
資訊管理學報第十二卷第二期

An Object-Oriented Decision Support System:

A Case of Inventory Management

Houn-Gee Chen

Institute of Technology Management,
National Tsing Hua University

Eldon Li.

Department of Information Management,

Yuan-Ze University

Abstract

221

This paper addresses an object-oriented methodology in designing decision suppdrt

systems (DSS). An analysis of computational needs at various levels of an organization

defines the data objects ofthe DSS. Using a two-tier approach, we first devisehigh-level

object constructs in supporting decision analysis. With the message-passing mechanism, a

higher-level object (solver) can be composed with certain problem-solving capability. Such

composability provides further problem-solving powers. A hierarchical inventory

management system and a company-wide order processing system are implemented using

our framework.

Keywords: Object-Oriented Design, Decision Support Systems, Inventory Management,
Order Processing Management

222 資訊管理學報第十二卷第二期

物件導向決策支援系統之設計:以存貨管理為例

陳鴻基

清華大學科技管理研究所

李有仁

元智大學資管系

摘要

根據物件導向的技術'本研究探討物件導向決策支援系統的設計，應用兩階層物

件概念，高階物件支援決策分析，透過訊息傳遞機制，由低晴的物件依情境進行資訊

的搜尋與求解。二階層的物件效果提供多種求解組合，達到決策支援效果。應用此架

構實際解決存貨管理和訂單處理之問題。

關鍵字:物件導向技術、決策支援系統、存貨管理、訂單處理

物件導向決策支接系統之設計:以存貨管理為例 223

1. INTRODUCTION

Object-oriented methodology (OOM) which represents entities of the problem domain

by object c1asses has created considerable interest in recent years. Its popularity stems

from the fact that the process of the system is invoked by sending messages to the objects,

whereas structural details of these objects are kept "hidden" from the user. The approach

has been found to enhance the correspondence between problem areas and their semantic

representation [3月， allowing the user to control the levels of detail and aggregate

information during decision-making [1 ， 5 ， 11 ，衍，30 ，43]. Successful applications in database

management [23 ，26 ， 3呵， simulation modeling [7 ， 37 ， 3呵， and artificial intelligence and

expert systems [33 ,41] have been reported. In general, objects have been found to be

natural metaphors for model-building in that each is a capsule of state and behavior;

They enable the nonprogrammer to solve unstructured problems more effectively by

applying their job-specific experience and their own heuristics.

Despite a natural mapping of objects and problem團solving [3月， no comprehensive

f泊mework has been proposed for developing an object-oriented decision support system

(DSS). Instead, DSS researchers have proposed frameworks based on predicate calculus

阱，民日，15]， relational approach [旬， structured modeling [12 ,19] and rule-based expert

systems [42] for DSS design. Most ofthem [1 4,16,21 ,40 ,42] have not become the on-line,

real-time tools originally envisioned, as managers are found to st i11 rely heavily on staff

intermediaries for their computer analyses. The reluctance to use DSSs is partly due to: 1)

those DSSs being designed primari1y to solve problems on an ad hoc basis while decision

support needs , in fact, exist at all levels of management [31 ，兒，40] and across all

functional areas [31 ,40]; 2) a lack of flexible and easy-to-use design to support an effective

problem-solving process [14,16,40]. We argue that for the success ofDSS , it is essential to

support various degrees of data and model abstraction by allowing all levels of managers

to incorporate his/her intuition, judgement, and/or past experience into the

decision-analysis process. Object司orientation could be a significant factor in the success

of such a DSS which involves users with diverse computer backgrounds.

Such DSS , however, must map the problem-solving process in a organization using

many mode

224 資訊管理學報第十二卷第二期

made by each department. Other departments are then made to operate under the

constraints set by these decisions.

The first step in DSS construction is to identify the data sources (data objects) and

analyze the interrelationship to represent them in an integrated manner. The hierarcgical

nature of the organization leads to a data object hierarchy, proposed in this paper, which is

connected by the dual relations of aggregation and inheritance. Each object in this case is

formed by an aggregation of the lower-level data objects and the lower-level objects in

turn inherit specific information from the aggregated (parent) object. This hierarchy

represents a structural view of the information flow within the organization.

Computational models are also defined as objects according to the nature of

decision-making at each level. As in object國oriented programming, computational

aspects of the models are hidden within model objects and are activated by simple

messages enhancing the user's ability to manipulate them during decision-making. We

achieve this by using a high level of abstraction of data and models called "deferred

classes" [30]. Using this approach, only the required attributes of an object class are

defined at each tier of design while deferring the additional attributes for implementation

to lower-level classes. Objects that define detailed procedural calculations are delegated to

the implementation level and hidden from the user.

Model classification and abstraction allows us to develop "general purpose"

model-solvers for a class of models without considering the details of each model in a

class. To i1lustrate our approach, we consider a class of models that use tables and graphs

for the interactive solution of problems with the help of the user [2]. In this case, the user

interface, as a communication medium, becomes an important component for problem

resolution, and the object-oriented design allows us to use a very high-level abstraction of

data and models (system-tier objects) that can be used in the interface design. Our DSS

bu i1ding approach starts with the identification of the data and models used in the

organization. These data and models are then classified and abstracted to define the

system回tier objects which are used in designing the overall "architecture" of the system and

in user interface design. Second-tier objects are the implementation-tier objects and，的

d

物件導向決策支援系統之設計:以存貨管理為例 225

efforts among those objects. An integration of such objects represents a specific

function/behavior and defines a problem-solving agent (a new object class). This newly

defined object wil1 become a problem solver. As more insight into the problem is gained,

new objects wi11 be composed to support additional requirements. This process will

continue until the final decision is made. We argue that such cömposibility and reusability

(via generic building blocks) are essential for the success ofDSS.

