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A B S T R A C T   

Logistics delivery companies today are under high pressure from the carbon market. As an emerging commercial 
delivery tool, the drone has the advantages of low carbon emissions and cost. This study proposes an innovative 
dual-objective mixed-integer linear programming model to explore the environmental and economic impacts of 
drone-assisted truck delivery under the carbon market price. It uses JD.com in China as a case study to explore 
the company’s benefits of adopting drone-assisted delivery. The results show that compared to traditional truck 
delivery, drone-assisted delivery reduced carbon emissions by 24.90%, reduced total cost by 22.13%, and 
shortened delivery time by 20.65%. In addition, the effects of some key elements on the total cost and carbon 
emissions are compared. The analysis shows that drone battery cycle life, fuel price, driver’s wage, truck speed, 
and drone speed are vital for drone-assisted truck delivery.   

1. Introduction 

With e-commerce and economic globalization rapidly developing, 
the frequency of commercial delivery has increased dramatically, 
resulting in a sharp increase in carbon emissions (Neves-Moreira et al., 
2019; Figliozzi, 2020; Zhang et al., 2021). These emissions are caused 
mainly by the unabated fossil fuel combustion from trucks that require 
hundreds of years to offset the environmental impact (Shindell and 
Smith, 2019). Furthermore, as environmental awareness and sustainable 
development goals become prevalent today (Rustam et al., 2020; Cal-
culli et al., 2021; Zhang and Kong, 2022), companies must address 
sustainability-related problems (Linton et al., 2007; Liu et al., 2021). In 
addition, most governments have mandated companies to practice 
environmental protection measures for their supply chains (Dooley 
et al., 2019), which commonly use trucks for their last-mile deliveries, 
producing carbon dioxide and toxic pollutants (Shindell and Smith, 
2019). Therefore, delivery vehicle innovation that mitigates carbon 
emissions is necessary for companies to implement environmental pro-
tection practices. 

An important measure to mitigate carbon emissions is carbon pric-
ing. Carbon pricing has been regarded as an essential component of any 
sensible climate policy and an effective, flexible, and low-cost method of 

reducing carbon emissions (Green, 2021). It encourages polluters to 
reduce the use of coal, oil and natural gas, and other major sources of 
global warming by increasing the carbon emission cost, which is widely 
recognized and considered effective (Hagmann et al., 2019). Carbon 
pricing usually takes the form of carbon emission trading or carbon tax 
(Gugler et al., 2021). Carbon pricing is the core of carbon market 
operation and plays an important role in global mitigation of carbon 
emissions (Feng, 2015). 

Following the European Union emission trading system, companies 
worldwide must explore low-carbon commercial delivery. During the 
past decade, drones originating from military research have entered the 
environmentally-sustainable commercial delivery arena (Stolaroff et al., 
2018; Pei et al., 2021) as they are cost-effective and significantly reduce 
energy consumption and carbon emissions (Dell’Amico et al., 2021). 
Several logistics companies have deployed drones for commercial de-
liveries. For example, Amazon took the lead in 2013 to introduce the 
Prime Air plan that uses drones to deliver goods to customers’ doors in 
30 min or less. As one of the four major international logistics giants, 
DHL is also at the forefront of drone logistics research. With the help of 
the local government, DHL used unmanned aerial vehicles (UAVs) to 
deliver cargo on Yuster Island in the North Sea in Germany in 2014 
(Bryan, 2014). In China, Taobao.com, a subsidiary of Alibaba Group, 
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used drone delivery for the first time in early 2015. JD.com, another 
Chinese e-commerce giant, tried drone-based delivery to customers’ 
offices in the same year. Despite the outbreak of COVID-19 in 2020 
severely disrupting the supply chains of almost all industries in the 
world, JD used drones to achieve better results in its last-mile delivery 
(Shen and Sun, 2021). 

Driven by the carbon trading market, many e-commerce companies 
in China strive to use drones to optimize low-carbon commercial de-
livery. However, due to the light load capacity, drones can only serve 
customers with small demands, and the rest of the customers still need to 
be served by traditional vehicles. In addition, the lithium batteries used 
by drones limit flight time. To overcome these shortcomings, this study 
applies drone-assisted truck delivery to optimize environmental and 
economic impacts. The drone-assisted truck delivery enables the truck to 
deliver various goods and simultaneously charge the drone’s batteries 
on the road. In addition, truck delivery on tortuous routes or traffic jams 
exacerbates delivery time, fuel consumption, and carbon emissions. The 
drone’s straight-line distance flights could significantly reduce these 
costs. This study aims to optimize drone-assisted low-carbon commer-
cial delivery at a JD’s operational location where truck deliveries have a 
high environmental impact. The selected location is Guang’an, Sichuan, 
China. 

The contributions to the literature of our research can be summa-
rized as follows. First, prior research has focused on the environmental 
and economic impacts of drone-assisted truck delivery. As more and 
more countries have developed carbon pricing initiatives to tackle 
climate change, we further consider such impacts from the carbon- 
emission price under the carbon market and develop an optimal 
model to make such a joint delivery sustainable. Specifically, this study 
proposes an innovative dual-objective mixed-integer linear program-
ming model to make a trade-off between carbon emissions and the total 
cost of drone-assisted truck delivery. Previous studies have not consid-
ered the trade-off between these two objectives regarding the joint de-
livery of drones and trucks. 

Additionally, we compare the differences in carbon emissions, total 
cost, and delivery time between drone-assisted and truck-only de-
liveries, showing that drone-assisted delivery is effective for environ-
mental and economic costs under the carbon market price. Finally, we 
present a sensitivity analysis by changing six parameters (viz., carbon 
price, truck fuel price, drone battery cycle life, truck driver hourly wage, 
truck speed, and drone speed) to analyze their impacts on drone-assisted 
truck delivery. 

The remainder of this paper is constructed as follows. Section 2 re-
views the relevant literature on companies’ environmentally sustainable 
supply chain logistics. Section 3 defines the drone-assisted delivery 
problem. Section 4 proposes a bi-objective programming model to 
minimize carbon emissions and the total cost. Section 5 conducts a 
performance analysis to explore the company’s benefits of adopting 
drone-assisted delivery. Section 6 provides conclusions and policy im-
plications. Finally, Section 7 presents the limitations of this study and 
future research. 

