required to complete the activity, expressed as workdays or workweeks

Again, one of the big advantages of using a software project management tool is
that Early Start, Early Finish, Late Start, Late Finish, slack and even the critical path
are all automatically determined. This automates the mechanical and redundant work,
and let the PM concentrate on more analytical tasks. Furthermore, any changes in the
project baseline will automatically adjust all activities and calculations.

There are many more functionalities in these Project Management tools which
are of great use to the PM, however, we shall restrict ourselves to the basics, and let
each reader explore these by herself.

5.1.5 Time-Cost-Quality Management

For a defined project scope, there are three dimensions that are at the PM’s disposal
as shown in Fig. 5.11.

What this means is that for any defined scope, there is a fixed time-quality-cost
relationship which cannot be broken given a fixed amount of assets and resources.
The PM may increase or decrease any of these dimensions, but if the scope is to
remain constant, this will in turn affect at least one, maybe two of the other
dimensions.

If delivery time for the project is to be reduced, for example, then either the
quality suffers as a consequence of maintaining the same cost, or more cost (re-
sources usually) are to be added in order for quality not to suffer. The same is true
for quality, if it is to be increased, then either the time to deliver is extended or more
cost is to be put into the project. Of all three, time is usually the most inflexible and
hardest to control. Putting in more time into the project usually also affects cost, due
to the prolongation of resources’ stay into the project and may not necessarily result
in an increase in quality.

Quality

CostTime

Scope

Fig. 5.11 Scope and the
time, quality and cost
dimensions

5.1 Project Management Principles 105

All three dimensions however, should be monitored and controlled by the PM,
as otherwise these may get out of control, or worse, fail the project.

5.1.6 Monitoring and Control

It is often said that the Project Manager is the person in the project that does
nothing, and yet, if there was a single person most influential to the outcome and
success of the project, it is the PM. This seems ironic, and yet it is true. The PM
“does nothing” in the sense that he/she does not actually execute any of the concrete
tasks defined in the project plan, these are all specialized team members that
undertake them. The role of the project manager is to coordinate, make sure the
tasks as being undertaken correctly, resolve if there are issues, monitor using the
appropriate tools, and control the scope, quality, time, resources, and cost assigned
to the project. To some extent, he also has the ability to propose, design, and utilize
the appropriate tools needed for proper monitoring and control of the project.

It is essential that proper tools be used for the monitoring and control of the
project. The proper use of these tools will lessen the dependency on the project on
individual initiatives and personality of the project manager, and instead leverage
on best practices. Poor tools and governance result in poor results. These tools are
also not static, but should be improved iteratively as more projects are handled,
more experience gathered, and more knowledge acquired. Usually, this is the
responsibility of the Portfolio Manager that conducts review and improvements on
project governance, together with his project managers (see Chap. 9).

In concept, the principles of IT project monitoring and control are simple, they
are to monitor the most fundamental dimensions of a project:

• Cost
• Resources—these also have an impact on cost
• Time
• Scope—to ensure adherence
• Quality

Of all, the most difficult to measure is quality due to its intangible nature,
followed by scope, all others can be quantified. Quality and scope are the usual
points of dispute between the customer and the vendor, and the biggest reason why
a project is not accepted and delayed, affecting in turn the other project dimensions.

Let us discuss each dimension separately, starting with scope. As discussed
earlier in scope management, scope is usually the single biggest source of project
failure. It is also a common point of contention, and is very much related to quality.
Scope is a joint responsibility from parties, customer, and vendor, as a poor scope
definition during the project tender is very hard to resolve once the project has
started, and as a change in scope has a direct effect on the other dimensions, and
most especially, cost, which is the biggest concern for the vendor. There is always a
trade-off in the amount of detail that the scope should carry during the tendering

106 5 Managing Projects

http://dx.doi.org/10.1007/978-3-319-38891-5_9

process. Too much, and it will take time to prepare the tender; Too little, and it
leaves room for ambiguity and discord. In any case, from a project manager’s point
of view, the more detail, the better. For the Project Manager (PM), the ideal scope is
that which can be enumerated in the form of a table and checked for during the
monitoring and control process. This leaves little room for ambiguity.

Milestones defined throughout the project lifecycle are a tool for the PM to
check the effective status and progress of a project. Concretely, they show how the
project scope has progressed up to that point in time. It is recommended to have
deliverable milestones defined throughout the project timeline, and not only mile-
stones which flag payment. Milestones are the “yes/no” signal on whether the
project has progressed to that point, and in order for them to be effective, some
guidelines need to be followed. Milestones should be

• Nonambiguous: Project progress needs to be objective, in order for it to be so, a
milestone must signal completion/noncompletion. Avoid partially completed
milestones as it again, makes it open to interpretation. Good examples of
milestones are

– Deliverable of XXX document
– Acceptance of XXX document
– Installation of software
– Acceptance of blueprint design
– Completion of training
– Completion of workshop
– Submission of first wave draft reports

• Easily checked by both parties. Again, this is to minimize misinterpretations,
ambiguity, and “sugar coating.”

• Spread out throughout the project. So that the PMs can effectively monitor the
project, if there is a lag of several months between milestones, monitoring
between those months is a guess at best.

• Practical. The best milestones are those that are actually needed for the project as
part of its deliverables, and not made just for the purpose of monitoring and
control, as it may be a considerable effort just to prepare that milestone deliverable.

Time utilized for the project is of course monitored by annotating the current
time, and where the project is at now. This gives you the % completion of the
project. Unfortunately, this measure when used by itself has several flaws. For one,
if not used in conjunction with proper milestones, it gives you an untrue picture of
where the project is really at. How many of us have encountered projects that seem
to be on time, and reported as so, only to find that the last 10 % of the project takes
double the time as the rest of the project. Not only is this a ruinous project, but the
PM may have no clue on why this has actually happened. Take another example in
which the “build” part of the project (which is also the hardest to monitor) reports
progressive achievements, and yet fails miserably during the testing portion of the

5.1 Project Management Principles 107

project. This of course is related to the quality of the monitoring, which we will
discuss later, but it also shows the importance of building in nonambiguous
milestones throughout the project lifecycle.

The second big reason on why % completeness is a bad measure is that it tells
you nothing on how advanced or delayed the project is with respect to the baseline.
The project may be 50 % complete to date, but it should actually have been 70 %
complete by this time, and that is not captured by this indicator alone. If the project
is run on a time and materials basis (and not turnkey) then the cost overruns
(savings) versus the cost baseline is also not apparent. It is for this reason that two
complementary indicators taken from Earned Value standards (Devaux 2014) may
also be used, at the very least:

• SPI (Scheduled Performance Index) which gives you an indication of how the
project is faring in terms of time versus baseline project time duration; and

• CPI (Cost Performance Index) which gives you a similar measure but in terms of
cost.

In order for these indicators to be well understood, however, some basic theory
needs to be explained first, including the concept of Earned Value.

Earned Value (Stamatis 1997; US Department of Energy 2008) refers to the
value of the work done up to a particular moment in time. This is different from
cost. Earned Value reflects how the customer values that amount of work in terms
of its value to him as an intangible, and not how much it has actually cost him in
terms of paying the vendor for it, which is totally different. Take for example, a
construction project in which a 4-storey building is to be constructed for a total
amount of US$40million, or to simplify the example, a fully proportional, US
$10million per floor, to be built in 8 months, or 2 months per floor as per project
plan (baseline). Suppose also (even if not a very good project management prac-
tice!) that the building is being built using time and materials costing, as invoiced
regularly by the vendor. From the point of view of the customer, the number of
floors actually finished reflects the value of the project to him, which is different
from how much he has actually paid the vendor so far. Thus, take into account the
following example:

Four months into the project, you have paid the vendor US$30million but
only 1 floor has been completed by the contractor.

The Actual Cost (AC) of the project is thus US$30million, corresponding
to what was paid, however, the Earned Value (EV) of the project is only US
$10million. The planned value (PV) at month 4 is actually US$20million,
meaning, by this time, two floors should have been completed worth US
$10million each. The project not only has cost overruns, it is also way behind
schedule!

108 5 Managing Projects

Let us now define formally:

Earned
Value (EV)

= The sum of the approved cost estimates for the physical work that
was actually accomplished on the project and the authorized budget
for activities or portions of activities that have been completed. This
is also called Budgeted Cost of Work Performed (BCWP)

Planned
Value (PV)

= is the physical work that was scheduled or planned to be
performed and the authorized budget to accomplish this scheduled
work. This is also called Budgeted Cost of Work Scheduled
(BCWS)

Actual
Cost (AC)

= the total cost actually incurred in accomplishing the work that was
completed

We can now define appropriate indicators based on the above:

Schedule Variance = EV − PV. Is a Measure of schedule performance on a
project, it indicates project schedule status versus baseline schedule;

Cost Variance = EV − AC. This is a measure of cost performance on a project.
It indicates the relationship of physical performance to the costs spent; and

Cost Performance Index (CPI) = EV/AC (%). Is a measure of the value of
work completed compared to the actual cost vs. progress made on the project so far.

Schedule Performance Index (SPI) = EV/PV (%). This is a measure of pro-
gress achieved compared to progress planned on a project.

For CPI, if it is <1 then the project is having cost overruns, if =1 it is mark-on to
budget, and if >1 then it is running below budget.

For SPI, a value <1 means the project is delayed, if =1 then it is just on time, and
if >1 then it is actually advanced versus its baseline schedule.

By making use of CPI, SPI, and % completeness, a project manager has a very
powerful tool on hand because it marries scope, time, and cost into a single report.
Nowadays, with the advanced use of project management tools, these indicators can
be calculated automatically based on the project task % completion, giving the PM
an unambiguous, objective view of how the project is actually doing.

Let us look at some further examples that illustrate the concept. For example,
take an IT project which has defined deliverables and a corresponding PV as shown
in the y-axis of the graph in Fig. 5.12.

At time = t5, the planned work was to have module 1 tested, with a value worth
US$400k. However, at time = t5 we spent US$600k, but actual work done was up
to functional design only, with a value of only US$200k, so the EV = US$200k
only. Therefore,

• Project is above budget
• And behind schedule

The power of earned value is that it translates scope into a value translatable into
monetary terms. It is thus easier for top management to appreciate, as it usually
prefers to talk of costs and monetary impact.

5.1 Project Management Principles 109

By having a chart with cumulative value versus time, and plotting AC, EV, and
PV in the charts, we get the so-called S-curves which can quickly show how the
project is doing. There are four possible scenarios as shown in Figs. 5.13, 5.14,
5.15 and 5.16.

Fig. 5.13 Project ahead of
schedule and under budget

Fig. 5.12 Example showing
EV, PV, and AC

time

C
um

ul
at

iv
e

V
al

ue

t1

AC

EV

PV

Fig. 5.14 Project with cost
overruns and behind schedule

110 5 Managing Projects

Figure 5.13: Project ahead of time schedule and under budget (which I think is
mainly theoretical and belongs to science fiction!).

Figure 5.14: Project overrunning costs and behind schedule (probably a more
usual scenario to many of our readers).

Figure 5.15: Project behind schedule but under budget.
Figure 5.16: And project ahead of schedule but overrunning budget.
Of course, Actual Cost and CPI have no real meaning to the project if the project

is fixed cost (turnkey). In that case, only EV and SPI have relevance.
Scope, time, cost have been discussed, how can all these be put together into a

meaningful monitoring and control tool? Advanced tools nowadays allow you to
monitor these in very efficient ways, so that by plotting the different tasks with their
interdependencies, and estimated duration, the baseline of the project is obtained. If
the project is turnkey, a fixed amount is attached to this baseline, which is the cost
of the project. Deliverables are also identified in the project plan (Fig. 5.17).

As the project progresses, the % completion of the task is input by the project
manager, and the EV, SPI can then be calculated automatically by the project

time
C

um
ul

at
iv

e
V

al
ue

t1

AC

EV

PV

Fig. 5.15 Project behind
schedule but underutilizing
budget

time

C
um

ul
at

iv
e

V
al

ue

t1

AC

EV

PV

Fig. 5.16 Project ahead of
schedule but overrunning
budget

5.1 Project Management Principles 111

management tool and displayed, giving the PM an easy way to understand how his
project is actually going. Projections can also be made for costs and time, using the
current CPI and SPI to project what the total costs and total time to complete the
project will be, assuming the current rates of efficiency (or inefficiency) are
maintained till the end of the project. PMP (Project Management Institute 2013) has
several techniques of projecting these. For our discussion, we merely take the
simpler calculation. First, let us define Estimate at Completion (EAC):

EAC = An Estimate At Completion, is a forecast of most likely total project costs based on
project performance and risk quantification

Where EAC is estimated by dividing Budget at completion (BAC), which was
the original budget used during planning at project end, by the CPI:

EAC = BAC/CPI (cumulative till data date)

Assumption here is what the project has experienced to date can be expected to
continue in the future (same CPI throughout the project).

The same estimation can be made for the time component:

Estimated Duration = Baseline duration/SPI
Estimated Finish = Baseline Start + Estimated Duration

What this means is that using your current project (in) efficiency, based on SPI,
we can project when the project will actually finish.

Resources can also be captured by such tools, such that assigning specific
resources to tasks allow you to monitor % and utilization of your resources, as well
as cost for the use of such resources. If the project is time and materials, you can
also calculate Actual Cost based on the rates of these resources.

These tools also allow you to view project information in a variety of ways
including Gantt charts, table formats, predefined reports for specific uses (resource
usage, cost report, efficiency reports, etc.), and calendar views, among others.

We have reserved the most difficult and contentious for last, Quality, how do we
ensure it? The challenge with quality is that unlike cost, time, and even scope,

Fig. 5.17 Sample project plan with tasks and milestones

112 5 Managing Projects

quality is very much project-dependent, customer-dependent, and can be very
subjective. The key therefore is to make it as objective as possible, illicit agreement
on it, so that all parties are aware of what is required of them, what needs to be
attained, and ultimately, how they will be measured, and the project accepted. Let
us face the reality, not all customers demand the same amount of quality. Some
customers are obsessed with cost, and though they may say otherwise, are willing to
accept low-quality work for as long as it meets a low budget. This is precisely an
intangible that is factored-in during the sales process by the vendor if he is suffi-
ciently acquainted with the customer. If the vendor knows beforehand that the
customer demands a high standard of quality, it will factor that in with a certain
premium, as that is what is necessary in order to achieve the desired quality level
acceptable by the client.

Ok, all that is well and good, but how can we really measure quality and ensure
that it is being met? Main components to this are

• Detailed scope
• Standards
• Documentation

Detailing the scope describes the concrete quality that is to be delivered by the
project. Take as an example a scope requirement defined during the tender process:

• Software must be able to generate the bills for 100,000 customers

As compared to a more detailed requirement:

• Software must be able to generate the bills for 100,000 customers,

– Must be generated within a 2 h batch window,
– Must be generated in pdf format,
– Output format must be user flexible, with the ability to add graphs, pie

charts, historical billing data,
– Must be able to print in full color, etc.

It is of course a major effort to define the quality components of a project, but is
absolutely necessary if one is to ensure their delivery. As discussed earlier under
scope management, not all aspects of the scope can be defined during the tender
process stage, so it is a reality that scope is successively defined and refined as the
project progresses, but once it has reached the end of the design phase, all its
aspects must be fully defined, clear, and agreed upon. Successive definition of
scope components should be reasonable and agreed to by both vendor and cus-
tomer, and not go against the content nor spirit of the tender documents; otherwise,
this should be treated as an additional scope, and thus, a change request.

5.1 Project Management Principles 113

The second leg toward guaranteeing quality refers to the use of international
standards and documentation. Standards such as CMMI, ISO20,000, ISO9,001,
ITIL, PMP, Prince, may be required from the vendor, as a way to guarantee that at
least awareness of international best practices exists, but of course, there is no
guarantee that they will actually be used correctly. Standards will also exist in the
customer organization which has learnt from the many years of experience running
operations and projects. This may include coding and configuration standards as
well as policies which should be given to the vendor for compliance. Standards set a
general framework, but do not indicate the specifics that are to be used, which
brings us to the third component, documentation.

Software is an intangible, and most hardware is intangible as well today. Think
of it, hardware performance depends more and more today on the way it has been
configured, set up, and architected, which are intangibles again and are not captured
by the hardware technical specifications. Hardware specs tell us nothing on these,
and yet today, these intangibles are the make or break for how hardware performs.
The conclusion therefore is that the quality of software and hardware depends on
what and how services are performed on them, and this, being the ultimate intan-
gible, can only be defined, monitored, and controlled by means of proper docu-
mentation describing what is to be done or how it has been done.

Documentation type differs per project type (please see Sect. 5.2 for an extensive
discussion of the documents), and this is a valued Intellectual Property in each
organization. It is the PM’s duty to define what is the relevant documentation for
the project and use available ready-made standards, which may either be the cus-
tomer’s or the vendor’s, a combination of both, as agreed upon. If due to the type of
project some additional documentation needs to be made or modified, then this is to
be discussed between both parties and agreed upon. All relevant documentation
should appear as deliverables in the project plan part of the deliverables checklist as
discussed in Sect. 7.3, and monitored for compliance, content, and completeness.
Nonacceptance of the documentation means the milestone has not been attained due
to nonattainment of the desired QUALITY. Only when the project milestone is
accepted, the project has progressed with the necessary quality. It is of course the
duty of the PM to understand the content of this document, to read it thoroughly,
and if not completely in the know, to consult other colleagues in his organization
for verification.

A quick way for the project manager to monitor the quality of the project is by
means of an issue registry, as well as a deliverables checklist. These are explained
in more detail in Sect. 7.3, but in essence the issue registry is a project management
document which registers any issue encountered during any moment in time in the
project. The issue reflects here until it is resolved or canceled (becomes nonrele-
vant). The deliverables checklist is a list of all deliverables, documents, workshops,
trainings, and the like that are part of the project; it complements the project
management tool. All deliverables to be produced are registered in this sheet, and
updated as they are submitted, approved, or pending.

114 5 Managing Projects

http://dx.doi.org/10.1007/978-3-319-38891-5_7
http://dx.doi.org/10.1007/978-3-319-38891-5_7

5.1.7 Risk Management

Risk management is the ability to foresee how events or circumstances can affect a
project before they actually occur. It is thus important because by focusing on what
may happen, one can proactively plan and develop a mitigation plan for them,
instead of just reacting, thus reducing or mitigating their negative effect.

We commonly think of risks as being negative, however, positive risks exist too.
For the former, we mitigate, eliminate, or transfer the risk, but for the latter we
enhance and promote its probability of occurrence. Positive risks have an overall
positive effect on the project in terms of time, cost, quality, or all. Risk management
is an inherent function in IT operations (and operations in general), but for the
project manager, it is focused toward the outcome of the project.

Risks may further be classified according to certainty (Cleden 2009):

• Known–Known
• Known–Unknown: partially known
• Unknown–Unknown: totally unknown

For the first two risk types, project reserves (buffers) should be allocated. This
really means that if they occur, these will have an effect on time, cost, quality, or on
all of these dimensions. Time extensions can be mitigated by adding additional time
buffers into the project plan baseline, which actually translates to cost as well, while
quality impacts usually need to be addressed by rework, additional time to fix, or
additional resources into the project, which again translates to cost. For this reason,
buffers to be added to the project will usually be in the form of both time and cost,
as these will cover for the occurrence of potential risks.

Unknown–unknown risks cannot be accounted for in any way, and so including
it in project reserves to mitigate them would be extremely expensive for the project.
For this reason, management reserves are usually allocated for this type of risks,
meaning it is the management that allocates for these additional costs at a corporate
or portfolio level. These can be in the form of emergency funds, insurance, or
expert resources that may be on standby for such purposes.

Risk management is not a one-time activity, but rather, a project-long activity
which is continuously undertaken, much like the monitoring and control of the
project. Risk analysis is best conducted having the different stakeholders in the
project to participate in brainstorming sessions to identify risks, as each will have
his/her own perspective of what are the significant risks. Risks also change as the
project moves along its different phases, so that risks identified during the analysis
stage may be different from those at the design stage, and may be different from
those at the testing phase. Risks may move in terms of relevance, some being totally
eliminated, others increasing in probability, while others still ceasing to be relevant.
As mentioned during the start of this chapter, risks are greater at the start of the
project, yet are hardest to identify at that point in time. It is however when the PM
has greatest influence and time to actually mitigate or enhance a risk. It is therefore
recommended that risk analysis starts early in the project, otherwise risks may be

5.1 Project Management Principles 115

more easily identified in the later course of the project, but with very little possi-
bility of actually mitigating them. Risks are also cheaper to address at the start,
because they may require less rework if work has not advanced too much into the
project.

Risk analysis may be qualitative or quantitative. Different projects will require
deeper and more or less effort in terms of risk management. If the project is
inherently risky, then more time and effort should be devoted. Typically risky
projects are those that affect business process across a wide number of departments,
and which have a large user change management component. Technical projects,
unless these are relatively untested technologies, typically carry the least risk.

In order to better understand how risks may affect a project, risks should be
classified for probability and impact. Both probability and impact may be classified
as High, Medium, or Low (or any other alternative scoring system may be used).
By sorting risks on their overall ranking, high-high risks, meaning risks that have a
high probability of occurring and a high impact on the project should be the first to
be addressed for mitigation. At the other end of the spectrum are the low-low risks.
Please take note that in all this discussion, we focus on negative risks, but the same
technique is applicable to positive risks, save that they are to be enhanced rather
than mitigated. A sample risk registry (Low 1994) template can look like that of
Table 5.3.

Fields in this sheet are a description of the risk, its probability, its impact,
mitigation identified, person or team responsible for the risk mitigation, as well as
the date identified. In the example above, the phase of the project was identified as
well, so that specific risks are identified per project phase. After that phase has
passed, most of the risks associated with it become irrelevant, either because they
were mitigated, accepted, or simply occurred. Risks can be acted upon in several
possible ways:

• Accepted: meaning, no action is taken
• Mitigated: an action that will either enhance (for positive risks) or decrease (for

negative risks) its influence
• Transferred: by transferring the risk to another party that is better prepared to

deal with it

Generally, only low-low risks can be accepted, all others should warrant action
in order to deal with them, and definitely high-high risks need mitigation action, or
a transfer. Mitigation also needs to be well thought of, and is not the responsibility
solely of the PM. He/she is the person that needs to call for a risk assessment
meeting, but each and every party and stakeholder are to participate in this
endeavor, as it enriches the discussion and gives many different views for the same
project. Risks can be of any nature, they may be technical, project management
related, task related, change management, training, logistics, and others. No risk
identified should be discarded, in fact, discussion should be encouraged so that all

116 5 Managing Projects

Ta
b
le

5.
3

Sa
m
pl
e
ri
sk

re
gi
st
ry

N
o.

Pr
oj
ec
t

ph
as
e

R
is
k

Pr
ob

ab
ili
ty

Im
pa
ct

M
iti
ga
tio

n
D
at
e

A
ss
ig
ne
d

T
o

A
ff
ec
ts

1a
T
ra
in
in
g

Pl
an
ni
ng

Po
or

Q
ua
lit
y
of

T
ra
in
or
s

M
H

T
ra
in
in
g
on

Pr
es
en
ta
tio

n
Sk

ill
s;

G
et

fe
ed
ba
ck

fr
om

H
R
on

th
e

Pr
ofi

le
of

T
ra
in
er
s
(Q

ua
lit
y)
;
C
or
e

T
ea
m

29
-J
ul

H
om

er
Q
ua
lit
y
of

tr
ai
ni
ng

1b
Q
ua
lit
y
of

T
ra
in
in
g

M
at
er
ia
ls

L
H

R
ev
ie
w

of
T
ra
in
in
g
M
at
er
ia
ls
:

T
ra
in
in
g
D
ec
k;

A
dd

iti
on

of
T
al
ki
ng

Po
in
ts
to

th
e
T
ra
in
in
g

D
ec
k

U
pd

at
e
as

of
Ju
ly

9
>
T
al
ki
ng

po
in
ts
su
bm

itt
ed

as
of

Ju
ly

9.
Fo

r
re
vi
ew

an
d
up

da
te

of
N
oe
l
an
d

Jo
an

H
om

er
Q
ua
lit
y
of

tr
ai
ni
ng

1c
A
va
ila
bi
lit
y
of

T
ra
in
ee
s

L
M

A
dd

iti
on

al
T
ra
in
in
gs

to
be

pr
ov

id
ed

(a
s
B
uf
fe
r)
;
Pr
om

ot
in
g

Pr
oj
ec
t
to

th
e
B
us
in
es
s
U
se
rs

so
th
e
D
ep
t
H
ea
ds

ca
n
pu

sh
th
is

pr
oa
ct
iv
el
y

H
R
;

Fr
an
ce
sc

Pr
oj
ec
t

ac
ce
pt
an
ce

1d
A
va
ila
bi
lit
y
of

T
ra
in
or
s

L
M

Pr
om

ot
in
g
Pr
oj
ec
t
to

th
e
B
us
in
es
s

U
se
rs

so
th
e
D
ep
tH

ea
ds

ca
n
pu

sh
th
is
pr
oa
ct
iv
el
y

Fr
an
ce
sc

Pr
oj
ec
t

ac
ce
pt
an
ce

1e
R
et
en
tio

n
of

B
as
ic

C
om

pu
te
r

K
no

w
le
dg

e

L
L

R
et
ra
in
in
g
of

B
as
ic

C
om

pu
te
r

K
no

w
le
dg

e;
Fo

r
th
os
e
tr
ai
ne
es

at
te
nd

in
g
w
ith

ou
t
en
ou

gh
co
m
pu

te
r
kn

ow
le
dg

e,
th
ey

w
ill

ha
ve

to
be

ad
vi
se
d
to

re
tr
ai
n
fi
rs
t

th
en

be
po

ol
ed

fo
r
th
e
A
dd

iti
on

al
T
ra
in
in
g
se
ss
io
ns

H
R

Pr
oj
ec
t

ac
ce
pt
an
ce

(c
on

tin
ue
d)

5.1 Project Management Principles 117

Ta
b
le

5.
3

(c
on

tin
ue
d)

N
o.

Pr
oj
ec
t

ph
as
e

R
is
k

Pr
ob

ab
ili
ty

Im
pa
ct

M
iti
ga
tio

n
D
at
e

A
ss
ig
ne
d

T
o

A
ff
ec
ts

1f
L
ac
k
of

T
ra
in
in
g

E
qu

ip
m
en
ts

(C
om

pu
te
rs
)

L
L

Si
r
N
oe
lt
o
m
on

ito
r
th
e
de
liv

er
y
of

th
e
12

ad
di
tio

na
l
co
m
pu

te
rs

fo
r

T
ra
in
in
g

N
oe
l

tim
el
in
e

1
g

R
et
en
tio

n
of

W
M
S

T
ra
in
in
g

M
H

U
se
rs

A
cc
es
s
to

Q
A

Sy
st
em

’
C
on

tr
ac
to
r
to

lo
ad

th
e
da
ta

U
pd

at
e
as

of
Ju
ly

9:
>
U
A
T
T
es
te
rs

w
er
e
gi
ve
n
ac
ce
ss

du
ri
ng

th
e
U
A
T

C
on

tr
ac
to
r

(J
ul
ia
)

2
C
ha
ng

e
M
an
ag
em

en
t

R
es
is
ta
nc
e
of

Pr
oc
es
s
fr
om

U
se
rs

du
ri
ng

T
ra
in
in
g

L
H

R
oa
ds
ho

w
fo
r
B
us
in
es
s
U
ni
ts

U
pd

at
e
as

of
Se
pt

20
A
ug

us
t

6–
9

(B
ef
or
e)

Fr
an
ce
sc

2a
D
at
a

C
on

ve
rs
io
n

SA
P:

A
cc
ou

nt
s,

C
on

ta
ct
s,
M
R
U
,

Z
on

e—
Q
ua
lit
y
of

da
ta

lik
e

D
up

lic
at
es
,

In
co
ns
is
te
nt

D
at
a

L
H

Ju
lia

to
pr
ov

id
e
H
om

er
th
e
lis
t
of

er
ro
rs
du

ri
ng

im
po

rt
of

da
ta
to

de
v

(0
6/
27

/2
01

3)
;

Ju
lia
/H
om

er

118 5 Managing Projects

risks identified by the team are to be enumerated, afterward, these are then revisited
one by one and their corresponding probability and impact updated in the registry.
Very low-low risks can be discarded altogether. It is for this reason that the risk
analysis and issuance of the risk registry cannot be done mechanically, as the
discussion itself is probably of greater value even than the output of the above table,
as it makes everyone on the team aware of risks that they probably would not have
been aware of in the first place.