The paper is organized as fo l1ows. Section 2 reviews related studies and addresses key

features of the object-oriented methodology. Section 3 devises an object-oriented DSS

mode1. Applying such model, section 4 il1ustrates a simple application--inventory

management. A multi-department application (e.g. ,order processing system) is also

presented in section 5 which is fo l1owed by a conclusion section.

2. REVIEW OF RELATED STUDIES

In reviewing recent DSS packages [36,22,18,17] , it has been noted [40 ，4月 that a

substantial amount of user initiative, such as the preparation of input for the execution of

the model as well as the output format for a more interpretable form, is needed to fully and

successfully utilize these packages. The lack of 功ective interface support has further

caused managers to become reluctant to accept and use DSSs [9 ,16,21]. A continued

development of user-friendly and flexible capabilities has been delineated as a major thrust

of DSS research [9,14,29].

With the object-oriented methodology (OOM) , a system consists of a set of objects

linked in certain way. The definition of objects is based on a co l1ection of instances of

abstract knowledge of the problem as well as a classification of relevant entities in an

application environment [34]. An object is defined by a set of attributes which characterize

the identity of the object and a set of methods representing its behavior. Objects are then

accesseçl through a "defined" interface and details are hidden from other objects. Because

ofthis !1protection !1, objects can be updated independently without affecting others. Objects

can be abstracted over a range of dimensions such that only the essential .features of

objects , relative to the problem domain, are explicitly presented and defined at each

abstraction leve1. An object will inherit properties from higher-level objects.

Objects communicate with each other by sending or receiving messages. These

messages invoke methods inside the receiving object and cause changes on the receiving

object. Upon the completion of a message , additional messages may be triggered for

further actions. This feature provides a way to relate objects for information processing

[27 ,34]. A message may invoke a different response depending on the receiving object. For

example, a message to invoke the method "Make_a_decision" would result in different

responses from !1 Fami1y" object (to determine the order cost) and "Item" object (to

226 資訊管理學報第十二卷第二期

determine the order quantity). With this polymorphism, methods can exhibit a similarity in

behavior despite a difference in the manner in which this behavior is carried out.

In fact, each object's attribute can denote a state variable. The set of state variables

will then define the object's state. Any state change is characterized by a change in the

state variables and is caused by message execution. A state change could be simply an

updating of an attribute while, in other instances, it could trigger a sequence of messages

affecting objects.

3. Object-Oriented Model

In our model, an object X is defined by a tuple <A,M,C,R>. Here, A={A1 ,..,Ai,..,Am}

is a set of state variables defining the object's attributes. M={M l,..,Mi,..,Mn} is a set of

methods that will be invoked by message固passing. Allowed states of objects are determined

by the constraints (C). These constraints define the feasible state domain as well as prior

conditions in executing methods. An object can only be in states consistent with its

constraints (laws). An object that is in an unlawful state wi1l change its state to a lawful

state by firing appropriate messages . As an example, consider the method Plot of object

Graph. The constraint "data is needed prior to plotting a graph" will ensure the filling of

data prior to plotting a graph.

There are several ways to associate objects (or object class). Objects can be related

together via a simple "parent-child" relationship in one instance while being linked via

complex causual effects in others. Three relationships (R) are defined in this mode l.

1) Generalization-specialization (G-S)

This relationship groups objects on the basis of certain common behavior. The

high-level objects define the generalization while each low-level object represents a

specialization. The objects in the lower level inherit properties from higher-level objects.

Continuously applying this relationship will result in a hierarchy of objects with each level

defining specific abstraction of the objects.

2) Assembly

Assembly is the "part-whole" relationship in which objects representing the

components are associated with an object representing the final assembly. This relationship

wi1l ensure the existence of all components objects prior to assembling the final object.

Consider the object Resource Manager. The "part-whole" relationship w i11 assure that all

the components objects (Machine, Worker, Material) be available before the Resource

Manager can proceed the manufacturing of customers' orders.

3) Association

This relationship allows objects to be associated in a new dimension via certain

物件導向決策支援系統之設計:以存貨管理為例 227

decision-analysis concerns. Consider objects Graph and Mode1. An association relationship

wi11 enable the Graph object to plot the computational results of the Model object. Note

that the plot method of Graph object is invoked by Model object. The assembly

relationship can be viewed as a special association relationship. If two objects are tight1y

bound by a part-whole relationship, an assembly relationship wi11 be defined. However, if

two objects are usually considered independent1y, then the linkage wil1 be an association

relationship.

The above relationships resemble three major information flows in an organization.

The G-S relationship supports the information flow in mapping the organizational

hierarchy. The association relationship allows the information to flow across the

departmental boundary. The assembly relationship imposes additional restrictions on the

association relationship.

Following the linkages, messages can flow between objects. The general form of the

message is: Send Object(B) Method(M). This represents a message to invoke method M

on object B (receiving object). With the message, the attributes of the initiating object

become accessible to the receiving object. In carrying out the message, a state change may

place the affected object in an "unlawful" state and trigger new messages for further state

changes. The message processing and triggering mechanism provides a way to model the

dynamics of objects. The present study emphasizes the use of objects dedicated to

represent system entities and message-passing dedicated to defining the dynamics of the

system in an attempt to support the decision-making. We argues that a decision-maker be

able to manipulate various objects (system-tier objects) via such message-passing

mechanism. Different levels of analysis wil1 then be carried out in supporting

problem-solving.

We now discuss .the object-oriented DSS. Our design is based on an analysis of

computational needs and data requirements.

4. AN OBJECT-ORIENTED DSS

A typical DSS decision-making [20] always involves a large number of decision

variables and constraints which are well beyond the scope of current information

technology. The result has been a "divide-and-conquer" approach to problem-solving

which operates primarily through a decomposítion of the organizational responsibility [1 9].