2. Literature review 

With the development of the carbon market, the impact of using 
drones to assist trucks in delivery has attracted increasing attention. 
Many excellent works focus on delivery. For example, Guo et al. (2019) 
proposed a crowdsourcing delivery model to study its role in last-mile 
logistics, believing that it could reduce the cost of logistics companies 
and be conducive to sustainable development. Jamali and Rasti-Barzoki 
(2019) studied the impact of third-party logistics companies on sus-
tainable supply chains and concluded that they could reduce delivery 
time and carbon emissions. Abdi et al. (2020) improved the efficiency of 
the supply chain by considering simultaneous delivery and separate 
pick-up, which they believed would lead to the minimization of total 
costs and the maximization of customer service. Recently, Xue (2022) 

constructed a multi-warehouse cooperative logistics network with 
transfer points, which was considered superior to the traditional 
non-transfer scheme, and its effectiveness in reducing transportation 
costs and carbon emissions was verified. Furthermore, the role of the 
drone-assisted truck model in commercial delivery was receiving more 
and more attention. 

The first study on drone-assisted delivery defined a flying sidekick 
traveling salesman problem (FSTSP) to minimize the delivery time of a 
truck with a drone (Murray and Chu, 2015). By modeling as a 
mixed-integer linear programming (MILP), it describes a scenario in 
which the first is truck routing, and the second is the subroute of the 
drone, which serves the customers who meet the drone delivery condi-
tions and then returns to where the truck of another customer is located. 
This study adopts the joint delivery mode of FSTSP to optimize envi-
ronmental and economic effects in commercial delivery. Agatz et al. 
(2015) studied the travel salesman problem with a drone (TSP-D), 
allowing the UAV back to the demand node relaunch node. Mathew 
et al. (2015) studied the heterogeneous delivery problem in which a 
drone can take off from a truck, aiming to find the shortest path to 
complete all required delivery tasks when multiple warehouses are 
available. Marinelli et al. (2018) demonstrated a different heuristic to 
solve TSP-D, minimizing waiting times and battery consumption. In 
particular, they consider the possibility of launching and retrieving the 
drone at the depot or the demand node and along the routing arc. Ha 
et al. (2018) proposed a novel type of TSP-D, namely min-cost TSP-D, 
aiming to minimize the total operational cost, including the trans-
portation cost and the waiting time between the truck and its drone. 
Bouman et al. (2018) presented dynamic programming to solve more 
extensive situations in TSP-D, which is more suitable for actual appli-
cation scenarios. 

In addition to a single drone that assists in truck delivery, Poikonen 
et al. (2017) studied a fleet of m homogeneous trucks, each carrying k 
drones, to find the minimum completion time of the delivery. Wang 
et al. (2017) analyzed the problem of drone-assisted vehicle routing 
from worst-case scenarios and found significant savings in the joint 
delivery of trucks and drones. Chang and Lee (2018) studied a delivery 
route based on a truck and drones, demonstrating the cost and speed 
advantages of drones by maximizing the drone route and minimizing the 
truck route. Ham (2018) proposed a new application of constraint pro-
gramming to solve the multi-truck, multi-drone, and multi-depot 
scheduling problem, considering drones’ pick-up, time window, and 
multi-visit simultaneously. Finally, Murray and Raj (2020) proposed the 
multiple flying sidekicks traveling salesman problem (mFSTSP) about a 
single truck and a heterogeneous fleet of drones having different speeds, 
capacities, and flight endurance. They scheduled the drone’s launches 
and inbound flights to meet reality. They considered fuel consumption 
and driver as the cost of the joint delivery in the FSTSP and its variants. 
Moreover, since there are carbon pricing initiatives in many countries, 
the cost of joint delivery should also include the cost of carbon emis-
sions, similar to the cost components in the pollution routing problem 
(PRP) and its variants (Ham, 2018; Qiu et al., 2020; Aldieri et al., 2022; 
Wen et al., 2022). However, these cost components focus only on the 
truck delivery, not the drone’s carbon emissions. 

Some excellent work focuses on the carbon emissions from drones. 
Figliozzi (2017) analyzed the energy consumption and carbon emissions 
of drones and different ground commercial vehicles. Goodchild and Toy 
(2018) compared carbon emissions and vehicle miles traveled between 
truck and drone delivery models. Figliozzi (2020) evaluated the poten-
tial of drones and ground autonomous delivery robots to reduce CO2 
emissions in the delivery industry and showed that these new vehicles 
could reduce energy consumption. Finally, Baldisseri et al. (2022) 
evaluated the environmental and economic sustainability of a last-mile 
delivery solution involving electric trucks equipped with drones and 
indicated that drone-assisted truck delivery led to significant reductions 
in emissions. 

Inspired by the above works, this study follows the systematic 
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approach of Figliozzi (2017) to calculate a drone’s energy consumption 
and carbon emissions from a lifecycle perspective. Moreover, we 
combine the joint delivery model of FSTSP, the cost components in the 
PRP and drone energy consumption model, consider the environmental 
and economic costs simultaneously during the delivery process, and 
minimize carbon emissions and the total cost through a dual-objective 
mixed-integer linear programming. 

3. Problem statement 

The drone-assisted delivery problem is briefly defined based on JD’s 
logistics maps with six demand nodes, as shown in Fig. 1. 

(1) The truck and drone can leave or return to the depot simulta-
neously or separately. The total delivery time is defined as the 
time between the two vehicles departing the depot and the last 
vehicle arriving at the depot.  

(2) All the demand nodes must be served. Each can be served only 
once by the truck or drone.  

(3) When the drone is launched to serve one demand node, the truck 
can serve multiple other demand nodes.  

(4) The truck should depart from a demand node where the drone 
launches and arrive at another demand node where the drone is 
retrieved. However, the drone cannot return to the demand node 
where it was launched. 

Fig. 1. JD Logistics Maps for (a) truck delivery and (b) drone-assisted truck delivery.  

Z. Meng et al.                                                                                                                                                                                                                                    



Journal of Cleaner Production 401 (2023) 136758

4

(5) JD’s Y-3 drone models and mini-box trucks are the delivery tools 
in this case.  

(6) The objective is to minimize carbon emissions and total cost, 
including energy consumption, carbon emissions, and driver’s 
wage. The parameters are carbon price, truck fuel price, drone 
battery cycle life, driver’s wage, truck speed, and drone speed. 

4. Model description 

This section introduces the calculation functions for the energy 
consumption and carbon emission of trucks and drones. Next, the FSTSP 
(Murray and Chu, 2015) is adapted to introduce the dual-objective 
mixed-integer linear programming model with a drone and a truck. 
One objective is to minimize the weight of carbon emissions, and 
another is to minimize the total cost (i.e., the sum of carbon emission, 
energy, and labor costs). 