5.1.8 Knowledge Management

Knowledge management refers to the activities leading to the buildup of a
knowledge base that can be used not only for the project, but more often, used for
subsequent projects as well. It is a repository of “lessons learned” so to speak, so
that subsequent projects be guided to avoid identified pitfalls, learn to leverage on
positive aspects, as well as refine the tools used to manage the project (project
governance). Knowledge Management is of primordial importance if project
management is to be a core competency of the organization practicing it.

Knowledge base, or the capture of this knowledge, can be in many forms. For IT
projects, it comes primarily in the form of:

• Documentation—as described in Sect. 5.2
• Project Management tools—in terms of templates, configuration, and utilization

of these tools
• Methodology—which refers to the manner in which the project is executed and

managed

One of the most immediate and apparent benefits of knowledge management is
the recording of how project issues were resolved. These details, once accessed by
the Operations team upon turnover will help them in not repeating past mistakes, as
well as giving them information on the resolution of issues which may reoccur.

Documentation, project management tools, and methodology are all existing
knowledge assets in the organization, but by further refining these after every
project, they are further sharpened and improved, capturing the lessons learned
from each project.

Modern document management system (DMS) tools help incredibly in the
management of one’s Knowledge Base (KB). Modern DMS not only allow manage
different permissions over documentation such as ability to read, print, view,
upload, and approve, but they also incorporate powerful search capabilities which
allow users to search through the KB by providing keywords and terms, the DMS
presenting the best matches. Thus, for issues encountered before, a user may search
through all the material to get most relevant KB documents by indicating the type
of issue or key word description of what he wants to search for.

5.1 Project Management Principles 119

5.1.9 Communication Management

Let us revisit some of the risks identified during the scope management section. We
enumerated samples of factors that can affect scope in terms of risks that can lead to
a change in scope in the middle of a project:

• End user changing his/her mind
• A senior executive having different ideas on what should be done
• Project creep
• Person approving is not the right person to approve (or does not understand the

actual needs)
• Unruly behavior by the end users
• Supplier starts development work without getting a sign-off from the users

If you look at this list above, there is little one can do to mitigate these but to
properly communicate to the different stakeholders so as to avoid having these
risks. This example was used to emphasize the importance of communications,
which although often cited, it is sometimes forgotten to be a key component of
project management.

Oftentimes, communication management is something that comes naturally to
the Project Manager, without having to undertake an explicit communications
management plan. In many instances, this may be sufficient, but for large, complex
projects with many stakeholders involved, a more planned and coordinated effort
may be needed. It is not just who needs to be informed, but the frequency and
medium in which the information is to be disseminated identified as well. One
approach is to conduct a communication matrix, which describes how communi-
cation is to be conducted, as shown in Table 5.4.

Next is how to inform the stakeholders, there are many different media which
may be used:

• Project meetings—these are regularly defined meetings which involve those
stakeholders most directly involved in the project, usually the key business
users, project managers, as well as the key IT personnel involved in the project.
Additional stakeholders may be invited if the topic is of concern to them. This
meeting is to regularly update the team on the progress, discuss next steps, ask
for involvement, and resolve arising issues. The risk registry may also be dis-
cussed and updated in this meeting, together with the project plan, issue, and
request registry.

• Steering committee meetings—steering committee meetings may be preset in
schedule, or may be called for as the need arises. The main purpose of the
steering committee meetings is usually to inform the top management stake-
holders of the progress of the project, seek approval for major decision points

120 5 Managing Projects

which need to be made at their level, or to ask for guidance and resolution in
case of contention.

• Project reports—which may be distributed to those identified as “need to
know.” Project reports may contain a summary of the key indicators, % com-
pletion, SPI, CPI, project plan updates, risks, issues, requests and identified next
steps, including those needed to address the risks and issues
encountered/identified.

• Email—can be used to disseminate in a simple way the project reports and other
information, without having to call for a meeting.

• Portal—can be used to upload all the documentation and give access to relevant
parties.

• Scorecard—can be a summary of project performance based on predefined
metrics which can be used by higher management to monitor project progress.
This can be loaded into the portal, emailed, or an online reporting tool used
where it may be accessed by the different parties.

• Roadshows—one important aspect in user change management is to keep users
informed, involved, and make them feel they have a stake in the project being
rolled out. Roadshows are one way to inform users in a relaxed manner, where
the project highlights are presented, their involvement highlighted, and their
questions and concerns answered.

• Posters, magazines, and handouts—to drum up awareness and support to the
project, highlighting the benefits the project will deliver to the organization and
to individual departments and users.

It may seem apparent as well, but different contents, level of details, and media
need to be used for different type of stakeholders. This is commonly ignored, to the

Table 5.4 Sample communication matrix

Stakeholder Content Frequency Manner

Project Manager Project Updates Weekly Physical meeting

Steering Committee Updates and key points
for
resolution

As-need basis Physical meeting

Key users involved
in project

Project Updates As-need basis Physical meeting

Weekly project updates Weekly Portal

Project sponsor Project Status Monthly Physical meeting

HR Change Management
and changes in Table of
Organization, roles, and
responsibilities

• After blueprint
• before go live

Physical meeting

Finance Discussion on change of
financial report contents

After blueprint • email blueprints
• meeting if required

General users General advice on the
project

Before go live • email blast
• details in portal

5.1 Project Management Principles 121

detriment of the communication message’s effectivity. As a general rule, the higher
up one goes into the management organization, the lesser the details and the shorter
the messages should be. The main focus to upper management should be related to
aspects related to the overall business, as top management is busy with running the
business, so its attention span is short if they cannot relate it to the main business
and its bottom line. Messages should be concise, direct, and the petition for
guidance or decision clearly defined.

On the other end of the spectrum, users will be more concerned about how the
project will affect them personally in the way they conduct their business. Will it
make their work easier? Will I have to learn how to use a new application? Is there a
new procedure? Why was it designed that way? Will I have a job at the end of the
project? Will my job responsibilities change? These aspects should not be taken
lightly as end users have much influence in the success or failure of the project.

As such, the message contents should be changed according to the intended
audience. As a guide, some sample audiences are:

• key executives
• key users
• general users
• suppliers
• project team

This details who should be informed, through what means, how often, and the
key content that should be included or highlighted. It may seem obvious, but it is
important that whenever a meeting is called for, the agenda for the meeting be
clearly stated, so that the stakeholder knows whether he has to devote his valuable
time for it, or if he can delegate it to someone from his team.

One part of communications management involves that of identifying stake-
holders, which may by itself be a challenge because though most stakeholders may
be apparent, some may not be, and may have a major impact and influence over the
project. Stakeholders can come in many different forms:

• Senior Management (in general)
• Department Heads whose process the project touches on
• Project Sponsor
• Business Process Owners
• Key users
• General user populace
• Suppliers
• Project Team
• IT’s O&M team
• IT’s Senior Management
• Outside customers

122 5 Managing Projects

Failure to identify a stakeholder may result in no (or scant) communication being
made to the stakeholder, which may result in his negative reaction once he finds out
that he should have been more involved and possibly consulted in the first place.
Also, seniority may not be the only factor to qualify a person as a stakeholder. It is
fairly common to find in many organizations a person without the formal title but
still respected as an “expert” for particular processes, so that involving and con-
sulting that person eases the whole project implementation. On the other hand,
some senior manager may not have a direct influence over the process because it
does not touch his department, yet for some other reason, may want to be involved
and contribute to the project, so it also pays to take this person into account in the
list of stakeholders. All this identification and planning on how to manage the
stakeholders is usually done mentally by the PM, however, if the project spans
across many departments and is quite complicated, the use of the communication
plan may be called for.

One of the objectives in managing stakeholders is in proactively changing
resistant and neutral stakeholders to supportive ones, and possibly bringing up key
supportive stakeholders (especially if in senior management) to that of leading and
sponsoring the project. One of the key factors is communication, and as explained
above, communication styles vary according to the stakeholder in question. As all
stakeholders are persons, it is important to be aware of their personal stake in the
project, and try to align this to the overall objective of the project. Generally
speaking, the more senior a stakeholder is, the more his concern will be toward the
general company’s benefit, while the lower management ranks would focus more
on his own personal well-being, this is represented in a diagram in Fig. 5.18.

As such, the communication delivered to each stakeholder should also take into
account that mix of company benefit–personal well-being. At the CEO level, little
concern would be given (usually) to the personal stake of each employee (of course,
for as long as the expectations are within a reasonable level), but more toward what
efficiencies, revenues, and cost reductions the company can achieve. On the other
hand of the spectrum, a rank and file employee would be eager to know how this

Fig. 5.18 Stakeholders’
seniority versus stake

5.1 Project Management Principles 123

project will actually simplify and make his work less tedious. Thus, when
explaining to each party in his particular venue, messages should be delivered
accordingly, keeping in mind the audience at hand.

5.2 Project Documentation

Generally speaking, the type of documentation to be prepared for each project
depends to a large extent on the type of project and software (if any) to be
implemented. Purely technical projects are simpler to document and manage, as
they do not involve business process design, and the users are commonly restricted
to IT personnel. On the other end of the spectrum are software implementations that
touch core business processes needed in the day-to-day operations of the business
and whose processes span across several departments.

We have subdivided the type of documentation depending on the phase of the
project: analysis, design, build, and cutover.

5.2.1 Analysis

Analysis refers to the phase in which the vendor is getting sufficient information
from the customer organization’s users and IT, in order to come up with a proper
design. Typical documentation at this stage includes:

• Minutes of meetings—in which the discussions are transcript
• User requirements document—which summarizes in an organized manner, the

requirements from the user, usually arranged by process or main functionality,
and explains in narrative format these requirements, and enumerates them.

In the analysis phase, it may be advantageous to create mock displays so as to
give the users a better feel of how the resulting system may look like, especially if
display outputs, report formats, and the like are important part of the deliverables. If
the project entails a reporting system, a mock report in excel or dummy dashboard
will also help the user understand how his results would look like, and critique these
before actual development starts. For some other projects, a mock transactional
display, the so-called Conference Room Pilot (CRP) may also be used.

5.2.2 Design

Business process may typically be captured using flowcharts which show the flow
of the process as it progresses through different departments and users. It also
identifies conditions, decision points, and outputs. Process flowcharts however, may
be defined at differing levels of detail, so that a common understanding on what

124 5 Managing Projects

level of detail is required needs to be agreed upon at the project start. A sample
classification on the level of detail to be used is:

• Level 0: a list of involved processes with a brief description
• Level 1: a diagram showing the highest level process interaction between dif-

ferent types of users shown in diagram form (see Fig. 5.19). This does not
explain the chronological order of the process steps, but merely illustrates how
the general philosophy of the entire process works.

• Level 2: process flowchart describing in sequence the tasks involved for each
particular process. A single process is typically depicted in 1 process flowchart
and may span across several pages, a sample of which is shown in Fig. 5.20.

• Level 3: a more detailed process flowchart in which each task defined by the
level 2 flowchart is further broken down into transactions as undertaken in the
system. Thus, as an example a Release Purchase Order task in level 2, which
may be represented by a single function block is here further broken down into
details such as, “Prepare Purchase Order”—“Approve Purchase Order”—“Re-
lease Purchase Order”—“Print Purchase Order.” Figure 5.21 shows a sample
with this level of detail (for SAP, this level would correspond to the T-code
level).

• Level 4: Work Instruction level, is a step-by-step depiction of how a user is to
transact. Typically includes screenshots and an explanation of the parameters
and selections the user is to make in transacting. This documentation is usually
prepared for the Testing and Training phases, and also in the User Manuals.

The process of designing and documenting the processes is typically an iterative
one, in which each successive level is signed off before proceeding to a more
detailed level, guaranteeing alignment.

Aside from process, a document should also be used for defining how the user
interface (UI) will look like. This may be more or less important depending on the
type of project. For reporting, billing, web interfaces, presentment, sales and
marketing systems, this may be of primary importance, as the appearance is just as
important as the content. For standard systems such as ERPs, in which the interface
is more or less fixed, this is less important (and flexible), unless it is tied directly
with productivity factors, such as how long it takes to transact. In such cases, mock
displays should be presented to the user for sign-off, including content fields, color
schemes, layout, and esthetics.

Some softwares may not be so heavy in terms of process; however, they conduct
other functionalities which also need to be signed off by the customer. For example,
document management systems, portals and the like, may carry very limited pro-
cess flows, but functionalities such as functions made available to the users, search
criteria, metadata, fields to be stored, selection menus, and others need to be agreed.
A functional design document is used for this purpose. This document is seldom
standard, as it is highly dependent on the type of software being utilized, but it
essentially captures:

5.2 Project Documentation 125

Fi
g
.
5.
19

Sa
m
pl
e
L
ev
el

1
pr
oc
es
s
di
ag
ra
m

sh
ow

in
g
a
“P
la
n
to

C
on

st
ru
ct
”
ty
pi
ca
l
pr
oc
es
s

126 5 Managing Projects

• Overall functional architecture: includes different modules to be used, as well as
interfaces to/from other systems

• Functions, attributes, and forms to be used. This may go up to the level of
describing each field to be used and their possible values.

• Process flowchart: if process is simple enough, it may already be included into
this functional design document

• Layout of user screens (if possible)
• High-level description of interfaces used. Interfaces may then be detailed further

in a separate document
• Roles and Permissions

Fig. 5.20 Sample Level 2 process diagram

5.2 Project Documentation 127

Fi
g
.
5.
21

Sa
m
pl
e
L
ev
el

3
pr
oc
es
s
di
ag
ra
m

128 5 Managing Projects

Its counterpart document is the technical design document, which captures all
technical (infrastructure and technology components) setup information. This
document is essentially reviewed by the IT personnel only, for conformance with
the company’s standards and policy, ensuring that the solution once implemented,
will be in accordance with company IT standards. IT will also check for appro-
priateness of the infrastructure allocated, though this also needs to be in accordance
with the software vendor’s technical specifications. This document is also highly
dependent on the solution and product being implemented, but typically contains:

• Overall technical architecture: a diagram showing the different software
components, in what servers these sit, network components with their inter-
connections and configurations, description of the different type of servers
needed (application server, database server, web server, management tool ser-
ver, etc.), as well as any special components utilized (load balancing, high
availability servers, etc.).

• Description of the different environments to be used: including Development
server, QA/Testing server, Training server, Production server, whichever are
applicable.

If this is a technical project relating to infrastructure, this document will be much
more exhaustive and cover aspects such as:

• Configurations and rules implemented into the appliance
• Sizing calculations including basis and assumptions used for the calculations

For custom development programs (which are a subcomponent of the main
project), a combined functional and technical design document is usual called for,
in which:

• Descriptions of the functional requirements for the program are given. This
entails an explanation of the data that is used, how it is to be processed, and the
resulting output. It may also include a process flow, if relevant.

• Technical details of how the program code is to be executed. This will include
data, table, and field details, objects, and functions called by the program. If
there are custom tables that are created, these will also be described.

• Error and exception handling processes

For nontransactional systems, the design documentation is very different, as it
does not describe process, but rather, how data is processed so as to produce the
desired outputs (reports, dashboards, etc.). As such, several components need to be
defined:

• Architecture—describes the different software components and how these
interact. There are many ways of producing the outputs, so the overall archi-
tecture needs to describe these. Does it make use of Business Intelligence tools?

5.2 Project Documentation 129

What type and how is data stored by these front-end tools? Does it have a data
warehouse for storing data or is data extracted directly from the source systems
without a database staging area? How does data flow from the source transac-
tional systems to the outputs? Are ETL tools used? Where is metadata stored?
Are there any other advanced functionalities/modules used such as data mining,
sorting, or parsing tools? This document should give the reader a general idea on
how the whole project is to be set up and will work.

• Outputs—description of the front-end screens which the user will be seeing,
including reports, dashboards, and other displays. This should also include a
functional and technical description of how these reports and front-end inter-
faces are stored in the system. As MOLAP and ROLAP structures differ con-
siderably, the manner in which these reports and their corresponding data are
stored shall differ, depending on the tool.

• Datawarehouse data model—a detailed description of tables, fields and what
these represent, as well as the overall structure type of the data model (star,
snowflake, etc.)

• Data mapping—a description of where data is sourced from, how it is trans-
formed (processed), and where it is stored.

• ETL or loading scripts—description of the different scripts used in obtaining
the data. Each script should be described functionally as what it does on the
data.

Other types of projects will have their own particular documentation, and this
should be agreed upon beforehand. The basic precept of the documentation is that
what will be done should be described before it is actually done, so that there is no
loss in effort during the build phase, by having the customer organization agree
beforehand. Of course, detailed design documentation is in itself a lengthy process,
so that the overall design should be first discussed and agreed upon. Thus, the
general philosophy is to go from general documentation, and once this is accepted,
move on to the details. Failure to do this may result in costly rework.

5.2.3 Cutover and Go Live Phase

Once the solution has been built (or nearly so), the focus now is on the different
steps leading to the go live. Cutover requires special documentation and procedures
by itself (see Chap. 6 which explains cutover). The exact documentation to be
produced depends on the nature of the project, and thus, it is the project managers
that need to come up with a cutover plan. Generally speaking, it should take into
account the following:

• Data migration plan—describing how data will be migrated into the new
system from the legacy system or other data sources

• Test plan—this is a document describing in high level how the new system will
be tested, by whom, and how (high level). The basic precept of this document is

130 5 Managing Projects

http://dx.doi.org/10.1007/978-3-319-38891-5_6

to answer, “How will the outputs of this system be confirmed as correct?” and
“What are all the scenarios which I need to account for in accepting the system
as correct?” It is a high-level document, meaning, no details will yet be given on
what the actual test work instructions are, as it is constructed so as to confirm
that the overall approach is correct and complete. Verification on how the
outputs are correct necessarily needs to be identified in this document, so as not
to leave it hanging till it is too late. Some typical ways of verification include:

– Comparison of output to a legacy system’s output which is known to be
correct

– Manual calculation of outputs
– Loading of dummy data with known output

• Test scripts—these are the details on the test plan, and indicate work instruction
level of scenarios to be tested, which will then be executed by the testers.

• User manuals—these should be ready in time for the user acceptance testing
and the subsequent training. For good user understanding, work instructions are
necessary but not sufficient, as it is important for users to understand not only
how to conduct transactions mechanically, but the reason why such transactions
are being used in the first place, thus, an overview explanation of the process
from the users’ perspective is also necessary.

• Operations manual—this is usually a forgotten document which is necessary by
the IT team that is to operate and run the system (ITOM). Typically, these are
batch processes which need to be undertaken in order to produce the desired
outputs. Examples of this are batch billing processes, batch interest rate calcu-
lations, regular report generation, as well as regular process monitoring functions.

5.2.4 Closure

Post-go live support kicks in the moment the system goes live. The structure and
lines of support will of course depend on the setup established, as well as the
contract between the vendor and the customer organization; many different forms
are possible as explained in Sect. 6.7. In any case, the trigger on when the vendor’s
support role ceases and the criteria for such trigger should be clear upfront to both
parties, and a formal document indicating the end of the post-implementation
support, which usually goes hand in hand with the project, is then signed off.

5.3 FRICEW

Taking a page from a common definition used in SAP methodology is the term
FRICEW (also called RICEFW or RICEF). These refer to customized components
in an application and stand for:

5.2 Project Documentation 131

http://dx.doi.org/10.1007/978-3-319-38891-5_6

• Forms: input screens for users
• Reports
• Interfaces
• Conversion
• Enhancements: these are particular to the application, but generally are mod-

ifications over standard code
• Workflows: in some applications, this may not be considered a customization,

so it would depend on the application.

In SAP, these are the components customized using ABAP programming, or in
other words, these are the typical components which are customized using code (vs.
configuration of the application). Why do we make special mention of it here? Well,
it is a good general strategy to minimize customizations and coding for several
reasons:

• Coding is error-prone. This means that all components with customized code
take time to develop, test, and thresh out all detected errors. Testing is partic-
ularly time-consuming, and there is always the big risk that not all scenarios
have been tested so that bugs in fact show up once put into production.

• Customizations are not supported during application upgrades. This means
that all custom code has a chance of not working once the core application is
upgraded. What this means is that every upgrade would need exhaustive testing
on the customized code before deployment to production. What this also means
is that anything that does not work would need recoding (and hence, retesting), a
patch from the application vendor to fix the issue, or a work-around. All these
take time, so that this actually delays the release to production of the upgraded
version.

• No product support on custom coding

FRICEW therefore needs to be monitored and minimized. One must be abso-
lutely sure that the FRICEW proposed is: (1) really needed; and (2) not possible by
means of configuration. The first means that the PM needs to rationalize requests
from users (and consultant). There is a natural tendency for users to want a process
that is exactly or close to what they are currently doing, but the question is if this is
an industry best practice, and whether it really makes sense given that one is
migrating to a standard package. The second aspect is really a limitation in the
know-how of both the PMs and the team implementing the application. If they are
not aware of how to execute using standard configuration, the tendency is always to
customize. It is recommended to consult application support, public blogs, and even
other alternate sources of support before making big decisions and conclusions to
customize.

As such, it is important that any program FRICEW as well as any other addi-
tional customizations be reported by the customer PM to the portfolio manager and
even the CIO, if required by the company IT policy, to seek approval for their

132 5 Managing Projects

undertaking. This highlights the importance of screening all customizations before
undertaking them.

5.4 Implementation Strategy

The riskiest implementation strategy is of course the big bang approach, in which
the solution is released into production for the general populace. For some projects,
this may be the only possible way, as it may be impossible or impractical to have
systems or two different processes working in parallel at the same time. This big
bang approach is however, the most difficult (if not impossible) to rollback, and
also, launches you into a state of immediate urgency as all incidences discovered
after the go live need to be expedited, much faster than if the users would have an
alternative environment to work in.

Incidences after a go live are normal, but that does not mean they cannot be
minimized. There is no substitute for good, exhaustive testing. At the same time, the
more contained the release is, the more room and time there is to detect issues, and
the easier it is to resolve them.

If possible, alternate strategies to the big bang approach can be applied, for
example, by having a pilot deployment before proceeding to the general populace.
This pilot can be chosen in accordance with a geographical location or a concrete
department first. Oftentimes, we may choose a guinea pig department to pilot, and
IT is usually a good candidate for this due to its maturity in terms of computer
knowledge.

A phased approach may also be employed, wherein the whole system is released
to production, but only limited modules or functionalities are made available to the
general public so as to ensure proper and smooth transition.

5.5 Testing

Testing involves the thorough examination of software, or its modules/components
to check if it actually performs according to expectations. One the challenges of any
IT project, is that the cost of a bug increases exponentially over time, so that the
later in time it is detected, the more expensive it is to fix, and the more negative
impact it has on the company’s operations or project as shown in Fig. 5.22.

Cost of fixing the bug is even greater after going live as it now has a direct
impairment on the company’s operations. On the other hand, the ability to detect a
bug is more difficult at the beginning, but decreases over time as the project pro-
gresses as shown in Fig. 5.23.

So that it is best to detect a bug early, yet it is more difficult at that point (also
because specifications may not be completely clear and/or understood by the
vendor), and is also least costly to address. As a general rule then, the earlier the
testing and the more exhaustive, the better for the project and the least costly. Bugs
detected only after go live will need an extension of all the resources involved in the

5.3 FRICEW 133

development of the module, and may require redoing many of the initial steps
(functional design, configuration, coding).

There are many types of testing, depending on the extent and manner in which
the testing is to be conducted. The type of testing to be undertaken shall depend on
the type of project, budget, and time. Some types of testing may be required and
made mandatory, as will be pointed out later in this section. Some typical types of
testing are:

• Unit testing: in which a software module is tested to ascertain that the function
for which it was designed for is performed correctly.

• Regression testing: testing undertaken in which the new module
implemented/enhanced is tested to verify that it does not cause faults within its
module or in other parts of the software. It is also used whenever a new patch or
fix is applied to resolve a known issue.

• Integration testing: In which the module is tested in conjunction with the other
modules of the software to verify that it functions correctly as a whole.

time

C
os

t
of

 b
ug

go-live

Fig. 5.22 Cost of a bug
versus time

time

Ease in
detecting
the bug

difficult

easy

go-live

Fig. 5.23 Difficulty in
detecting a bug versus time

134 5 Managing Projects

Testing is a topic all by itself which merits specific study and understanding.
One of the challenges in testing is that given a software module with n distinct
inputs and m outputs, all possible combinations of the inputs must be applied to
ascertain that testing is comprehensively complete (assuming here that module has
no memory retention, and is purely combinatorial) as shown diagrammatically in
Fig. 5.24.

Now imagine that each input may be an integer value of 0…9, then to test the
module exhaustively, we will need 10n different combinations, so for a 10 input
module, this would give 10 million combinations. For integers in the range of 256,
the combination would balloon to more than 1,208 billion–trillion combinations. If
the inputs would be text strings, then you can easily see that the number of com-
binations would indeed be intractable. The module above represents what occurs
during unit testing. Now take a scenario in which integration testing is undertaken
for three modules as shown in Fig. 5.25.

In this figure module 1 has up to n inputs, module 2 up to m inputs, and module
3 up to k inputs. Not all inputs for modules 2 and 3 are directly controlled by the
user, as these proceed from previous modules’ outputs. This complicates testing
even more, due to the controllability of inputs to the modules, aside from the
combinatorial issue on the possible inputs. A further issue is whether intermediate
outputs (the O1 and O2 series) between modules are at all visible to the tester, for if
they are not, any error occurring will only be detected in the outputs of the last
module. If there are many modules which are being tested for integration, it can
become quite complicated to detect which module is actually causing the error.

Fig. 5.24 Software module showing Inputs and Outputs

Fig. 5.25 Example for three cascaded modules

5.5 Testing 135

Due to the limited number of combinations that can practically be tested, the test
scenarios are selected based on their being a good representation of the many
possible combinations, such that using these test cases, they will most likely bring
out errors in the modules (if any). Having said this, this is more of an art rather than
a science and ideally, requires knowledge of the business processes and/or func-
tions embedded in each module. As such, the best personnel to design the test cases
are in fact the functional users of such modules.

Furthermore, two types of tests exist based on expected results:

• Positive testing: the most common, in which inputs are given to each module
and the outputs are checked to ascertain that they result as expected.

• Negative testing: often forgotten, but very important. Testing a scenario in
which the module is not to proceed normally. Testing is done so as to verify that
it indeed does not proceed; it should trigger its exception handling procedure,
which should log sufficient details for proper identification and handling of such
exceptions.

As a very simple example of negative testing, take the preparation of a purchase
order. One may test that it actually does not proceed with the release of the purchase
order taking into account several scenarios, such as

• Person has no permission to generate the purchase order
• There is no Purchase Request approved for the PO
• There is insufficient budget

For positive testing:

• Purchase order proceeds in its generation under different scenarios
• Purchase Request approval actually proceeds to the generation of the PO

Negative testing is important as in actuality the software should really be able to
handle all possible scenarios, not only the ideal ones that are thought out in a
contained environment. Once more, the best personnel for designing negative test
scenarios are the functional users of the system.

As explained in the cutover section, testing is perhaps the most important
activity to ensure a smooth transition into production. A few guidelines:

• Test cases should be comprehensive
• Test cases should cover both positive and negative test scenarios
• Unit testing and integration testing should be first performed by the vendor

before endorsing for User Acceptance Testing (UAT)
• During UAT, the test plan and test scripts prepared by the vendor acts as a

guide, however, it is very much encouraged that the users think of additional
scenarios (positive and negative) and test these to make the testing as realistic
and exhaustive as possible

136 5 Managing Projects

• The test plan is the first document to be reviewed for sign-off. This document is
explained further below. The important aspect is that the test plan be compre-
hensive enough. For integration testing, it should clearly define what procedures
will be used for testing end to end.

• Test scripts should be based on the test plan. Each test script document is a
compendium of test cases.

