
I THE JOURNAL OF
COMPUTER INFORMATION SYSTEMS

A Refereed Publication

Editor

Dr. Jeretta Horn Nord

College of Business Administration

Oklahoma State University

Stillwater, OK 74078

BITNET: MGMTJHN@OSUCC

SoftwareIBook Review Editors

Dr. J. K. Pierson

James Madison University

Harrisonburg, V A 22807

Dr. Claude Simpson
Dept of Computer and Office Information Systems
Northeast Louisiana University
Monroe, LA 71209

TIlE JOURNAL OF COMPV11!R INFORMATION SYS11!MS (lSSN ..,-4417 USPS %1~) ill ..

•

ASSOCIATION FOR COMPUTER EDUCATORS

Officers

Executive Director:

Dr. Robert P. Behling

Bryant College

Smithfield, RI 02917

Executive Director Emeritus:

Dr. Enoch Haga

P.O. Box 2909

Livermore, CA 94550

Managing Director:

Dr. G. Daryl Nord

College of Business Administration

Oklahoma State University

Stillwater, OK 74078

BITNET: MGMTGDN@OSUCC

President

Dr. Cynthia Johnson

Bryant College

Smithfield, RI 02917

Vice President

Dr. Thomas Seymour

College of Business

Minot State University

Minot, NO 58701

Secretary:

Dr. Beuy Kleen

Nicholls State University

Thibodaux, LA 70310

Treasurer:

Dr. Ben M Bauman

James Madison University

School of Business Administration

Harrisonburg, VA 22807

Past President

Dr. Susan Haugen

Department of Accountancy

Univ. of Wisonsin-Eau Claire

Eau Claire, WI 54701

oIIIciII pubIicoIiaa Ill .. AIIDciaIica far a.a.-r EducaIIIn .. ill pubI/IbIol qlllllldy 11217 eon.plll
B...u..a. Oldabama Stall UDiwnily. S1iIlw....r. 0Idabama. ArlldllliII JOURNAL ... iIIIIoaod ill dIo Bo*aliaa U"'-iIy MlaomlJll. RapriaU oflllicloa .. ."alIabIe tam Umymil)'

Mic:rotilma 1DIomaIiaaII. 300Nanb be1tRood. ADD Arbor.MlcbipD 48106. n. Aaaclaliaa lor Compallr Edu<:IIon aeopanoi1tllily tar yiow. or opinlarIIu"""-loy _Iblbln 10 tbo JOURNAL.

n. AuociaIioD tar ~a...-...-tl..oJr... ill IOCIIICIIIJ_ u.u-.iIy. ScbooI IIlB...... 1ulmiail1raIioa, Horrioaa...... VA 22807. A limitodlUllllbor ofloodt __ IIltboJOURNAL lie

...BlbIe tar $1100,... --. a.q_d ... mailed 10 nm JOURNAL OP COMPUTER INFORMATION SYSTEMS. Dr. __Ham Natd, Bdilor, Col III B...... IuImiaiIIraIioa 0kI1hami S
Uaivcnity. SliIIw_. OK 74071. Subocripl;ar. (qIIIIIIIrI)' OcIoIIorJoI)') .. iadadod ill ACE lDdIvidllOl dua. III $25 ,... ,..... of whkh 520 iI tar tbo lllloocripIiaD. N_mbor IIlbocriplicnl
, ..i1able ,1525)' IOlilnrlu imtillni" PoaeIp ..lIIcrIpdaruo ..W,...,.... wllb tbo _pika olCaDada UldMexIco whicb 530......)'. POSThfAST1lR: SIIIOladdrua cboDpa 10n. Aaaciation
Cor ~EdIIcaI.an, Jamoa ModiIoD Uaiwnity. Scboal III B...... AdmiaIaInIIaa, HaoriaaDbur.. VA 22907.

.

7

http:EdIIcaI.an

•

THE JOURNAL OF COMPUTER INFORMATION SYSTEMS

Volume XXX, Number 1 • Fall 1989

CONTENTS

Articles: 	 FACULTY USAGE OF MANAGEMENI' INFORMATION
SYSTEMS JOURNALS: A SURVEY. • • • • • • • 1
KAI S. KOONGand H. ROLAND WEISTROFFER
Virginia Commonwealth University
Richmond, Virginia