4.1. Energy consumption and carbon emissions from the truck 

The truck energy consumption model is adapted from Bektaş and 
Laporte (2011). W is the fuel consumption of the truck, assuming a 
minimum truck speed of 40 km/h. The carbon emissions of truck E are 
evaluated based on fuel consumption, and the carbon emission is 
measured by weight (Kg-CO2). 

W =(w+ l) (a+ gsin θ+ gCr cos θ)d + 0.5CdAρv2d (1)  

Let α = a+gsin θ + gCr cos θ and β = 0.5CdAρ, then 

W =α(w+ l)d + βv2 d (2)  

E′

= δ
[
α(w+ l)d + βv2d

]
(3) 

The parameters utilized in Eqs. (1)–(3) are described in Table 1. 

4.2. Energy consumption and carbon emissions of a drone 

Regarding the energy consumption of the drone, this study adopted 
the energy consumption model of Figliozzi (2017). The drone carries the 
cargo for a flight distance d1 to reach the demand node and then returns 
to the truck or warehouse in a no-load state for a flight distance d2. The 
energy consumption of the drone during this process is represented by 
W′ . 

Drone carbon emissions are based on the comprehensive lifecycle 
assessment (LCA) perspective. Although there are no direct emissions 
during drone delivery, the emission computation must include indirect 
carbon emissions in the power generation stage. From Goodchild and 
Toy (2018), drone carbon emissions in the delivery process are calcu-
lated based on the power generation process of power plants. This study 
calculates the indirect carbon dioxide emitted by the drone during 
operation, considering the carbon dioxide emitted by electricity pro-
duction. There are two major costs in the process of electricity use. One 

is the cost of transporting the electric grid, and the other is the drone’s 
battery charging efficiency. Since charging efficiency has been consid-
ered in energy consumption, only the electric grid cost must be 
considered. e represents the amount of carbon dioxide emitted by the 
drone’s unit of electricity demand. E′ is used to represent the carbon 
emissions of drones. The descriptions of each parameter of Eqs. (4)–(6) 
are shown in Table 2. 

W ′

= (w′

+ l′ )
gd1

ϑsηpηr
+ w′ gd2

ϑsηpηr
(4)  

Let γ = g
ϑsηpηr

, then 

W
′

= γ[(w
′

+ l
′

)d1 +w
′

d2] (5)  

E′

= e fkwhγ[(w′

+ l′ )d1 +w′ d2] (6)  

4.3. Drone cost estimates 

The cost of the drone in the delivery includes energy consumption 
and carbon emission costs. The drone energy-consumption cost can be 
calculated as the drone energy consumption (see Eq. (5)) multiplied by 
the drone energy-consumption cost coefficient c2. This cost parameter 
can be calculated by battery price, battery cycle life, and the drone 
lithium battery’s energy density (capacity) (Dorling et al., 2017; Duk-
kanci et al., 2021). However, no previous work considers the drone’s 
energy consumption and carbon emission costs in the delivery simul-
taneously. This paper contributes to the literature by taking both costs 
into account for the total cost of delivery, which is more in line with 
reality. In other words, the calculated total delivery cost is more accu-
rate than the previous related papers considering only one cost. The 
drone energy-consumption cost coefficient can be expressed as c2 =

lp
lbse

, 
where lp is the battery price, lb is the battery cycle life, and se is the 
energy density (capacity) of the drone’s lithium battery. Therefore, the 
energy-consumption cost of the drone is lp

lbse
γ [(w′

+ l′ ) d1 + w′d2]. For the 
drone’s carbon emission cost, it can be calculated as the carbon emis-
sions of the drone (see Eq. (6)) multiplied by the carbon price c3. Then 
the drone carbon emission cost can be expressed as c3efkwhγ[(w′

+ l′ )d1 +

w′d2]. In general, the drone’s delivery cost can be calculated as lp
lbse

γ [(w′

+ l′ ) d1 + w′d2] + c3efkwhγ[(w′

+ l′ )d1 + w′d2].. 

4.4. Definition of the delivery route model 

This study defines a model with a combination of a drone and a truck 
based on the FSTSP proposed by Murray and Chu (2015). It aims to 
minimize the total logistics cost of the joint truck and drone delivery 
under the carbon market price. This objective is similar to the proposed 
vehicle PRP model (Bektaş and Laporte, 2011), which considers the 
costs of time, path, fuel consumption, and carbon emissions. In contrast, 
the vehicle routing problem (VRP) model considers only the time and 
distance costs (Du et al., 2005). The delivery route model in this study is 
defined below. Table 1 

The relevant parameters of the truck.  

Parameters Description 

w Truck curb weight (kg) 
l Weight of cargo carried by truck (kg) 
v Truck speed (km/h) 
a Acceleration (m/ s2) 
g Acceleration of gravity (m/ s2) 
θ Road angle 
Cr Coefficient of rolling resistance 
Cd Coefficient of aerodynamic drag 
A the frontal surface area of the vehicle (m2) 
ρ Air density (kg/ m3) 
d Truck driving distance (km) 
δ Carbon emissions index parameter (kg-CO2/kJ)  

Table 2 
The relevant parameters of the drone.  

Parameters Description 

w′ Drone curb weight (kg) 
l′ Weight of cargo carried by drone (kg) 
d1 Drone delivery distance (km) 
d2 Drone return distance (km) 
θs Lift-to-drag ratio 
ηp Total power transmission efficiency 
ηr Battery charging efficiency 
fkwh The coefficient from kJ to kW 
e Carbon emissions emitted per unit of electricity (kg-CO2/kWh)  
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The complete circuit diagram G=(N,A). N = {0,1,2, …,n,n+1}, 0 and 
n+1 are the same node, i.e., starting from and returning to the depot. A is 
the set of arcs defined between each pair of nodes. N0 = {0,1,2, …,n} 
represents the nodes from where the truck and the drone can depart, and 
N+ = {1,2, …,n,n+1} represents the nodes at which they can arrive. Nc 

= {1,2, …,n}. N′

c ⊆ Nc means demand nodes that a drone can serve. xij =

1 if the truck leaves from node i to node j; if not, it is 0. yijk = 1 represents 
that the drone launches from node i and delivers cargo to node j, and 
then flies to node k to rendezvous with the truck for landing; otherwise, 
yijk = 0. The distance for the truck from i ∈ N0 to j ∈ N is denoted by dij, 
the speed is denoted as vij, and the load weight is lij. Q is the maximum 
load weight of the truck, and mi is the weight of the cargo required by 
the demand node at i ∈ Nc. The drone launches from i ∈ N0 to j ∈ N′

c for 
delivery, the distance is denoted as d′

ij, its load weight is l′ij, and the 
maximum load weight is Q′ ; then, it meets the truck at k ∈ N+, and the 
distance is denoted as d′

jk. 0 ≤ ui ≤ n + 1 specifies the position of node i 
on the truck path because the demand node visited by the truck is un-
known, and it is set to avoid subtours. pij ∈ {0,1} = 1 indicates the truck 
arriving at node i and then at node j in the truck path. The time when the 
truck arrives at node j ∈ N+ is tj. τij represents the time of the truck from 
node i to node j, and τ′

ij represents the time of the drone from node i to 
node j. si is the time for the driver to provide delivery service at point i ∈
Nc, sL is the time for the driver to assemble cargo for the drone and 
launch it, and sR is the time for the driver to bring back the drone and 
charge it. Fj is the total working time of driving the truck from the depot 
and returning after serving all demand nodes. 