A test plan is the first document that needs to be drafted. Ideally, it should be
made early, even in the design phase, because it gives a clear idea on how outputs
are to be considered correct (and incorrect). This may seem obvious, but it is not so.
Additionally, it must state who will test, and using what data. Typically, the ways to
validate software outputs during testing are:

• Comparison of outputs with that of a legacy system which is known to be
correct. This however, is not always possible, even if such legacy system exist,
as any change in the business process of the new system, however small, may
result in differing outputs. It is very much applicable however if the project
consists of a technology update/upgrade only, in which the business process and
rules basically stay the same.

• Manually computed/defined outputs. Obviously, this may be tedious, but if there
is no alternative, this will be the approach. Important is to define WHO will
manually compute the expected outputs. Normally the best persons to do this are
the end users, so it is important to get their participation and buy-in, as this is a
time-consuming effort. Related to this, there are two further possibilities:

– Preparation of manual test data: in which data specifically for the purpose of
testing is prepared beforehand. Again, the data is designed and selected so
that it covers as many scenarios as possible.

– Slice copy of production data: normally, production data is copied into the
QA/Test server shortly before the testing is undertaken, guaranteeing that
up-to-date production data is used for the testing.

• Mock program. In which a program is created to emulate the function of the
software to be tested, so that the input data is given to both in parallel and their
outputs compared. This is normally done for programs that are quite critical to
test, and that may have several complex rules to be tested which may be difficult
to recreate manually. An example of this may be billing programs used in
utilities, which have complex rules. Manual testing may not be exhaustive
enough, and placing these in production with possible errors due to incomplete
testing means too big a risk.

A sample test plan is shown in Fig. 5.26. Some aspects which need to be defined
in the test plan include:

5.5 Testing 137

• What will be tested, in terms of modules. It should also specify what integration
testing will be done, so as to guarantee that the plan is complete and exhaustive

• Who will test
• Who will prepare the test scripts/test data. It may be understood that the vendor

will do this, but any participation from any other party should be explicitly
stated.

• How outputs will be validated (as explained above).
• Other relevant information (any dependencies, aspects that should be taken

account, etc.)

Once the test plan is approved, this will form the basis for the test scripts. Test
scripts are detailed transactional-level instructions of how the software modules are
to be tested. They should be understandable by a user using the system for the first
time, and so, should contain detailed step-by-step instructions, and if needed,
screenshots as well.

A sample test script is shown in Fig. 5.27.
An additional type of testing is stress testing. This is used in order to simulate the

handling of multiple parallel transactions by the system, which should be able to
process the transactions in accordance with the design specifications’ latency and
throughput, or if an enhancement/upgrade to an existing system, should perform

Fig. 5.26 Sample test plan excerpt

138 5 Managing Projects

equally well as the original system. Stress testing can be done by means of a
specialized stress test tool, which simulates and generates all these transactions, and
reports the results. Failure in passing the stress test may be functional in nature,
technical, or both.

One of the basic precepts of testing is that the test environment should be as
close as possible as that which will be during actual usage (Production environ-
ment). Some common pitfalls:

• Testing is done in the QA/Test environment using user profiles which are not
identical to those that will be used afterward in actual production. A common
situation here is when the testing is undertaken using a super user or adminis-
tration account, which allows the user to access all modules and functions. Of
course, problems due to authorization will not be apparent at this stage, but will
come out once in production. Thus, the purpose of testing (flushing out issues
before going live) has actually been defeated.

Fig. 5.27 Sample test script excerpt

5.5 Testing 139

• Last minute changes are done in the configuration without undertaking a thor-
ough integration testing. Typically, due to the rush, only unit testing is done,
only to discover a much bigger problem later on.

• Test data. In this scenario, test data reflects an ideal world, which does not
reflect the reality in terms of scope, nor in terms of data cleanliness (one must be
realistic in knowing that not all data in the real environment will be clean, and
this must be tested as well to see if the software handles these gracefully), nor in
terms of depth (amount of scenarios).

• Test data and test scenarios used during User Acceptance Test are limited to
those prepared by the vendor. Of course, if the vendor had previously tested
these scenarios, they will pass the UAT! The only component that has practi-
cally changed is the persons executing them! Testing by the users has to be a
combination of predefined scenarios, as well as ad hoc situations which are
thought of by the users. The more ad hoc scenarios, the better and more com-
plete the UAT will be.

• IT is the one to test the scenarios! This is a typical case of IT asking for trouble,
as they will get the blame once the software fails. Remember, IT is not an expert
in the business scenarios being tested, so it is no position to pass/fail them. Of
course, it would be advantageous if IT does a first round of testing before
endorsing to the users, but this is in no way a substitute for a proper UAT.

• Testers do not understand the overall process. Testers are made to sit in a room,
given the test scripts, and asked to mechanically test each scenario. Again, this is
similar to the aforementioned scenario where UAT is only using the vendor’s
prepared test scripts. Because the testers do not understand the process and the
system, they will be incapable of launching additional test scenarios. It is
important that the overall architecture, overall business process, software, and
rationale for the processes are explained to the user before even delving on the
test cases.

• Configurations are done directly into production! Need I say more? Well, aside
from the obvious in that these configurations were not actually tested properly,
there is also a very big issue in doing this, which is that both the DEV and
QA/Test servers will not have these changes reflected, so these changes are
essentially lost, which will also give problems to the next round of testing done
in DEV and QA/Test environments because they do not reflect what has already
gone into production. Of course, there are always configurations and data that
may need to be applied manually, directly into the production environment (e.g.,
some Master Data), however, even if manually applied, they must first be
manually applied in DEV, QA/Test, tested thoroughly there and thereafter
manually entered in PROD.

• Testing in PROD. Is there anyone out there this stupid?
• No negative testing. We spoke extensively of negative testing, failure to include

negative tests are obvious.
• No rollback procedure. Not strictly part of testing, but for every release, there

has to be a possible rollback. Think that the release can go wrong even if
thoroughly tested.

140 5 Managing Projects

• No thorough testing of integrations. Yes, these are some of the most difficult to
test because you need to conduct transactions in both ends of the integration
points. In fact, the testing should not stop at the integration interface; it has to
proceed all the way to the end. This means that if system A is interfaced to
system B via integration program AB, then you must first test the sequence of
transactions needed to trigger the interface to system B, but continue with the
subsequent transactions in system B to verify that indeed the data taken-in by
system B has been correctly recorded and that system B is able to utilize this
data correctly.

Test documentation is also very important, each test script must be run, verified,
and in the test results portion of the test script, a proof of correctness included. This
may be a screenshot, or if you believe the tester, the output result, with a pass/fail
field, comment, and tester’s signature for the whole test script document indicates
that whether it actually passed or failed.

5.6 Test Automation

Nowadays, new tools have emerged to facilitate in the automation of test scripts.
This means that test scripts can be run by the tools, so that instead of manually
entering all the inputs, these are placed in a file, from which the test scripts reads the
input data, executes the different transactions, and compares the resulting output
with the expected correct output (also available in a table), to mark it pass or failed.
Tools of this sort have a lot of advantages, including:

• Faster test runtime
• No possible errors in interpreting results
• Automatic reports
• Easy tracking and managing of the tests
• Easy to rerun test scenarios once modification/fixes have been undertaken

Of course, one must be aware that the setting up of these tools exacts consid-
erable effort because:

• All transactions and processes to be tested must follow a hierarchical structure
(i.e., Technical Bill of Materials) which normally has a structure
software-module-submodule-process-transaction. Just defining this hierarchy, if
for the first time, takes considerable effort, and making sure all the necessary
details are complete for each hierarchical level as well.

• Each test scenario must be prepared, including the data and the transactions
(typically, these tools will “record” your every transaction, and then have a
“playback” button)

5.5 Testing 141

• Expected outputs must also be recorded
• The structure of the test scripts and scenarios must be planned and structured

beforehand

So in fact, these tools become quite useful for transactions and modules that will
be tested frequently. Frequent testing may be due to modifications done regularly or
master data regularly updated. Examples of commonly changed processes are

• Billing process in a utility company (due to the rates changing)
• Payroll (changing tax and regulations)
• Sales and Distribution processes (new sales processes and products)

5.7 People Change Management

This is referred to here as “people” change management to differentiate it from
ITSM change management, which is related to changes in the Configuration Items.
People change management as referred to here is the process of changing people’s
behavior toward an impending process and/or system change, and managing this
properly so that the reaction is more positive than negative. One definition of people
change management is

Change management is an approach to transitioning individuals, teams, and organizations
to a desired future state

As discussed in Sect. 2.2, IT is generally composed of systems, processes, and
people, the last component being the most difficult to manage. The reason for this is
that people resist to change. Resistance is a natural defense mechanism by a person
in minimizing risk to themselves. Change means the unknown, and it may mean for
them (rationally or irrationally):

• More work
• More effort to learn the new processes
• No work (being laid off)

As such, managing change is a special skill, which, depending on the complexity
and impact of the project, may require full-time or near full-time dedication. Some
projects have change management agents embedded in the project, and these may be:

• Internal: normally mid-management personnel with a good understanding of
the processes to be implemented and convinced of their benefits to their orga-
nization. She becomes a “champion” in convincing others on the need for the
change. In other cases, HR may be the department to champion the changes,
taking up the role of change manager.

142 5 Managing Projects

http://dx.doi.org/10.1007/978-3-319-38891-5_2

• External: a highly credible specialist for that particular process. This person is
normally not an IT consultant, but a domain expert familiar with industry best
practices. Most importantly, he must be seen as an expert by the recipient
organization, otherwise it becomes an impossible task to convince the users.

Change management is an important task that the CIO himself must partake in.
In this sense, his role is primarily that of convincing higher management of the
appropriateness of the change, so that management supports this endeavor (if it was
not endorsed by them in the first place). Ideally, he should also find a champion
within the higher management level so that the change not becomes only an IT
change (which is dangerous), but a process or a business change toward a business
goal.

Change management is an art, and it has both carrot and stick components which
need to be balanced depending on the situation, but no matter what the case, proper
communication management is very important (see Sect. 5.1.9). As change is
inherently difficult, it needs to be explained well:

• What are the benefits of the change? As much as possible, these should be for
each (if applicable) at the corporate, department, and personal levels. Eventual
personal benefit will be beneficial for the employees and will result in more
support for the change, while corporate- and department-level benefits will
garner support at the mid- and upper levels of management.

• Why do we need the change? Explain current shortcomings, or how the market
is evolving such that it warrants a change in the way things are being done.

• What does the change mean for each and every employee? Again, the
change will mean something different to each user, depending on his role in the
process, so that the message needs to be changed depending on the audience.
Implementation of a new Enterprise Asset Management system means some-
thing different (and different tasks) to the maintenance engineer as compared to
the plant manager, or to the finance department in charge of assets.

• When and how will the change take effect?
• Elicit the support that you need from the users. Be as concrete as possible in

what you need from them, such as approval of process documents on time,
sufficient dedication to testing activities, volunteers for Trainor’s training, etc.

Change management is usually one of the most difficult tasks in making projects
succeed, and requires very special skills. Communication may be maximized via a
variety of channels; the idea in general is to buildup the tempo until the go live date:

• Presentations to the higher management. This should explain the points above:
benefits, reason for the change, what the change means, and very important, one
must be honest at to the possible difficulties and risks in applying the change, so
as not to build false expectations. It is of no use as well to overstate the expected
benefits, if these cannot realistically be met.

• Email blasts announcing the project and what this means for the employees

5.7 People Change Management 143

• Announcements and specials in the company’s internal newsletter and/or
magazine, explaining in laymen’s terms the project.

• Banners, leaflets, and other materials
• Special feature in the company’s portal
• Workshops in which management and key users are invited to present and

discuss with a more general users’ audience the implication of the project.
• Roadshows in which IT and other key departments reach out to the users by

going to them

The manner in which change management is to be conducted depends to a large
extent on the culture of the company, the maturity and profile of the users, as well
as the credibility that IT has in the eyes of the users.

Typical challenges faced by the change management team include:

• Little kingdoms. Sometimes, certain departments do not want to share data or
prefer to stay opaque so that their internal inefficiencies cannot be seen by
others. The remedy to this situation is to force it open by means of the mandate
handed down by senior management; there is usually no way to convince these
middle managers by just discussing.

• Nonstandardization. Related to the first, processes may be differing in different
geographic locations even if under the same department, for the mere reason that
no implementation was previously done to standardize. In this case, users and
managers may want to keep their old process merely due to familiarity. In some
cases, they may be willing to change but the challenge here will be to get all the
different units to agree to a common process. In this case, it becomes necessary
to explain and have the necessary patience to get the buy-in of the users for the
new process; however, if things get nowhere, it may be necessary to invoke
senior management or the steering committee’s direction and push.

• Adherence to their known process (inertia). This will also require time and
effort in explaining the new process and its benefits. Buy-in from key users is
essential for the project to succeed, as imposition may result in a backlash when
things divert from the ideal.

• Wanting too much. This is the opposite of the former, in which the users,
having attended some seminars and workshops, want to implement a super-
perfect process which may be unreasonable or impossible to implement at this
moment in time due to the complexity, company culture, budget, etc. This again
requires careful management of expectations and explanation to the key users.
Part of the explanation may be to indicate how much complexity, risk, and cost
this would entail, and a compromise may be to delay to a later phase, which will
then be evaluated.

• Users changing their mind. This is very risky, as accepting this, even if a small
change, may lead to further changes down the road, leading to project creep.
One must weigh whether such changes are indeed warranted, and as a general
rule changes should be discouraged as they introduce additional cost, risk, and

144 5 Managing Projects

delay to a project. A possible compromise can be to evaluate these requests for a
later phase (if possible and feasible) after the go live.

• Senior management changing its mind. This is very difficult to manage
indeed. Most that can be done is to properly inform management on the
implication of this change in terms of time, risk, and cost. A possible protection
may be (if the request is only from one particular executive) to escalate this to
the steering committee for decision.

• Fear of getting fired. If this is unjustified, this should be explained as such. If
justified, then HR has a special role in ameliorating the situation by having
designed the severance package for those affected, or having identified where
personnel will be reallocated. This must have been discussed very early during
the project, flagging HR on the possibility of such a downsizing resulting from
the process change. In a highly unionized environment, a heads up must be
given to the union so that they will not oppose and sabotage the project.

• Fear of being irrelevant. This again may be founded or unfounded. Oftentimes
however, there is a misconception that when the process comes in and makes
things more efficient, their clerical work now is not needed and they become
irrelevant to the organization. It may be unfounded because their previous role,
though not existing in the new process, may be replaced by a more sophisticated
and analytical one. Of course, this may not be true for all, but sometimes the fear
of change is so strong that even people who should not be wary of the change
are swept by this sentiment. This may even be true for IT personnel, wherein the
implementation of a new ERP system in place of the custom developed in-house
application is seen by the old programmers as a threat to their existence, as they
think that the new application will do everything they have been doing before.
Again, this takes careful coordination with HR, and also assistance in leveling
up and skilling up so that personnel can take on new roles.

• Fear of losing power. This is again similar to the “little kingdoms” syndrome
explained above and again is usually nonnegotiable as users bearing this attitude
will usually not be convinced no matter what, so there is no choice but to
impose.

• IT has no credibility. “Here we go again…,” “What did IT cook up this
time…,” and “Oh no, another one of this useless IT projects…” may be some of
the comments heard. In this case, the IT organization has a serious credibility
problem which will not be addressed by dialogue nor imposition using senior
management’s support. If the project is quite complex, it should not have started
in the first place, but rather, it should have been postponed until such time that
IT has enough credibility to succeed in the project. It may need to start with
smaller projects and smaller wins before attempting the big one. This of course
may not always be possible, take for example a new CIO given the task to push
through with this big project. In such a case, he needs to ensure during the
course of the project that things are running smoothly and not out of hand so that
his credibility is enhanced during the project. He needs to get more involved in
the project than usual.

5.7 People Change Management 145

• Fear of technology. Let us face it, some people, and especially the older
generation, may fear technology. Because they do not know how to use it, they
may reject it altogether. Within this group however, there are those who can
learn, but also those in which trying to learn becomes an altogether useless
endeavor. The ideal scenario here is to retrain the first and layoff the second.
Again, the particularities of the organization will dictate if this is at all possible.

Senior management may also have expectations of reducing the headcount of the
company by means of the project, so this necessitates heavy HR involvement in
identifying the people affected, designing the retirement package, as well as com-
municating this properly to the employees. Redundancy should not be hid from the
employees, but should also not be emphasized (unless of course, many of the
affected employees have in fact a desire to leave the company). It will form part of
the discussion on how job positions and roles will be affected.

References

Devaux, S. A., 2014. Managing Projects as Investments: Earned Value to Business Value. CRC
press.

Project Management Institute, 2013. Project Management Book of Knowledge. 5th ed. Project
Management Institute.

Further Reading

Beecham, R., 2011. Project Governance - The Essentials. IT Governance Publishing.
Cleden, D., 2009. Managing project uncertainty. 1st ed. Gower.
Fondahl, J., 1987. Precedence Diagramming Methods: Origins and Early Development. Project

Management Journal, XVIII(2), pp. 33–36.
ISACA, 2012. COBIT 5 Framework. ISACA.
ISACA, 2015. http://www.isaca.org/COBIT/Pages/default.aspx. [Online].
Heldman, K., Heldman, W., 2010. CompTIA Project+ Study Guide Authorized Courseware:

Exam PK0-003. Wiley.
Low, S. P., 1994. Marketing Research for the Global Construction Industry. 1st ed. Singapore

University Press.
Schafer, M., Melich, M., 2012. SAP Solution Manager. 3rd ed. Boston (MA): Galieo Press, inc.
Helfen, M., Trauthwein, H.M., 2011. Testing SAP Solutions. 2nd ed. Boston (MA): Galileo Press, inc.
Martino, R., 1968. Project Management. MDI Publications.
Phillips, J., 2010. IT Project Management: On Track from Start to Finish. 3rd ed. McGrawHill.
Stamatis, D.H., 1997. TQM Engineering Handbook (Quality and Reliability). 1st ed. CRC Press.
US Department of Energy, 2008. www.directives.doe.gov. [Online] Available at: www.directives.

doe.gov [Accessed January 2016].
Weaver, P., 2014. A Brief History of Scheduling—Back to the Future. PM World Journal, III

(VIII), pp. 1–27.

146 5 Managing Projects

http://www.isaca.org/COBIT/Pages/default.aspx
http://www.directives.doe.gov
http://www.directives.doe.gov
http://www.directives.doe.gov

6Cut-Over into Operations

One of the most crucial, risky, and yet an unavoidable stage is when projects are
turned over to operations. Oftentimes, the team(s) handling the project is not the
same as those handling operations (and is not even recommended), even if the IT
project in question may be using a technology that is currently supported by the
O&M team. In many cases, the team handling the project has been contracted from
outside the organization, or may be a mix of in-house and contracted resources.
Cut-over is crucial, as a proper hand-over guarantees long-term success of the
project, as well as its proper long-term support, and yet is risky simply because the
team handling the operations has not till this moment been exposed to the project,
sometimes to the technology, and most probably also have little knowledge of the
processes that are being implemented.

It has been my experience that even for applications where the O&M team is
familiar with the application itself, a major change of business process may throw the
O&M team in disarray as they are still thinking of the old processes that were in place.

As a real-world example, we implemented a reconfiguration of an ERP to
introduce a different materials ordering and reservations process in the central
warehouse. Previously, the materials were ordered and reserved by the dif-
ferent respective divisions until their full consumption by the division that
ordered them. This resulted in inefficiencies when a different division would
require the same materials but would not be able to withdraw as the materials
were already reserved by the former division, even if not consumed imme-
diately, resulting in an additional reordering and delay in the delivery of these
additional materials. We decided to do away with this by centralizing
materials into a “pool” anyone could request withdrawals from, even if they
were not the division that had originally ordered, resulting in lesser idle
inventory, increase availability and less delays. It was however not enough to
have the O&M team (and the users for that matter) understand how to

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_6

147

transact, this was a major change in the way the whole ordering and inventory
philosophy was redesigned, and it was crucial that all the teams understand
the differences, so not only did they train on the transactions, sufficient time
was given to explain the overall philosophy and process, so that whenever an
incidence would occur, they would have the capability to analyze and diag-
nose what the root cause could possibly be.

Needless to say, the earlier the O&M team is updated and is familiarized with the
project, the better. The amount of details that the O&M team should be given
however shall depend on where the project is, at that moment in time

• Kick-off/inception—if the project is closely interfaced or involves modifications or
enhancements to existing systems and processes, it pays to involve the O&M team
early and discuss the overall philosophy, architecture, and processes that the project
will embody. The O&M team is in the best position to analyze, criticize, and give
suggestions. This will alsomake them aware of when the project will come online, as
well as what shall be expected of them (for example, if the O&M team is to develop
new interfaces to systems currently in production), and at what point in time.

• Architecting phase—the technical management team should be involved here as
the project shall need servers, storage, network, and other infrastructure
requirements. The technical team should generally provision these and the cor-
responding environments (DEV, QA, Training, and Production). It is imperative
that the technical team understand the requirements and suggest on best options
(e.g., have a separate QA environment from the existing QA being used in
operations, have a separate training environment from QA). Some specific items
which will be further discussed should be taken up during this stage

– Approval of the overall architecture
– Approval of the different environments
– Backup and restore procedures
– Release management procedures (also with the application Management team)
– Password change management: how?

To cite some other practical examples of the importance of having approval
for the overall architecture let me refer to 2 projects. The first project involved
the delivery of a Datawarehouse solution with several software components.
The project team assumed that all these different components (ETL, front-end
tools) would be installed in the same server, however, this was not the
software vendor’s recommendation and it resulted in very poor performance

148 6 Cut-Over into Operations

of the servers. This meant that a whole reinstallation had to be done, even
after the project had started and already carried several configuration changes
in the platform, which obviously had to be repeated manually, causing a
significant delay in the project.

My other example is with regards to security. Nowadays mobility and
internet access of applications is pervasive. When we implemented a new
customer relationship application on the internet, we reviewed the different
software components that had to be installed, the servers they would reside
on, as well as the connectivity and network Access Control rules between all
these components. Because internet-facing applications need to retrieve data
from the back end which is in a secure area (intranet), this would need to be
done in a secure manner. Internet-facing applications would reside in the
DMZ while leaving no loopholes in terms of possible breaches in security and
confidentiality to the back end. A risk review on possible security breach
scenarios needs also to be conducted as there is no way to guarantee 100 %
that security breaches would never occur.

In both cases, an early review and sign-off of the architecture is crucial in
avoiding issues and delays.

• Hand-over preparation—as the go-live date comes near, the O&M team
should be prepared by giving them more specific details on the project. This has
to be timed correctly, giving details and training too early will mean that the
team will forget once the actual go-live date approaches, too late and they may
not have enough time to understand completely, or as it happens many times,
the project team is too busy with the go-live preparations and fire-fighting
activities to dedicate sufficient effort to this. Specific aspects need to be dis-
cussed during these sessions

– Solution overview—involving TM, AM, ITOM, and SD. Here is the dis-
cussion of the objectives of the project, general architecture, the processes
involved, end-user departments involved, and leaves the floor open to the
different teams for Q&A. It is important to note their inputs, as they may be
very valuable in avoiding issues down the road.

– Process discussion—mainly for AM’s benefit, is an in-depth discussion of
the processes captured by the system, usually described in detail by the
blueprints and functional requirement documents. This is a more detailed
version of the solution overview but going into the details of the process that
AM would care about. How does the new process fit in with the legacy? Are
there modifications that need to be done in the current process? Will
resources be needed by O&M for this?

6 Cut-Over into Operations 149

As an example, when we implemented the updated Automatic Debit
Agreement process for automatic payment of customer bills from their
bank account, there were tweaks that were needed in the way the payment
allocations were done to the accounts. The default process is allocating
the full payment to the oldest outstanding amount, but this was found to
be problematic as some arrears were historical and had to be written off,
and customers advised of the fact before the allocation rules could be
applied automatically. Otherwise, the customer might get surprised to find
his bank account deducted with a tremendously huge amount!

– IT Operations—once the system is turned over, this will describe any
day-to-day operations that will be handled by ITOM group. This usually
includes data maintenance and cleanup activities, report generation, batch
processes that need to be scheduled and run, error detection analyses, etc.
As an example of this, the ITOM would be in charge of the daily generation of
reports. Though the reports may be scheduled, they would still be monitoring
the batch processes for proper completion, in some cases validating the outputs
with the users before officiating the reports (as for example, finance personnel
giving its go-signal on financial reports before release due to possible last
minute reversals or adjustments that may have not been captured), as well as
identifying the reasons for errors in the generation of the reports.

• Technical discussion with TM:

• Final backup and restore procedures
• Pre and post-go-live tasks that will be performed
• Final Password change management procedure
• Release Management (also with the AM team)

• Frequently Asked Questions (FAQ)—for the benefit of SD, questions that
may be raised by the users, to enable the SD to immediately reply without
having to escalate the ticket. The more comprehensive their understanding of the
system and the FAQs, the more tickets that will be resolved under a First Call
Resolution (FCR). Imagine a change in the configuration to access internet
within a company in which the proxy is now disabled and goes to internet
directly. If for some reason this change has not taken effect in an endpoint, the
user will not be able to access the internet. Rather than SD escalating this ticket
to TM for investigation, best is if they have sufficient information to

– Determine if the proxy is still enabled in the endpoint’s route (open your
browser settings, check internet options, …)

– If still enabled, the step-by-step instructions on how to disable it
– Procedure on how to confirm that the issue has been resolved (please restart

your browser; try to connect to this site…)

150 6 Cut-Over into Operations

• Configuration Management—this is for the benefit of the AM group, will
teach the team how the system is configured, meaning of the different config-
uration parameters, so that the team will be able to support and maintain the new
application once requests or incidences are raised by the users.

This particular training is quite detailed and technical, as well as easily forgotten
unless put into practice shortly after the training. In my experience, we have even
had to conduct several repeat sessions for O&M for them to actually get a good
grasp of what it entails (but are time well-spent). It is always complemented by the
configuration manual, reference manuals, as well as training slides which can be
returned to for reference.

• Program code—this will be turned over to both AM’s Business Analysts and
programmers that will be in charge of subsequent support. Needless to say, the
programs must be properly documented according to the receiving organiza-
tion’s standards, and the program coded as well using its standards.

• User Acceptance Testing (UAT)—end users should ideally be involved during
the User Acceptance Testing, in fact, the best users are those that will actually be
transacting with the new system. It is also recommended that O&M either
participate in the testing, or at least observe the testing so as to familiarize itself.

A common pitfall here is that although the end-users test, it is not the proper end
users that do so. Sometimes this may be due to the real knowledgeable user not
wanting to dedicate time, other times this is because due to the change in process,
roles inside the organization change but is not apparent to the end-user departments.

• End-user training (EUT)—similar to UAT, the people trained will be those to
actually use the systems, but it is also recommended that O&M be part of the
training, or at least be involved and present during these for familiarity’s sake.

• End-user awareness campaigns—the project may be perfect, but if it fails to
generate acceptance by the users, it will ultimately fail. This of course cannot be
addressed only during the cut-over period, users must have been involved from
the very onset of the project (see earlier change management section), but of
course, not all end users can be involved, especially if it involves a large number
of users. Depending on the breadth and importance of the project, it may be
important to drum-up awareness and support for the project, this can be done
through several means, such as

– Getting the buy-in from top executives: they can in turn be your best
“salesmen”

– Awareness posters, brochures, T-shirts, and information campaigns
– Awareness Workshops
– Publishing information in the company magazine and portal
– Roadshows, if users are in dispersed geographical locations

6 Cut-Over into Operations 151

• Agreement on 1st, 2nd level support: one of the most difficult decisions to
make is how and who will render 1st level support upon going live. Right after
going live, the number of project-related incidences shall jump, and it is of
course preferred that these be acted upon as soon as possible. The tendency
therefore is usually to assign the project team to be the one to render 1st level
support until the warranty expires. The danger to this is that once the warranty
period expires and the O&M team takes over, they are basically neophytes in
handling the system. The warranty period is also the best time to learn on how
the system is configured, familiarize oneself with its processes and learn how to
troubleshoot. By taking over after the warranty period, there has been little
adjustment and learning time, even if the O&M team was tasked to observe
during this period. The trade-off is further discussed in the next sections, but
what is important to mention at this point is that there has to be a formal
agreement on how 1st level and 2nd level will be undertaken, the exact process
(of how tickets will be escalated, closed, etc.) and who will be in charge of what.