PERCEPTIONS OF THE VALUE OF INTRODUCTION TO
COMPUTER INFORMATION SYSTEMS • • • • • • 5
N.E. SWANSON andJ.C. SWANSON

Southwest Missouri State University

Springfield, Missouri

EXPERT SYSTEMS: AN OVERVIEW AND THE RELATIONSmp
WITH DECISION SUPPORT SYSTEMS. • • • • • • • • • 9
ENGMING LIN
Eastern Kentucky University
Richmond, Kentucky

CAN END-USERS DEVELOP THEIR OWN DATA-BASE ORlENI'ED
DECISION SUPPORT SYSTEMS?·. • 13
ALBERTO M. BENrO
California State University, Stanislaus
Turlock, California

THE DEVELOPMENI' OF MIS EDUCATION IN THE PEOPLE'S
REPUBUC OF CHINA. • 22
YAW-CHIN HO
Auburn University of Montgomery
Montgomery, Alabama

THE MANAGEMENI' OF END USER COMPUTING IN A DISTRIBUTED
DECISION SUPPORT SYSTEMS ENVIRONMENT ••••••••••••••• 26
CHEN-HUA CHUNG CHANG-YANG LIN and ENGMING LIN
University of Kentucky Eastern Kentucky University
Lexington. Kentucky Richmond, Kentucky

INSIDE AN EXPERT SYSTEM: STRENGTHS, WEAKNESSES, AND TRENDS • • • • • • 34
Cll-CHUNG (DAVID) YEN HUNG-UAN TANG
Miami University Bowling Green State University
Oxford, Ohio Bowling Green, Ohio

COMMUNICATION NETWORKS FOR THE SCHOLAR • • • • • • • 40
MICHAEL T. VANECEK
The University of North Texas
Denton, Texas

A FRAMEWORK FOR THE DESIGN AJ'I.'D IMPLEMENTATION OF
LOCAL AREA NETWORKS. • • . . . • • • • • • • .. • 43
KENNY W.J. JIH, CHARLES A. SNYDER and KENNY ALDRIDGE
Auburn University
Auburn University, Alabama

MODEL CURRICULA: OSRA, ACM, AND DPMA OFFICE SYSTEMSI
INFORMATION SYSTEMS~. 50
BElTYE ROBINSON and ROBERT ROBINSON
Northeast Louisiana University
Momoe, Louisiana

SOFTWARE TESTING TECHNIQUES IN INFORMATION SYSTEMS CURRICULA. • • • • 54
ELDON Y. U .
California Polytechnic State University
San Luis Obispo, California

Research Section: 	 PROTOTYPING: USE IN THE DEVELOPMENI' OF COMPUTER-BASED
INFORMATION SYSTEMS • 62
CHARLES R. NECCO. NANCY TSAl. CARL L. GORDON
California State University, Sacramento
Sacramento, California

Book Review Section: • 67

SOFTWARE TESTING TECHNIQUES IN

INFORMATION SYSTEMS CURRICULA

by

ELDON Y. LI

California Polytechnic State University

San Luis Obispo, California

ABSTRACT

Software testing is an important part of information systems
(IS) development process. To achieve effectiveness in
software testing, the participating IS professionals must
apply software testing techniques. A review of the current IS
cmnculum models reveals that specific pedagogical guidelines
are not available for instructing software testing techniques.
This paper discusses the importance of software testing to IS

development and maintenance, reviews the existing software
testing techniques, and provides a pedagogical guideline for
instructing software testing techniques in IS cmricula.

INfRODUCTION

Software quality is one of the major factors influencing the
quality of the information systems (IS) in organizations. It
is therefore necessary for every completed software product to
pass a series of quality tests before it is formally released to
its users. In this sense, software testing becomes a
mandatory process in the life cycle of a software projecL
Any IS' graduate who will participate in a software project
must be ready to participate in both the high-level testing
activities (such as the requirements-dermition walkthrough,
external system design. test pi arming, black-box test~ase
design, system testing, and acceptance testing) and the low­
level testing activities (such as internal system design.
specifications walkthrough, code review, white-box test~ase

design. and numerous test executions). In order to perform
software testing effectively, the IS graduate is required to have
the knowledge of software testing techniques. These
techniques each provide a structured approach to design test
cases and data for· testing the quality of a software producL
Therefore, they are of vital importance to every practicing IS
professional as the other structured techniques such as
structured analysis, structured design. and structured
programming are.