The set of tuples 〈i, j, k〉 : i, j, k ∈ N, i ∕= j, j ∕= k, k ∕= i, τ′

ij + τ′

jk ≤ ε, in 
which ε represents the drone’s flight endurance. P is the drone delivery 
that satisfies all possible endurance requirements in the entire route, P 
= {〈i, j,k〉 : i,k∈ N, j∈ N′

c, i∕= j, j∕= k,k∕= i, τ′

ij + τ′

jk ≤ ε}. 
vij− and vij+ represent the minimum and maximum speed limits of the 

route between i and j, respectively. c1 is the cost required for the unit 
energy consumption of truck fuel, and c2 is the cost required for the unit 
energy consumption of the drone lithium battery, which can be 
expressed as lp

lbse
. c3 is the unit carbon-emission cost. p is the driver’s 

wage. M is an infinite number. 
Referring to Bektaş and Laporte (2011) in the nonlinear linearization 

of decision variables, since vij and xij are decision variables in calculating 
energy consumption and carbon emissions, the multiplication of the two 
leads to nonlinearity, and it is necessary to linearize vij. Assuming that 
the speed limit of each arc is the same, in (i, j) ∈ A, let vij− = v− , vij+ =

v+. Define a set of speed levels R = {1,2, …,r, …}, where each r ∈ R of a 
given arc (i, j) corresponds to the speed interval [vr

− , vr
+] with vr

− = v− , 
vr
+ = v+. Therefore, the average speed for each level r ∈ R is calculated 

as vr = (vr
− + vr

+)/2. Introduce a new 0–1 variable zr
ij = 1 if the truck is 

traveling in the arc (i, j) with a speed level r ∈ R; otherwise, it is zero. It is 
expressed as 

∑

r∈R
zr

ij = xij, where ∀i ∈ N0, j ∈ {Nc: j ∕= i}. 

4.5. Carbon-emission objective function 

The first objective function is to minimize the weight of carbon 
emissions (kg-CO2), including those produced by the truck and the 
drone. According to Section 4.1, the carbon emissions of the truck (see 

Eq. (3)) are evaluated based on fuel consumption, and the carbon 
emissions of the drone (see Eq. (6)) are measured by indirect carbon 
emissions from the electricity production process. Therefore, the carbon- 
emission objective minimization is expressed as follows: 

MinE′

+E′′=Minδ
[
α(w+l)d+βv2d

]
+efkwhγ

[
(w′

+l′ )d1+w′ d2
]

=Minδ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α
∑

i∈N0

∑

jεN+

i∕=j

dijwxij+α
∑

i∈N0

∑

jεN+

i∕=j

dijlij+β
∑

i∈N0

∑

jεN+

i∕=j

dij

[
∑

r∈R
(vr)

2zr
ij

]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+efkwhγ
∑

i∈N0
i∕=j

∑

kεN+

〈i,j,k〉∈Р

[
w′
(

d′

ij+d′

jk

)
yijk+l′ijd

′

ij

]

(7)  

4.6. Total cost objective function 

The second objective function is to minimize the total cost in Yuan, 
consisting of three individual costs: 1) the energy-consumption cost of 
the truck and the drone, 2) the carbon-emission cost of the truck and the 
drone, and 3) the driver’s wage. For the energy-consumption cost, the 
truck energy-consumption cost is calculated by Eq. (2) and then multi-
plied by the truck’s energy-consumption cost coefficient c1. Similarly, 
the drone energy-consumption cost calculates the drone energy con-
sumption by Eq. (5) and then multiplies it by the UAV energy- 
consumption cost coefficient lp

lbse
. The total energy-consumption cost is 

expressed as: 

c1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α
∑

i∈N0

∑

jεN+i∕=j

dijwxij + α
∑

i∈N0

∑

jεN+i∕=j

dijlij + β
∑

i∈N0

∑

jεN+i∕=j

dij

[
∑

r∈R

(vr)
2zr

ij

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

lp
lbse

γ
∑

i∈N0i∕=j

∑
kεN+< i, j,k >∈ Р[w′

(d′

ij + d′

jk) yijk + l′ijd
′

ij]. 

For the cost of carbon emissions, we calculate the carbon emissions 
of the truck and drone based on Eq. (3) and Eq. (6), and then multiply it 
by the carbon price c3 to obtain the total carbon-emission cost, i.e., 

c3δ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α
∑

i∈N0

∑

jεN+i∕=j

dijwxij + α
∑

i∈N0

∑

jεN+i∕=j

dijlij + β
∑

i∈N0

∑

jεN+i∕=j

dij

[
∑

r∈R

(vr)
2zr

ij

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

c3efkwhγ
∑

i∈N0i∕=j

∑
kεN+< i, j,k >∈ Р[w′

(d′

ij + d′

jk) yijk + l′ijd
′

ij]. 

The cost of the driver expressed as pFj is the driver’s wage p multi-
plied by the total working hours of the driver leaving from and returning 
to the depot , Fj. Based on the above definitions, the total cost objective 
can be expressed as follows: 
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Min c1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α
∑

i∈N0

∑

jεN+

i∕=j

dijwxij + α
∑

i∈N0

∑

jεN+

i∕=j

dijlij + β
∑

i∈N0

∑

jεN+

i∕=j

dij

[
∑

r∈R
(vr)

2zr
ij

]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+
lp

lbse
γ
∑

i∈N0
i∕=j

∑
kεN+< i, j, k > ∈Р

[
w′
(

d′

ij + d′

jk

)
yijk + l′ijd

′

ij

]

+ c3δ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α
∑

i∈N0

∑

jεN+

i∕=j

dijwxij +α
∑

i∈N0

∑

jεN+

i∕=j

dijlij + β
∑

i∈N0

∑

jεN+

i∕=j

dij

[
∑

r∈R
(vr)

2zr
ij

]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ c3efkwhγ
∑

i∈N0
i∕=j

∑
kεN+< i, j, k > ∈Р

[
w′
(

d′

ij + d′

jk

)
yijk + l′ijd

′

ij

]
+
∑

jεN+

pFj.