• Go-live—this is the moment of truth, the next few days and weeks will
oftentimes define the success or failure of the project, depending on the users’
acceptance, the ability to address incidence tickets coming in, and fix these in a
timely manner.

• Post-go-live—it is imperative during this crucial period that tickets be closely
monitored. Incidence tickets should be given primary importance, and the root
cause of the incidences identified. As such, incidences with a common root
cause should be grouped, and depending on the urgency and severity, be pri-
oritized for fixing.

In the next sections, we explain in detail some of the specifics of how a proper
cut-over should be done.

6.1 Backup and Restore Procedures

This seems self-evident. For any application and system, a backup and restore
procedure should be in place. The reason why I mention this explicitly is that there
is no unique way of conducting backup and restore. It not only depends on the
application, it also depends on the DB, the infrastructure used, as well as the type of
backup, and what one wants to backup. Same goes for restoration.

And so, the worst situation possible is that you are ready to go-live, but before
you do that, you wish to back up your QA and Production environments in case
something goes wrong, only to find out that you do not have complete, detailed
information on how this is to be done correctly. The project team will have its
particular opinion on how backup and restore should be done and TM will have its
own idea. It is important therefore that early in the project (during the architecting
phase, which comes very early on), both teams have an agreement on how this shall
actually be done. Actual execution however should be undertaken by the TM team.

152 6 Cut-Over into Operations

Important aspects to take into account are (wherever it says backup, restore also
applies here)

• Full back up or partial?
• How to backup specific portions of the system, for example, only the config-

uration, only the data. For the configuration, what are the different configuration
files and what are their functions?

• How to make a fast backup (for example, a dump to disk)
• When to do which type of backup
• How do you know if backup completed successfully
• The detailed instructions on all of the above (this can be agreed upon before

going live), including pre-backup and post-restore configurations that may need
to be executed.

If possible, an actual backup and restore procedure should also be conducted for
test purposes.

A typical mishap scenario here is that the backup and restore procedures are
incomplete. Take an example in which the configuration is to be backed-up separately
from the data for purpose of releases. This means that the backup is done not just by
copying an image or dumping the entire contents of a server into a tape, but exporting
a configuration file from the application and copying that into the backup media. It
may be that the application has several configuration files that need to be backed-up,
so that if one is forgotten, the recovery will be incomplete. It is also for this reason that
a simulated recovery is always recommended as it ensures that nothing is forgotten.

6.2 Release Management Procedures

As discussed in the previous chapters, release management refers to the procedures
on how a change that is made (normally starting in the development environment),
is to be replicated into the QA/Testing environments, and subsequently to the
Production environments. Release management procedures refer to the manner, the
control, and authorizations around the release (Fig. 6.1).

Fig. 6.1 Common release lifecycle

6.1 Backup and Restore Procedures 153

In its most primitive form, release management is done manually, meaning, that
a change (in the configuration, for example) is then replicated manually in the
subsequent environments by undertaking the same tasks as what was done in the
DEV environment. This, of course, is the most primitive form, and should be
avoided and not used if the application has a better way to undertake release
management. The reason why this method is not preferred is that it is error-prone, a
change undertaken in Development may not be fully reflected in the subsequent
environments, resulting in discrepancies between environments, possible errors or
incidences which may take time to troubleshoot.

Other manners in which release management procedures are typically under-
taken are through export-import of configurations, in which the configuration is first
exported to a file, this is then copied to the next environment (say QA) and then
imported, taking effect in the new environment. This is shown in Fig. 6.2.

It is only the configuration that should be exported and imported; as otherwise,
the procedure is not feasible because production data (once released to the pro-
duction environment) is overwritten, same concern as for the QA and testing
environment.

For some other systems release management is highly automated and efficient,
having been given due attention. As an example, SAP ECC has its so-called
“transport” procedure, which allows not only the whole configuration, but specific
configurations to be released, and can easily be reversed. This may also include
authorizations and user profiles.

Some aspects of release management which need to be taken into account are

• Scope of the configuration which is to be released: It should describe first in
layman’s terms what the configuration is, and then give the technical details on
it for an AM team member to understand.

• Traceability of the release: The release should be traceable from the beginning
of its journey (from DEV into QA and then to PROD), there may be an identifier
(key), a ticket number, or both to be able to trace it. It is important for TM,
which conducts the release to be able to verify that the proper release procedure
is being followed.

Fig. 6.2 Release by means
of copying a configuration file

154 6 Cut-Over into Operations

• Cancelation and reversal procedures should be clear: In the worst case, this
can be a restore from backup procedure (worst because it is usually the most
lengthy to execute), in some applications, there is a release management system
which allows you to roll back the release.

• Whether releases can be made while the system is live: More advanced appli-
cations allow this, however, for those that need to import-export the configuration
files, this is generally not the case, and the system will require downtime.

• Freeze: Even if the system is live, are there transactions that require a “freeze,”
meaning, that they cannot be executed. This can be done by locking the
transactions or locking out the users. The reason for the freeze is that the release
will affect these transactions, and therefore will create a conflict if the release is
done simultaneously with the affected transactions.

• Order of the releases: If the application allows for live releases, this means that
the configurations are released piece-meal, so that if there is a lot of changes that
need to be released, these will come in batches, and oftentimes, this batch of
releases has a relative sequence, so that one release cannot be done before the
other. This should be taken into account and explained correctly in the ticket.

• Roles of different Operations teams in the release management: Ideally,
request for release will be done by AM, execution done by TM

In my experience as CIO, I have come across multiple bad practices from
vendors:

• Configuration changes made directly into production: this is the worst possible
practice; it results in very different configurations in PROD, DEV, and QA
which are now hard to trace and reproduce back into DEV and QA, and need to
be recreated manually. This is also a common reason why some IT departments
require many personnel, because they are the “experts” in knowing what
changes have been made to the production server while failing to document it,
so that the organization becomes overly dependent on their knowledge, and
unfortunately, bad practices, while they continuously configure things in
Production.

• Development and/or configuration changes done directly in QA. In this case,
DEV is not in sync with the changes in QA and PROD and when the next
releases are made from DEV to QA and PROD, there is a chance that the
changes become undone. This results in a lot of analysis and troubleshooting to
detect what went wrong.

• Testing in DEV. DEV is a machine without practically any data (so not much to
test), and with insufficient resources to conduct a thorough testing, which typ-
ically consumes a lot of resources and would require a bigger machine.

• QA environment not in sync with PROD. This means that even if a test passes in
QA, it may still fail in PROD.

• QA data is very old, so that testing in QA passes but not when the actual data in
PROD is encountered. This can be addressed by refreshing QA data with the
latest PROD data.

6.2 Release Management Procedures 155

• Insufficient testing (in QA), so that the errors come out when released to PROD!
• Testing in PROD! You will overwrite valid transactional data with garbage test

data!

Special mention should be made on

• Roles and permissions: They should be the same across all environments as
explained under testing. Thus, it is best that roles and permissions be made part
of a release across all environments (also originating in DEV).

• Active Directory and LDAP: If the application is using LDAP and/or Active
Directory in which a single sign-on is used, then it is also recommended that the
actual LDAP/AD accounts for production also be defined during testing. This
can be achieved by having a DEV/QA/Test AD server specific for the DEV,
QA, and Test environments. In this case, the rights and permissions in the AD
flow in the opposite direction, they are to be defined in the production AD server
and copied into DEV/QA/test AD, guaranteeing that all environments are using
the same account names, and guaranteeing that the testing will be undertaken
under realistic conditions. This is illustrated in Fig. 6.3.

6.3 Business Process

As mentioned before, it is imperative that the O&M team understand the underlying
processes of the new system. Understanding purely technical aspects of the solution
is not enough. Business Process helps the team to understand the way things work,

Copying of
permissions

Copying of
permissions

PROD AD DEV, QA AD
Copying of
accounts

Fig. 6.3 Managing active directory accounts

156 6 Cut-Over into Operations

their rationales, how they are being undertaken by the system, and importantly, why
they are being done in such manner. This will help during the analysis and trou-
bleshooting, since O&M is able to grasp the intended outcome. For this purpose,
the blueprints, functional design documents that were developed and finalized
during the analysis and design phase of the project are commonly used, and are then
explained by the project team during a sit-down interactive session with O&M.

6.4 Data Migration

Another commonly underestimated task refers to that of data migration. This refers
to the process of importing into the new system, data that either resides in a legacy
system that will now be supplanted, or in different sources which now need to be
consolidated and uploaded into the new system. A data migration plan must be
prepared well before the go-live date as part of the cut-over, and depending on the
amount and complexity of the data, could range from a few weeks to months prior
to the actual go-live. Data migration itself, if complex, may need its own plan, with
its own go-live dates and milestones, which need not necessarily, coincide with the
system go-live. For example

• Data may be migrated only shortly before going live; or
• The data may be too voluminous and complex to risk being uploaded only

shortly before going live, so that a partial upload may be conducted for testing
purposes well before the date

The source data may also vary

• Source data may be static or semi-static, in such case, a single upload shortly
before the go-live may be sufficient or if not, a big time upload with a subse-
quent update will suffice; or

• Source data may come from another transactional system which changes every
day, hour, etc. As such, the data migration needs to be carefully thought-out as
the final data must reflect the complete source data for there not to be incon-
gruences. In this case, a “freeze” period may need to be defined for the source
transactional system, in which no new data is created while the final migration is
taking place. Depending on the system (e.g., sales system), this may not be
acceptable, so that the migration shall necessarily have to take place during a
narrow window when no transactions take place, for example, during a weekend.

This brings me to the point that a data migration plan needs to be formulated
well in advance so as to minimize mishaps! The plan may start as a very high-level
document detailing the general philosophy of how the data is planned to be
migrated, milestones, QA, etc. In general, it should contain

6.3 Business Process 157

• A general plan and tasks set forth for doing the migration. If a calendar can be
defined, so much the better

• Dependencies for the tasks
• HOW the data is to be migrated. This may take the form of extraction programs,

upload programs or tools that will be used for this purpose. Take note that some
of these programs and tools will have to be developed/conducted by the O&M
team as it involves current systems in production, so their early involvement and
understanding is crucial.

• Quality Assurance: How will the data be tested for correctness, basis for cor-
rectness, as well as the acceptable pass/fail criteria

6.5 Cut-Over of Transactions and Data Quality

Transaction cut-over may mean many things depending on the context. If a legacy
system is to be replaced with a new system, it refers to all the procedures associated
in ceasing to transact with the legacy system and having to transact with the new
system. For systems that are being reconfigured while in use, it means having to
deal with a new configuration which may not work with the legacy data, config-
uration, and setup. In both cases, there are a number of tasks that need to be done,
and many of these are not IT’s responsibility but the end users’. In spite of this, it is
IT’s responsibility to identify all these tasks, disseminate to the end users, conduct
proper training and awareness, and monitor these before and after going live to
ensure the new system encounters minimal hitches. This is of course simpler said
than done, as many times it is hard for the users to fully grasp the implication of
these procedures, and may be time consuming for them to perform.

Some examples of cut-over tasks are

• In implementing a new General Ledger chart of accounts, data should be
mapped from the old GL to the new GL, these may be limited to
end/beginning balances, however, the new account structure may neces-
sitate that a mapping and recomputation of these be done so as to know
which accounts are to be transferred to the new GL using what rules.

• New billing system: Similarly, a mapping for each customer’s billing
details needs to be done and data from the old system mapped to the new
one. Questions will arise such as what level of detail should be carried
over and in what specific fields should these be loaded. As the new billing
system will work with different business rules versus the legacy, it is
unrealistic to expect that all fields will map seamlessly, so that a decision

158 6 Cut-Over into Operations

must likewise be made where and if to store certain information. For
example, storing details on an installment plan that is being phased out.

As a practical experience to share, we implemented a new billing system in a
large utility company, however, the management of the utility company did not
entirely trust the new billing system, so that they required that both the old and
the new system run in parallel and all discrepancies be cross-checked. Needless
to say, this was a very tiring and expensive exercise, because as expected, many
of the bills did not match, not because of errors, but because of data being
processed differently, and because they did not have the same business process
(otherwise, why replace?). It would have been much more efficient to test
thoroughly the new system, and for the remaining errors that would still show,
have a team analyze these and tweak the system accordingly. This parallel run
was eventually dropped a few months after as management realized its futility.

• A new purchasing and inventory system: As purchases and deliveries
cannot be stopped due to the continuous nature of the business, a con-
scious strategy must be thought-out on how to handle transactions that
spill over from the old system up to the new one. As an example, take a
purchase order that was released by the old system, and in which the
goods have not yet been delivered (received). How these will be accepted
by the new system needs to be clear, including

– Should the Purchase Requests and Purchase Orders be recreated in the
new system? How will these be traced to the old system?

– Is there a budget implication? If these transactions referred to the old
budget, should the budget now be adjusted accordingly?

– What information needs to be disseminated to the suppliers? (i.e.,
reference new PO number that supersedes old, etc.)

– Should an inventory count be done shortly before going live to make sure
system stock reflects actual? Should there be amaterials withdrawal freeze?

– For withdrawals from warehouse, how are these tracked while the
system is down due to migration to the new system? If manually
recorded, how will these be reentered into the new system once it is up?

The list of activities will vary according to the type of project and specific
situation on hand. As much as possible, data that can be migrated using special
scripts and loading programs should be utilized so as to minimize manual inter-
vention. These programs’ mapping rules should be done in accordance with the
users’ inputs, the users that own the data. It is apparent from the above, however,
that migrating ALL data automatically will be impossible, and that some transactions
will need to be undertaken manually in preparation for the go-live, as well as during

6.5 Cut-Over of Transactions and Data Quality 159

post-go-live. These must be carefully identified, and the correct procedures for
conducting them discussed and finalized with the users. It is important to involve the
users early so that they understand the need for the procedures, have a buy-in, and
subsequently commit to undertaking their part of the tasks. Failure to do so may be
disastrous, so that when things go wrong upon go-live, all the blame goes back to IT.
If for whatever reason commitment from the users cannot be obtained, an analysis
should be made on whether to postpone the go-live, and in any case, the situation
should be escalated to higher management (typically the steering committee) so as to
get their support, and subsequently, that from the line units.

All of this discussion in the end falls into the general category of data quality. No
matter how good a system and its designed processes are, if the data is dirty,
inaccurate or obsolete, the system will fail to deliver its function, and it is much less
expensive to address data issues before implementation, rather than afterwards.
Inventory systems with inaccurate inventory counts, billing systems with billing
errors and reports with unreliable information are examples of such failures which
no IT manager wishes to encounter, and yet, are all too common.

As an example of dirty data, and how it needs to be corrected, we imple-
mented a new self-service HR application which did away with all the manual,
email-based and paper-based processes for viewing pay slips, requesting for
leaves, requesting for loans, overtimes, etc. The employee would now go to a
self-service portal and have access to all these or initiate the request elec-
tronically. As such, it is essential that for the system to work correctly, the data
should be clean. For example, data on who is the person’s next approver
should be correct, otherwise the request for approval (for a leave, for example)
would be routed to the wrong person. As the information came from paper and
was put into the system, it was expected that such errors would occur, which
they did, and were corrected after the system went live. Take note that in this
case HR’s participation is essential for this cleanup to happen as IT has no
knowledge whatsoever on the correct employee–approver relationship.

Nowadays, the relevance of Data Governance and Data Quality has taken new
importance and new meaning, especially in the light of the mishaps that have occurred
in the financial industry during the financial meltdown. Financial institutions failed (or
did not want) to understand their own data in terms of products they were offering, and
their relationship to the liabilities they would face if a sudden reversal of fortunes in
the economy would happen. The “off-the-books” attitude they took in creating these
new financial instruments basically hindered them in fully understanding the data
underneath these products, its customers, the loans they were collateralizing, and most
especially the underlying risk exposure. For this reason, regulators have started to
come down hard on the industry and new ways of addressing data quality have taken
renewed interest. Although this topic is way beyond the scope of this book, there is a
bit that can be said with regards to data migration and data quality.

160 6 Cut-Over into Operations

As an example, we developed a new set of comprehensive reports to conduct
geographic and demographic analysis of our customers, however, when the
address information was utilized, it became apparent that this information was
“dirty” such that the address field which was a free-form field containing
inaccuracies, inconsistencies, and omissions. We therefore embarked on an
address-cleansing project which entailed structuring the address information
in a standard, structured manner

Region-Municipality-District-Subdistrict-Street-House#-Block-Appartment-
Door

This posed a major challenge because unlike in other countries, addresses
in the Philippines do not follow a usual pattern. However, this was a nec-
essary step in getting correct analysis reports. Cleansing also does not stop at
cut-over, but is a continuous process.

In another example for a hotel, we found out that many of the essential
data on the customer where left blank by the front-office personnel as they
would hurriedly check in the customer by merely pressing <enter> or entering
dummy data into the front-desk system for many of the required fields, in
order to advance fast.

Data correctness is always easier to implement at the point of capture, and much
more difficult to correct afterwards, as many of the banks are now realizing when
dealing with “Know your client” and Anti-Money Laundering laws that are being
enforced globally.

6.6 Interfaces

Interfaces are a common source of errors and malfunctions as these are commonly
custom-developed in accordance with project-specific requirements, the systems
being interfaced, as well as the data flow requirements between the systems. As with
all custom-developed programs, these are usually the pieces that need most testing,
and will commonly have some malfunctions slip through undetected. Due to this,
interfaces need to be especially thoroughly tested. A test plan (see Chap. 5.5) should
have been established first to make sure that the whole interface process is taken into
account in the testing, and not only itself in isolation. This means the whole process
from when the data is prepared in the source system, sent through the interface,
accepted by the recipient system, and then consequently processed by the recipient
system to produce the corresponding expected results. It must be emphasized that the
testing should encompass the whole process from end to end. If just the interface
program itself is tested, there is no assurance that it will actually give the expected
results.

6.5 Cut-Over of Transactions and Data Quality 161

http://dx.doi.org/10.1007/978-3-319-38891-5_5

Some other special considerations when testing interfaces

1. Completeness of test data—the interface must be tested under different data
scenarios.

2. Negative testing—testing for data scenarios in which the interface should not
proceed. Negative testing should always form part of any test scenario, but is
especially important in an interface.

3. Log errors—if an error occurs, this must be properly reported and logged so as
to be able for the O&M team to debug. One must always assume that some
failure will occur in the interface at one time or another, so it is important that
this be detected and that enough information is given so that it can be traced.
Errors may be due to unacceptable data ranges, wrong data format/type, one of
the systems not be ready for the data transmission/reception, etc. The more
explicit and more information logs give, the easier it shall be to debug later on.

4. Invalid data transmission—it may be that the interface worked correctly and
data was transmitted to the recipient system, however, the data as received by
the recipient system may be in inappropriate format for it to be meaningful, so
that the recipient system cannot continue processing it. Proper testing would
minimize such situations; however, it is again impossible to assume 0 %
probability of this happening. As such, proper messaging and logs need to be
produced by the interface (and related) programs, so if and when such situations
occur, they can easily be detected and traced.

5. Error-handling procedures—again, it is important to assume that errors will
occur, and so the interface must have had an error-handling procedure defined,
so in case it happens, there is a clear operational procedure (not a project
procedure) in terms of what should be done. If say, for example, the recipient
system continuously accepts erroneous data, there must be a clear way to
identify the problematic data, as well as a contingency plan on what to do with
it. Failure to have come up with such procedures may affect operations per-
manently or for an extended duration of time, as there may be no way to identify
the erroneous data, nor a clear way to clean it up.

Needless to say, interfaces should as much as possible use or be based on
standard available interfaces. For SAP systems for example, these would be the
BAPIs which can be further modified or embedded in other code. Use of standard
interfaces minimizes customizations, as it means reusing previously tested
interfaces.

A particular experience we undertook was in interfacing a CRM system with
the back-end Customer billing system. The interface was designed to take
into account the process needed for when a new customer would open an
account. This was triggered in the CRM and would send the details to the
customer billing system for the creation and setup of his entire account
structure, including the initial payment for opening the account. This was

162 6 Cut-Over into Operations

tested and worked correctly, however, it was tested only up to the point of
account creation in the billing system, but the billing system was not run for a
complete cycle. It turned out that although all the details and account struc-
ture seemed correct, upon running the billing system, receivables were cre-
ated where they should not have, an oversight in terms of not having
conducted a complete end-to-end testing of the new process, for even if the
billing system was legacy, the process was new and should have been
completely tested.

6.7 Support Strategies and Structures

As mentioned during the introductory section of this chapter, there is a need to
clearly define support roles and responsibilities. Generally speaking, there are a
maximum of four entities types involved

• O&M Team—in charge of supporting the operation and maintenance of systems
in production

• Project Team—in charge of the delivery of the new project being put into
production

• Product support team 1st level—may or may not be part of the project team.
May be part of a formal support team supporting all deployments of the product,
and may be handled by the product reseller/distributor or the principal (product
owner) itself.

• Product support team 2nd level—if the 1st level product support is handled by a
reseller/distributor, then normally, a further support level is handled by the
product owner itself, for tickets that cannot be resolved by the 1st level.

However, the above does not describe clearly the delineation of responsibilities
for each team during a project. It is indispensable to define these before going live
and preferably during the start of the project, as this may have contractual and
monetary implications. If responsibilities for ticket handling and escalation are not
clear, this may cause undue delay in the processing of tickets. Ticket escalation and
handling may be a policy dictated company-wide or specific per project, and as
explained in the introduction, requires careful thinking due to the trade-off between
quick response time and the essential knowledge transfer from the project team to
the O&M team. Table 6.1 is an example of a typical support matrix that can be
utilized.

Needless to say, in ALL CASES (except for the pre-go-live period of the pro-
ject), the first level call handling (and therefore, support) is really O&M’s Service
Desk (SD). As such, service desk personnel should be properly trained to try and
resolve during the moment the incidence is reported without further escalation. In

6.6 Interfaces 163

order for Service desk to be effective in this function (i.e., maximizing the number
of first call resolutions), it must be properly trained and informed of commonly
expected tickets. This can be done by

• Formulating an FAQ (Frequently Asked Questions) with a format of Question,
Analysis steps and Possible Resolution detailed in laymen’s terms so that the
service desk can easily follow and apply these

• Conducting a session before the go-live between the project team, the rest of the
O&M team and the service desk agents describing the application that will be
going live, overview of the process it encompasses, and review of expected
common issues. These issues may be of any type, such as

– Settings (in the web browser, application, etc.)
– Questions that may be typically asked for a user unfamiliar with the new

application such as procedures
– Where to find documents such as manuals and guides
– Permissions and password-related inquiries
– Errors that may be expected from improper usage of the system

• As a support, user manuals, PowerPoint presentations, and videos can be pre-
pared before going live and placed in a portal for users to access in case they
need assistance on the procedure for using the new application.

Table 6.1 Sample support structure

Unit handling the support level

What it is Project before
going live

Week 1-2 after
going live

Project
Warranty
period (*)

Thereafter
(covered by
annual license
maintenance)

1st level
support

First to receive and
handle incident tickets
(after service desk)

Project team Project team,
shadowed by
Operations
team

Operations
team

Operations team

2nd level
support

Incidences that cannot
be resolved by the 1st
level support

Product
support team:
1st level

Product
support team:
1st level

Project
team

Product support
team: 1st level

3rd level
support

Incidences that cannot
be resolved by the
2nd level support

Product
support team:
2nd level

Product
support team:
2nd level

Product
support
team: 1st
level

Product support
team: 2nd level

4th level
support

Incidences that cannot
be resolved by the 3rd
level support

Product
support
team: 2nd
level

(*) also called post-golive support

164 6 Cut-Over into Operations

• One may assume the typical errors and inquiries that are to be expected;
however, the reality may be different, so that shortly after going live (a few
days) the tickets for the new application must be analyzed. A new version of the
FAQs and a new discussion with the service desk personnel should take place so
as to fine-tune the procedures.

• Although this may seem obvious, it is important for the service desk to know
who to escalate tickets to, which will also be explained below.

Once the different support levels are clearly defined for the project, then the
service desk ticketing system must be configured accordingly. Some questions need
to be answered

• Will the project team be given direct access to the service desk system? If not,
then who will handle the tickets escalated from the service desk in behalf of the
project team?

• If the project team is given access, how many will have access and how will
their responsibilities be delineated.

• Visibility over all the tickets. Typically, the O&M team should have this.
• How is the product support team to be contacted? The escalation procedure

should be clear and ready for escalation.

Once having gone live, it is also important to see the trend of the incidence
tickets, whether these are on the rise or declining. It is expected that shortly after
going live the incidence tickets spike, but these should eventually decline. Failure to
decline normally means that the root causes have not been addressed. Another
important aspect is to check the rate in which the incidences are being resolved. If
more incidences are being produced than being resolved, this means that incidences
are accumulating, which may mean that either the root causes are not being
addressed, the support manpower is insufficient, or both.

Typically, incidences will see a rise right after going live. This is typically 20–
50 % more for a system affecting multiple divisions, and will stay there for the first
2 weeks to a few months if business process changes are significant. For technical
upgrades and changes with few business process changes, this rise of tickets will
typically last for just a week if properly implemented. It is important however to
observe that by the 2nd week, the number of resolutions > the number of new
opened incidences, otherwise the team will have a snowballing number of inci-
dences to resolve. It is also important to

• Analyze if several incidence tickets are the same (collapse them).
• There are several incidences related to a problem. In this case, problem tickets

typically take longer to resolve, so that it should be escalated to the more
experienced, 2nd or even 3rd level support for investigation.

6.7 Support Strategies and Structures 165

• Analyze those that are procedural (users not following procedure) or data-related
(inconsistent or wrong data, usually also because of the users or legacy reasons).
If these have been escalated to the AM support team, then an analysis should be
done to see how the SD (or end-user department) can immediately resolve these
so that they do not escalate. Typically, this is done by updating the FAQ and
meeting between AM and SD (or end-user department) so that an understanding
and explanation of the issues happens.

• Is there a technical issue? This needs to be addressed by TM.

If by the 3rd week tickets continue to escalate, then either the system was very
complicated and the users failed to understand its usage, or you have a major issue
on hand, meaning, there is a problem with the design and/or deployment. Emer-
gency meetings should be called between the different relevant teams and the users
to get to the root cause, work-arounds identified, new advisories sent, and if needed,
additional training, while the root case is being addressed.

Some incidences do not surface right after go-live, but remain hidden. Examples
of this are incidences during the monthly closing of books, when rolling over the
budget (typically, yearly), or when the MRP (Material Resource Planning) is run.
They will generally follow the same pattern, save for the delay. Particularly difficult
are those that happen way-off from the go-live (such as during year end closing of
books) as the project team may have been long gone, and the O&M team inex-
perienced still with the new setup.

As an example of a go-live that was stabilized, take when we implemented
the single sign-on (SSO) system in a company, wherein the user would need
to sign on to Active Directory and would automatically get the correct access
and permissions for all systems (vs. having to have separate login and
passwords for each system). To do this, several steps were undertaken

• A mapping was done for each application to the AD account. This means
that every application’s user account needs to be matched to its corre-
sponding AD account. Sometimes the account name is distinctly different,
so that matching these is not evident.

• Each application has to be “tied” to the AD controller, so that the cre-
dentials from the AD server are passed to each application

• Each end user in turn needs to have a security certificate in his endpoint,
so that the single sign-on system can recognize the endpoint as valid.

• A single sign-on system is set up for some applications requiring this particular
service. This now becomes the hub for authorizing these applications after
checking with the authorization at the endpoint (certificate) and the AD server.

• The certificates need to be pushed to each endpoint.
• The new links to the SSO-enabled applications are now pushed to each

endpoint.

166 6 Cut-Over into Operations

As you can see from above, it is both a technical deployment, and a data cleanup
exercise, and several things can go wrong.

Upon going live on the 5th week of March, the resulting tickets were created as
shown in Fig. 6.4.

As can be seen during the 5th week of March, the number of incidence tickets
more than doubled, due to the extent of the change. Upon investigation, several
incidences were found

• In some cases, the certificates did not push correctly, or the links did not. This
was addressed by US in pushing those certificates again.

• Other cases were procedural; the users were accessing the old non-SSO-enabled
link. SD reacted by advising each caller on this, releasing an advisory reminding
people, as well as deleting wherever possible the old link.