These decompositíons often result in a hierarchical structure where each level pe:rforms a

set of optimízations and trade-offs to determine the guídelines, boundaries and constraints

withín which the lower levels niust operate. Each level, in fact , considers only a subset of

variables and parameterizes the remaining set of variables at an upper leve1. This

decomposítion process may continue until a level becomes clear enough to require no

228 資訊管理學報第十三卷第二期

further breakdown. The subproblerns in this level are called problern prirnitives. The final

solution is attained by cornposing solutions frorn problem prirnitives.

In our object-oriented DSS, prirnitive objects are defined to represent detailed

cornputational procedure and specific data values . They are classified as

irnplernentation-tier objects and hidden frorn the user. However, to facilitate the use of

rnodels and data, two systern-tier objects are defined so that cornputational results and data

are cornrnunicated with the user via DOH (data object hierarchy) and Model, respectively,

in a rnore understandable manner.

4.1 Data Object Hierarchy (DOH)
Under DOH, relevant data objects indicating rnodel variables and pararneters are

defined at each level to represent various data abstractions of the database. Various data

objects are connected by G-S relationships such that upper-level objects represent a

generation of data while lower-level objects, in turn, inherit inforrnation frorn their parent

objects and denote data specialization. Within this hierarchy, the relationships of data

attributes and their roles in decision-rnaking can be clear1y defined. For exarnple, a typical

DOH in inventory rnanagernent (Fig.l) indicates that a top-level rnanager deterrnines the

holding and stockout costs within which the middle and low-level managers rnust operate.

Similarly, the rniddle manager deterrnines the order cost which influences the low-level

rnanager's decision. This hierarchy shows the inheritance relationship between various

objects in the DSS , and their role in the organizational decision-rnaking.

DOH Organization Organization Hierarchy

Aggregate Obj ects}司 詳4r-:凹蝴蝴i站泓泓gl拉h…ana旭a
↓叫t : In叫ry川川f心明叫C∞叫Oωst心心…t

4
••• ca o pv

a
司

r

Ill.-HIll--e

-AU -VA -0

1

••

L
們
仙
月

4
E••

V
ι
-

••

A

J
A、

-
V
A

e-C M
d

一
血

。

-
h

T
l
l占
v

v
d

u
一

唱
團
E
A
­

-
••

A-m

一

••

A-

a­E
A

一

4 心叫1

Item Obj ects 4 …Man

Figure 1: DOH and Organization Hierarchy

物件導向決策支擺系統之設計:以存貨管理為例 229

4.2 Model Object

Each data object in the previous section can be analyzed by one or more mathematical

models in the model base. We assume that the purpose of analysis is to determine the

desired value of an attribute, which is specified as the decision variable. The central

feature of each model is an output function which allows us to compute the value of a

performance index (dependent variable) for a given value of an independent variable. The

independent variable is either ' the decision variable or a surrogate which has a simple

mathematical relationship with the decision variable.

Note that computation with a model proceeds when the model is applied to a data

object. In this case the parameters of the models are instantiated by the attributes of the

data object. These attributes are either directly available within the data object or

inheritened from the parent object.

For decision analysis , data objects must be analyzed by mode l. A model allows users

to compute the value of a performance index (dependent variable) for a given value of an

independent variable. The independent variable is either the decision variable or a

surrogate which has a simple mathematical relationship with the decision variable. To

facilitate the use of various computational models, an abstraction (Model) is defined. This

system-level Model object (Table 1) is connected with primitive model objects via G-S

relationships. Various computational procedures can then be invoked by using the Output

method. For example, if Order_Qty is an implementation-level model object, then it can

be invoked by sending the message Ou月putwith the parameter Order _Qty.ln addition,

Model and DOH objects are associated that the data objects provide the parameters for

model execution.

Table 1: Model Object

+---------------圓圓--------------------..--司- -圓..例..__.....__......__..__.......開網開+
I übj ect: Model

I At t r i bu t e s :

x {represents a value of the indep巳ndent variable}

主 a set of parameters

I Methods:

üutput(x) {compute the value of the performanc 巴 index}

Change(x) {update the decision variable}

I Constraints:

c: a range of value {define valid data ranges for x}

I R巴 lationships:

Association: Model_Solver

G-S: implementation-level model objects

+ -, -“..--------------------- ------------------------“.+

230 資訊管理學報第十二卷第二期

4.3 Model_Solver Objects - Worksheet and Graph

The Model object specified above permits the user to compute the value of the

performance index for a given value of the decision variable. Whi1e this may be useful in

examining the impact of a specific decision, it does not al10w the user to determine the

desirable level of a decision variable for a given parameter set. This can be achieved by

developing a solver for the models [2].

We assume that a decision is made by examining the trade-off between the dependent

and independent variables rather than for optimization. One way to analyze such a trad-off

is to generate a table (Worksheet) that displays the values of dependent variable (y) for

selected values of independent variable (x). A graphical plot (Graph) between x and y may

also be generated. Interaction between Graph and Worksheet ensures that selected points

on the graph are also displayed on the worksheet.

Once a sufficient number of points are generated, a model is "solved刊 by choosing a

value for the independent variable from the table. This determines the new value of the

decision variable, which is used to update the data objects.

To illustrate this process, we consider the use of an order quantity model for an inventory

intem. After examining several values of order quantity (50，的0， 250, 100, 350), the user may

then select an appropriate value of the order quantity which becomes the final decision.