(8)  

4.7. Total dual objective function 

For the dual-objective solution with two different units of measure, 
this study follows Xu et al. (2015) and refers to the carbon emissions of 
the first objective measured by kg-CO2 as E and the total cost of the 
second objective measured by Yuan (¥) as C. Furthermore, the minimum 
value of E is Emin while the maximum value is Emax. Likewise, the min-
imum value of C is Cmin while the maximum value is Cmax. The minimum 
and maximum values of each objective can be obtained by MATLAB’s 
CPLEX when only one objective is considered at a time. The weight 
coefficients of the two objectives are w1 and w2, and w1 + w2 = 1. In this 
vein, the dual objectives can be transformed into a single objective, and 
the objective function becomes 

Min w1
(
E − Emin) / ( Emax − Emin)+ w2

(
C − Cmin) / ( Cmax − Cmin) (9)  

4.8. Constraints 

The dual-objective mixed-integer linear programming constraints 
are expressed below and explained in Table 3. 
∑

i∈N0
i∕=j

xij +
∑

i∈N0
i∕=j

∑

k∈N+
〈i,j,k〉∈Р

yijk = 1, ∀j ∈ Nc, (10)  

∑

j∈N+

x0j = 1, (11)  

∑

i∈N0

xi,n+1 = 1, (12)  

ui − uj + 1≤(n+ 2)
(
1 − xij

)
,∀i∈Nc,∀j ∈ {N+ : j∕= i}, (13)  

∑

i∈N0
i∕=j

xij =
∑

k∈N+
j∕=k

xjk,∀j ∈ Nc, (14)  

∑

j∈Nc
j∕=i

∑

k∈N+
〈i,j,k〉∈Р

yijk ≤ 1, ∀i ∈ N0, (15)  

∑

i∈N0
i∕=k

∑

j∈Nc
〈i,j,k〉∈Р

yijk ≤ 1, ∀k ∈ N+ (16)  

2yijk ≤
∑

h∈N0
h∕=i

xhi +
∑

f∈Nc
f∕=k

xfk,∀i∈Nc, j∈{Nc : j∕= i}, k ∈ {N+ : 〈i, j, k〉∈Р},

(17)  

y0jk ≤
∑

h∈N0
h∕=k
h∕=j

xhk, j∈Nc, k ∈ {N+ : 〈0, j, k〉∈Р} (18)  

uk − ui ≥ 1 −
(
n+ 2

)

(

1 −
∑

j∈Nc
〈i,j,k〉∈Р

yijk

)

,∀i∈Nc, k∈{N+ : k∕= i}, (19)  

t′i ≥ ti − M

⎛

⎜
⎜
⎜
⎜
⎝

1 −
∑

i∈Nc
j∕=i

∑

k∈N+
〈i,j,k〉∈Р

yijk

⎞

⎟
⎟
⎟
⎟
⎠
,∀i ∈ Nc, (20)  

t′i ≤ ti +M

⎛

⎜
⎜
⎜
⎜
⎝

1 −
∑

i∈Nc
j∕=i

∑

k∈N+
〈i,j,k〉∈Р

yijk

⎞

⎟
⎟
⎟
⎟
⎠
,∀i ∈ Nc, (21)  

t′k ≥ tk − M

⎛

⎜
⎜
⎜
⎜
⎝

1 −
∑

i∈N0
i∕=k

∑

j∈Nc
〈i,j,k〉∈Р

yijk

⎞

⎟
⎟
⎟
⎟
⎠
,∀k ∈ N+, (22)  

t′k ≤ tk +M

⎛

⎜
⎜
⎜
⎜
⎝

1 −
∑

i∈N0
i∕=k

∑

j∈Nc
〈i,j,k〉∈Р

yijk

⎞

⎟
⎟
⎟
⎟
⎠
,∀k ∈ N+, (23) 

Table 3 
Constraints of the objective function.  

Constraints Explanation 

(10) Each demand node must be served once and only by the drone or the 
truck. 

(11)–(12) The truck should leave the depot and return to the same depot. 
(13) The elimination of the sub-route of the truck. 
(14) The truck should leave after visiting the demand node. 
(15)–(16) The drone launches or lands at a specific demand node; the flight path 

is not closed. 
(17) If the drone launches from i to j to k, the truck should leave from i to k. 
(18) When the drone departs from the depot to deliver cargo at node j and 

then lands at node k, the truck should meet the drone at point k. 
(19) If the drone travels from i to j to k, the truck must first go to i and then 

to k. 
(20)–(23) The effective time for the drone and the truck to reach a certain point is 

consistent. 
(24) The time from the truck to k includes the time to reach the last point h, 

the travel period from h to k, and the service time for launching and 
retrieving the drone, and delivering at point k. 

(25) If the drone launches from i to j, its time to reach delivery node j 
includes the time to reach i plus the flight time from i to j. 

(26) If the drone launches from point j to landing node k, then the time to 
reach k includes the time the drone arrives at j plus the flight time from 
j to k plus the time the driver receives the drone. 

(27) The drone’s flight time from i to k via j must not exceed flight 
endurance. 

(28) If the drone travels from i to k, from l to n, and l is after i; then the drone 
must arrive at k before l. 

(29) Calculate the total driving time. 
(30)–(32) Guarantee the regular order in which the truck visits the node. 
(33)–(34) The drone must not overload for delivery. 
(35) The load limit of the truck. 
(36) The change in the quantity of trucks on the delivery route. 
(37) Only a speed level is selected for each arc. 
(38)–(45) The range of value of the decision variables.  
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t′j ≥ t′i + τ′

ij − M

⎛

⎜
⎜
⎜
⎜
⎝

1 −
∑

k∈N+
〈i,j,k〉∈Р

yijk

⎞

⎟
⎟
⎟
⎟
⎠
,∀j∈N ′

c, i ∈ {N0 : i∕= j}, (25)  

t′k ≥ t′j + τ′

jk + sR − M

⎛

⎜
⎜
⎜
⎜
⎝

1 −
∑

i∈N0
〈i,j,k〉∈Р

yijk

⎞

⎟
⎟
⎟
⎟
⎠
,∀j∈N ′

c, k ∈ {N+ : k∕= j}, (26)  

t
′

k −
(

t
′

j − τ′

ij

)
≤ ε+M

(
1 − yijk

)
, ∀k∈N+, j∈{Nc : j∕= k

}
, i∈{N0

: 〈i, j, k〉∈Р
}

(27)  

t′l ≥ t′k − M

(

3 −
∑

j∈Nc
〈i,j,k〉∈Р

j∕=l

yijk −
∑

m∈Nc
m∕=i
m∕=k
m∕=l

∑

n∈N+
〈l,m,n〉∈Р

n∕=i
n∕=k

ylmn − pil

)