• Some of the mappings were incomplete, so some users were not able to login to
some of the applications because they were not initially enabled to do so. In this
case, AM took each one case by case and validated that the user is indeed
authorized to access such application.

• In some rare cases, there were technical issues with the AD and SSO, but these
were minimal, so that in fact the networks group actually did not have to
conduct much work.

As can be seen from above, tickets normalized after 2 weeks.

Fig. 6.4 Example of a go-live project and resulting incidence tickets

6.7 Support Strategies and Structures 167

Further Reading

Cut-over forms part of IT Project Management, however, scant attention has been given to it,
which is remarkable when one realizes that it is a very crucial part of the success of a project.
The following publications touch on peripheral topics.

Kalaimani, J., 2016. Approach to Cut Over and Go Live Best Practices. In: SAP Project
Management Pitfalls. Apress, pp. 93–105.

Morris, J., 2012. Practical Data Migration. 2nd ed. BCS.
Olson, T., 2015. Digital Project Management: The Complete Step-by-Step Guide to a Successful

Launch. J. Ross Publishing, Inc.

168 6 Cut-Over into Operations

7Project Governance

Project governance is a component of IT governance as explained below, and sits
side by side with IT operations governance. Many of the dimensions of project
governance discussed in this chapter were also discussed in Chap. 5, but here we
make more emphasis on what are the minimal required processes and documen-
tation needed in order to comply with governance best practices.

7.1 Overall IT Governance

Governance refers to all policies, guidelines, and procedures which must be followed
by the IT organization. In general, these are defined at different organizational levels
and are cascaded down the organization by means of detailing them successively.

From Fig. 7.1, we can see on the left how company mission and vision is
cascaded down the organization. Ideally, each division’s mission and vision, as well
as objectives should be aligned to its higher level, meaning that the attainment of
each’s division’s objectives contribute to the overall company objectives, and in
turn, to the company’s mission and vision.

Company objectives, mission and vision are of course usually very high level in
nature, so there is a need to operationalize them. On the right-hand side, we see a
pyramid depicting the company policies cascaded all the way down to the work
instructions. Company policies should be aligned with the overall company mission
and vision. This policy in turn, must be defined in more detail in terms of HR, legal,
regulatory, safety and health, and IT policies. IT policies are not only restricted by
the former, so that they should not be in conflict, but even more, it should be in fact
supporting them, as in today’s business environment, IT is in fact used to opera-
tionalize company-wide, HR, legal, and regulatory policies, to ensure they are
followed by means of business processes which reflect these, as well as monitor,
control, and audit these. IT policies apply not only to the IT Division’s personnel,
but some also apply company-wide. Common IT O&M and project policies should
cover:

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_7

169

http://dx.doi.org/10.1007/978-3-319-38891-5_5

• Implementing new services: how are new services requested, approved, cre-
ated, and made part of the service portfolio

• Service Delivery Management: how are services delivered to the end users,
SLAs by which they will conform to

• Incidence and Problem Management: what are considered incidences and prob-
lems, how do they have to be reported, how they are handled, resolved, and closed

• Security: policies on access, confidentiality, integrity of data, and systems
• Service Continuity and Disaster Recovery: manner in which service is pro-

vided and restored when a disaster occurs, when is the disaster recovery plan to
be called, SLA that kicks in once the disaster has triggered

• Customer Relationship Management: policies relating to IT with regard to the
company’s customers and clients

• Supplier Management: policies relating to IT with regard to suppliers and
contractors

• Configuration Management and Change Management: how configuration
changes are requested, approved, created, and released

• Release Management: manner in which changes are released into production
• Project Management: policies related to projects which require IT resources,

including IT projects themselves

From the point of view of the end users, the following are typical policies that
apply to them:

• Email usage policy
• Internet usage policy
• Security policy
• Requests in accessing a service
• Requests for infrastructure
• Requests for new applications
• Requests for major enhancements

Fig. 7.1 Company governance and relation to IT governance, policy

170 7 Project Governance

• Policy on requests for application modifications and enhancements
• Requests for PCs, laptop, printers, tablets, smartphones, scanners, and other

endpoint and peripheral devices
• Service Desk policy

IT policies can in turn be taken one level down in the form of guidelines and
procedures which are designed mainly for IT’s internal personnel:

• Availability management. Including how to measure and manage it.
• Capacity management. Includes how to measure and manage it.
• Change and release management. The whole process for requesting, approving,

planning, and releasing changes, including possible rollback procedures.
• System backup and recovery.
• Disaster Recovery Plan.
• Service Desk. Ticket categories, opening, escalating, and filling-up of ticket

details until closing.
• Configuration Management. Including scope of the configuration management

(servers, applications, switches, etc.) and definition of the Configuration Man-
agement DB (CMDB).

As represented on the right hand triangle of Fig. 7.1, the topmost policies apply to all
the different employees of the company (end users from IT’s point of view). Also, ISO
certification including ISO20000, which focuses on IT O&M, ISO9001 which focuses
on standards and procedures, as well as ISO27000 which focuses on IT security, will
cover policies, operational procedures, but not go down to the work instruction level.

To illustrate the difference in what each level means, take, for example, IT backup
policy. At the policy level, it may be indicated that all major systems need to be
regularly backed-up. Procedures will indicate the criteria for backing up, retention
period, and how backup media is to be retained. Work instructions will indicate
the exact HOW to undertake the backup, including what tools, specific media,
how often, what type of backup, and how the media will be managed.

7.2 Project Governance and Operations Governance

Most ISO standards provide clear guidelines to O&M; however, they are quite
weak on project governance.

Clearly, projects will eventually turned over to O&M, so that project policy and
governance needs to be in sync with that of operations, however, the reality is that
there are only few areas in operations which really have a direct effect on the
project. To name these:

7.1 Overall IT Governance 171

• Security policy
• Email and internet policy
• Endpoint policy
• Service Desk policy; and
• Request for infrastructure

Since projects are not in production, they may have their own particularities
which make their requirements on the above, not exactly the same. The most
important aspect thus is that upon turnover to O&M, the operational policies are
followed, and all the necessary configurations to comply with these are imple-
mented. Project policy may in fact differ, especially so because the project envi-
ronment may be completely isolated from the rest of the infrastructure, users, and
sometimes may even be in a different physical location.

It is thus important that the head of the project portfolio be the one to define
project policy and governance for all projects, and the Project Manager apply these
to his specific project. Variations from the general project policy may be acceptable,
for as long as the PM seeks proper approval.

Project policy should cover the following:

• Project Monitoring and Control: How projects are to be monitored in terms of
templates to be used, roles in terms of personnel that are involved in the
reporting and control activities

• Project team roles and responsibilities: roles and responsibilities of different
team members

• Communication management: explaining different stakeholders that require
communication, frequency of communication, as well as media used for
communicating

• Scope management, including change requests: how the changes in scope to
be requested, costed, and approved.

• Risk Management: templates used in risk management, frequency of risk
analysis, personnel involved in the risk analysis.

• AssetManagement: policy regarding the usage of company issued assets for projects
• Incidence and issue management: how incidences and issues are identified,

created, approved, and resolved
• Release management: how releases are to be managed within the project

(typically from DEV to QA) and to production, as well as any other environ-
ments which may exist

• Infrastructure capacity management: manner in which capacity is to be
measured and managed (in case additional capacity is needed)

• Request management for projects: how are new requests to be created, costed,
approved

• Code development guidelines: do’s and don’ts, code structure, documentation,
security

• Test guidelines: how to test, who will test, formats for test scripts, including any
tools utilized

172 7 Project Governance

• Training guidelines: format and general content, method of training
• Backup and recovery policy: manner of backups, frequency, what to backup
• Pre-go live guidelines: minimum requirements before going live, verifications

and actions to be conducted after going live. Who makes the final decision for
go-live?

• Service Desk usage policy: manner in which projects will use the service desk
system, access

• Post-implementation support and warranty period policy: minimum
requirements for post-implementation support and warranty, definition of roles

• Security guidelines (these are normally the same as for O&M)

All of these policies and guidelines have in turn, a set of documentation, which
should as much as possible, be standardized across all projects. However, as IT
projects vary quite considerably in technology, process, application, etc. project
documentation may be standardized according to TYPE of project as well, and, be
further adapted to the needs of the particular project in question by customizing it to
the project type, as shown in Fig. 7.2.

The exact project documentation should be discussed and agreed by both the
vendor PM and the client PM, and then approved by the portfolio manager.

7.3 Project Monitoring and Control

It is imperative that both PMs (vendor and client), the Portfolio manager and the
key stakeholders know exactly how the project is doing at any moment in time in
terms of scope (quality), time, cost and resources. Communication to each party
shall vary as discussed in the later section, but for the PMs and the portfolio
manager, the same set of reports and tools can be used for reporting. Three essential
tools can be defined here:

Fig. 7.2 Standard project
documentation versus project
specific

7.2 Project Governance and Operations Governance 173

• Project Management tool (such as MS Project, Primavera, etc.): as defined in
Sect. 5.1.4, this gives an updated view as to what tasks have been finished, what
not, if there are delays, if it affects the overall timeline, CPI, and SPI calculations
(S-curve), resource utilization, deliverables attained. In fact, in one brief view
and snapshot, the PM can understand exactly the progress and status of the
project. A sample is shown in Fig. 7.3.

• Issue registry: is a list of all issues encountered and/or reported for the project.
These issues can be reported by any party (either PM, an end user, the O&M
team, a stakeholder). It is registered into this sheet until it is resolved or canceled
(because it ceases to be an issue, not relevant, or due to other reasons), the date
identified, the person responsible for seeking resolution of the issue, status of the
issue, and any remarks. An issue registry may be as simple as an excel sheet
which enumerates all current issues and their status, as shown in Fig. 7.4.

The fields that are important include the status, who resolved the issue:

• Request registry: is similarly, a list of any and all requests for the project which
affect/modify the original scope of work. This is again similar to the issue
registry in which any party can raise the request, and carries the same set of
fields as above. A request need or need not have monetary implication, may or
may not be accepted, but is registered anyways, for as long as it was raised and

Fig. 7.3 Sample project plan showing milestones, % completion and SPI

174 7 Project Governance

http://dx.doi.org/10.1007/978-3-319-38891-5_5

is within the project’s influence area. Again, a simple excel sheet may be used to
track requests as shown in Fig. 7.5.

With the above three, the PM can scan the project management status, check for
delays, and how it affects the overall project timeline and cost, zero in on the task(s)
causing the delays, and open the issue registry to identify the underlying cause for
the delay.

An additional governance document proves to be very useful:

• Deliverable checklist—is a document with the list of all deliverables agreed for
the project, the phase of the project in which it is to be generated (initiation,
blueprint and design, development, …), who it will be prepared by, status, date
submitted, who is to produce the document, description, whether it requires a
sign-off, and who shall be the signatories and approvers.

Fig. 7.4 Sample issue register (partial register shown)

7.3 Project Monitoring and Control 175

One way to do this is through an excel sheet which already contains a predefined
set of deliverables normally needed for IT projects as shown in Fig. 7.6.

This checklist would then be customized by the PMs in mutual agreement.
What this document allows is for the PM to quickly view the list of all submitted

deliverables, and determine what is pending, so he/she can follow-up. Deliverables
may be anything ranging from a kick-off meeting, a blueprint, technical design,
actual code, UAT, training, manuals, meeting, etc. Again, since every project is
different, the exact deliverables to be produced will be agreed upon at the start of
the project by both PMs. Generally, technical projects carry less deliverables than
applications that touch on process, and the more processes that span across different
departments; the more documentation is usually needed.

No. Portal
Type

Request Reque
stor

Updates Status Resolved by Resolu on
Code (cket#)

Fig. 7.5 Sample request register (partial register shown)

176 7 Project Governance

Aside from this, it is also important to choose proper deliverables so that the real
progress of the project can be monitored. Deliverables are milestones which help to
understand whether the project has progressed or not to that stage. Deliverables
should preferably be:

• Easily identified
• Objective—either they are attained or not, there should be no room for

ambiguity
• Clear in terms of whether they have been achieved. Is the objective attained

upon submission? Approval? Sign-off by users?
• Spaced along the life of the project. In this way, it is easy to monitor progress.

It is usually hard to place deliverables during the development phase, especially
if development of different modules or functions occurs simultaneously.

• Usable. Preferably, the deliverable should be of actual use to the project, and not
merely for the purpose of project tracking, so that the effort in producing this
deliverable is not wasted.

Sample of badly defined milestones includes:

• % completion of development—because this is hard to measure and have to take
the vendor’s word for it, it is also normally too long a phase which would
require milestones within it.

Fig. 7.6 Sample deliverables checklist (partial list shown)

7.3 Project Monitoring and Control 177

• % tested—if this is not measured by pass/fail, then it is a bad measure because it
is not objective. Testing typically requires several iterations of testing.

• Blueprint defined—again, the blueprint may have been drafted, but there is no
guarantee that the blueprint is correct nor accepted. If this immediately leads to
development without proper acceptance, it is a “false” milestone.

From the PMs’ point of view, projects will also be monitored and controlled by
means of regular project update meetings, usually weekly. During these meetings,
the documentation mentioned above is reviewed, analyzed, and major issues raised
for clarification and decision-making. The risk analysis register, if utilized, will also
be updated.

These project update meetings should be kept short (1 h), unless (exceptionally)
there are a lot of topics that need to be covered. Mandatory in these meetings is the
presence of the 2 PMs; the rest of the attendees will be invited depending on the
communication plan decided. From time to time, key users, the portfolio manager,
project sponsor, project team lead, key personnel from the Customer’s Operations
and support team will be invited, if and when their involvement, inputs or decision
is required.

7.4 Project Team Roles and Responsibilities

Project team members, stakeholders should have clear roles and responsibilities.
Generally speaking, the PM should be the single point of contact and singly
responsible for the delivery of the whole project. He shall also be in charge of:

• Scope mgmt.
• Time mgmt.
• Cost management
• Quality
• Resources
• Risk Management
• Asset Management
• Governance and reporting
• Communication management
• Procurement and contract management

The roles and responsibilities of the other project team members (whether full-or
part-time) shall depend to a large extent on the type of project, structure and model
used by the client and vendor organizations. Some of the typical roles that exist are
(thosemarkedwith * aremore uncommon, V refers to a vendor role, C to a client role):

• Business Analyst (V)—is a functional expert that will be in charge of capturing
and translating business requirements into functional specifications for the
design and configuration of the application, as well as codes that need to be

178 7 Project Governance

developed. Many times, the analyst is also in charge of executing the config-
uration changes on the application.

• Programmer (V)—is the person that will code using the pertinent programming
language as per the specifications developed by the Business Analyst.

• Technical manager/System Architect (V)—is in charge of determining the
necessary infrastructure for the execution of the project. Will also be in charge
of designing the overall architecture, as well as sizing servers, storage, and
determining hardware and software components needed, including network
requirements. Will coordinate extensively with the customer Technical Manager
to ensure the architecture is compatible, and complies with the customer’s
technical infrastructure and policies. His role in the project is usually temporary,
with a heavy involvement in the beginning when the overall architecture needs
to be designed, the functional specifications translated to technical specifica-
tions, as well as shortly before the go-live.

• Technical support personnel (V)—may include a Database Administrator,
Network Administrator, System Administrator(s) that will each be in charge of
installing, creating, configuring, defining permissions and maintaining during
the course of the project the Database, network, Application(s) used, respec-
tively. Will communicate extensively with the client’s counterparts.

• Tester (V*)—will be in charge of defining the test scripts and running the tests
before UAT. These personnel may be a complement to the business analysts,
and will work closely with them, or is a role taken on entirely by the Business
Analysts.

• Documentation writers (V*)—will be in charge of the documentation of the
project, including process flows, end user requirements, manuals, etc. Is a role
also complementing that of the Business Analyst, and may be a role taken
entirely by the Business Analysts.

• Process experts (C)—are the end users that are experts in the business or
business processes that will be covered by the project. They will give infor-
mation, data, interviews, and should be the main approvers for the deliverables
of the Business Analysts, namely, the end user requirement documents, func-
tional design and specifications, as well as the main te sters during UAT.

• Technical support personnel (under the TM team) (C)—the counterparts of
the project technical support personnel, will be in charge of reviewing and
approving their corresponding parts which will later on turned over to them,
including sufficiency and clarity of documentation. They will also assist the
project (on a part-time, as need basis) for any requests for infrastructure.

It is important that the project team’s role be clearly defined from the beginning
of the project. A good moment to formalize these roles are during the kick-off, so
that especially the process experts are identified and they commit to the project (as
they are usually from the end users’ side). Specific roles can be displayed on a
screen or board, and the corresponding name written down. Their exact role during
the project should be well explained, and by having their boss during the kick-off
meeting, their role formalized.

7.4 Project Team Roles and Responsibilities 179

Aside from the project team itself, a steering committee may be needed for the
smooth conduct of the project. The role of the steering committee is to act as a body
that will guide, and if necessary decide and approve matters which cannot be
decided at the project management level. Some of these may be:

• Disputes that cannot be resolved at the Project Management level
• Decisions which affect policy or in which policy changes need to be made
• Conflicts which exists between different departments and which need to be

decided at a higher level (not a decision IT can or should make)

Aside from these, the steering committee meeting may also be called for:

• Progress updates
• Informing them of major changes that will happen due to the project
• Inform different departments that even though they are not directly part of the

project, but will also be affected somehow.
• Seek clearance for additional budget, scope or resources, if necessary.

The exact role and times the steering committee is called for a meeting will
depend on the type of project and the company culture. Some companies’ senior
management like to take a hands-on approach and be involved closely with IT
projects, especially if the project is strategic for the business, while others may
entrust the details to the IT Department, and just wish to be informed on major
milestones and progress. In any case, this needs to be determined as explained in
the Communications Management section.

7.5 Communication Management

Communication management policy indicates who should be informed and the
means and regularity to which they are to be informed. This is generally very much
project-dependent, but the policy should describe the bare minimum required. This
would normally be in the form of:

• Kick-off: the first formal project meeting with end users, PMs, and other key
stakeholders. This meeting is important in briefly describing the scope, timeline,
table of organization, methodology to be used, disseminating the communica-
tion plan for the project, details of the project governance (if needed), identi-
fying needed project resources and assets, as well as identifying and getting the
commitment of stakeholders needed in the project. For example, getting the
commitment in terms of time and dedication of the end users for the blueprinting
sessions and testing. The requested commitment should be as explicit as
possible.

• Project update meetings: normally weekly and preferably predefined in terms
of the date and time these shall take place, but depending on the phase, risk, and

180 7 Project Governance

criticality of the project, may be called for more often (every day in the 2 weeks
before going live, for example).

• Steering committee meetings—indicating the criteria to be used for calling the
steering committee for a meeting, or if regularly scheduled. Also important is to
validate the members of the steering committee meeting, which would generally
depend on the type of project (e.g., CEO, COO, CFO, CIO may form part by
default, Head of Logistics invited due to the project dealing with a logistics
optimization).

7.6 Scope Management (Including Change Requests)

As stated before, scope management is usually the single, biggest source of failure
in a project. Disputes commonly occur with regards to the inclusion and exclusion
of certain functions, as well as the perceived quality of the solution. This means that
scope should be as clear as possible upon the start of the project, and should be
handled correctly during the whole lifecycle of the project.

All IT projects are successively elaborated with regard to scope, while usually
maintaining quality standards and managing costs and resources to be as close as
possible to the baseline. As such, the level of scope detail should progress as the
project progresses in time. Take for example the standard documentation below,
which is arranged in the order of project start to project finish:

• Terms of Reference (tender document)
• Proposal
• Proposal clarifications
• Contract
• End-user requirements
• Functional design
• Technical design
• Blueprint
• Coding design
• User manuals

With each successive step, the exact scope of the project is being further elab-
orated in details (scope, quality). As most projects would be turn-key (fixed price),
the challenge of the PMs is to keep the scope within the reasonable bounds of what
was tendered (and successively detailed), so that no additional price or resources are
needed. Any specifications that do not conform to this are therefore called a change
request, which means that these are additional specifications that were not part of
the agreed-upon scope. Before we go into details of the change request, let us first
review the list of documents above, and try to understand how scope discrepancies
and misunderstanding between the two parties can be minimized.

7.5 Communication Management 181

Firstl, it must be understood that what is binding to both parties is the scope of
work as detailed in the contract. This is a legally binding document which, in case
of disputes, is the primary document to be consulted and defended in case of
arbitration or any legal actions taken to resolve the dispute. As scope has been
successively detailed from the moment the project was tendered, it is important that
the contract correctly capture all these details appearing in documents elaborated
and agreed upon by both parties between the moment of tender and the moment the
contract is signed. One way to do this is to write into the scope of work
(SOW) what was agreed, including all those agreements during clarification
meetings and presentations, and include it as part of the contract. This may take
time, first to draft, making sure all points discussed are reflected, then to review
from both sides and agree. A simpler way to do this is to just mechanically attach all
relevant documents as annexes being referred to by the main, standard contract
(which should not be changed). Thus, the terms-of-reference released by the client,
the proposal submitted by the vendor, and the minutes of the meetings between
both parties with all agreements and clarifications should be attached, and their
precedence (in case of conflicts between them), stipulated in the main contract. In
this way, all agreements including clarifications are made contractually binding.

Another important advantage of this method is that the contract can be stan-
dardized (more in Sect. 5.1.3), and the vendors’ commitments stated in the proposal
made part of the tender contract. After all, who has not experienced of vendors
indicating something in the proposal which is eventually “forgotten” as it was not
explicitly indicated in the contract. Furthermore, having the vendor aware that all
replies in the proposal are in fact contractually binding, they will in fact think twice
before overcommitting or even bending facts just to win the contract.

Let us now go back to the topic of to change requests. Although change requests
are a dirty word in many organizations, they need not be so. Properly managed
change requests can in fact be very useful, as will be explained shortly.

The first and most important tool for identifying possible change requests is the
request registry. As explained, any request that has been flagged by any stakeholder
is to be registered into this document for further analysis. First, it needs to be
analyzed whether the request is actually outside the SOW. If so the next question is
whether this request is reasonable, in terms of:

• Functionality and usability. Is it really necessary or is it a nice to have? Is this
only an individual’s request or is a functionality which will be used by many?

• Is it a key requirement? Such that, not having it will be a major issue.
• Cost. How many man-days estimate? If not quantified yet, at last have an idea

whether this is a major change or if it is just a small effort.
• Timing. Is this necessary now before going live or can it be taken as an

enhancement in a subsequent phase? If included into the current project, will it
affect the overall timeline? Will it form part of the critical path?

• Resources. Are they available for this within the project’s current table of orga-
nization? Or should they be sourced externally? How long will it take to source?

182 7 Project Governance

http://dx.doi.org/10.1007/978-3-319-38891-5_5

Take note that cost is just one of the evaluation criteria, not the only one.
Whether the requirement is key or not usually has much more weight as compared
to other criteria. One needs to take into account the overall cost, not just the IT cost,
which many times is forgotten. In other words, not having that additional scope
may impair operations considerably, resulting in much more work, effort, lower
customer experience or additional operational cost which must be weighed versus
the IT cost. It is in fact the job of the CIO to weigh all these factors (especially if it
is a big change request, otherwise it can be handled by the PM or Portfolio
Manager.) and make a decision. It is also the job of the client PM to make a
recommendation, and it is especially important for him to weigh the advantage of
including that additional scope versus the additional cost, and very importantly, the
additional time delay and risk that the change request will introduce. Sometimes,
introducing the change immediately may not impact the overall timeframe too
much, but it carries the risk that every whim and fancy from the end users to include
additional scope (assuming here that they were the ones to raise the request) will be
accepted. If that then becomes the culture, then all these additional requests will
eventually delay or even derail the project. If just for this reason alone, it may be
recommended to just keep the request in the request registry and have a subsequent
enhancement project to address these additional requests.

A sample of well-managed project creep occurred in a Business Intelligence
project which had its delivery outputs already signed-off by the users. When
development started however, some users realized that additional details on the
fixed assets reports were needed. Including these would have meant restarting the
development, so that instead, it was negotiated with the users to maintain them
as-is, test and approve, and have a subsequent phase for such modifications. This
was possible as these additional requirements were nice to have and further
refinements of the original scope, but were in no way essential in the sense that their
non-inclusion would invalidate the outputs.

Once the request has passed the initial screening, it now goes on to a formal
“change request status” and main responsibility for filling-up the details is now the
vendor’s PM. He now puts in motion his mechanism to formally propose the
change request:

• Identify main person who can estimate the change request tasks and effort
• Identify the resources needed for the change request and check availability
• If not readily available, check the constraints or ability to source from other

project pools or externally (subcontract)
• Identify the man-days for each resource needed to complete the change request.
• Cost the change request, including any margins applicable
• Get internal management approval

The change request proposal is then with the customer PM to evaluate, negotiate
(if needed) and approve or disapprove. If the man-day rates were included as part of
the contract then the money calculation of the change request is relatively easy and
the customer PM need only to verify that the effort is reasonable versus the request.

7.6 Scope Management (Including Change Requests) 183

In accordance with company and IT policy, the change request may need an
additional contract, addendum to the main contract, or may be accepted as part of
the main contract.

7.7 Risk Management

As explained in Sect. 5.1.7 risk management may be called for, depending on the
complexity of the project. The basic tool for this is the risk management registry,
which evaluates both (+) and (–) risks, their probability, impact, as well mitigation
steps. This would normally be done during the weekly project update meetings.
Special risk management sessions will also be called by the PM during times when
high-risk activities are drawing near, such as cut-over, data migration, release of
new enhancements, etc. The content of this report and techniques has already been
explained in the aforementioned section.

Policy should also indicate when to conduct risk management.
An example of how risk management can be extremely useful is that it is able to

identify actions for reducing the risk of commonly risky activities. From experi-
ence, risky activities include:

• Interfaces
• Customization of non-standard processes
• Data migration
• Cut-over from a legacy system to a new system
• Cut-over from a legacy process to a completely new process (even if within the

same application)
• Revenue-generating processes (invoicing, billing, sales…): this is due to the

huge impact it may have on the company
• Production-related processes (production planning, inventory, purchasing,

logistics, delivery)
• Regulatory compliance processes and reports
• Significant custom code used in an off-the-shelf application
• Processes involving major user change management

By conducting a risk analysis way before the risky activity is undertaken, it is
possible to come up with practical, mitigating factors to address them.

Take the example of migration from a legacy marketing system to a new
marketing system. First, one of the risks identified was the quality and reli-
ability of the customer data. As such, several actions were taken:

• Verify the accuracy of a sample of the data. From here it was determined
that customer profile, address and contact numbers were dirty;

184 7 Project Governance

http://dx.doi.org/10.1007/978-3-319-38891-5_5

• Conduct a customer cleansing campaign where these details were verified
via email and calls from agents trained appropriately

• Final cleansed data loaded, in order to minimize the risk of error, a sample
slice of the data was also loaded into the new marketing system for testing
and verification, not only of the loading process, but also of the subse-
quent marketing process triggered by this data

This actually minimized the number of errors in the data, which in turn
minimized errors in the process due to wrong triggers, resulting in a much
shorter post-go-live cleanup process and better customer image.

7.8 Asset Management

Assets assigned to a project are the responsibility of the PM until formal turnover to
O&M. This means that servers, environments (which are not being used in pro-
duction), switches, laptops and other devices are her responsibility. Not only is the
PM accountable for the physical asset, but also for all intangibles such as instal-
lations, configuration items and the like, within these assets.

This has special relevance in the release management procedures because assets
that are under a project (unless shared with O&M), are the full responsibility of the
project team. In fact, as explained in the Chap. 6 under cut-over procedures, any
environment will be the responsibility of the project team until going live, and will
only go-live once accepted by O&M.

Why should O&M have a role on the go-live? This is to ensure that the project
team has made enough effort to convey and document what has been done for the
project in terms of the configurations, environments, etc. As one can imagine, the
project team is in a hurry to finish and turnover the project, as any delays means
additional cost or breach of the original planned timelines, however, as it is the
O&M team that will eventually support the whole application and infrastructure,
they must be able to understand what has been done, and this necessarily needs to
be done before going live, even if there is a warranty period in which the vendor is
still addressing project-related issues.