A sound information systems curriculum should equip its
students with both technical and organizational skills in
communications (both oral and written), analysis, design.
programming, testing. documentation. and management
because most of the entry-level jobs opened for college IS
graduates require these skills. A review of the current ACM
(20) and DPMA (7) curriculum models reveals that specific
pedagogical guidelines are available for most of these skills
except software testing. Although software testing activities
such as walkthrough and review, unit and integration testing,
regression testing, and test cases/data design are recommended
as the required topics in the systems development courses

•

(such as ISS [20], CIS/86-3, and CIS/86-4 [7]), neither model
provides adequate references for further reading, nor do they
indicate what techniques of software testing should be
imparted to the IS students. This paper rectifies these
deficiencies by providing a guideline for instructing software
testing techniques in IS curricula. The existing software
testing techniques are reviewed and a set of effective
techniques is identified. This set of techniques is then
applied to a programming assignment to demonstrate a
structured process of software testing. This structured process
can serve as a pedagogical guideline for classroom
instruction.

SOFnWARE TESTING TE~QUES

Software testing techniques can be classified into two groups:
the "black-box" and the "white-box" techniques (19). The
differences between these two groups of techniques lie in their
methods of test-case design. The black-box techniques derive
the test cases from the requirements definition or the external
(design) specification. while the white-box techniques from
the program logic in the source code or internal design
specification. The former teclmiques focus on the functions
of the program/system being tested while the latter on the
structure. Therefore they are also 1cnown respectively as the
functional and the structural techniques(I). The test-case
design methods of these two groups of techniques are briefly
descn'bed below.

Black-Box Test-Case Design TechnIques

• EquIvalence Partitioning - requires that the input
conditions of the base document (either the requirements
definition or the external specification) be partitioned into
one or more valid and invalid equivalence classes. When
deriving test cases, it requires that all valid input classes be
covered before covering any invalid class. When covering
the valid input classes, each test cue should be derived to
cover as many uncovered valid classes as possible. Once all
the valid input classes have been covered, esch test case
should be derived to cover only one uncovered invalid input
classes at a time (19).

• Boundary Coverage requires that the input
conditions on and adjacent to the boundary of the input
equivalence class be tested and that the result space (Le., the
normal-end and the abnormal-end output equivalence classes)
be considered and tested as well (12, 19). This method is
very useful in generating test data for each test case.

FaD 1989 The Journal or Computer Intonnatlon Systems 54.

• Cause-EtTect Graphing requires that the
specifications be divided into smaller workable pieces, that
the valid and invalid input conditions (causes) as well as the
nonnal-end and the abnonnal-end output conditions (effects)
be identified for each workable piece, and that the semantic
content of the specifications be analyzed and transformed into
a Boolean graph linlcing the causes and the effects. The
graph is then converted into a limited-entry decision table
that meets all environmental constraints, and each column in
the table represents a test case (8, 9, 19). Cause-effect
graphing explores all combinations of input conditions
within a workable piece of the specifications while boundary
coverage and equivalence partitioning do not

• Error Guessing - requires that a list of possible errors
or error-prone situations be enumerated and that test cases be
derived based on the list (19). Unlike the boundary coverage
technique, error guessing is largely an intuitive (16) and ad
hoc process. It relies heavily on the tester's experience.
Many test cases derived from this technique are found to
overlap those from equivalence partitioning and boundary
coverage (1).

White-Box Test-Case Desi&n Techolques

• Statement Coverage - requires that every statement in
the program be executed at least once (16, 19).

• Decision Coverage - also called ''branch coverage",
requires that every Il'Ue/false branch be traversed at least once
and that every statement be executed at least once (16, 18).
Apparently, if a program has single entry and single exit,
covering every branch implies that every statement will be
executed at least once.

• Condition Coverage requires that every condition
in a decision take on its true and false outcomes at least once
and that every statement be executed at least once (19).

• Decision/Condition Coverage it is the potpourri
of the above three techniques. It requires that e:very condition
in a decision take on its true and false outcomes at least once,
that each decision talee on every possible truelfalse branch at
least once, and that every statement be executed at least once
(19).

• Multiple-Condition Coverage is an extension of
the decision/condition. coverage. It further requires that every
possible combination of condition outcomes within each
decision be invoked at least once (19). Obviously, this
method is superior to the above four techniques.

• Complexity-Based Coverage uses the cyclomatic
number in the literature of graph theory (2, 4, 10) to
determine the minimal set of required test cases and provides a
structured procedure for deriving the test cases directly from
the control-flow graph of the intended program. The
cyclomatic number of a program equals one plus the number
of conditions in the program (15). The program under test
must have a single entry and a single exit. The derived test
cases functionally meet the criteria required by the mUltiple­
condition coverage. Complexity-based coverage is superior

to the multiple-condition coverage because the fonner further
explores possible combinations of condition outcomes
between any two consecutive decisions.