,∀i∈N0,k∈{N+ : k∕= i}, l

∈{Nc : l∕= i, l∕=k},
(28)  

tj − Fj +
∑

r∈R

(
dj,n+1

/
vr)zr

j,n+1 ≤M
(
1 − xj,n+1

)
,∀j ∈ Nc (29)  

ui − uj ≥ 1 − (n+ 2)pij, ∀i∈N0, j ∈ {N+ : j∕= i}, (30)  

ui − uj ≤ − 1+(n+ 2)
(
1 − pij

)
,∀i∈N0, j ∈ {N+ : j∕= i}, (31)  

pij + pji = 1, ∀i∈Nc, j ∈ {Nc : j∕= i}, (32)  

0≤mjyijk ≤Q
′

, ∀i∈N0, j∈
{

N
′

c : j∕= i
}
, k ∈ {N+ : 〈i, j, k〉∈Р}, (33)  

l′ij =mjyijk,∀i∈N0, j∈
{

N ′

c : j∕= i
}
, k ∈ {N+ : 〈i, j, k〉∈Р}, (34)  

0≤ lij ≤Qxij,∀i∈Nc, j ∈ {Nc : j∕= i}, (35)  

∑

j∈N
lij −

∑

j∈N
lji =

∑

j∈N
xijmj +

∑

j∈N
l′ji,∀i ∈ N, (36)  

∑

r∈R

zr
ij = xij,∀i∈N0, j ∈ {Nc : j∕= i}, (37)  

xij ∈{0, 1}, ∀i ∈ N0, j ε{N+ : i∕= j}, (38)  

yijk ∈{0, 1}, ∀i∈N0, j∈{Nc : i∕= j}, k ∈ {N+ : 〈i, j, k〉∈Р} (39)  

pij ∈{0, 1},∀i, j ∈ Nc, (40)  

p0j = 1,∀j ∈ Nc, (41)  

0≤ ui ≤ n + 1, ∀i ∈ N (42)  

ti ≥ 0, ∀i ∈ N (43)  

t′i ≥ 0, ∀i ∈ N (44)  

zr
ij ∈{0, 1}, ∀i∈N0, jε{N+ : j∕= i}, r ∈ R (45)  

5. Performance analysis 

In this analysis, we choose one of JD’s regular delivery routes of 
drones in Guang’an, Sichuan, and set up 10 demand nodes with different 
weights for cargo. These demand nodes can only be served by the drone 
or truck once; node 0 is the depot, nodes 1 to 10 are the demand nodes, 
and the demand requirements of these nodes are 6.5, 10, 8, 155, 50, 8.5, 
7.5, 6, 60, and 100 kg. Table 4 defines all the symbols of unit measures in 
this study. 

In the drone delivery case, we assume that the manager at the 
reception agency will receive and sort the packages, waiting for cus-
tomers to pick them up. We combine the dual-objective mixed-integer 
linear programming model with these actual delivery situations; each 
demand node is regarded as a terminal parcel storage node. There may 
be more than one customer, so the unloading time of the driver must be 
considered. We consider the service time si of each demand node to be 
0.15 h, while sL and sR for the time of launching and recovering the 
drone are counted as 0.05 h. According to market conditions, the 
driver’s wage, p, is set at 30 Yuan/h. Depending on the total pre-set 
demand for packages, the standard box-type mini trucks currently 
available on the Chinese market are selected. The rated load is 720 kg, 
and the unloaded mass is 1520 kg. We assume that the speed of the truck 
is vr

− = 40 km/h, the maximum speed is vr
+ = 50 km/h, and the average 

speed is vr = 45 km/h. The selected drone is the JD Y-3 model, mainly 
used in the regular drone delivery route. According to the official data of 
the JD Business Department, the rated load of the Y-3 model is 10 kg, 
and the empty weight is 12 kg; in addition, the speed is set at 60 km/h, 
the flight radius is 20 km, and the endurance is approximately 0.278 h. 

For truck carbon emission, δ, the average low calorific value of 

Table 4 
Symbols of unit measures.  

Measure Description 

kg Kilogram 
kJ Kilojoule 
t-CO2 Tons of carbon dioxide 
kV Kilovolt 
tC/TJ Emission factor 
km Kilometer 
h Hour 
m Meter 
s Second 
kWh Kilowatt per hour 
kg-CO2 Kilograms of carbon dioxide 
kW Kilowatt 
L Liter  

tk ≥ th +
∑

r∈R

(
dh,k
/

vr)zr
hk + sL

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

l∈Nc
l∕=k

∑

m∈N+

〈k,l,m〉∈Р

yklm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ sk + sR

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

i∈N0
i∕=k

∑

j∈Nc
〈I,j,k〉∈Р

yijk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

− M(1 − xik),∀h∈No, k ∈ {N+ : k∕= h}, (24)   
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gasoline is 43,124 kJ/kg (NEFMSTC, 2020). When the thermal effi-
ciency is 30%, the actual mechanical work of 1 kg of gasoline is 12,937 
kJ. According to the National Development and Reform Commission 
(2011), the carbon content per unit heating value of gasoline is 18.9 
tC/TJ, and the carbon oxidation rate is 98%; then, the carbon emission 
coefficient of gasoline is 2.8391 kg-CO2/kg. δ is calculated by dividing 
the carbon emission coefficient by the work done per unit mass of gas-
oline, and the value is 2.1946 ×10− 4 kg-CO2/kJ. According to IEA 
(2020) data, the carbon intensity of China’s electricity in 2017 was 
0.623 kg-CO2/kWh and the grid loss rate was 6.48% in the same year, 
and e was 0.66 kg-CO2/kWh. Following the vehicle model, premium 
gasoline is used with a density of approximately 0.725 kg/L, and the 
price in Sichuan is 7.02 Yuan/liter, then c1 is 7.494 × 10− 4 Yuan/kJ. 