The other reason why O&M must have a say is to ensure that all work done by
the project team conforms to IT standards and policies. While it is the job of the
customer PM to ensure this is so, in reality, it is impossible for the PM to be
knowledgeable of all technical details, because her knowledge is also limited.
However, as the project will be turned-over to O&M, it is in fact a must that the
O&M team understands the details of the application and infrastructure so that they
can support it in the future. Either they would have the knowledge for the tech-
nology being used, or they should be required to acquire that knowledge before the
turnover, in the form of trainings, handholding, and other transition activities.

7.7 Risk Management 185

http://dx.doi.org/10.1007/978-3-319-38891-5_6

The responsibility over an asset becomes more complicated when the asset
and/or environment is shared. In this case, the policy “Operations rules” applies,
which means that overall responsibility will fall under O&M because as the system
is in production (or under O&M’s responsibility), any changes, releases should not
impair production, and thus, approval from O&M is needed for any release. How
this is actually done depends on the situation. When it comes to applications and
their environment, three possible scenarios exist:

Scenario 1: O&M not conducting any changes in DEV, QA environments

This may be because there are very few requests and releases being undertaken
for the application, or it may be by imposition. The latter is when a moratorium on
changes is asked for by IT in order to undertake this major project. This of course
may not always be acceptable or possible, and must be consulted with the different
user departments affected. It simplifies cut-over, but if used too often for major
systems, it will irritate the users. This is however the most risk-free scenario.
Figure 7.7 illustrates which team is responsible for what environment.

As the project team shall be managing directly the DEV and QA environments,
it is wise for O&M to conduct a backup of both before the responsibility is handed
over to the project team. In this way, full restoration of the previous configurations
and data can easily be done in case something goes wrong.

Scenario 2: project team is given a separate DEV, QA environment

This solves the problem of changes being made by two separate teams which
may have conflicts between them. Of course, there will be no conflicts initially, but
once both changes are tested on the same QA server, that is the moment the
conflicts will become apparent. This initial scenario wherein both are using separate
environments is represented by the diagram shown in Fig. 7.8.

However, at some point the configurations and changes made by the project team
must be tested all together along with those made by O&M as shown in Fig. 7.9.

The dotted line arrow from the Project DEV to the O&M Dev shows how the
new project releases must be reproduced into the O&M DEV. These configuration
changes must often times be done manually (would depend on the ability of the
application to support releases), so there is a risk of course that changes not be
reflected completely or correctly. The changes would be reproduced by the Project

Fig. 7.7 Project team in charge of DEV, QA, while O&M in charge of PROD setup

186 7 Project Governance

Team into the O&M DEV, and subsequent releases into QA and PROD will be
done by the O&M team. Take note however that exhaustive regression testing
needs to be done again both by the Project Team and O&M in the O&M QA, to
ensure that no conflicts have occurred between the two teams’ changes. Conflicts
will need to be resolved by analyzing one by one their interdependencies, rolling
them back, and retesting. Sometimes, this alone can be a major effort if changes
were done on common functions or submodules.

An example of scenario 2 which we undertook is when we reconfigured the
warehouse module of the existing ERP. Even while changes were being made
in this module as part of operations (there were outstanding changes that
could not be stopped) changes also were needed due to the warehouse
module’s major reconfiguration. To do this, a separate DEV and QA envi-
ronment for the project were created and the project’s development, testing
and training proceeded independently to that of the releases and environment
used by O&M. Once all the changes were accepted in the Project QA, these
now had to be redeployed in the O&M DEV, by reproducing these changes
manually (i.e., reconstructing each configuration change, one by one), then
releasing them into the O&M QA and retesting all these changes again, as

Fig. 7.8 Scenario with DEV,
QA environments separate
from O&M’s

Fig. 7.9 Copying of releases
from Project DEV into
Operations’ DEV

7.8 Asset Management 187

well as doing a complete regression testing so as to guarantee that the changes
had no untoward impact to other CIs.

Scenario 3: DEV, QA environments are shared

The advantage of this approach versus scenario 2 is that conflicts are detected as
they arise, meaning, once the testing is done in the common QA and maybe even as
early as in DEV. This is conceptually illustrated in Fig. 7.10.

Both the project team and the O&M team conduct their changes directly into
DEV, and test on the same environment, however, all releases are O&M’s
responsibility. Releases can thus be analyzed first for possible conflicts before
releasing into QA, and can be rolled back easily before the releases accumulate.

Which scenario to choose? This would depend to a large degree on the number
of releases being undertaken by O&M, the feasibility of calling for a freeze, as well
as an analysis of which scenario will ultimately be easier to manage.

For pure infrastructure projects, the approach may be different if the infra project
does not have the possibility of testing in DEV, QA environments. Attaching
infrastructure directly to the current infra usually has an effect, as it is not easy to
directly separate interdependencies. In such cases, what is usually recommended is
to test in some separate environments:

• Laboratory environment—a contained, isolated environment which is used
primarily for testing

• Pilot implementation—a selected group of users to use the infrastructure

Lab environment and pilot implementation are not always possible, as there is
infrastructure which to really fully test, must be configured to run directly into
production. Sometimes as well, to setup a test environment is so much work that it
is not practical to do so.

Take as an example, a new firewall that is to be deployed. Even though the
defined policies may have been tested thoroughly in a contained environment,
deployment to production, when exposed to the live internet connection and

Fig. 7.10 Scenario with common DEV, QA shared by both project and O&M

188 7 Project Governance

actual users, expose it to conditions which may not have been considered at
all in the lab environment, and so policies and CIs would normally have to be
tweaked once in production to fine-tune and attain the desired performance.
Examples of this are policies which inadvertently created a loophole for traffic
to pass through when it should have been blocked, (for example) due to
authentication policy issues that were not apparent in the lab environment.

7.9 Issue Management

Project issues and related incidences are first and foremost managed using the issue
registry as defined above. Issues may in fact be varied in nature, but all should be
registered and handled by the respective PMs. Typical issue types include:

• Infrastructure-related: insufficient capacity, incorrect CI, performance issues
• Configuration related: incorrect configuration
• Noncompliance to scope: did not comply to blueprint or other detailed

specifications
• Test failures
• Availability of users: no testers, no trainers, no sign-offs, delayed sign-offs,

difficult users
• Availability of training infrastructure: no training rooms, PCs not properly

configured
• License-related: license expired, no QA license

It is important to flag the issue and identify the person responsible for addressing it.
This list will be reviewed as part of the regular project monitoring and control activities.

An important aspect to take into account for system application and
infrastructure-related incidences (a subset of all issues), is that their resolution, root
cause and any work-around applied need necessarily to be documented as part of
the knowledge-base, this can follow the same document standard used for O&M’s
Knowledge Base (see Sect. 4.5). It is important to document these not only for the
project team, but that these are turned-over to the O&M team as well.

7.10 Release Management

Release management for projects is much simpler than for operations as changes are
not yet in production until the moment of go-live. As such, they should follow the
release management procedures as defined in the earlier section (Asset Manage-
ment). Once the project goes live or if the project is sharing some environment with
O&M, then the procedures for release management used by O&M are then to be
followed. Remember that the general rule is only 1 unit is responsible; there cannot

7.8 Asset Management 189

http://dx.doi.org/10.1007/978-3-319-38891-5_4

be two responsible for releases. As such, O&M is always responsible for envi-
ronments that are shared and has the last say in authorizing any releases.

Release requests are preferably handled through the Service Desk system and
would follow the normal escalation procedures defined in it by O&M, and either
direct access to the Service Desk is given to the vendor, or the client’s PM raises the
request on their behalf. Interdependencies between releases should also be taken
into account when requesting for the release, such that any sequence that needs to
be followed is to be indicated. All releases should also have a rollback procedure, as
explained under O&M release management (see Sect. 4.4).

Releases that cause errors or incidences should be flagged and if needed,
rolled-back, and they should trigger the issue management procedure including the
documentation of solutions in the Knowledge Base, as explained earlier.

7.11 Infrastructure Capacity Management

Infrastructure needed by the project should also be defined during the proposal
stage, so that the customer is made aware of the needed infrastructure, can provision
for it, or start a purchase in case the hardware and other infrastructure is not
available. Provisioning of infrastructure can be made using the regular request
management process in O&M, which will undergo all the necessary approvals. It is
of course important that even upon tendering, the vendor indicate how many
environments are needed, as well as the particular requirements for each. Typically
these would be DEV, QA, PROD, but additional TRAINING environments may be
needed if development and testing is to continue in parallel with training. Other
particular requirements should also be made clear.

Specifications for each environment given by the vendor is a starting point, however,
as we all may very well know, sizing infrastructure is an art, not a science and is never
exact. Most sizing tools ask for parameters which are hard to obtain, assumptions need
to be made, some of which are wild guesses at best. As such, it is really upon going live
that capacity aspects can be tweaked. In the past, since all servers were physical, this was
difficult. Either you procured hardware with considerable buffers, or you would run the
risk of falling short which would mean a delay in having to procure the additional
hardware. Nowadays, with the prevalence of virtualization and cloud computing this
endeavor has become much easier, as virtualization allows you to allocate resources on
the fly,with little or no downtime. It thus becomes crucial tomonitor hardware resources
upon going live and tweak these accordingly till the desired performance is attained.

It is important that the technical specifications and architecture of the infras-
tructure be defined and agreed upon shortly after the project kick-off. This may
seem difficult, but is necessary in order to avoid bigger problems later on. The
architecture has to conform to several aspects of the client:

• Must conform to its standards in terms of hardware and software used
• Security compliance
• Sufficient capacity

190 7 Project Governance

http://dx.doi.org/10.1007/978-3-319-38891-5_4

It normally takes several sessions and discussions together before agreement of the
final architecture is reached. This is a good exercise, because pros, cons are discussed,
and the architecture dissected and analyzed for possible risks and noncompliance.

One particular painful experience which we lived was in a data mining project
which had several software components running at the same time. In this case
the vendor assumed that the ETL server could reside in the same machine as
the data mining server and went live without previously verifying the
architecture. The result was that the performance of the different applications
was very slow, so that the whole architecture had to be redesigned, and all the
different software components reinstalled, reconfigured, and the applications
retested resulting in a 20 % delay in the project. All this could have been
prevented by first verifying and getting a sign-off on the proposed
architecture.

7.12 Request Management for Projects

Requests may be of many different types and forms. Generally speaking, there are
two types of requests:

• Those affecting project resources only; and
• Those affecting O&M (production mainly)

Both are reflected into the request registry as explained earlier. The first type are
handled and resolved by the two PMs, they are basically related to scope management
as explained in the earlier section and thus follow the change request procedure as
explained under the scope management section. The second involves O&M, and as
such, it is best handled by initiating the request in the normal way any operations
stakeholder does, usually through the service desk. Common types of such requests are:

• Request for release (to QA/PROD)
• Request for additional infrastructure
• Request for change (to be handled by O&M)
• Request for backup/restore
• Request for development. This is in case any development needs to be under-

taken by O&M, a typical example of this would be for interfaces, in which
development needs to be undertaken at the system being interfaced to, by the
project

• Request for QA refresh. This is to refresh QA with updated data, which is
usually a copy from production

7.11 Infrastructure Capacity Management 191

The project team is seen by O&M as just another user, and its requests are thus
handled in the same manner as all other requests, except that their requests need to
be necessarily endorsed and approved by the customer PM, as well as approved by
the authority defined to approve such project requests (either the Portfolio Manager
or the CIO, depending on the type of request). Approval levels should be clearly
delineated by the policy, as well as the priority levels as assigned jointly by the PM
and the Head of Operations.

If the project requests are to be routed via the existing O&M Service Desk, then
it should be clear that this is the method, and not just a verbal request.

7.13 Code Development Guidelines

Code development guidelines encompass the necessary aspects that need to be
followed by the project code developers. These may include:

• Naming conventions for programs, objects, tables, variables, etc. Should also
indicate common best practices, such as not hard-coding values into programs,
using relative (vs. absolute paths), and others.

• Documentation format and details required. As it is very difficult for a person
not involved directly in the development of the program, all code should come
accompanied with a functional description of what the program does. Also, to
make it easier, each program should contain a header with the mandatory
information describing the program.

• Network Domain name conventions. Should also specify the avoidance of using
IP addresses, as these change over time.

• Error and exception handling.
• Message types and convention.
• Tables and objects. Description of mandatory fields, as well as necessary

descriptions for each.
• Indexing. When and how to create indexes.
• Performance standards. Includes treatment and usage of dead code, subroutines,

nesting, conditions, CASE statements, SELECT statements, and all other code
types which structure may have a significant impact on program performance.

• Use of standard interfaces. This should be used in interfacing the application.
• Code security. In order to avoid commonly known break-in mechanisms such as

buffer overflow, SQL injection and the likes.

Nowadays, there are tools which check the validity of the code based on the
defined standards, so that it scans through the code and detects noncompliance. It is
highly recommended to use these tools as they save considerable effort in checking,
and can be given to the project team for them to self-check.

192 7 Project Governance

7.14 Test Guidelines

Testing guidelines should specify the type of tests to be undertaken and by which
party. Testing has been described already in Sect. 5.5 and Sect. 7.8 previously. As
the types of testing are very much project-dependent, specific test guidelines need to
be agreed during the project start. Types of testing required may include:

• Unit testing—mandatory, conducted by vendor.
• Integration testing—mandatory, conducted by vendor.
• Regression testing—needed only if change is undertaken on an application

currently in production, or if a change is to be performed on an already accepted
application (retest). Some amount of testing is to be undertaken by the vendor
and O&M, more exhaustive testing by the end users. If the change is only a
technical upgrade or patch, testing may be conducted solely by O&M.

• User Acceptance Test—mandatory, only after the above have been undertaken.
• Stress testing—optional, depending on the criticality of the application and

feasibility for conducting stress testing.

Details on testing techniques can be found in Sect. 5.5.

7.15 Training Guidelines

Training is many times the make or break for the success of a project, as the
project’s success depends to a large extent on the acceptance by the users. Training
however, is commonly neglected, rushed or is an afterthought of the PMs. It is
commonly taken for granted.

As such, training guidelines should be as explicit and detailed as possible.
Different trainings should be undertaken for different stakeholders:

• End user training. Main users of the system should be taught how to use the
system. This means that manuals need to detail up to the transaction level,
complete with screenshots and step-by-step guide on how to transact. User
reference manuals also complement these, which is a manual of all commonly
used functions and transactions in the application. It is however not enough to
teach how to transact; the users must also understand why the process has been
designed that way, so that an overview of the process needs to be explained to
them. Different end users will use different transactions, so trainings must be
specific for each particular user type.

• System Administrators’ training. Knowledge transfer for the benefit of the
O&M TM team. It should enable them to maintain, support, and in some cases
reconfigure the applications and infrastructure in the future. It should cover
architecture design, network specifications, databases, hardware, configuration,
maintenance and upkeep procedures, and how to maintain the systems’ roles

7.14 Test Guidelines 193

http://dx.doi.org/10.1007/978-3-319-38891-5_5

and permissions. These are the administrators of the system that will subse-
quently keep the systems running.

• Operators’ training—focused toward the day-to-day operations that will need
to be conducted by ITOM. They are normally the batch processes used in
producing the necessary outputs.

• Application Management training—for the benefit of O&M’s Application
Management team, will cover the overall architecture of the solution, the pro-
cesses implemented and the rationale for them, the current configuration setup,
as well as how to maintain (change) the configurations when future changes are
undertaken on the system.

• Developers’ training—is a discussion on the code utilized for the project. If
this is a technology new to the developers then, depending on the contract,
should also include the necessary training on the technology. If not part of the
contract scope, then the O&M developers shall have to undergo through a
separate external training before the turnover trainings.

• Overview trainings—this may be sessions organized for the benefit of those
O&M personnel and IT management not directly involved in the project nor in
the turnover but which need to be informed on the general aspects of the project.
It shall be a condensed version of the above mentioned trainings.

• Train the trainers session—this will not only consist of the training material
for the final end users, it is also more elaborate in explaining the processes, and
should also contain notes, guides and FAQs that will be used by the trainers in
replicating the training. From experience, the more effective trainings are those
that “tell a story” and not just give rote pointers on how to do things because
people remember better when it follows a story line. This means normally
following a process from beginning to end, even if they are not the user involved
in all these steps. As an example, it is easier for a maintenance engineer to
understand and follow what he has to do when the whole maintenance process is
explained (From planning, scheduling, release of the maintenance orders, ful-
fillment, completion of the maintenance order details, closing, and analysis of
reports), rather than just telling the maintenance engineer the different fields he
has to fill, the click buttons he has to press, in a mechanical way.

All the trainings that are to be lined-up as part of the project need to be identified
in a training plan. This training plan explains the training strategy and includes such
details as:

• Type of training
• Recipients of the training
• Estimate on the number of trainees
• Person to conduct the training
• Approach taken for the training (Train the trainers, training of all personnel)
• List of associated material needed for the training

194 7 Project Governance

• Point in time the training will be imparted (before going live, during the support
phase, etc.)

Reverse knowledge transfers (reverse KT) are also a very effective way to both
train trainers, as well as verify whether they understood. This method consists of
teaching the future trainer on what he has to do, and thereafter asking her to in
return teach the trainer that taught her.

7.16 Backup and Recovery Guidelines

Should state when backups are to be conducted, by whom, and the type of backups
(see Sect. 6.1) to be utilized. The actual execution of the backup may be performed
by the O&M team; however, the project team must trigger the request. A typical
point in time when a backup must be conducted includes:

• Upon finalization of the s/w installation
• Regularly for the DEV and QA servers (full and incremental backups as

determined by the schedule)
• In case DEV and QA are also being used by O&M, right before any changes are

started by the project team
• Upon finalization of the unit testing (DEV, QA)
• Before the release of the changes into production (PROD)
• Before applying any major patch
• Upon acceptance of the patch

Recovery can be initiated in case of major failures which can neither be fixed or
take too long to revert without initiating a recovery procedure. If it is in an envi-
ronment also handled by O&M, PM must necessarily seek O&M’s approval.

7.17 Pre-go-Live Guidelines

These will encompass many of the points discussed in Chap. 6, which are needed as
part of the cut-over plan. Pre-go-live guidelines will normally include the
following:

• Approved cut-over plan
• Approved data migration plan
• Successful data migration sign-off—in case it must be executed before go-live.
• UAT completed and accepted
• List of manuals and other materials to be used by the users and O&M in support
• Preparation and briefing for the 1st and 2nd level support teams
• FAQ for the Service Desk personnel
• Full backup

7.15 Training Guidelines 195

http://dx.doi.org/10.1007/978-3-319-38891-5_6
http://dx.doi.org/10.1007/978-3-319-38891-5_6

• Pre- and post-go-live checklist. This is a checklist as prepared by Technical
Management that indicates the condition of a resource, application or function
before and after the release. It is used to verify that the release was successful,
by comparing it to the prerelease condition, which should either match, or if not,
have an acceptable reason for the discrepancy. It is the first check after com-
pleting the releases to make sure that these were successful

• Password change test—it is crucial that O&M’s Technical Management group
be handed over the new password. As such, they should test that it can be
changed without problem, even before going live

• Operations Manual
• Acceptance by O&M of Knowledge Base from project team
• Advisories to users. Indicating any downtime, as well as informing them of the

new releases
• Go/No-go signed decision by the CIO.

7.18 Post-implementation Support Policy

As explained as well in the cut-over Chap. 6, post-implementation support should
be agreed-upon by both parties at the start of the project. Warranty for any hardware
shall be processed by the project vendor (if procured through them) if any incidence
occurs during the project.

Regardless of who actually conducts the first level post-implementation support,
O&M or the vendor, any defects and incidences detected during the contracted
period of post-implementation support is the responsibility of the vendor. That
means that even though 1st level support was, for example, already transferred to
O&M, if they are unable to resolve the issue, it now escalates to the vendor for
resolution. The policy should be clear in that all tickets still OPEN at the end of the
post-implementation support phase shall still be resolved by the vendor, even if
after the contracted period.

As a practical example, if post-implementation support was 3 months in
accordance with the contract, but on day 3 months—1 day, there were still 8
incidence tickets open with the vendor, then these shall have to be resolved by the
vendor even after the 3 month period elapses. If this were not the case, then all the
vendor needs to do is just sit it out and wait for his contractual period to lapse,
without having invested any effort in their resolution.

Other aspects the policy should cover are:

• Required minimum handover sessions to the O&M team for the support. O&M
team must sign-off its acceptance.

• Turn-over of all manuals and project documentation to O&M
• Turn-over of all Knowledge Base documentation to O&M
• FAQ session and materials to Service Desk operators so as to maximize first call

resolution

196 7 Project Governance

http://dx.doi.org/10.1007/978-3-319-38891-5_6

• Uploading of all relevant documentation to the User support portal
• Formal handover and sign-off of first level support to O&M with the sign-off as

well from the CIO.

7.19 Service Desk Usage Policy

Indicates the manner in which the project team shall be allowed access to the
service desk, and how its requests will be escalated. Before the go-live, the project
team shall be given access to the service desk for it to file any relevant project
requests, just as any user would. After the go-live however, the service desk must
be setup to process incidences and requests in accordance with the warranty support
agreed upon, concretely, who will be in charge of first level and second level
support as explained above.

7.20 Security Guidelines

Generally follows the security guidelines used by O&M and that for end users.
Additionally, project security guidelines may explain the policy needed for granting
remote access to systems. Generally speaking, no PROD access is to be given to
project personnel and remote access to DEV and QA should have permissions
limited to those modules or transactions strictly being developed. No Super user
rights should be given to project personnel unless these environments are their sole
responsibility, which should nevertheless be limited to DEV and QA only.

Further Reading

Harmer, G., 2014. Governance of Enterprise IT based on COBIT 5: A management guide. Ely
(United Kingdom): IT Governance Publishing.

ISO, 2011. IOS/IEC 20000-1 International Standard. Switzerland: ISO/IEC.
ISO/IEC, 2015. ISO/IEC 38500:2015, Switzerland: ISO/IEC.
Kunas, M., 2012. Implementing Service Quality based on ISO/IEC 20000. 3rd ed. IT Governance

Publishing.
Weill, P., Ross, J. 2013. Executive’s Guide to IT Governance: Improving Systems Processes with

Service Management, COBIT, and ITIL. Wiley.
Weill, P., Ross, J. R., 2004. IT Governance: How Top Performers Manage IT Decision Rights for

Superior Results. 1st ed. Harvard Business Review Press.
Selig, G., 2008. Implementing IT Governance: A Practical Guide to Global Best Practices in IT

Management. 1st ed. Van Haren Publishing

7.18 Post-Implementation Support Policy 197

8Agile-Scrum Project Management

8.1 Introduction and Basic Concepts

Agile-scrum methodologies have become very fashionable of late. Since most of us
are familiar with the waterfall methodology, and most of this book’s project
management methodology is based on a waterfall approach, let me contrast the two
project management methodologies for easy understanding, this is shown in
Table 8.1.

One of the original attractions of SCRUM methodologies was in focusing on the
output: delivering the application, rather than in intermediary tasks devoted to the
analysis and documentation, it also gives a lot of importance to teamwork and
informal organization in producing these outputs. More of this will be explained in
the next sections.

8.2 Basic Components

Teams are formed based on concrete objectives that need to be attained, and each
team is given a very general set of objectives. For example, an objective can be
something as high-level as:

• Developing a fitness application
• Adding user feedback mechanisms to a social media application
• Improving interactivity in an adventure game.

The idea is not to start the project with a predefined idea and scope of what is to
be done, but to iteratively develop this with the team. In order to do that, the end
user devotes a lot of time in the project in validating and prioritizing outputs. As the
eventual user of the system, his role is called “Product Owner.” On the other hand, a
“Scrum master” is basically the team member responsible for ensuring that the
whole team is working well together and the agile-scrum methodology is being

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_8

199

followed, and should preferably be certified so as to guarantee correct implemen-
tation of Scrum.

Figure 8.1 illustrates what a typical agile-scrum team would look like.
In this figure, the development team is usually composed of a small number

between 4, but not more than 10 people who have cross-functional roles, meaning,
they can all do the same functions and are not specialized. Some of the other
characteristics of the development team are:

• Developer. Each team member is called a developer. This is basically due to the
origins of the methodology, which was for custom development projects.

• Self-organized. Each team member can pick up a task for him to undertake, he
need not wait for the task to be assigned to him. Furthermore, each task will
require a complete iteration of design-development-testing-fixing, so that it is up

Table 8.1 Waterfall versus agile-scrum methodologies

Waterfall methodology Agile-scrum

Has very distinct analysis and design, build,
test phases

These phases exist, but not in sequential order
as they are run iteratively within short,
repetitive periods called sprints

Requires detailed documentation of design to
be done

Requires minimal documentation, in extreme
cases, the code is the documentation

End-users are consulted for their
requirements during the analysis phase

End-user representatives are an integral part
of the project and are involved during the
whole duration of the project and regularly
consulted

After the design is signed-off by the users, the
build phase is conducted which will adhere to
the signed-off specifications

Build is an inherent and iterative process,
users are presented with the result, from
which they critique and modifications or new
features are added

Scope is clearly defined at the beginning of
the project

Scope is iteratively decided upon as the
project progresses

Project teams can be large, composed of
many different skillsets of people

Project teams are composed of 6–12 people
maximum

Heterogeneous team with distinct, specialized
skills per team member

Homogeneous team, tasks can be
accomplished by any team member

Fig. 8.1 Typical agile-scrum
team

200 8 Agile-Scrum Project Management

to her to organize these steps in order for her to complete the tasks she has in
progress.

• Own the sprint backlog. As will be explained later, an iteration for developing
tasks is called a sprint, and those tasks that have not been completed are
essentially part of the backlog. Now aligned to the spirit of self-organization,
this backlog is actually a common backlog for the whole team and each
developer in facts “owns” it, so that each and every party has the responsibility
for reducing the backlog to attain the desired, common objective.

On the other hand, the Product Owner has the following roles:

• Owns the Product Backlog. Similar to the developers, he also owns the pro-
duct backlog and has a stake in the project, but he is in charge of prioritizing the
backlog from most to least important.

• Represents the users. He is the main representative, and as such, is aware of
what the users actually need, so that he prioritizes the backlog user stories (as
will be explained later) and tasks that evolve in trying to meet the overall
objective. He must have the vision of what the team is trying to build.

• Communication. He should be able to communicate and transmit to the team
effectively the objectives of the project, and must be actively engaged with the
project team. At the same time, he is also the key person for communicating to
stakeholders outside the project team.

As not all products are deployed for internal consumption, in some cases, end
users may actually be the general populace or consumers accessing the application.
In such cases, the Product Owner may be someone from sales, marketing, or other
department that has knowledge of what the users may be looking for or may want.

The Scrum master’s role includes:

• Acting as facilitator to the team
• Promoting agile-scrum best practices and ensuring these are being followed
• Working with the team in removing impediments that may surface as part of the

project
• Looking at ways to maximize the team’s productivity.

Again, one of the basic precepts of agile-scrum methodology is emphasis on the
interactions between individuals where each individual has quite a free hand in
undertaking his specific tasks for as long the output is delivered. This is in contrast
with the traditional Project Management approach in which a Project Manager
supervises, and assigns tasks, and also has a very rigid, predefined hierarchy. In
other words, there is more emphasis on the individuals’ skill sets and their inter-
actions in producing the work versus processes and tools to attain the work.

8.2 Basic Components 201

According to the Agile Manifesto (Highsmith 2001):

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity–the art of maximizing the amount of work not done–is essential.
11. The best architectures, requirements, and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

As you can see, if one is used to the traditional way of managing projects, Agile
is a radically different way of thinking and executing, and requires a different set of
skills and principles which need to be applied.

The question now is if so much power is given to the developers, how do we
now ensure that the project actually progresses, which brings us to the topic of:

• Product backlog
• Sprints
• Monitoring: Burn-down chart.

8.2.1 Product Backlog

First, when a product is to be developed a list of features or “user stories” are lined-up
for development. These user stories are jointly developed by the SCRUM team, and
are listed on a board. They are high-level statements of what the product should
contain and can be contributed by any of the team members. These user stories are
now in a pool and need to be prioritized for development by the project team.

It is the product owner that prioritizes the user stories based on his understanding
of what users would like, and therefore applies a forced ranking from most to least

202 8 Agile-Scrum Project Management

important stories on the product backlog, which conceptually, may be represented
as shown in Fig. 8.2.