RECOMMENDED SOFTWARE

TESTING TECHNIQUES

It is obvious that among the six white-box testing
techniques, the complexity-based coverage is the best because
it encompasses the other five white-box techniques and
further covers possible combinations of condition outcomes
between any two consecutive decisions. It is not only easy
to apply but also enforces one of the structured progranuning
principles -- any program module, be it large or small, must
have a single entry and a single exit (17). As to the black­
box techniques, we do not recommend error guessing for
classroom training not because it is unimportant but because
it provides no guideline for deriving test cases. However,
one should know that error guessing, like boundary coverage,
can help identifying invalid input conditions during
equivalence partitioning, cause-effect graphing, or even
walkthrough and review processes. It is also very useful
during the debugging stage since debugging relies heavily on
the progranuner's experience.

Among the other three black-box techniques, boundary
coverage is a required supplement to all other test-case design
techniques because none of the latter techniques fully test the
boundary of each input condition as the boundary coverage
does. Between the remaining two black-box techniques, cause­
effect graphing is superior to equivalence partitioning because
it further explores different combinations of input conditions
from the equivalence classes. However, drawing the cause­
effect graph for a small problem might be easy but it
becomes unwieldy quickly as the problem size grows (21).
For cause-effect graphing to be effective, it must be
automated. Since there is no commercial tool available for
cause-effect graphing today, we do not recommend the
inclusion of cause-effect graphing in the IS curriculum.
Examples of cause-effect graphing can be found in Elmendorf
(8, 9) and Myers (19).

In summary, three out of ten existing software testing
techniques are recommended to be instructed in an IS
curriculum -- most likely in the systems development courses.
They are 1) the equivalence partitioning, 2) the boundary
coverage, and 3) the complexity-based coverage techniques.
All three techniques can be applied not only to the computer­
based testing processes such as regression testing, unit and
integration testing, system and acceptance testing, but also
to the manual testing processes such as desk-checking,
walkthrough, and review. Since each technique has its own
weaknesses, they should not be used in isolation, but rather
they should supplement one another. The following is an
example demonstrating how to apply these techniques to
program testing from an IS professional's perspective.

AN EXAMPLE

Assuming that an IS professional is assigned a progranuning
project with the following requirements definition:

Fall 1989 The Journal of Computer Information Systems 55

'The program accepts three integer values from the keyboard. The first six steps listed above are demonstrated in details as
The three values are interpreted as representing the lengths of follows:
the sides of a triangle. The program prints a 11II!ssage thai
states whether the triangle is scalene, isosceles, or Step 1: Apply the equivalence partitioning technique to
equilateral." (Adopted from Page 1 of Myers [19]) the requirements defmition to derive the test cases. The

semantic content of the requirements defmition was analyzed
Now, to accomplish the project, the IS professional should and the keywords were underlined as follows:
perfonn the following steps:

'The program ~ three inte~er values from the keyboard.
(1) derive a set of test cases using the equivalence The three values are interpreted as representing the len~tbs of

partitioning technique, the sides of a trian~le. The program ~ a message that

(2) develop a program internal (logic) specification using states whether the triangle is ~ isosceles, or

pseudocode, equilateral. "

(3) draw a control-flow graph to represent the entire

program, The input keywords are "accept," "three integers,"

(4) derive a set of test cases using the complexity-based "keyboard," "lengths t:(sides (of a triangle)," and "triangle."

coverage technique, Among these keywords, the words "three integers" and

(5) consolidate the test cases obtained in Steps (1) and (4). "lengths of sides" are strictly data-related; the words "accept"

(6) design test data for each test case using the boundary and "keyboard" are strictly function-related; and the word

coverage technique, "triangle" is both data-related and function-related. Our focus

(7) translate the pseudocode into program source code, is on the three data-related keywords, "three integers,"

(8) conduct actual testing one test-case item at a time using "lengths of sides," and "triangle." Based on these keywords,

the test data, the possible valid and invalid input conditions and their

(9) repeated the above procedure if necessary until all the corresponding expected output conditions are enumerated in

test results are identical to the expected results. Table 1. Each expected output condition represents a unique

test case for the intended program.