The unit energy-consumption cost c2 of the drone is composed of 
electricity cost and battery cost. The value of general industrial, com-
mercial, and other electricity below 1 kV is 0.7344 Yuan/kWh, and 
multiply it by fkwh to obtain the electricity cost of 2.04 × 10− 4 Yuan/kJ. 
The Y-3 drone model uses an A-grade polymer lithium-ion battery, and 
its cycle life is approximately 600 times. Each battery charge allows the 
Y-3 model to fly 10 km at maximum load and return to the depot without 
any load for 10 km. The drone energy consumption function in Eq. (5) is 
used to obtain a total energy consumption of 889.78 kJ from fully 
charged power to an exhausted state. The average market price for a 
battery is 600 Yuan. Then, the unit energy consumption cost is 1.328 ×
10− 3 Yuan/kJ. Assuming that the average carbon price is distributed at 
approximately 30 Yuan/t-CO2, therefore, c3 is 0.03 Yuan/kg-CO2. 
Table 5 lists all the parameter values. 

5.1. Results and analysis 

Based on the parameter values above and setting the weight co-
efficients w1 and w2 of the two objectives to 0.5, we use MATLAB to call 
CPLEX to solve the model, Eq. (9). The solution yields that the carbon 

emission value is 13.42 kg-CO2 and the total cost value is 103.62 Yuan. 
Fig. 2 shows the resulting distribution path diagram. The red and blue 
lines represent the drone and truck paths, respectively. The result shows 
that the total delivery time of the truck that leaves the depot until it 
returns is 1.94 h. 

Regarding the traditional truck delivery model, the delivery route 
diagram is shown in Fig. 3. After calculation, the carbon emissions under 
truck delivery are 17.88 kg-CO2, the total cost is 133.07 Yuan, and the 
delivery time is 2.45 h. Compared to truck delivery, drone-assisted de-
livery reduces carbon emissions, total cost, and delivery time by 
24.90%, 22.13%, and 20.65%, respectively, as shown in Fig. 4. This 
drone-assisted commercial delivery model effectively reduces emissions 
and economically benefits logistics enterprises. 

Next, a cost-benefit analysis is conducted to explore further the ef-
fects of drone-assisted commercial delivery. The unit damage cost of 
carbon emissions was 417 dollars per tonne of CO2 suggested by Ricke 
et al. (2018). Therefore, the social benefit of unit carbon emission 
reduction was set as 2.87 Yuan/kg-CO2. Compared with traditional 
truck delivery, drone-assisted delivery reduces 4.45 kg of carbon diox-
ide, with a social benefit of 12.77 Yuan. Meanwhile, the total cost of 
drone-assisted delivery decreased by 29.45 Yuan. Correspondingly, 
there is a 42.22 Yuan increase in net social benefit for drone-assisted 
delivery compared with traditional truck delivery. 

5.2. Sensitivity analysis and discussion 

First, the four parameters of the fuel price, drone battery cycle life, 
carbon price, and driver’s wage will be changed individually, keeping 
the remaining parameters constant with the values shown in Table 5. 
The impact of each parameter on the total cost is analyzed, as shown in 
Fig. 5. According to historical data, the fuel price is based on the Sichuan 
92 octane-rated gasoline market, which increases by a gradient of 1 
(Yuan/L) from 3 to 9. The battery cycle life denotes the maximum 
number of times it can be recharged, assuming the same power hours 
after each full charge. Considering that battery research development 
would gradually extend the battery’s durability, we assume that the 
battery could recharge from 100 times to 1000 times in 100 increments. 
The carbon price fluctuates in the range of 100 Yuan/t-CO2 based on the 
carbon price in China’s carbon market. According to actual market 
conditions, we consider increasing from 0 to 100 Yuan/t-CO2 in the 
range of 10 Yuan/t-CO2. Zero means that the carbon-emission cost is not 
considered. The driver’s wage is set from low to high according to the 
different situations of the companies, which are 20, 25, 30, 35, 40, 45, 
and 50 (Yuan/h). Note that these four parameters affect the total cost 
and do not affect carbon emissions. 

Furthermore, changes in fuel price and hourly wage significantly 
impact the total cost. When the fuel price is 3 Yuan/L, and the driver’s 
wage is 20 Yuan/h, the total cost is approximately 80 Yuan. As the fuel 
price increases to 9 Yuan/L, the total cost reaches about 120 Yuan. 
Similarly, when the driver’s wage is 50 Yuan/h, the total cost is 
approximately 140 Yuan. In addition, battery cycle life negatively cor-
relates with total cost. The trend gradually slows down, indicating that 
the impact on the total cost decreases after the battery durability reaches 
a specific recharge time. In addition, the effect of changes in carbon 
prices is the smallest compared with the above three parameters. The 
total cost is 103.21–104.56 Yuan when the carbon price is 0–100 Yuan/ 
t-CO2. Although the carbon price generated by the domestic carbon 
trading market has varied in recent years, the overall low carbon price 
and small carbon emissions lead to a relatively small share of the carbon- 
emission cost, which is less than the share of energy cost and labor cost. 
Thus, the carbon-emission cost accounts for very little of the total cost. 
However, when the carbon price rises from 10 to 100 Yuan/t-CO2, the 
proportion of carbon-emission cost changes from 0.13% to 1.28%. When 
the carbon price is low (such as 30 Yuan/t-CO2), carbon-emission cost 
accounts for only 0.39% of the total cost, while energy consumption 
(fuel price) and labor costs (driver’s wage) account for 43.44% and 

Table 5 
The parameter values used in this study.  

Parameters Description Value 

w Truck curb weight (kg) 1520 
v Truck speed (km/h) [40,45,50] 
a Acceleration (m/ s2) 0 
g Acceleration of gravity (m/ s2) 9.81 
θ Road angle 0 
Cr Coefficient of rolling resistance 0.01 
Cd Coefficient of aerodynamic drag 0.7 
A the frontal surface area of the vehicle (m2) 3.436 
ρ Air density (kg/ m3) 1.2041 
δ Carbon emissions index parameter (kg-CO2/kJ) 2.1946 ×

10− 4 

v′ Drone speed (km/h) 60 
w′ Drone curb weight (kg) 12 
θs Lift-to-drag ratio 4.25 
ηp Total power transmission efficiency 90% 
ηr Battery charging efficiency 98% 
fkwh The coefficient from kJ to kW 2.78e-4 
e Carbon emissions emitted per unit of electricity (kg- 

CO2/kWh) 
0.684 

ε Flight endurance (h) 0.278 
si Service time in node i (h) 0.15 
sL Launching time (h) 0.05 
sR Receiving time (h) 0.05 
c1 Unit energy-consumption cost of truck (Yuan/kJ) 7.494 × 10− 4 

c2 Unit energy-consumption cost of drone (Yuan/kJ) 1.328 × 10− 3 

lb Battery cycle life (times) 600 
lp Battery price (Yuan) 600 
se Capacity of drone battery (kJ) 889.78 
c3 Unit carbon-emission cost (Yuan/kg-CO2) 0.03 
c3t Carbon price (Yuan/t-CO2) 30 
pf Fuel price (Yuan/L) 7.02 
p Driver’s wage (Yuan/h) 30  
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Fig. 2. A drone-assisted delivery route in Guang’an, Sichuan, China.  