From the product backlog, the top stories will then be picked for development in
the next sprint, as will be explained in the Sect. 8.2.2.

8.2.2 Sprints

Sprints are a basic component of Agile methodologies, and refers to a short period
of time (usually 1–2 weeks, but sometimes can be as long as 1 month) in which a
whole project timeline is sliced into. A sprint is a self-contained time capsule which
is repeated cyclically until the project is completed. This is shown in Fig. 8.3.

It is also important to note that at the end of each Sprint there is a deliverable of
the product which is basically in “Shippable” form. This means that although not all
features have been incorporated into the product yet, it has enough for it to be
released as a product, if the Product Owner would decide so. This is important, as
not only is the product successively and iteratively designed, but at the end of each
sprint or iteration, the product must be in working condition, even if limited in
features (James 2016).

Take the example shown in Fig. 8.4 for a 2 week sprint.
It shows some of the major activities done within the sprint that are explained

below:

• Planning. The first activity here is for the team to select the top backlog items
(user stories) which are to be developed in the current sprint. These will now
appear in the Sprint backlog, meaning, that these are the stories which need to be

Fig. 8.2 Product backlog ranking

8.2 Basic Components 203

finished at the end of the current sprint cycle. These stories are then further
subdivided into tasks. It is then ensured that the tasks committed for the Sprint
are clear, and that they are attainable given the time duration. Each task’s effort
is also estimated by the team, either in man-days or in story points, which
represent the relative complexity of the task.

• Development. This is when the Sprint has actually started formal execution
work. During this period, each team member picks up specific tasks from the
sprint backlog and moves them to the “on-going” or “Work-in-Progress” status.
This can be done on a board which displays the status of each task (the so-called
SCRUM board) as shown in Fig. 8.5.

Fig. 8.3 Sprints leading to final product release

Fig. 8.4 Sample 2 week sprint

204 8 Agile-Scrum Project Management

Development in turn, can be further subdivided into the typical activities needed
in order to develop (typically code):

• Design
• Programming
• Testing
• Fixing.

The developer would then move the task to “Done” once the whole development
cycle for the task has been finished (final test).

Each task picked up by the developer passes through this design-
program-test-fix process for the task until completed and the feature added to the
product.

• Daily Scrum—at the start of the day and every day, a daily scrum session takes
place in which each team member reports to the other team members what she
has done the previous day in terms of work, and what she will do today. It is a
short meeting (around 15 min), usually stand-up, which aims at informing
everyone on the progress of the tasks.

• Review meeting. This is a meeting in which the team presents to the product
owner and any other stakeholders interested in the product, usually toward the
end of the sprint, the potentially shippable product. The product owner discusses
which items are done, and which did not pass the acceptance criteria. It is also
an opportunity by the stakeholders to give feedback to the team on features or
changes they would actually want in the product. This is key, as stakeholders

Fig. 8.5 Sprint backlog on a SCRUM board

8.2 Basic Components 205

tend to be better at giving feedback once they have a working prototype, rather
than trying to conceive how the end-product would actually look like without
actually having anything tangible. The product owner can also calculate
velocity, as will be explained later.

• Retrospective meeting—happens at the end of the sprint, is a meeting between
team members to discuss what went well with their current process, and also
what can be improved. It is a session which aims to further refine and improve
the whole agile-scrum process, so as to make it more effective in the next Sprint
runs and is a session where members give feedback to each other. Typically, as
the team progresses, it develops more cohesion and would tend to improve for
each succeeding sprint cycle.

• Release Planning meeting. During this meeting, also toward the end of the
Sprint, the product backlog is revisited, and the next stories reviewed in
preparation for the next sprint. Based on the experience so far, the team may
then:

– Analyze the backlog to see how they fit into the next coming sprints, analyze
dependencies.

– Break some of the larger stories into smaller, more tractable ones.
– Review the prioritization to see if it is still adequate, and update it.

8.3 Monitoring: Burn-Down Chart

The basic project monitoring tool used in agile-scrum is the burn-down chart, which
in comparison with Waterfall approaches, is very easy to build, update and
interpret.

First, it is built at the start of each sprint, and used for the current sprint till its
very end; a sample is shown in Fig. 8.6.

The number of workdays is plotted on the x-axis, while the y-axis displays the
measure of effort for all tasks that are to be developed within the sprint. It may be
defined in terms of:

• Man-days
• Story Points—which are just an abstract amount time and effort needed to

develop the task, and which gives a relative weight of the task versus others.
This is usually preferred by experienced scrum masters due to the difficulty for
people in assigning man-days realistically.

Ideally then, if the whole sprint backlog is to be finished at the end of the sprint
with an equal distribution of effort for each day, it is then represented by a straight
line (blue, continuous line in Fig. 8.6). During each daily scrum meeting, the sprint
backlog is updated, and the burn-down chart is updated with all those “done” tasks.

206 8 Agile-Scrum Project Management

Say for example if on day 1, two tasks worth 1 and 2 story points are finished, then
on day 1, the y-axis (story points) shall show 47 (burned down from 50 by 3 points).

This is done every day, and the plot updates and shows whether the tasks are on
track, ahead, or delayed. In Fig. 8.6, we can see that the project was delayed from
days 1–3, but caught-up and was ahead of schedule from days 4–8, after which it
more or less followed the theoretical straight line.

Velocity can also be calculated at any given time, which gives you the
burn-down per day that the project team is achieving. If evaluated at day 6, for
example, the velocity would be 37 points/6 days = 6.17 points/day. The 37 points
calculated by subtracting the 13 points at day 6 from 50. This velocity is actually
faster than the initial estimate of 5 points/day.

8.4 Scope-Cost-Quality-Time Dimensions

First, let us examine the relationship between scope, quality, time, and cost in a
waterfall approach. In such turn-key projects the scope is fixed and defined at the
beginning of the project, and so is the quality by means of standards and other
qualifying factors for the deliverables. Time and cost are defined by the contract,
but it is the PM’s role to manage these so that the project finishes on-time and
within the contracted cost. He is to manage and minimize delays, project creep
(increase in scope), and check if the deliverables are of expected quality, while
keeping a control of the costs (usually due to the amount of resources committed to
the project). This relationship may be represented by a triangle as shown in Fig. 8.7.

Resources assigned to the project are variable, if the project is of fixed cost, then
cost overruns are to be absorbed by the contractor, if not, then these are picked-up
by the client. The challenge in most waterfall-type projects is to be able to define
the scope as detailed as possible in the beginning to avoid misinterpretation, as well

Fig. 8.6 Sample burn-down
chart

8.3 Monitoring: Burn-Down Chart 207

as to define good quality criteria and standards (usually the task of the portfolio
manager, under project governance).

On the other hand, agile methodologies start with no clear definition of scope,
and it is successively defined, together with quality. What is fixed, however, is the
number of resources assigned to the project (cost) and the time for the project to
finish. This is represented as shown by Fig. 8.8.

Thus, depending on the ability and cohesion of the project team, the scope and
quality may change accordingly as shown in Fig. 8.9.

This is not a problem because Agile project management is typically applied in
projects in which it is fine to release a partial product at the end of the project, and
can be compensated by a successive version of the product with more complete
features, less bugs. This brings us to the question on the applicability of agile-scrum
versus waterfall project management approaches.

Quality

CostTime

FIXED

Fig. 8.7 Scope and the 3 dimensions for a turnkey waterfall project

Quality

CostTime

FIXED

Fig. 8.9 Scope and quality varying in an agile-scrum project

Quality

CostTime

FIXED

Fig. 8.8 Scope and the 3 dimensions for an agile-scrum project

208 8 Agile-Scrum Project Management

Some of the basic criteria then for choosing agile would then be:

• Project scope is allowed to be ill-defined. This is of course applicable only for
certain projects which can permit such an output. Typically, large and complex
software development projects are very hard to define entirely at the start of the
project, so these are good candidates. Other areas are those in which bugs and/or
partial releases are acceptable to the end users. Examples of this are general
consumer-market apps. Users have gotten used to the fact that the app will come
with some bugs, and the fixes and additional features will be available in the
next releases.

• Project scope is difficult to define. Here the alternative is to opt for a time and
materials type of contract, or use agile methodology. Agile may be applicable
when the users/product owners can devote sufficient time to successively define
the product, as explained in the next point.

• Users/product owners can devote time. As agile-scrum requires regular
feedback from them, they need to devote a significant amount of time into the
project, necessitating their participation on a daily basis. The product owner
needs to be empowered in making decisions as well, so this is a necessary
prerequisite.

• Time is a more important factor than scope-quality. As there is a “hard stop”
in terms of release date, agile-scrum guarantees the completion of the project at
a particular date, what it does not guarantee is what the scope will be at that
release date. Again, depending on the project, this may or may not be
acceptable.

• Development. Most of the steps in the sprint are more applicable to program-
ming or software development projects in which there is more reliance on the
programmer’s creativity and teamwork rather than on a structured hierarchy. On
the other hand, Commercial Off-The-Shelf (COTS) software that requires
configuration is generally harder to undertake using this methodology, also
because it requires a heterogeneous team and because it normally touches on
business process (which is both discussed further in the next points).

• Visibility. As product is presented to the stakeholders, these must easily
understand what has been developed so far. This means that the product must
have very tangible, usually visible outputs; otherwise the stakeholders will find
it hard to comment and give feedback. It is for this reason that apps have also
been popularly developed using agile methodologies.

• Lack of complex business process. On the other end of the spectrum from
visibility lie deep business process functions and complex mathematical func-
tions which are hard to appreciate simply from presenting the product to the end
users. Business process cannot be simply “shown,” it needs to be dissected and
analyzed among many different end users of different departments affected, as
business process moves across departments.

• Homogeneous team. The development team in agile-scrum is homogeneous in
terms of skills, normally they are all programmers, albeit may be of different
maturity, but they are conducting the same tasks: design-programming-testing.

8.4 Scope-Cost-Quality-Time Dimensions 209

This is fine for a pure software development project, but in cases of COTS
where the programming is merely a small portion, and the larger portion of the
work requires configuration and business process and domain knowledge, then
team members are required to specialize, usually by module: finance, procure-
ment, HR, and also by technology: Java, .net, etc. It is hard for team members to
act collaboratively in picking-up tasks from the scrum board as by design, they
have very different skills. Their skills in the project will also be called for during
very specific points during the project.

In summary, agile-scrum is another project methodology which can be used
under certain circumstances which require it, but is not a take-all methodology for
CIOs and probably lesser-used one unless most of the applications are being
custom-developed.

References

Highsmith, J., 2001. Agile Manifesto. [Online] Available at: http://www.agilemanifesto.org/ [last
accessed February 2016].

James, M., n.d. Scrum Methodology. [Online] Available at: http://scrummethodology.com/ [last
accessed February 2016].

Further Reading

As Agile and particularly, agile-scrum has become so fashionable as of late, there is a wealth of
books and references on the matter, below ae just some of these.

Stellman, A., Greene, J., 2014. Learning Agile: Understanding Scrum, XP, Lean, and Kanban. 1st
ed. O’Reilly Media.

Goodpasture, J. C., 2010. Project Management the Agile Way: Making it Work in the Enterprise.
J. Ross Publishing.

Ashmore, S., Runyan, K., 2014. Introduction to Agile Methods. Addison-Wesley Professional.

210 8 Agile-Scrum Project Management

http://www.agilemanifesto.org/
http://scrummethodology.com/

9IT Portfolio Management

An IT portfolio would normally be thought of as a collection of projects which need
to be managed, however, this also normally includes IT Operations. A typical
overall structure is shown in Fig. 9.1.

In this diagram the overall portfolio manager may be the CIO, while the sub
portfolio managers either assigned clusters handling different sets of projects by
volume and complexity, by type of project (such as finance related, sales related,
etc.) or by technology (software vs. hardware/infrastructure). For all purposes, these
sub portfolio managers shall have the same function and roles as the overall
portfolio manager save for the fact that they do not handle operations. For the
remainder of this chapter, I shall therefore not make any differentiation between
portfolio and sub portfolio managers, with the understanding that their roles and
responsibilities are similar. The IS and II heads are in fact the (sub)portfolio
managers for applications projects and infrastructure projects, respectively.

In their entirety, all of these different sub portfolios and operations require and
compete for different resources, such as

• Human Resources
• Tools and applications (may be limited due to licensing restrictions)
• Hardware (Servers, network bandwidth, storage)
• Funding

Therefore, some of the main questions that need to be answered by the portfolio
manager are

• How do I assign resources across the different components in an optimized
manner?

• How do I prioritize?
• How do I measure the different components’ performance?

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_9

211

• How should performance be reported?
• How do I manage all these?

IT Portfolio management is different from IT Project Management in the sense
that the latter has a distinct start and end, while a portfolio is a continuous process,
even when some of its components end, as there are other components that start,
and existing components evolve. Its management is therefore a continuous process,
which may be represented as shown in Fig. 9.2.

The three bubbles in the middle show the continuous process of portfolio
management

• Planning and Design: wherein the overall portfolio components are defined,
and the design of each component defined in terms of scope, resources and
assets assigned to them.

• Measuring and Communicating: wherein each portfolio component is mea-
sured against defined metrics that it has to meet, and this, together with the
status is communicated to the different portfolio stakeholders.

• Rebalancing: wherein the priorities, resources, and assets are rebalanced across
the portfolio based on the direction company strategy and tactical direction it is
taking.

Fig. 9.1 Portfolio Manager’s responsibilities

212 9 IT Portfolio Management

All of these are in turn managed in accordance with

• Portfolio Governance: following the policies and rules in which the portfolio
must adhere to.

• Monitoring and Control: wherein the portfolio manager is monitoring the
progress of the different components and applying control mechanisms to ensure
governance and targets are adhered to.

9.1 Portfolio Planning and Design

Generally, the first step involves the creation of a portfolio(s) and identifying their
components. These components would have their different Project Managers or
Operations Managers identified. Among the different aspects that need to be
identified for the Portfolio are

• Portfolio name and description
• Portfolio Manager
• Components: sub portfolios, projects, and Operations encompassed

Fig. 9.2 Portfolio Management lifecycle

9 IT Portfolio Management 213

– Component Name
– Component Manager (Sub portfolio manager, Project Manager, and Oper-

ations Manager attached to each component)
– Scope
– Resources allocated
– Tools and assets allocated
– Estimate Duration

Each portfolio component is then planned accordingly, mapping their depen-
dencies (if any). This may be done using a Gantt chart, which will display the
timing and interdependencies of portfolio components (Fig. 9.3)

The attributes for each portfolio component are usually embedded in the
project/operations documents themselves, such as

• Project charter: Table of Organization, Scope of Work, estimated duration, and
tools required.

• Assets required: which is drafted when the system architecture and their cor-
responding requirements are defined at the project level, will also be identified
in the project or operations plan as to when they are needed in the project.

• Assets assigned
• Project plan: includes estimated start date, duration, and estimated finish. If

project has started, the % completion, as well as the current SPI and CPI.
• Issues: as reflected in the issue registry. This gives an idea to the portfolio

manager on the status of the component, and if there are delays or cost overruns,
the cause for these overruns.

Fig. 9.3 Sample project plan with Gantt chart

214 9 IT Portfolio Management

• Requests: as reflected in the request registry. These may be valid or not, and
their status will be classified by the corresponding project manager. For valid
requests, these may be Change Requests (or not), and if so, may or may have a
cost implication. Their escalation for approval will follow the policies as per the
portfolio governance.

• Checklist status: the checklist as defined in Sect. 7.3, gives a list of all deliv-
erables defined for the component. The checklist displays the status of the
deliverable, whether it has been attained or not.

The portfolio design and its components will be continuously revisited as part of
the monitoring and control and rebalancing operations, as will be explained later on.

9.2 Portfolio Assessment and Communicating

Portfolios need to be measured in accordance with some metric(s), to ascertain that
they are doing well or not. Some metrics proposed by the Portfolio Management
Professional Standard of PMITM (Project Management Institute 2013) include
measures like NPV, ROI, IRR, etc., which are very easily understood and measured
by management as they have a clear financial impact. This may be well and good
for major infrastructure projects, however, for IT projects; it is many times difficult
to place a financial return for them. It is however encouraged that, if possible, such
financial indicators be used as they will be better understood by higher manage-
ment, in all other situations, alternative measures will have to be designed.

Traditional measures of component performance are time and cost, however,
these measures alone fail to capture the significance of the portfolio component and
its overall impact to the organization. Time and cost are measures that are important
for the project manager, as they basically indicate how well or problematic his
project is running, and many times (though not always) are an indicator of the PM’s
performance. At a higher level, however, these two measures just by themselves fail
to convey much about the project.

Take for example a project that run on time and within the assigned budget,
and yet, the project failed to deliver the intended purpose. To give a concrete
example, a new payment gateway was put up to allow customers to pay
conveniently online, project went well with respect to cost and time, however,
because of the design of the interface to the customers, wherein the payment
option (that management wanted to prioritize) was not evident to the cus-
tomers, customers failed to make use of it. This may be considered a technical
success, but from the point of the business, a large failure. The problem of
course is that measuring this success varies from portfolio component to
portfolio component in relation to its intended purpose, and many times the
real benefit may be intangible or difficult to measure.

9.1 Portfolio Planning and Design 215

http://dx.doi.org/10.1007/978-3-319-38891-5_7

Generally speaking, a portfolio component has to either

• Increase revenues in the long run; or
• Decrease costs

The above benefits may not be immediate, but should be the end goal, so that the
indicator developed to measure the component success must be tied to the above.
One way to derive that relation is to draw a relation diagram, in which the highest
nodes are represented by either one of the above or both. For example, going back to
our online payment example, a possible resulting diagram is that shown in Fig. 9.4.

At the topmost of the diagram (level 1), it shows two objectives to which higher
management can easily relate to, that of reducing costs (of collections, in this case),
and that of increasing revenue (through online sales). These can be easily measured,
however, it is highly unlikely that both of these objectives, and most especially, the
increase of online sales may be attributed only to the project which has gone live, as
it is most likely part of a series of projects handled by other departments such as
marketing, sales, logistics, etc., so that means that there is a need to measure some
objective more directly influenced by the project.

Given the need to measure at a more tactical level, the next question to be asked
is how is the cost of collections reduced and online sales increased as a direct effect
of the intended project (these questions should be asked when the project is being
drafted)? The answer may be that the online payment system as envisioned would
reduce both the time and the cost involved in making payment transactions, leading
in part for more customers to move to the online option, as a more convenient way
to shop. This then results in the two objectives at level 2

• Increase usage of online payment; and
• Maintaining Customer Satisfaction via ease of use of the application.

Fig. 9.4 Diagram showing interdependencies of objectives

216 9 IT Portfolio Management

Take note as well that the arrows above indicate an influence to, or in the case of
the dotted arrow, a weak influence. The relationship is not mathematical at all.

These level 2 objectives can in turn be measured more easily as direct product of
the project, the proposed measurements then are

• Increase usage of online payment

– % increase in online payment usage

• Maintaining Customer Satisfaction via ease of use of the application

– Customer satisfaction rating should be at least 8 over a maximum of 10
– 90 % of online payments should be processed within 5 min

These indicators can then be measured easily and made part of the portfolio
component’s objective. See that to attain these indicators, not only technical work
needs to be conducted, but most important, alignment to the business, and col-
laboration with other departments need to be undertaken during the execution of the
project. Ideally, it should also be one of the KPIs to measure the PM’s effectivity
and form part of his personal scorecard.

During the normal course of the project, progress needs to be reported to the
different stakeholders, and this should include

• % completion
• SPI indicating the % of delay or advancement the project has
• CPI indicating the % cost overrun or delay. If the project is fixed cost, then cost

overruns will be basically due to Change Requests, so these will be reported as
additional time delays, plus additional costs to the project (or portfolio, if
charged at a higher level).

• Financial indicator chosen (if applicable): IRR, ROI, NPV
• Tactical indicator chosen: This tactical indicator may not make much sense until

the project goes live, however, it is expected that the Portfolio Manager handle
the component and ensures that these tactical indicators are met, well after the
project goes live, as part of his turnover to operations.

In communicating results, it is important to identify all stakeholders and their
particular influence on the project

• Stakeholder
• Influence/Involvement on the project
• Regularity in communicating results
• Mode of communication

9.2 Portfolio Assessment and Communicating 217

This does not differ so much with what was discussed in Sect. 5.1.9; the main
difference is that the concern of the stakeholders and the stakeholders themselves
will change. Most likely, this being a portfolio, stakeholders are of a higher level,
and communication can be made less personal (unless particular issues need to be
resolved) by means of email with updates, a portal with the uploaded files and
updates, and only when needed discussed at steering committee meetings or even
management committee meetings.

9.3 Portfolio Rebalancing

Portfolios are not and should not be static because conditions surrounding it (the
business) change constantly, so that a rebalancing of portfolios should actually be
part of the normal procedure for managing them. Rebalancing may be due to

• Changing business strategy of the company
• Reorganization within the company
• Changing availability of Portfolio Assets

First and foremost, the portfolio should be aligned to the company’s overall
strategy. Failure to do so may result in projects which have no meaning to the
company. Projects may be running efficiently (on time, within cost, giving the
expected results), Operations handling the different applications efficiently, con-
ducting changes on them efficiently as requested by the end users, and yet, the
projects may be of little relevance to the overall business. The changes and
improvements made by Operations may not align as well to the priorities of the
company. These portfolio efforts will therefore not be recognized and ultimately fail
in their end purpose—that of giving business value.

Generally speaking, company strategy may change over time, so that this has to
be evaluated, and the different portfolio components prioritized in accordance with
the strategy. Likewise, the company may reorganize, and certain components which
may have been important now cease to be, and lastly, the assets made available,
whether these are human resource assets, tools, licenses and others change, so that
new projects may be possible, or conversely, not feasible due to lack of these assets.

One manner for prioritizing portfolio components may be to rank these in terms
of priority based on the overall strategy and organization of the company versus the
required assets. For IT portfolios, it is normally human resources and infrastructure
which are the constraint in terms of which portfolio components can be undertaken.
The latter is more an issue of budget and lead time to procure, but with the advent
of the cloud, this is becoming less of a concern. The former however, qualified
Human Resources, is more difficult to address and is commonly the constraint. Take
the portfolio shown in Fig. 9.5 as an example.

As may be evidenced by the above, constraints on the resources make the
originally planned portfolio timeline impossible to execute. Some alternatives exist

218 9 IT Portfolio Management

http://dx.doi.org/10.1007/978-3-319-38891-5_5

Fi
g
.
9.
5

Sa
m
pl
e
po

rt
fo
lio

sh
ow

in
g
tim

el
in
e
an
d
re
so
ur
ce
s
ne
ed
ed

9.3 Portfolio Rebalancing 219

• Contract resources externally to beef up the portfolio components. This is
possible; however, sufficient lead time for onboarding may yet be needed.

• Contract the project totally to an external party.
• Reschedule the portfolio components so that the maximum number of resources

at any given time does not exceed those available. In this case, it is the lower
priority projects which can be delayed, so that higher priority projects push
through first. For the schedule above, for example, the Medium priority Oper-
ations component “Clearing of inventory reservation program” can in fact be
pushed back by 2 months, while the automation of batch processes pushed back
by 1 month, resulting in adequacy of resources for DBA, System Administrator
(Sysad) and Java roles as shown in Fig. 9.6.
However, the issue of .net programmers is still pending, and since both the
datawarehouse and the HR training module projects take long to execute, then
there is no alternative but to resort to any of the two aforementioned techniques,
in getting external resources.

In all these discussions, there has been no mention of an additional constraint,
that of funding. If resources are purely internal, then all costs are sunk costs and
portfolio optimization is just a matter of trying to optimize the % utilization of
internal resources. If however external resources are needed, then funding should be
made available accordingly.

As portfolio balancing is an optimization of several variables: time, funding,
go-live, resource availability, and resource competencies, it is generally complex and
requires several iterations until optimality is obtained. Much simpler of course is if all
projects are contracted turnkey externally, so that the only internal constraints now
become funding and availability of Project Managers/Operation Managers.

As discussed earlier as well, company strategy changes with time, and it is the job
of the portfolio manager to be aware of such changes and make the necessary repri-
oritization of components accordingly. Portfolio components may thus be added,
reprioritized in either direction (made more important or less), or dropped altogether.

Take for example a company which prioritized having its own App available
for customers to increase online sales. This project was allocated funding and
resources however, 3 months after the 8 month project started, management
found out that even with its current sales channels, severe logistical con-
straints were hampering the delivery of goods to its customers. Management
then decided to initiate a third-party logistics handling program which
necessitated an IT component so that it would seamlessly integrate the third
party’s information with the company’s back-end logistics system. After
careful evaluation, senior management, together with the portfolio manager
decided to freeze the App project and reallocate funding and resources to the
new logistics integration project.

220 9 IT Portfolio Management

Fi
g
.
9.
6

R
ea
lig

ne
d
po

rt
fo
lio

9.3 Portfolio Rebalancing 221

As can be seen, rebalancing is needed in regular intervals so as to ensure

• Portfolio components stay relevant to the company’ business strategy and
objectives.

• Revised timelines as required by management.
• Company Organization.
• Resource availability.
• Funding reallocation.

9.4 Portfolio Governance

Portfolio governance refers to all policies and procedures which should govern the
portfolio and its components. It sits at a higher level than projects and operations,
and therefore, both project and operations are necessarily guided by the portfolio
governance rules.

As such, both operations and project policies and guidelines must align with the
overarching portfolio guidelines. Guidelines would normally cut across all port-
folios and be standardized, and would also normally align with general IT policies
and procedures as discussed in Chap. 7. Aside from these general guidelines, some
guidelines would be specific for the portfolio

• Guidelines for officially incorporating a component into the portfolio.
• Manner and regularity in which components report their performance. In

this case, and as discussed under portfolio assessment and communication, each
component will have its own set of indicators that have been agreed upon with
the PM and higher management as those that will be regularly monitored.

• Portfolio Component documentation. This will specify the minimum docu-
mentation that is required for each project/operation component and is also
discussed in Chap. 7. Projects shall have a different set of documentation from
operations, so that typical documentation is discussed separately here for each.

– Project documentation

Issue registry
Request registry
Updated project timeline in standard format
Deliverable checklist
Risk registry (optional)
PM task activity report

222 9 IT Portfolio Management

http://dx.doi.org/10.1007/978-3-319-38891-5_7
http://dx.doi.org/10.1007/978-3-319-38891-5_7

– Operations documentation

Operations report
Team activity report
Ticket summary report

• Asset request/release guidelines. This describes the manner in which a par-
ticular asset (normally human resources) shall be requested by the PM to be
assigned (released) from his project, and includes the approval process.

• Change request guidelines. Will describe the procedure for requesting and
approving change requests, this shall include all necessary details for the change
request including

– Reason for the change request
– Requestor (PM, user, vendor)
– Scope of work.
– Estimated man-days and breakdown of resources needed for the CR
– Cost (if any)
– Duration
– Functional and technical details, including any customizations if needed

• Guidelines for requesting a change in scope. Additional scope will be covered
by Change Requests, however, from time to time, a change in the scope of the
project may be needed due to

– Obsolescence
– Change in the direction of the users/company management
– Technical limitations
– Difficulty in meeting requirements, not initially foreseen
– Reprioritization of scope

• The reasons above should be carefully examined and validated, at it is not good
practice to change scope in the middle of the project, however, such possibilities
do exist. The change request should include

– Reason for the change
– Requestor (PM, user, vendor)
– Scope of work changed.
– Estimated man-days and breakdown of resources needed
– Impact on project cost (if any)
– Impact on project duration
– Functional and technical details, including any customizations if needed

9.4 Portfolio Governance 223

• Request for additional funding. This should be raised by the PM and justified
accordingly.

– Reason for the request
– Amount
– Reason and Details on the cause for the delay

• Risk registry

– When risk registry should be drafted
– Procedure and frequency of update

One practical way to monitor all portfolio documentation in a timely manner is
through the use of a Document Management System (DMS) in which different
folders are kept for the different portfolio components, which are updated in regular
fashion (usually weekly). Nowadays many DMS have a web interface so that the
documentation is available as a Portfolio portal, which maintains different autho-
rizations depending on the user, as well as approval workflows.