TABLE 1

Test Cases Derived from Equivalence Partltlonlng

Test Case ID.
Input Equivalence Classes (Input Equivalence Classes Being Covered)

Valid:
Three Integers:

1. A is an integer 1. a triangle (1-9)
2. B is an integer
3. C is an integer

Lengths of Sides:
4. A>O
S. B>O
6. C>O

Triangle:
7. A+B>C
8. A+C>B
9. B+C>A

Invalid:
10. Ad & A is an integer 2. invalid integer A (10)
11. B<1 & B is an integer 3. invalid integer B (11)

12 Cd & C is an integer 4. invalid integer C (12)

13. A is not an integer S. non-integer A (13)
14. B is not an integer 6. non-integer B (14)
15. C is not an integer 7. non-integer C (15)

16. A+BsC 8. not a triangle (16)
17. A+CsB 9. not a triangle (17)
18. B+CsA 10. not a triangle (18)

Fall 1989 The Journal of Computer Information Systems 56

AcClPC Lnte,I". A,l,e

Equilateral

A Control-Flow Graph for the Triangle Program

Step 2: One possible set of pseudocode for this program is
written below. Note that pseudocoding in the program
internal specification emphasizes not the efficiency (structure)
but the effectiveness (functions) of the desired program. Our
pseudocode here may not be efficient but it is certainly
effective.

PROGRAM TRIANGLE (A.B.C)

ACCEPT integers A.B.C from the keyboard.

IF A>O AND B>O AND C>O THEN

IF A+B>C AND A+C>B AND B+C>A THEN
IFA=BTHEN

IF B=C THEN PRINI "equilaleraJ."
ELSE PRINI "isosceles:'

FIGURE

Invall
Input

END

Step 4: This step is to develop a Jet of test cases using
the complexity-based coverage technique introduced by
Thomas E. McCabe (IS) which allows the tester to fmd all
independent paths directly from the control-flow graph of a
program. Each path found represents a test case for testing
the program. McCabe's method as it applies to the control­
flow graph of Figure 1 is summarized below along with the
author's notation.

Procedure for Complexity-Based Coverll&e:

(1) Pick a functional "baselIne" path through the JrOgram
which represents a legitimate function and not just an error
exiL The key is to pick a representative function provided in
the program as opposed to an error path that results in an
error message or recovery procedure. For example. path
1d2h3i4k6p is a possible baseline. Note that our path
expression is somewhat different than that of McCabe (15) in
which the decision number does not appear.

(2) Identify the second path by locating the first decision on
the baseline and flipping its outcome while simultaneously

holding the maximum number of the original baseline
decisions unchanged. If the decision has multiple conditions,
each condition should be flipped one at a time. This process
is likely to JrOduce a second path which is mlnlmally
different from the baseline path. The result yields three
paths: -la, -lb. and -Ie. We use the symbol "-" to
indicate that the decision behind the symbol has been
flipped.

(3) Set back the first decision to its original value before the
flipping. identify the second decision in the baseline path,
and flip its outcome while holding all other decisions to their
baseline values. This process,
third path which is minimally
path. The result yields another
and ld-2g.

(4) Repeat this procedure until
decision on the baseline and has
value while holding the other
baseline values. After flipping
the path ld2h-3j5m. Flipping

ELSE IF B=C THEN PRINI "isosceles,"
ELSE IF A=C THEN PRINI "isosceles,"

ELSE PRINI "scalene,"
ELSE PRINI "not a triangle."

ELSE PRINI "invalid input."
END ofprogram.

Step 3. Figure 1 shows the control-flow graph
representing the program pseudocode. The graph is drawn by
McCabe's (15) convention which uses multiple branches to
represent the true/false outcomes of a compound decision
(i.e.. a decision with AND or OR operators). All the
decisions and outcome branches are labeled to facilitate test
paths identification.

1

likewise, should produce a
different than the baseline
three paths: ld-2e, ld-2f,

one has gone through every
flipped it from the baseline
decisions to their original

the third decision, we have
the fourth and the sixth

FaD 1989 The Journal of Computer Information Systems 57

decisions yields in sequence the paths Id2h3i-41 and
Id2h3i4k-60.

(S) Repeat the above procedure for any unflipped decision
which is not on the baseline. Once all the decisions have
been flipped, the process is then completed. In our case, we
must flip the ruth decision encountered in Step (4). Flipping

TABLE

the fIfth decision yields the path Id2h-3j-5n.

Table 2 shows the eleven paths found by the complexity­
based coverage technique and their corresponding test-case
numbers of Table 1. Notice that the number of test cases
derived from this procedure (which is 11) always equals the
cyclomatic number of the program which is one plus the
number of decision conditions in the program (which is 10).