Note that teh above solution procedure separates a model from the solver. The solver in

this case uses the appropriate display mechanisms to display the nature of trade-off between

dependent and independent variables to the user. It must also incorporate a procedure for

selecting from the table a specific value of the independenet variable which represents a

solution to them. A decision is made by examining the trade-off between the dependent and

independent variables rather than a single optimal solution. Since their features are common

to all models in theDSS , they can be abstracted to a high-level object.

To support such analysis, another system-level object Model_Solver is defined. This

Model_Solver object consists of objects Graph and Worksheet, allowing the values of

dependent variable (Y) for selected values of independent variable (X) to be displayed in a

graphic or tabular form , respectively (Table 2). They are connected via an assembly

relationship (Figure 2). The constraints set in bo

物件導向決策支援系統之設計:以存貨管理為例 231

quantity (50, 150, 250, 100, 350) (Fig. 3), the user may finally make a decision by

selecting an appropriate order quantity (e.g. , 150) from the presentation.

User

System-levelobject

4F

|Primit仰

LIm耶plement叫a組H肋枷枷O∞伽n仔圓拍elo的bjec闕t

|川恤叫世忱ved伽a砌但枷伽t I

• • :Association Link
<l1li---+ :G-S Link
曰:臘的ly Link

Figure 2: Inventory manager

戶gu rL 門U

:D 1∞ 1:D 2m '25J
order qtmti ty

Worksheet

Order quantity Cost
50 1038
150 700
250 1030
300 690
350 1720

Figure 3: Graph and worksheet object in inventory manager

232 資訊管理學報第十二卷第二期

Object Graph plots a line graph using arrays X and Y, and labels it with text while object

Worksheet displays X and Y in a tabular manner. Once a decision is made (e.g.,

Make_a_decision), the affected data attributes in the DOH and database will be updated

accordingly. With such objects, users can directly manipulate data and models without

encountering unnecessary details allowing them to perform their analysis in an interactive manner.

Table 2: ModeLSolver Object 一 Graph and Worksheet

+=============三三===+

Model_Solver object
+=====三三===+

Obj 巴 ct Worksheet
Attributes:

xvar {represents the current valu巴 of the ind巴pendent variable}
X,Y: array{X is the independent variable ,Y is th巴 dependent variable}
c: pointer' s location in the table

Method:
Display_table {display X,Y in a tabular form}
Add_value(x , y) {add a new value (x , y) to the arrays}
Make_a_decision(xvar){update the data attributes in DOH and database}

Constraints:
If X and Y are empty th巳n invoke Output

Relationship:
Association: Save_List , Tool_Kit

+- --“..-------崗----------+
Object Graph
Attributes:

xvar {represents the current value of the ind巴pendent variable}
X,Y: array{X is the independent variable ,Y is the d巴pendent variable}
Xlabel , Ylabel: string
row , col: curren t loca t ion of cursor

M巴 thod:

Plot{plot a graph using values in arrays Xand Y, joining each pair of
adjacent points by a straight line}

Label {l abel the axis with Xlabel and Ylabel}
Add_value(x ,y) {add a new valu巴 (x ， y) to the arrays}
Make_a_decision(xvar){update the data attributes in DOH and database}

Constraints:
If X and Y are empty then invoke Output

Relationship:
Association: Save一List ， Tool_Kit

+=============三三二三三三三==+

4 .4 Save_List Object

We have so far considered a single instance of Model being applied to a data object. It

峙， however, possible to create different application of Model for the same data object by

changing parameter values or using a different type of models. Interactive decision同making，

in this case, is facilitated by the ability of the decision-maker to change (temporarily) the

parameter values of a model and then study the impact of such changes on the graph and

worksheet images. The decision-maker should also be able to store and retrieve these

物件導向決策支攘系統之設計:以存貨管理為例 233

images without having to recreate them every time they are required. This is achieved by

saving these images and their parameters in a list (Savel_List) and retrieving them by

using commands such as Undo (moving up the list) and Redo (moving down the list).

Table 3 summaries object Save_List.

Table 3: Save一List Object

+- --四-----------------------“----------------------團團--------------------+

Object Save_List {store the graph and worksheet image of a model's

instance (a trial)}

I Attrìbutes:

a: a list of image

I Method:

Save {save a trial}

R巴 trieve {retrieve an existing trial}

Undo {moving up the list}

Redo {moving down the list}

Constraints:

If a i s 巳mpty then display th巳 curren t image

I Relationship:

Association: Mod巴 1 Solver

十.._..._-----------_........- _ ...__.._----------------.._-----闖闖- - - - - - - - - - - - - - - - - - - --+

4.5 Tool_kit Object

To enhance the data and model manipulation, the Tool Kit object is defined and

incorporated into this DSS design. It includes a set of objects supporting various user

interface activities such as file management, editing, and presentation management. These

objects are associated with Model_S01ver such that their methods can be invoked by data

and model objects for additional support. Many object-oriented languages provide such

support in their object library. Some of them are defined as follows:

View object

Edit object

File object

{to navigate the Graph and Worksheet for detailed examination}

{to change, add, delete attributes }

{to handle the file input and output}

Window object {to perform windowing techniques}

4.6 Integration of Objects -- A Problem-Solving Agent

Our design allows the user to develop a DSS application without considering the

234 資訊管理學報第十二卷第二期

details of the model's computations. It also supports interactive decision analysis by

allowing the user to develop solutions in an incremental manner, from initial

experimentation to complete solutions. This approach is particularly appealing where a

system's structure is not well defined. Using message-passing and triggering, the model's

parameters and decisions can now be updated by working at a high-level abstraction to

support decision analysis. The next section addresses an inventory management

application.

5. INVENTORY MANAGEMENT APPLICATION

5.1 The Problem

In an ordinary three-level inventory management system [句， the lowest level deals

primarily with decisions (e.g. , order quantity) regarding single-item inventory management.