9.5 Portfolio Monitoring and Control

The Portfolio Manager is in charge of monitoring and controlling the portfolio. His
role is somewhat similar to that of a PM in terms of this function in a project; the
portfolio manager must ensure that the portfolio is

• Aligned with overall strategy, structure, and objectives of the company
• Has sufficient resources and other assets assigned to each component so that

work can be accomplished on time and with the necessary quality
• Being undertaken on time
• Being undertaken within budget
• Delivering or will eventually be able to deliver its intended benefits

As well as

• Ensuring that requests from the PM or Operations manager are being evaluated
and approved/rejected on time. This includes

– Request for assets
– Request for additional funding
– Change Requests
– Changes in scope

• Ensuring that there is no issue which cannot be handled by the assigned PM and
his current HR assets. In case the issue is deemed to be beyond the PM’s

224 9 IT Portfolio Management

capability, then the portfolio manager needs to step in and facilitate resolution.
Typical issues which may need to be resolved by the Portfolio Manager includes

– Lack of knowledge by the PM on the issue at hand. This may be technical,
functional, or a business challenge

– Lack of pertinent resource(s)
– Conflicts between the PM and the users
– Conflict between the PM and the vendor
– Mismatch of skills or underperformance by some of the resources assigned
– Nonconformance with IT, Portfolio, or Project Management guidelines and

policies
– Underperformance by the PM/Operations Manager
– Delay or non-provisioning of infrastructure
– Conflict or non-prioritization of task requested by the PM to another team

(typically, a request to O&M)
– Delay in the formal approval of deliverables

The idea of monitoring and control is to ensure that the different portfolio
components are running smoothly, and if not, be able to first, detect the issue, and
thereafter address the root cause of the issue.

Part of this monitoring and control process includes internal communication
between the Portfolio Manager and his Project Managers and Operations Head.
Typically these will come in the form of

• Operations Meeting. This meeting should be conducted by the Portfolio
Manager, the Operations Head, together with the different O&M Team Leads.
During this meeting the operations report is reviewed, tickets and their statistics
are analyzed, and each team leader is given the chance to present his regular
operations update. During this meeting, any of these sources of information will
be the basis for determining issues and will then be discussed and resolved
jointly by the team.

• Portfolio projects update meeting. Takes place between the Portfolio manager,
sub portfolio managers, the different Project Managers, and if needed, the
Operations Head. The latest standard documentation discussed in Chap. 7 is
presented, statuses discussed and any issues brought up for resolution.

• Stakeholders’ meeting. This may actually be the management committee,
normally the highest management level meeting, in which all operational, tac-
tical, and strategic initiatives are discussed and updates from each department
head given. Alternatively, it may be a different meeting altogether, called or
regularly held, in which the different portfolio stakeholders are updated on the
status. These meetings are normally quick, and focus on

– Status of the portfolio components in terms of % completion.
– Project estimated completion dates.

9.5 Portfolio Monitoring and Control 225

http://dx.doi.org/10.1007/978-3-319-38891-5_7

– If delayed, a discussion on the reason for the delays. If issues can be resolved
at the stakeholder level, then these are brought up and guidance, resolution,
or assistance sought.

– Performance review for operations, may include SPI, CPI, summary of cost
overruns.

– Discussion on possible strategy change by the company, impact and rebal-
ancing at the portfolio level.

Governance is a common discussion at portfolio meetings between the portfolio
manager and his operations head, PMs. This is to review if governance policies are
being followed correctly and in a timely manner (such as the filing of Project
information), as well as the regular review and improvement of these policies.
Review of governance policies will again follow a PDCA cycle shown in Fig. 9.7.

In these review meetings, policies and guidelines are reviewed, tweaked and
released again. Any of the PMs and Operations Manager is actually free to come up
with suggestions on how to improve, and these are deliberated and if approved,
made part of the guidelines. These should be improvements, not radical deviations
of the previous rules, otherwise this will cause consternation.

Another optional component, depending on the complexity and exposure of the
portfolio to risks, is to conduct a risk analysis. This is similar to that discussed for
projects, in which a qualitative risk analysis can be performed and each risk
identified versus possible impact and probability. The difference here is that this
should be conducted at the portfolio level versus project level. Examples of project
level risks are delays in approval from the users of deliverables, failure of a module
during testing, or project creep. At the portfolio level these would be risks that can
affect one or many components. Examples of this are unavailability of certain
resources, obsolescence of some of the portfolio components due to a new direction
taken by the company, irrelevance of some projects due to repeated delays in going
live.

Fig. 9.7 PDCA cycle

226 9 IT Portfolio Management

Reference

Project Management Institute, 2013. The Standard for Portfolio Management. 3rd ed. Atlanta:
Project Management Institute, Inc.

Further Reading

Unfortunately, there is a dearth of good portfolio management books for IT, below are just some
references, though good material is hard to come by.

Sanwal, A., 2007. Optimizing Corporate Portfolio Management: Aligning Investment Proposals
with Organizational Strategy. 1st ed. Wiley.

Maizlish, B., Handler, R., 2005. IT Portfolio Management: Unlocking the Business Value of
Technology. 1st ed. Wiley.

Hughes, D.L., Dwivedi, Y.K., Simintiras, A.C., Rana, N.P., 2016. Success and Failure of IS/IT
Projects. Springer.

Reference 227

10Appendix A: Sample Terms
of Reference (TOR)
VM (Virtual Machine) Backup Solution

1 Company Profile

XXX

2 Background

XX
All applications were virtualized using XXX which started in 2012 and com-

pleted by 2013. Backup and restore procedures were implemented using XXX
Backup but mainly for file and database backup and recovery only and this does not
include the entire system backup of each and every virtual machines which is also
considered essential to business continuity process.

The proposed VM Backup Solution should focus on the following criteria:

1. Backup speed;
2. VM image consistency check after backups;
3. Multiple restore capabilities;
4. Point-in-time recovery;
5. Replication to complement colocation strategy for disaster recovery;
6. Data deduplication to reduce backup storage requirements;
7. The ability to target any storage device.

Below is the identified number of VM Host with their respective number of CPU
Sockets that requires implementation of VM Backup Solution.

Site # of servers # of CPU sockets per server

Data Center 2 4

8 2

Head Office 9 2

Remote Sites 15 2

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5_10

229

3 Objectives

This Request for Proposal aims to achieve the following:

• Ensure that the proposal meets the requirements stated in the Scope of Work.
• Ensure compatibility with our current systems.

To fulfill the above objectives, the Bidder is expected to bring experience and
expertise in the area of implementing backup solutions for virtualized environment.

4 Scope of Work

The scope of the project includes the following:

4:1 Implementation and configuration of all needed software solution proposed
should be all-inclusive and not require any additional hardware, software, or
services aside from those in the vendor’s proposal, for the solution to function.
Off-the-shelf software and hardware may be purchased separately by the
company, so that their corresponding costings should be itemized separately.

4:2 All hardware will be provided by the company, the bidder should include all
hardware specs for Development, QA/Testing, and Production environments,
whichever are relevant to the project.

4:3 Creation of detailed implementation plan to include the duration of the project
and number of resources.

4:4 Provide user and administration training that covers Installation, configuration,
and management course for three (3) participants.

4:5 Complete documentation of the project including user manuals, training
manuals, presentations, and source code (wherever applicable).

4:6 Post-implementation support and maintenance.

5 Submission of Proposals

The company reserves the right to

• Reject any or all offers and discontinue this RFP process without obligation or
liability to any potential vendor,

• Award a contract on the basis of initial offers received, without discussions or
requests for best and final offers, and

230 10 Appendix A: Sample Terms of Reference (TOR)

• Consider all responses to this TOR as binding, and have them form part of the
contract

• Disqualify and/or blacklist any vendor due to misrepresentations or misinfor-
mation provided in the proposal.

Vendor’s proposal shall be submitted in the format as set forth below.
Responding service providers will confine its submission to the matters sufficient to
define its proposal and to provide an adequate basis for the company evaluation of
the Vendor’s proposal.

The proposal should contain three parts

5:1 Company Profile
5:2 Client references—references with similar products/services provided

including description of what was provided.
5:3 Cost and Technical Proposal

5:3:1 Technical Proposal—the technical proposal should be limited to ten
(10) pages + appendices with the following information:
5:3:1:1 General Description of the proposed solution.
5:3:1:2 General description of the base software of the proposed

solution (e.g., web services, portal software, etc.), if any.
This may be complemented with an exhaustive description
of the solution architecture with detail work flows in an
Appendix (soft copy only is acceptable)

5:3:1:3 Project Timeline—Detailed schedule of activities and
identified deliverables per activity. Please use MS Project
2010.

5:3:1:4 Methodology—should describe the general methodology
to be used in the project implementation with description
of concrete activities to be undertaken, including expected
involvement from the company’s personnel (if any).

5:3:2 Relevant credentials (e.g., Gold Partner, etc.)
5:3:3 Project Team composition with detailed CV’s of assigned key per-

sonnel including information on project implementation experi-
ences, at least 3 years relevant experiences, similar to this project
and roles. Supporting Training Certifications should be provided.

5:3:4 Cost Proposal—the cost proposal should be detailed per component.
5:3:4:1 If discrepancies occur between the total cost and itemized

costs, the company shall make use of whichever price is
lower.

5:3:4:2 Price quoted should be inclusive of ALL TAXES except
VAT. Price quotations that indicate otherwise will be
assumed to include all taxes or risk being disqualified.

10 Appendix A: Sample Terms of Reference (TOR) 231

Example:

Component Unit cost Metric Amount (VAT Ex)

Software licenses

Backup Software Per VMHost

Per Core

Per VM

Services

Installation/Configuration

Others (If any)

Total Cost

Prepared By: XXX
Endorsed By: XXXX

List of Functional Requirements

Item Requirements Comply
(yes/no)

Remarks/Work
Around
Substitution

1 Backup and replication solution in a single product

2 Leverage vSphere API (Application Programming
Interface) for Data Protection

3 Integrate and leverage on Changed Block
Tracking

4 Agentless deployment without the need to install
individual agents inside each Guest VMs

5 Full support for VMWare ESX and ESXi editions

6 Ability to backup via vCenter or directly from
individual ESX or ESXi servers

7 Support for LAN-free data backup

8 Support for thin and thick provisioned VMs

9 Provide a centralized web-based enterprise
console to monitor and manage all the backup
servers with dashboard statistics view

(continued)

232 10 Appendix A: Sample Terms of Reference (TOR)

(continued)

Item Requirements Comply
(yes/no)

Remarks/Work
Around
Substitution

10 Ability to add datastore object as a dynamic
container for backup which will include new VM
when it is added into the datastore during backup
job run

11 Ability to exclude specific virtual disk for backup
as per VM selected in a backup job

12 User profiling to allow role segregation to perform
full administration, backup operations, backup
viewing only, or restore operations

13 Customizable block size for optimal deduplication
across different networks (SAN, LAN, WAN)

14 Deduplication and compression bundled in
software without additional option to purchase

15 Ability to utilize forward and reverse incremental
backup methodology

16 Ability to utilize full backup methodology

17 Ability to provide application-consistent backups
(utilizing Microsoft Visual Source Safe or
VMware Tools)

18 Support for continuous job schedule to
immediately start the backup job once upon
completion to provide near-Continuous Date
Protection (CDP)

19 Backup VM can be manually or automatically
removed from the backup image file to reduce
backup storage space

20 Single, consistent method of image-level backup
but provides granular full or item-level recovery

21 Ability to perform full VM restoration and
Guest OS file-level recovery

22 Ability to perform application-item level recovery
(for MS SQL, MS Exchange, MS Active
Directory, and other applications)

23 Ability to perform transaction log pruning after
successful backup of VM running MS SQL

24 Automated verification of backup images by
starting up required VMs, checks performed on
VM, OS and Application to ensure integrity
without the need of human intervention.
Verification report to be emailed automatically to
administrator can be configured

25 Provide near-CDP-level replication bundled in
software without additional option to purchase

(continued)

List of Functional Requirements 233

(continued)

Item Requirements Comply
(yes/no)

Remarks/Work
Around
Substitution

26 Ability to create isolated environment for
on-demand Sandbox with required VMs running
for testing/troubleshooting. In addition, this
isolated environment will be able to interact with
the production environment

27 Offsite storage of backups with built-in WAN
acceleration

234 10 Appendix A: Sample Terms of Reference (TOR)

Curriculum Vitae

Dr. Francisco Castillo is currently Senior Vice President
and Chief Information Officer of Maynilad Water
Services, Inc., the water concessionaire for the West
area of Manila’s greater metropolitan area.

Francisco previously worked in a major multinational
IT consulting firm as Managing Consultant for
Asia-Pacific, where he worked for over 12 years in
various capacities. In 2013, he was named “Outstanding
ASEAN CIO” by the IDG group, and also appeared in
the 2014 and 2015 CIO 100 Listings published by CIO
Asia Magazine. This 2016 he is one of three finalists in
the ASEAN Strategy Forum IT as “Influencer of the

Year” for his contribution in the convergence of IT and OT. He is also a founding
member of the Philippine Internet of Everything Consortium and a member of its
Board of Trustees.

Francisco has over 25 years experience in Information Technology, and has
undertaken projects in over a dozen countries in Europe and Asia. He holds a Ph.D.
in Electronics and Telecommunications Engineering from the Universidad
Politécnica de Catalunya (Barcelona, Spain), where he was also Associate
Director for the Technical Engineering College (Vilanova), and Associate
Professor. He is currently an active speaker and panelist in many Asian IT
events, and in his previous role as researcher published over 50 papers in
international journals and conferences, and presented in over 20 international
seminars.

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5

235

Index

A
Access management, 67
Active Directory (AD), 156, 166
Actual Cost (AC), 109
Address cleansing (example), 161
Agile Manifesto, 202
Agile-SCRUM project management, 299
Analysis and Design, 86
Analysis documentation, 124
Application Management (AM), 11, 28, 31, 52,

59, 65
Application Management training, 194
Approvals and escalation, 66
Architecting phase, 148
Architecture, 41, 73, 129
Asset Management, 172, 185
Asset Management system, 54
Availability, 49, 69, 72
Availability management, 40, 61, 69

B
Back out procedure, 58
Backup, 70, 74, 153
Backup and recovery, 173
Backup and recovery guidelines, 195
Backup and Restore procedures, 152
Bad practices (on release management), 155
Baseline Configuration, 55
Batch processing, 32
Blueprint, 181
Burn-down chart, 206
Business Analyst, 29, 31, 178
Business Continuity, 71
Business Continuity SLAs, 72
Business Process, 156
Business Process Owners (BPOs), 67
Business requirements document, 59

C
Capacity Management, 26, 27, 61, 68, 172, 190
Capacity planning, 40
Change Management (People), 122, 142
Change Management, 44, 50
Change management agent, 142
Change request guidelines, 223
Change requests, 172, 181–183, 223
Chief Security Officer, 41
Closure (project), 131
Code, 31
Code development guidelines, 172, 192
Combinatorial explosion problem in testing,

135
Commodity items (procurement), 96
Communication management, 120, 172, 180,

217
Communication matrix, 120
Company Governance, 170
Completeness, 49
Complexity of change, 46
Confidentiality, 72
Configuration Item (CI), 45, 52, 54, 57, 64, 70,

73
Configuration Management, 151, 170
Configuration Management Database (CMDB),

53, 54
Consulting services tender, 96
Contracting of design specifications, 92
Contracts, 182
Coordination with O&M, 41
Correctness, 49
Cost of a bug, 134
Cost Performance Index (CPI), 108, 217
Cost Variance, 109
Criticality (of tickets), 19
Critical path, 104

© Springer International Publishing Switzerland 2016
F. Castillo, Managing Information Technology,
DOI 10.1007/978-3-319-38891-5

237

Customer Satisfaction, 49
Customization, 184
Cut-over, 89, 130, 147, 184
Cut-over of transactions, 158
Cut-over tasks, 158

D
Daily scrum, 205
Dashboard types, 81
Database Administrator, 24
Data centers, 32
Data Governance, 160
Data mapping, 130
Data migration, 157
Data migration plan, 130, 157
Data quality, 158
Datawarehouse, 24, 130
Deliverables checklist, 114, 175, 215, 222
Design documents, 124
Design Sign-off, 88
Developers, 31
Developers’ training, 194
Development, 155, 204
Development (DEV) environment, 50, 155,

186
Documentation, 114, 192
Documentation writers, 179
Document Management Systems (DMS), 119
DR Site, 72

E
Early Finish, 103
Early Start Date, 102
Earned Value (EV), 108
Emergency Change Advisory Board (ECAB),

47
Endpoint management, 34, 54
End-user requirements, 181
End-user training (EUT), 151, 193
Environments, 186
Error handling procedures, 162
Estimate at Completion (EAC), 112
Estimated Finish, 112
Event Management, 61

F
Facilities Management, 32
Field Support, 34
First Call Resolution, 19
First level support, 163, 195
Float, 103

Frequently Asked Questions (FAQ) for Service
Desk, 164, 195

FRICEW, 131
Functional design, 181
Functional design document, 125
Functional Organization, 12
Functional specifications, 59, 95

G
Gap analysis, 92
Go/No-go decision, 196
Go-live, 89, 152
Go-live support, 163
Governance, 36, 38, 40, 226

H
Hand-over preparation, 149

I
Implementation Strategy, 133
Incidence, 18, 30, 165, 172
Incidence management, 62, 170
Incidence tickets, 63
Indexing, 24, 192
Information Security Management, 61, 72
Information Systems (IS) Head, 37
Information Technology Service Management

(ITSM), 17
Integration testing, 51, 134, 193
Integrity, 72
Interfaces, 161, 184, 192
ISO20000, 171
ISO27000, 171
ISO9001, 171
Issue Management, 189
Issue registry, 114, 174, 214, 222
IT Governance, 169
IT infrastructure (II) Head, 39
IT Operations Management (ITOM), 12, 32,

52, 150
IT policy, 171
IT service, 43
IT Service Continuity Management, 28, 61, 71
IT Services Lifecycle, 42

J
Job scheduling, 32

K
Kick-off, 86, 148
Kick-off meeting, 180

238 Index

Knowledge Base (KB), 19, 59, 64, 119, 196
Knowledge Management (KM), 119
Known Errors, 19, 65

L
Lag indicators, 80
Late Finish, 103
Latency, 27
Late Start Date, 103
Lead indicators, 80

M
Maintainability, 69
Maintenance Phase, 61
Management reserves, 115
Managing Projects, 85
Mean Time Between Failure (MTBF), 69
Mean Time Between Service Interruption

(MTBSI), 69
Mean Time to Restore Service (MTRS), 69
Milestones, 107, 177
Mission and vision, 169
Mobile Device management (MDM), 54
Mobilization, 86
Monitoring and Control, 89, 106, 172, 173

N
Negative testing, 136, 162
Network domain names, 192
Network Management, 26
Network Management system (NMS), 54

O
OLA, 35, 50
On-boarding, 87
Operations Governance, 171
Operations Head, 35
Operations Management Office, 36
Operations manual, 131
Operations meeting, 225
Operations strategy, 78
Operators’ training, 194
Overview trainings, 196

P
PDCA, 36, 226
PDCA phases, 80
Permissions, 156
Planned Value (PV), 109
Planning, 37, 39, 41, 43, 68, 203, 212

Planning and Design phase, 43
PM task activity report, 222
Policy (Security), 73
Policy, 169
Portfolio, 38, 40, 41
Portfolio Assessment and Communicating, 215
Portfolio components, 218
Portfolio Management, 211
Portfolio Manager, 183, 211
Portfolio Monitoring and Control, 224
Portfolio optimization, 220
Portfolio Planning and Design, 213
Portfolio Rebalancing, 218
Positive risks, 184
Positive testing, 136
Post-go-live, 152
Post-implementation support, 89, 173
Post-implementation support policy, 163, 196
Pre- and post-go live checklist, 196
Pre-approved requests, 67
Precedence Diagramming Method (PDM), 100
Pre-go-live guidelines, 195
Prioritization of Changes, 48
Problem Management, 63, 170
Problem tickets, 19, 165
Process experts, 179
Process level documentation, 125
Procurement, 68
Procurement Management and Contracting, 94
Product backlog, 201, 202
Production environment, 50
Product owner (Agile), 201
Product support, 163
Programmer, 179
Project, 44
Project charter, 214
Project creep, 94, 144, 183
Project documentation, 124
Project Governance, 169, 171
Project Management policies, 170
Project Management tools, 174
Project Manager (PM), 38, 106, 183
Project meetings, 120
Project organization, 14
Project phases, 85
Project reserves, 115
Project success factors, 6
Projects vs. Operations, 3, 5, 90
Projects vs. Operations issues, 8
Project team roles, 172

Index 239

Project team roles and responsibilities, 178
Project update meeting, 225
Provisioning, 40, 68, 190

Q
Quality, 112, 207
Quality Assurance (QA) environment, 50, 186

R
Redundancy, 70
Regression testing, 51, 134, 193
Release approval, 57
Release Management, 58, 153, 170, 172, 186,

189
Release Management problems, 52
Release phase, 50
Release planning meeting, 206
Reliability, 69, 72
Request For Information (RFI), 96
Request for Proposal (RFP), 97
Request Fulfillment, 65
Request management, 172
Request Management for Projects, 191
Request registry, 174, 215, 222
Requests, 18, 31
Requirements Gathering, 88
Resolution time, 49
Resource skills management, 40
Response time, 49
Retirement phase, 75
Retrospective meeting, 206
Reversal procedures, 155
Risk, 46, 50, 91, 94
Risk Analysis, 71
Risk Management, 115, 172, 184
Risk registry, 222
Roles and permissions, 156
Rollback procedure, 140

S
Schedule Performance Index (SPI), 217, 108
Schedule Variance(SV), 109
Scope changes, 120
Scope-cost-quality-time dimensions, 105, 207
Scope Management, 91, 172, 181
Scrum master, 199
SCRUM methodologies, 199
Second level support, 31, 152, 163, 195
Security, 40, 70, 170, 173
Security guidelines, 197
Selection criteria, 98
Servers and Storage Management, 27, 39
Service Assets, 57
Service continuity and disaster recovery, 170

Service Delivery Management, 170
Service design, 76
Service Desk, 18, 173, 191
Service desk usage policy, 197
Service portfolio, 170
Severity, 20
Shared environments, 188
Sizing, 190
SLA, 35, 37, 43, 48, 62, 68, 170
Slack, 104
Sprint, 203
Sprint backlog, 201
Stakeholder influence, 93
Stakeholders, 123
Stakeholders’ meeting, 225
Steering committee, 120, 181
Story points, 206
Strategy, 37, 39, 41, 75, 218
Strategy vs. Delivery, 4
Strategy Vs. Operations, 3
Stress testing, 138, 193
Supplier Management, 170
Support matrix, 163
Support strategies and structures, 163
System Administrator, 23
System Administrators’ training, 193
System Architect, 179
Systems, Processes and People, 7

T
Table of Organization for IT, 14
Technical design, 181
Technical design document, 129
Technical Management (TM), 11, 21, 28, 52,

60
Technical Manager, 179
Technical specifications, 59, 95
Technical support, 179
Terms-of-Reference (TOR), 95, 181
Test automation, 141
Test cases, 136
Test environment, 50, 139, 186
Tester, 179
Test guidelines, 193
Testing, 30, 50, 60, 66, 133, 155, 172, 193
Testing pitfalls, 139
Test plan, 60, 130
Test scripts, 131, 138
Third party High availability spares, 70
Tickets, 36
Time and Material (T&M) contracts, 99
Time-Cost-Quality Management, 105
Timeliness, 49
Time Management, 100

240 Index

Traceability (of the release), 154
Training environment, 190
Training guidelines, 173, 193
Train the trainors, 194
Tuning, 68
Turnkey projects, 99

U
Uncertainty, 93
Unit testing, 134, 193

User Acceptance Testing (UAT), 51, 136, 151,
193

User manuals, 131
User policies, 170
User requirements document, 124
User Support, 11

W
Waterfall Methodology, 199
Workarounds, 31

Index 241

	Preface
	Acknowledgments
	Contents
	1 Introduction
	2 IT Areas and Functions
	2.1�Projects Versus Operations, Strategy Versus Operations
	2.2�Systems, Processes, and People

	3 Organization and Human Resources
	4 Managing Operations
	4.1 Information Technology Service Management
	4.1.1 Service Desk (SD)
	4.1.2 Technical Management (TM)
	4.1.2.1 System Administration
	4.1.2.2 Database Administration
	4.1.2.3 Network Management
	4.1.2.4 Management of Servers and Storage
	4.1.2.5 Technical Management

	4.1.3 Application Management (AM)
	4.1.3.1 Application Management: Incidence Handling
	4.1.3.2 Application Management: Development
	4.1.3.3 Application Management: Overall

	4.1.4 IT Operations Management (ITOM)
	4.1.5 Field Support (FS)
	4.1.6 Operations Head
	4.1.7 Operations Management Office
	4.1.8 Information Systems (IS) Head
	4.1.9 IT Infrastructure (II) Head

	4.2 IT Services Lifecycle
	4.3 Planning and Design Phase
	4.3.1 Change Management
	4.3.1.1 Prioritization

	4.3.2 Service Level Agreement (SLA)

	4.4 Release Phase
	4.4.1 Testing
	4.4.2 Configuration Items
	4.4.3 The Configuration Management Database (CMDB)
	4.4.3.1 Release Approval
	4.4.3.2 Documentation and Knowledge Base (KB)

	4.5 Maintenance Phase
	4.5.1 Event Management
	4.5.2 Incident Management
	4.5.3 Problem Management
	4.5.4 Request Fulfillment
	4.5.5 Access Management
	4.5.6 Capacity Management
	4.5.7 Availability Management
	4.5.8 IT Service Continuity Management
	4.5.9 Information Security Management
	4.5.10 Backup

	4.6 Retirement Phase
	4.7 IT Strategy
	4.8 Continual Service Improvement
	References
	Further Reading

	5 Managing Projects
	5.1 �Project Management Principles
	5.1.1 Basic Principles and Characteristics of Projects
	5.1.2 Scope Management
	5.1.3 Procurement Management and Contracting
	5.1.4 Time Management
	5.1.5 Time-Cost-Quality Management
	5.1.6 Monitoring and Control
	5.1.7 Risk Management
	5.1.8 Knowledge Management
	5.1.9 Communication Management

	5.2 �Project Documentation
	5.2.1 Analysis
	5.2.2 Design
	5.2.3 Cutover and Go Live Phase
	5.2.4 Closure

	5.3 FRICEW
	5.4 �Implementation Strategy
	5.5 �Testing
	5.6 �Test Automation
	5.7 �People Change Management
	References
	Further Reading

	6 Cut-Over into Operations
	6.1�Backup and Restore Procedures
	6.2�Release Management Procedures
	6.3�Business Process
	6.4�Data Migration
	6.5�Cut-Over of Transactions and Data Quality
	6.6�Interfaces
	6.7�Support Strategies and Structures
	Further Reading

	7 Project Governance
	7.1�Overall IT Governance
	7.2�Project Governance and Operations Governance
	7.3�Project Monitoring and Control
	7.4�Project Team Roles and Responsibilities
	7.5�Communication Management
	7.6�Scope Management (Including Change Requests)
	7.7�Risk Management
	7.8 Asset Management
	7.9 Issue Management
	7.10�Release Management
	7.11�Infrastructure Capacity Management
	7.12 Request Management for Projects
	7.13�Code Development Guidelines
	7.14�Test Guidelines
	7.15�Training Guidelines
	7.16�Backup and Recovery Guidelines
	7.17�Pre-go-Live Guidelines
	7.18�Post-implementation Support Policy
	7.19�Service Desk Usage Policy
	7.20����Security Guidelines
	Further Reading

	8 Agile-Scrum Project Management
	8.1 Introduction and Basic Concepts
	8.2 Basic Components
	8.2.1 Product Backlog
	8.2.2 Sprints

	8.3 Monitoring: Burn-Down Chart
	8.4 Scope-Cost-Quality-Time Dimensions
	References
	Further Reading

	9 IT Portfolio Management
	9.1�Portfolio Planning and Design
	9.2�Portfolio Assessment and Communicating
	9.3�Portfolio Rebalancing
	9.4�Portfolio Governance
	9.5�Portfolio Monitoring and Control
	Reference
	Further Reading

	10 Appendix A: Sample Terms of Reference (TOR)
	List of Functional Requirements

	Curriculum Vitae
	Index