1
Test Cases Derived from the Complexity-Based Coverage

Test Paths (Cases) Derived from the Test Case 1.0.
Case 1.0. Complexity-Based Coverage in Table 1

1. Id2h3i4k6p (Baseline) 1·

2- -la 2
3. -lb 3
4. -lc 4

S. Id-2e 8
6. Id-2f 9
7. Id-2g 10

8. Id2h-3jSm 1·

9. Id2h3i-41 1·

10. Id2h3i4k-60 1·

11. Id2h-3j-Sn 1·

,
12. •• S"
13. •• 6··
14. •• 7··

• The input conditions identifIed by the equivalence partitioning technique does not require the input conditions for different types
of triangle. In contrast, the pseudocode as well as the control-flow graph further considered the possible types (i.e., outcomes) of
a triangle .

• *This test case does not have a corresponding test path because the pseudocode as well as the control-flow graph assumes that the
input will be of integer format and that the format will be checked by the system. In contrast, the requirements definition makes
no such assumption.

Step 5. The cross-reference in Table 2 reveals that the test fourteen test cases listed in Table 2 to derive test data. One
paths/cases derived by the complexity-based coverage word of caution is that for the complexity-based method to be
technique may not perfectly match those derived by the effective, the target program or pseudocode must be coded
equivalence partitioning. Because that the pseudocode was according to the structured-programming principles (e.g.,
written based on the assumption that the system will check single entry and exit, no unconditional GOTO branch, use of
the input format and only accept integer input,' the structured constructs, etc. [3, S, 6, 17]).
complexity-based coverage technique did not identify the test
cases covering non-integer input conditions. On the Step 6: Equivalence partitioning and complexity-based
contrary, equivalence partitioning did identify the test cases coverage techniques are best for deriving possible test cases,
covering non-integer input conditions, but it did not derive but when it comes down to generating test data, both
the test cases examining different types of triangle as the techniques must be supplemented by the boundary coverage
complexity-based coverage did. Since our objective is to technique. For example, one of our valid input equivalence
derive and use as many independent test cases as possible, we classes is delineated by "A>O & A is an integer," the lower
shall consolidate the two sets of test cases and use all the boundary values of this input condition are A=I, A=I+e and

Fall 1989 The Journal of Computer Inrormation Systems 58

•

A=l-e. where e is the nurumum significant unit of measure boundary value is A=-.999. However. the value of A=-999 is
which is "1." Therefore. we generate A=l. A=2, and A:IJ one redundant since any negative values of integer A will be
at a time as the test data. If the A is a real number. we rejected by the Jrogram/system and the value A=-I already
generate A=l. A= 1.00 1. and A=.999. On the other hand. the covered this case. The value of A=-I is preferred to A=-999
upper boundary is a very large integer number. say A=999. because the former is near the boundary between the valid and
The invalid input equivalence class of A being an integer is invalid input classes. The boundary values of the input
then "AsP & A is an integer." The upper boundary values of integer A are indicated in Figure 2. By the same token, the
this invalid class are A=O. A=l. and A=-l. while the lower test-data values of B and C are similarly assigned.

FIGURE 1

The Boundary Values or the Input Integer A

A: Invalid Integer Values

I
·999

The other input condition is A+B>C which has two invalid
boundary conditions: A+B=C and A+B<C. 1berefore. we
create two sets of test data: {A=I. B-1. C.2} and {A=I.
B=l. C=3}. The test data for the input conditions A+C>B and
B+C>A are derived as expected.

With respect to the boundary of the output space. it was found
that each expected unique type of triangle does not have a
matching input equivalence class. However. this Jroblem was
overcome by the test cases derived from the complexity-based
coverage. The test data for each test case along with its
expected test outcome are enumerated on the last two columns
of Table 3. These test data completely cover the boundaries
of the output space.

Note that the use of boundary coverage method is only
limited by one's imagination. For example. it can be applied
to the following cases:

(1) A Jrogram Jrocesses several arrays. Test both the upper
and the lower boundary subscripts of each array (13).
(2) A program updates a me. Process the me without any
change. then with a change of the flI'St record. then a change
of the last record. finally. a change of a record which does
not exist in the file.
(3) A main program which calls four independent modules
will display a menu of module numbers, names, and functional
descriptions. and Jrompts for the users selection of one of
the module number. 1 through 4. Test the main Jrogram by
selecting O. 1. 4. and S.
(4) A program contains a 00 loop with an exit condition.
Test the loop with 0 entry. 1 entry. and 2 entries. This

Valid Integer Values
1 2 999

I I
I I I

-1 0

coverage method is known as the ''boundary-interior'' path
testing procedure (II).