Although analytical models exist for this type of problem, . managerial intervention

however is often required due to vendor requirements , transportation constraints or storage

restrictions. At the middle level, the manager is instead concerned about policies affecting

a group of items (a family). The interaction effects of an individual item's policy are

examined and often a trade-off analysis [28 , 35] is conducted that exchanges some measure

of capital investment in inventory with a family's operating expenses (e.g. , order cost).

This decision is then passed down and it affects the decisions at lower levels. At the top

level, corporate management examines the capital investment required to maintain an

inventory level for better customer service. The decision is made by examining the

trade-off regarding stockout cost (or holding cost) and the total capital investment [3 月.

We apply our design framework for this inventory management problem. Our focus is

on the decision-making across management hierarchy. Key object definitions are addressed

next. More detai1s are reported in [10].

5.2 Data Object Hierarchy

For this inventory management, the uppermost echelon of the DOH (see Fig. 1)

defines object Aggregate concerning the aggregate inventory decisions for all

stock-keeping items. Important attributes are holding_ cost and stockout_ cost. At the

middle level, object Fam i1y is defined. Analysis is performed to determine the order _ cost

for a group of items. The lowest leveldeals with the decisions regarding an inventory item

and the object Item is defined with attributes such as order_quantity and demand. Although

various data abstractions are defined at each level, the inheritance mechanism supports the

data integrity. Any analysis at the middle management level is based on the inherited

物件導向決策支援系統之設計:以存貨管理為例 235

values of holding cost and stockout cost set at the top level. Similarly, order quantity

decisions are affected by the holding cost from . the top level and the order cost from the

middle level.

A database is derived (Table 4) according to this DOH hierarchy. Each table defines

the object's attributes for a particular level. The up index defines the linkage with higher

level obj ects and supports the information inheritance. The down index stores a pointer

directed to the first lower-level object at another table. The linking index then locates the

next same-group item from the table. For example, using the down index of the family

object and the linking index of the item object, we see that family A consists of items 1, 2,
and 3 and family B includes items 4 and 5.

Table 4: Organizational DOH (Inventory Management)

Aggregate object
Stock-out cost I Inventory cost I Down index

35 0.25 A
巨型豆豆ex

N/A

Family object
ID
A
B

nb o pu r-5-o
e
-
-
M
一l

A
U
一

V
A
呵

。
一

X
一

戶
u
v
­

AU­n­•••

A4 n
一1
-
4

w
一

。
一

D

Item object
Ok Description Unit cost Demand Lead time Family Linking Down

ID index index
Screw 15 855 20 A 2 N/A

2 Bolt 40 415 17 A 3 N/A
3 Washer 25 3060 20 A Nil N/A
4 Spring 100 1902 23 B 4 N/A
5 Nail 65 1153 23 B Nil N/A

5.3 Implementation-Ievel Model Objects

Detailed model formulas are defined by the objects at the implementation level. We

assume X is the independent variable (decision variable) and Y is the corresponding

dependent variable and consider the basic nature of the trade-off rather than the

computation of an optimal value of the decision variable. Among the inventory

management models (see [10] for details) , the inventory cost model is defined to support

the decision regarding a single item. The cycle stock model is applied at the family level.

The stockouts trade-off and inventory-cost trade-off models are used at the aggregate level.

236 資訊管理學報第十二卷第二期

5.4 The User Interface

In designing the user interface, we assume that the user analyzes one inventory item

at a time. the user, in this case, creates an instance of the Inevntory _Item class specifying

the identification number of an inventory item. The data for this item is withdrawn and a

model is applied to create graph and worksheet images. The user may keep on generating

values in the worksheet or create new images by changing parameter values. Old images

are stored in the working memory, and may be retrieved as desried. To facilitate analysis ,

four windows are created on the screen.

5.5 Implementation

With the aforementioned data and model object definitions, an object-oriented DSS

for inventory management was implemented (Fig. 4). Window 1 presents the attributes of a

corresponding object. Graph and Worksheet are displayed in Windows 2 and 3,
respectively. Window 4 shows a menu for sending messages. "Graph" option allows user to

work on the graphic representation while "Worksheet" option directs the user to the tabular

representation. With the support of View object (not shown) , theuser can navigate the

graph or worksheet for a detailed analysis. The "Edit" option updates the attributes and

parameters byinvoking Edit object. "Save_List" is for image saving and retrieval. The

"Decision" option records the user's selection on the value of the independent variable and

causes updating on data attributes.

"Graph" option allows new values to be generated from the Graph whi1e "Worksheet"

option generates new values within the Worksheet. "Decision" allows the user to select a

value of the independent variable using the arrow on the Worksheet. The choice "Edit"

allows a change of parameters/models for a new trial. It invokes a procedure to compute

and display the graph for the new parameters and also display a blank worksheet for the

user to work on. Other option are "Undo" or "Redo" as explained ear1 ier. On "Exit", the X,

Yarrays and images are saved for subsequent examination. Details are given in [10].

物件導向決策支援系統之設計:以存貨管理為例 237

Figure 4: An object-oriented DSS for Inventory Management

In using thìs system, the user can start at any level of the data hierarchy. According to

data objects, a model will be invoked via the Model_Solver object. Its graph and

worksheet images are displayed accordingly. Working with the model-solver, the user may

create many trials by changing the model's parameters. Old images are stored and can be

retrieved as desired. After examining the possible alternatives, a decision 1S then made

and corresponding data attributes are updated. Consider a simple il1ustration based on

Table 4. The objective is to determine the stockout cost, which the user thinks is high.