Fig. 3. The truck delivery route in Guang’an, Sichuan, China.  

Fig. 4. Comparison of carbon emissions, total cost, and delivery time between drone-assisted joint delivery and traditional truck delivery.  
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56.17%, respectively. 
The apparent impact of driver’s wage on the value shows that labor 

cost is critical. Fig. 5 shows that when the driver’s wage is 20–50 Yuan/ 
h, the proportion of labor cost in the total cost gradually increases from 
46.06% to 68.01%. This pattern is consistent with the finding of Bektaş 
and Laporte (2011), who note that labor cost plays a leading role in the 
total cost. With the increasing carbon price in China, we assume that the 
carbon price of 100 Yuan/t-CO2 will be increased from 100 to 1000 

Yuan/t-CO2. Fig. 6 indicates that a higher carbon price has a greater 
impact on the total cost. With the increase in the carbon price, the 
proportion of carbon emission cost in the total cost increases with an 
average growth rate of 29.83%. When the carbon price is 1000 
Yuan/t-CO2, the proportion of the carbon-emission cost reaches 
11.51%. 

The contributions to the literature. 
Truck speed is affected by road congestion in the actual delivery 

Fig. 5. The total cost based on fuel price, battery cycle life, carbon price, and driver’s wage.  

Fig. 6. The total cost change with a changing carbon price from 100 to 1000 Yuan/t-CO2.  
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process. The load weight and the remaining battery power influence the 
drone’s speed. Changing them will affect the total cost and carbon 
emissions. We increase the truck speed from the minimum speed of 
40–60 km/h with a gradient of 5 km/h, and the maximum speed from 50 
to 70 km/h. Meanwhile, the drone speed is 50, 55, 60, 65, and 70 km/h. 
Fig. 7 shows that truck speed positively correlates with the total cost and 
carbon emissions. The faster the truck speed, the greater the total carbon 
emissions., Therefore, it is necessary to reduce the truck speed to control 
emissions further. In contrast, drone speed has almost no impact on total 
cost and carbon emissions because it has very low carbon emissions, and 
the logistic cost of the drone is small. Therefore, the drone can serve as 
many qualified demand nodes as possible regardless of speed, indicating 
that the drone has played an essential role in reducing carbon emissions 
and the total cost. 

6. Conclusions and policy implications 

This study optimizes not only the economic impact but also the 
environmental impact of drone-assisted commercial delivery under the 
policies of the carbon trading market. First, we establish an innovative 
dual-objective mixed-integer linear programming model to make a 
trade-off between carbon emissions and the total cost of drone-assisted 
truck delivery, promoting the development of the method for low- 
carbon commercial delivery optimization. Then, using JD logistics in 
Guang’an, Sichuan as a case, we solve and compare carbon emissions, 
total cost, and delivery time between drone-assisted delivery and truck 
delivery. Additionally, we solve and analyze the sensitivity effects of 
carbon price, truck fuel price, drone battery cycle life, truck driver’s 
hourly wage, truck speed, and drone speed. 

Reducing carbon emissions is increasingly important as the negative 
greenhouse effect on humans becomes serious. The surge of carbon di-
oxide emissions from increasing road transport triggered by a rapid in-
crease in stay-at-home shopping and home delivery in China during the 
COVID-19 pandemic poses a critical challenge to environmental pro-
tection. The carbon market plays a vital role in reducing global carbon 
emissions. Therefore, the government should improve carbon-emission 
standards and continuously promote the carbon market to provide an 
essential driving force for realizing carbon neutrality. In the carbon 
market, logistics companies should use drones to assist trucks in delivery 
to protect the environment and reduce carbon emissions. Compared 

with traditional truck delivery, drone-assisted delivery produces dual 
social benefits under the policies of the carbon trading market: curbing 
carbon emissions (the direct social benefit) and reducing the total de-
livery cost (the backhanded benefit). Correspondingly, there is a net 
social benefit increase of 42.22 Yuan for this drone-assisted delivery 
compared with traditional truck delivery. This study shows that drone 
battery cycle life, fuel price, driver’s wage, and truck speed are critical to 
the total cost. Although the cost of carbon emissions accounts for only a 
minor proportion of the total cost, the government should regulate the 
carbon price and impose a strict policy on the carbon-emission level of 
every vehicle. This policy could continuously improve the living envi-
ronment in China. Moreover, this study could inspire future related 
research in environmental policies and promote research on carbon 
emission mitigation in other transportation fields. 

Furthermore, when the truck speed is not less than 40 km/h, the 
faster the truck speed, the more carbon emissions. In this vein, the road 
transportation industry is critical in the Chinese carbon trading market. 
Driven by the reduction of carbon emissions in the carbon trading 
market, a national policy should be enacted to encourage logistics 
companies to adopt drone-assisted low-carbon commercial delivery to 
gain competitive advantages effectively. In addition, higher carbon 
prices could reduce carbon emissions and minimize environmental im-
pacts. Compared to traditional truck delivery, drone-assisted delivery 
reduces carbon emissions and the total cost of transportation, which is 
conducive to the green and sustainable development of logistics 
companies. 

Finally, some practical implications are helpful to different stake-
holders. For researchers, since this study innovatively establishes a dual- 
objective mixed-integer linear programming model to make a trade-off 
between carbon emissions and the total cost of drone-assisted truck 
delivery, they can further extend the proposed model to develop a low- 
carbon commercial delivery optimization method. For policymakers, 
they can further analyze environmental and economic impacts under 
other environmental policies by using the proposed model. Finally, 
managers of logistics companies can properly apply or adjust the pro-
posed model to solve similar problems based on practical situations. 

7. Limitations and future research 

There are a few limitations of this study. First, only a truck and a 

Fig. 7. Impact of truck speed on total cost and carbon emissions.  
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drone are considered. As more and more large-scale deliveries are 
emerging, more research is needed on low-carbon commercial deliveries 
with multiple trucks and drones. Moreover, this study only analyzes the 
effects of several critical factors on drone-assisted truck delivery. A 
plausible extension would be to consider other factors (e.g., fuel effi-
ciency, fuel type, and engine type) that affect a truck’s fuel consumption, 
influencing carbon emissions and the total cost. Finally, this paper 
considers drone-assisted truck delivery under the carbon market price. 
Future research should consider more pricing policies and compare the 
corresponding results to adjust environmental policies. 
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