Steps 7, 8 and 9: Finally. the IS professional will
translate the pseudocode into program source code. and then
test the source code by executing it with one set of test data
at a time. To complete the testing of source code. all 23 test­
case items listed in Table 3 must be executed. If any major
error was found. the error should be removed before the
testing process is continued. Repeat the above process to re­
design the test cases/data or re-code the program and. to re­
test the program until all the test results are identical to the
expected results.

DISCUSSION

The above discussion focused on those testing teclmiques
which are essential to the IS professionals in testing their IS
software. Other techniques such as Jroof of correctness,
simulation, symbolic execution. among others (1) are not
necessary to the IS professionals and thus were not discussed
in this paper. Although the example used in this paper may
seem trivial. the basic principles of the testing teclmiques
and the testing process demonstrated in the Jrevious section
can be applied to a program/system of any size (be it large or
small) and to any level of computer-based testing as well as
manual desk checking.

Since the process demonstrated above is highly structured and
straightforward. it is pedagogically feasible for classroom
instruction and practices. We have imparted this process to
our students in the system design and implementation course

Fall 1989 The Journal or Computer Information Systems 59

TABLE 3

Final Test Cases and Test Data Generated by the Boundary Coverage

Test Test Paths Derived Test Case Expected Test Data Derived by

Item by the I.D.in Test Botmdary Coverage for

J.D. Complexity-Based Method Table 1 Outcomes Each Test Case···

1 -la 2 Invalid A A=O B=· C=·
2 A=.1 B=· C=·

3 -lb 3 Invalid B A-I B-O C=·
4 A-I B. -.1 C .. •

S -lc 4 Invalid C A=1 B=1 C=O
6 A=1 B=1 C =-1

7 •• S Non-integer A A = 1.01 B=· C=·
8 A= .999 B=· C=·

9 •• 6 Non-integer B A=1 B = 1.01 C=·
10 A= 1 B =.999 C=·

11 •• 7 Non-integer C A=1 B=1 C = 1.01
12 A=1 B=1 C = .999

13 Id-2e 8 Not a triangle A=1 B=1 C=2
14 A-I B=1 C= 999

IS Id-2f 9 Not a triangle A=1 B=2 C=l
16 A= 1 B =999 C=l

17 Id-2g 10 Not a triangle A=2 B=l C=1
18 A=999 B=l C=1

19 Id2h3i4k6p 1 Isosceles A=2 B=1 C=2

20 Id2h-3j-Sn 1 Equilateral A= 1 B=1 C=1

21 Id2h-3jSm 1 Isosceles A=999 B = 999 C=1

22 Id2h3i-41 1 Isosceles A= 1 B = 999 C=999

23 Id2h3i4k-60 1 Scalene A=2 B=3 C=4

• This entry can be of any value.

•• No corresponding test case is generated because the integer fonnat is assumed to be checked by the system.

••• Without boundary-value analysis the data may not be the same and the second set of test data for each invalid input condition

will not be generated.

and received overwhelming, posillve feedback from those who development and maintenance, reviews the existing software
took the course, Our experience indicates that before learning testing techniques, and recommends a set of effective
the three recommended testing techniques, each student was techniques to be included in IS cmricu1a. The techniques
using exclusively the error guessing technique -- which is recommended include 1) equivalence partitioning, 2) boundary
hardly a technique -- to derive test cases and data. After coverage, and 3) complexity-based coverage. These three
experiencing the above testing process for two or three techniques were applied to the same programming example to
times, every one of them eventually became an effective test­ demonstrate a realistic, structured testing process. The
case designer. demonstrated testing process is recommended as a pedagogical

guideline for instructing software testing in a classroom
SUMMARY setting.

This paper discusses the importance of software testing to IS

Fall 1989 The Journal or Computer Inrormation Systems 60

__ _

•

REFERENCES 	 10. Harary, F. Graph Theory, Reading, MA: Addison-
Wesley, 1969, 37-40.

1. Adrion, W.R., M.A. Branstad, and J.C. Cherniavsky. 11. Howden, W.E. "Methodology for the generation of

"Validation, verification, and testing of computer software," program test data, " IEEE Transactions on Computers,

ACM Computln& Surveys, 14, 2 (June 1982), pp. 159- C-24, 5 (May 1975), 554-559.