The user starts by selecting a data object and model. A graph and worksheet images of the

model's computation are presented and saved as trial number 1. A further analysis sets the

holding cost .15 and the related images are kept as trial number 2. After several

conducts , the user decides to reexamine trial number 1. A decision is then made by

selecting X=10 from the Worksheet. The stockout cost (6.12) is calculated and updated

automatically (Table 5). The process will continue as new requirements occur.

238 資訊管理學報第十二卷第二期

Table 5: Organizational DOH (Inventory Management)--updated

Aggregate obj ect
Stock-out cost I Inventory cost I Down index

6.12 0.25 A

Family object
ID
A
B

Item object

Order cost
35
10

Down index

4

ID Description Unit cost Demand Lead time

Screw 15 855 20
2 Bolt 40 415 17
3 Washer 25 3060 20
4 S2!i!lg 100 1902 23
5 Nail 65 1153 23

5.6 An Inventory Manager

Fami1y
ID
A
A
A
B
B

Linki且主 index
B

Nill

Linking Down index
index

2 N/A
3 N/A

Ni1 N/A
4 N/A

Ni1 N/A

With our DSS , users can make changes on the parameters and formulate their own

problem-solving procedures by sending proper messages in an interactive fashion. The

system supports the. process by furnishing pertinent information and coordinating the

required communications. As a result, various objects are examined and coordinated in an

attempt to solve the problem. The problem-solving is carried out via a sequence of

message processing. To i1lustrate this, consider the following inventory changes.

(1) a change on the unit cost of item i (Ci) infamily 1

(2) a demand change for itemj (Dj) infamily 2

(3) a creation offamily 3 which includes items r and s

To make appropriate decisions that will accommodate these changes, the user first

updates the data attributes (e.g. , unit cost and demand). Next, a new family is created and

items r and s are added via Editor object. To determine new policies for those affected items

and family, an analysis is then conducted. First, item i's inventory cost is examined by

sending a message "Plot" with the updated unit cost. When a selection regarding the order

quantity is made, its impact on the family and aggregate level can be examined immediately

by sending "Plot" messages to appropriate data objects. After several trials (a sequence of

message processing), a final decision is made and the database is updated accordingly.

Simi1ar1y, new policies for item j and family 3 can be determined in the same manner.

物件導向決策支援系統之設計:以存貨管理為例 239

An integration of such objects and their linkages, however, defines a problem solver

assisting the user in determining proper inventory policies. Such a solver is defined by a

composition of objects and can be viewed as a higher-level object (e.g. , manager).

Combining this inventory manager and other managers, an even higher-level object can b~

defined for the support of company-wide decision-making. This is addressed in the next

sect lOn.

6. AN ORDER PROCESSING APPLICATION

6.1 The Problem

Most organizational functions are not produced by a single department that is acting

alone. Instead, each function is manifested by an interaction of several different

departments. Consider the order processing function. Orders are received and submitted to

the Order_Processing department where the customer's credit is verified and orders are

valìdated for accuracy. If there is stock to fil1 an approved order, the customer is notified

and the shipment is arranged. Otherwise, production is scheduled. If production is

overcommitted, "delay" messages w i11 be sent to customers. A new purchase order is

issued if raw materials are running short.

This function is realized through the coordinated activities of the order processing,

warehousing, manufacturing, purchasing, shipping, and accounting departments. A proper

DSS should, however, integrate the operations of disparate departments into a single

processing function to support problem-solving.

6.2 A DSS Design

Consider a DSS design (Fig. 5) for order processing using our framework. There are

two major managers handling the customer orders. The Order Processor (a manager)

handles the order tracking, handling, and shipping. The Manufacturing manager plans and

schedules the resources (e.g. , machines, workers , materials). Objects are assigned to

manage specific production resources. The Machine manager performs the machine

scheduling, tracks the machine loading and updates the machine status. Various scheduling

algorithms are defined at the implementation level to support the Machine manager. The

Material . manager reviews inventory policies, conducts the material requirement

planning/analysis, and places raw material orders. This is supported by inventory models

and MRP models in performing the required analysis . Upon receiving the raw material

requests , the Purchasing manager places the orders after proper analysis. The

Human_Resource manager schedules workers for production runs. Each manager, in fact,

is an object with a specific problem-solving capability. With the message-passing

mechanism, they are integrated, enabling them to produce proper responses to the

240 資訊管理學報第十二卷第二期

customers regarding the status of the orders. Details of each manager's function are

addressed below and summarized in Tables 6-9.

Customer Orders

O

Human Resource
Manager

Order Processor Save _list Object

ToolJcit Object

σ
0

.mr
q
d

自L
V

aob -aa mm hM

Figure 5: An Order Processing Decision Support System

物件導向決策支援系統之設計:以存貨管理為例

Order Processor

Attributes

a: a list of fiUed orders*

b: a list of committed orders*

c: a list ofuncommitte,d orders*

d: customers' info

Methods

Open_an_account {open an account and check for credit}

trigger: Send Accounting Credit_ Check

Fill_an_order { fi1l an order and arrange shipment }

trigger: Send 孔1aterial Take out

trigger: Send Order_Processor Ship

Ship _ an order {ship the order and notify the account receivable }

trigger: Send Accounting Bill_ customer

Constraints

For each order(x,y,i,d)

if in _ stock(x)>=y then

Send Order _Processor Fill_an_order {fill än order with stock}

else

Send Manufacturing Draw yrocuction _ order

Relationshios

Association: Manufacturing, Accounting, Save_List, Tool_Kit

Order* = {(x,y,i,d) IxεX，y: order quantity; i: receiveddate; d: delivery date }

X: set of products

Accounting Manager

Attributes

a: customer's info

b: payment due

htIethods

Bill customer

Check Credit

Update_ Credit

Draw_ayayment

Relationshio

Association: Order Processor

Table 6: Order_Processor and Accounting Managers

241

242

Material Manager
Attributes

a: inventory items info
b: in_stock of inventory items
c: review policy of inventory items
d: replenishment level of inventory items

Methods:
Put_on {stock augmentation}
Take_out {stock diminution}
Out of stock

trigger: Send Purchasing Place _ order

資訊管理學報第十二卷第二期

Make _ a _ decision {determine an appropriate inventory policy}
Create _ a _report {create inventory reports}

Constraints:
If in土stock<replenishment level then

Send Material Out of stock
Relationships

G-S:
Assembly:

Inventory models , material requirement planning models
Raw Materials, Products

Association: Manufacturing

Purchasing Manager
Attributes

a: suppliers info
b: a list of filled purchasing orders
c: a list of unfilled purchasing orders
d: a set of evaluating criteria

h.1ethods
Place _ order {place an order for materials}
Solicit_a_ bid {solicit bids from supplier}
Make _ a _ decision {evaluate suppliers' bids and make a decision}
Receive {receive a replenishment, notify 伽 receiving ， and arrange the payment}

trigger: Send Material Put_ on
trigger: Send Accounting Draw _ a -yayment

Constraints
Relationship
G-S: bid evaluation models
Association: Material

Table7: Materíal and Purchasíng Managers

物件導向決策支援系統之設計:以存貨管理為例

Machine Manager

Attributes

a: machine status

b: machine capacity

d: committed schedules

e: uncommitted schedules

f: machine maintenance schedules

Methods:

Draw _ machine _ schedule {schedule machines for a production order}

Add machines

Maintain machines

Constraìnts:

If maintenance schedule is up then

Send Machìne Maintaìn machines

Relationship

G-S: machìnes scheduling models

Association: Manufacturing

Human_Resource Manager

Attributes

a: personal info

b: skill of workforce

c: availability of workforce

d: committed schedules

e: uncommitted schedules

Methods:

Draw _ workforce _ schedule {schedule workers for production orders}

Add workforce

Train workforce

Constraints:

If new workforce is added then

Send Human Resource Train workforce

Relationshio

G-S: worker schedulìng models

Association: Manufacturing

Table8: Machine and Human_Resource Managers

243

244

Manufacturing Manager

Attributes

a: finished production orders

b: committed production orders

c: uncommitted production orders

d: capacity of resources

e: status of resources

f: aggregate plan

Methods

Draw _production _ order

Schedule _ a yroduction

trigger: Send Material Take _ out

trigger: Send Machine Draw_machine_schedule

資訊管理學報第十二卷第二期

trigger: Send Human _ Resource Draw _ workforce _ schedule

Finish an order

trigger: Send Material Put_ on

trigger: Send Order_Processor Fill_a_order

h在ake_ aggregate _plan

Constraints:

If machines, workers , materials are available then

Send Manufacturing Schedule _ a -production

If future demand is high then

Send Machine Add machines

Send Human Resource Add workforce

Send Material Make_a_decision {update ìnventory policy}

Relationshio

Association: Order_Processor, Save_List, Tool_Kit, Machine,
Material, H uman _ Resource

G-S: aggregate planning and schedulìng models, forecasting models

Table9: Manufacturing Manager

物件導向決策支援系統之設計:以存貨管理為例 245

6.3 Order Processor
Upon receiving customer orders, the Order Processor triggers a sequence ofmessages:

1) create an account and check the customer's credit rating; 2) validate the order; 3) 自11 the

order with the inventory if there is enough stock; 4) 自11 the order with additional

productions. Message 1 further invokes methods for the Accounting manager to open an

account and check the customer's credit. Message 4 will cause the Manufacturing manager

to schedule the production. The status of customers' orders is continuously updated in the

process. Once an order is fil1ed, the method Make_a_shipment is invoked to arrange a

shipment and the Accounting manager is informed.

6.4 Manufacturing Manager
TheManufacturing manager schedulesthe production and coordinates the resources

necessary for supporting the schedule. Customer .orders are scheduled based on the

availability of resources and the nature of orders. It is associated with three resource

managers (e.g. , machine, material, human resource) such that various resource scheduling

models can be called up to schedule a production run. However, various messages wil1 be

triggered to ensure the avai1abi1ity of resources prior to committing a production order.

Upon the completion of a production order, the inventory is updated and the Order

Processor is informed. If the aggregate plan indicates that the future demand is high, then

more resources are requested.

6.5 Machine Manager
The Machine manager monitors the machine loading and is supported by a set of

machine scheduling models. A new production .schedule is drawn by examining the current

production schedule (e.g, the committed schedules) as we l1 as the nature of the order.

The Manufacturing manager wil1 be informed of this new schedule. If scheduled

maintenance occurs, the machines wi1l become unavailable.

6.6 Material Manager
The Material manager monitors the changes in inventory, reviews inventory policy,

directs the reordering of raw material, and provides various inventory status reports. In

addition to the aforementioned methods (section 5), methods Put _ on and Take _ out define

the stock augmentation and diminution, respectively. The method Out_oCstock triggers a

request to the Purchasing manager for raw material replenishment. Various inventory

models are incorporated to support the decision.

246 資訊管理學報第十二卷第二期

6.7 Purchasing Manager

The Purchasing manager handles the activities necessary for acquiring goods and

services from suppliers. It identifies the suppliers , solicits the bids, and places an order.

The purchasing prices and delivery dates are determined accordingly. Upon receiving the

raw material, the material and Accounting managers wil1 be notified appropriately.

6.8 Human_Resource Manager

This manager handles various human resource management activities such as

recruiting, staffing, training/development, ski11s inventory, and worker scheduling. In

response to a new production request, it wi l1 make a proper worker schedule by invoking

scheduling models. The Manufacturing manager wil1 then be informed of this.