192. 	 12. Howden, W.E. "A survey of dynamic analysis

2. Berge, C. Graphs and Hypergraphs, Amsterdam, methods," In Miller, E., and Howden, W.E. (eds.) Tutorial:

The Netherlands: North-Holland, 1973, 15-17. Software testing and validation techniques, New

3. Bohm, C., and G. Jacopini. "Flow diagrams, Turing York: IEEE Computer Society, 1981,209-231.

machines and languages with only two formation rules," 13. Kernighan, B.W., and PJ. Plauger. The Elements

Communications or the ACM, 9, 5 (May 1966), 366- or Programming Style, New York: McGraw-Hill, 1974,

371. 	 61-62 & 89.

4. Dec, N. Graph Theory with Applications to 14. McCabe, T.J. "A complexity measure," IEEE

Engineering and Computer Science, Englewood Transactions on Software Engineering, SE-2, 4

Cliffs, NJ: Prentice-Hall, 1974, 55-58. (April 1976), 308-320.

5. Dij"kstra, E.W. "Go To statement considered harmful," 15. McCabe, T.J. (ed.) Structured Testing, Silver

Communications or the ACM, 11, 3 (March 1968), Spring, MD.: IEEE Computer Society Press, 1983, 19-47.

147-148. 16. Miller, E.F., Jr. "Program testing: Art meets theory,"

6. DiJ'kstra, E.W. "Structured programming," Software Computer, 10,7 (July 1977), 42-51.

Englneerln& Techniques, Report on a Conference 17. Mills, H.D. "Mathematical foundations for structured

sponsored by the NATO Science Committee, Rome, Italy programming," FSC 72-6012, IBM Federal System Division,

(April 1970), 84-88. Gaithersburg, MD, 1972.

7. DPMA. The DPMA Model Curric:ulum for 18. Myers, GJ. Software ReliabIlIty, New York:

Under&1"aduate Computer Information Systems, Wiley-Interscience, 1976,201-206.

2nd Edition, Data Processing Management Association, 19. Myers, G.1. The Art of Software Testin&, New

Park Ridge, IL, July 1986. 	 York: Wiley-Interscience, 1979, vii, 1-11, & 36-76.

8. Elmendorf, W.R. "Cause-effect graphs in functional 20. Nunamaker, J.F., J.D. Couger, and G.B. Davis, (eds.)

testing," TR-OO.2487, IBM System Development Division, "Information systems curriculum recommendations for the

Poughkeepsie, New York. 1973. 80s: Undergraduate and graduate programs," Communi­

9. Elmendorf, W.R. "Functional analysis using cause­ cations or the ACM, 25, 11 (November 1982), 781-805.

effect graphs," Proceedings or SHARE XLllI, New 21. Ould, M.A., and C. Unwin. Testing In Software

York. (1974),567-577. Development, Cambridge, Great Britain: Cambridge

University Press, 1986, 80-99.

ASSOCIATION FOR COMPlITER EDUCATORS

Sdaool or Busi_ Administration

James Madison UlIlversily

IJllrrisonbura. VA 11807

Arm lCATION R'lR MIlMDEBSl!!r

o New Member o Rcnowal o 0 of Applicalion

o 	REGULAR MEMBERSHIP - Open 10 1110.. wi'" .. earned DachoIon ... hi'.... de"""••pclIIIOnld byulin, member of
ACE. and approved by lho EaOCUlive C:-X:i1.. Annual mcmbcnhip d_ - $35.00.

o ASSOCIATE MEMBERSHIP - Open II> 1I1~ in_ in 011_ not _in, lho qualifoc:alions 10 become. regular
member. Annual membonhip dues - SlS.oo.

o 	R'lREIGN MEMBERSHIP - Open 10 6braric&. inRiIutio... and individuala ouIIido lho U.S. Amual dues _ $45.00. Canada and
Mexico annual dues - $40.00.

o 	UBRARIES - AnIIuaI - $45.00.

o 	STUDENT AND RE11RED MEMBERSHIP - Open 10 bona r.................. nIIirod mcmben oorIifoed f-benld!, by a
member. Annual "*"'-hip dues - SI5.oo.

NII1IO
TI~

InsIiWlion

Mailina Addrou ____________________________________

~AIIoc:ialion f... CoonpuIor lid....... II a non·pIOnl California Carparlllonemcd by 111 Ea_I•• CouncU. II wu foWldod In

(................ d10ck payable 10 ACE wilh IjlpIicIIIon for membenhlp.)

Fall 1989 The Journal of Computer Information Systems 	 61

77