6.9 An Order_Processing Manager

With this DSS , the customer orders are first processed by an Order Processor. Upon

receiving an order, the method Open_an_account is invoked to validate the order and open

an account. An additional message is triggered for credit checking. If an order can't be

filled by the in-stock inventory, a production order is created and the Manufacturing

manager is notified. Otherwise, the products are taken out of the inventory via a Material

manager. Once an order is fi l1ed, a shipment is arranged and the Accounting manager is

notified. Upon receiving a production order, the Manufacturing manager schedules the

production by coordinating various resource managers. The method

Schedule _ a -'production invokes the scheduling of a production. This task is supported by

implementation-level scheduling models. The completion of a production order (e.g. ,

Finish_an_order) wi l1 notify the Order Processor of a shipment. If the predicted future

demands are high, then additional resourcesare requested. Note that these predictions are

further supported by a set of forecasting models. If the material is lower than the

replenishment1evel, the Out_of_stock message is triggered and a purchase order is placed.

The method Make _ a _ decision in Material manager helps determine appropriate inventory

policies. The Purchasing manager solicits and evaluates bids. The orders are placed

according to the outcome of the evaluation. The Material and Accounting managers are

notified upon receiving the materials. Machine and Human_Resource managers are

supported by machine scheduling and worker scheduling models , respectively. A

production is scheduled only when all resources are avai1able. Using message-passing, a

group of managers now participates in decision國making and a final decision w i1l be made

by exchanging messages between them. Such a DSS composed of a group of independent

components defines a unique problem-solving behavior. Note that new constraints can

物件導向決策支援系統之設計:以存貨管理為例 247

always be added to each manager in order to define various problem-solving conditions

(e.g. , scheduling preference).

7. CONCLUSION

We have demonstrated a way to design DSSs for company-wide use. With the

two-tier design, the user is directing the system through a high-level construct and the

detailed computations are hidden. We analyze the hierarchical nature of organizational

decisions and define the data-object-hierarchy data object to support various levels of data

abstrαction. The computational results and data attributes are communicated with users via

high-level object constructs. The message-passing provides the mechanism to integrate

various objects for further decision analysis.

This new approach is characterized by easily accessible primitive building blocks

(e.g. , an object) , providing a mechanism that permits objects to be linked in order to

develop problem solvers. Our design supports the step-wide modeling process such that the

decision-maker can create his (her) own abstract type and map the problem domain into

those objects, thus building a solver through message passing. Through a composition of

objects , various higher-level objects are defined in supporting problem-solving. Once

designed and built, a object (e.g. , modular) can be reused in order to create another

modular for defining a specific problem國solving ability. This composability is essential in

supporting various decision.‘ makings.

In contrast to a conventional programming approach, our object-oriented design

encourages a decentralized style of decision- making by allowing objects to exchange

messages among themselves. Such distribution and localization of knowledge also has its

appealing in supporting distributed decision-making.

REFERENCE

1. Alasuvanto, J. , E. Eloranta, M. Fuyuki, T. Kida, and 1. Inoue, "Object Oriented

Programming in Production Ma:nagement 回 Two Pilot Systems," 1nternational Journal of

Production Research， 2豆 (May 1989) 765-776.

2. Angehrn, Albert A. and Hans-Jakob LHthi, "Intelligent Decision Support Systems: A

Visual Interactive Approach," 1nterfaceâ, 20:6, November-December 1990, 17-28.

3. Blanning, R叭丸 "A Relational Framework for Joint Implementation in Model

Management Systems," 12ecision Suooort Svstemâ, 1, 1985, 69-82.

4. Bonczek, R.H. , C.W. Holsapple, "A Generalized Decision Support System Using

Predicate Ca1culus and Network Database Management," Qoerations Research, 29(2),

248 資訊管理學報第十二卷第二期

1981 , 263-28 1.

5. Booch, Grady, Object-Oriented Design and Applications, Benjamin/Cummings, 1991.

6. Brown, R. G., Material Management Svstem, John Wiley, 1977, New York.

7. Burns, James R. and J. Darrell Morgeson, "An Object-Oriented World-View for

Intelligent, Discrete, Next-event Simulation," Management Scienc~， 34 (December

1988) 1425 月 1441.

8. Chakravarty, Amiya and Diptendu Sinha, "Knowledge Modularization for Adaptive

Decision Modeling," QRSA J ournal on Comouting, 2(4), Fall, 1990, 312-324.

9. Carter, G. M. et al , ßuilding Organizational Decision Suooort Svstem~， Academic Press,

1992

10.Chen, H. G. and D. Sinha, "An Inventory Decision Support System Using the

Object-Oriented Approach," Computers and Operations Research, 23(2) , 1996,

pp.153-170

11. Cox, Brad and Andrew Novobilski, Object“ Oriented Programming: An Evolutionary

Approach, Addison'-Wesley, 1991

12.Dijkstra, E.W. , "Notes of Structured Programming," in .structured Programming, Dah,

O.J. , E.W. Dijkstra and C.A.R. Hoare (eds.), Academic Press, 1972.

13.Dut徊， A. and A. Basu , "An Artificial Intelligence Approach to Model Management in

Decision Support Systems," 1EEE Comouter 1984, 89-97.

14.Elam, J. , J. Henderson, P. G. Keen, and B. Konsynski , "A Vision for Decision Support

Systems," Special Report, University of Texas at Austin, 1986

15.Elam, Joyce and Benn Konsynski , "Using Artificial Intelligence Techniques to Enhance

the Capabilities of Model Management Systems," Qecision Science~， 18 (3), 1987,

Summer, 487-502 .

16.Eom, Hyun B. and Sang Lee, "A Survey of Decision Support System Applications ,"

(1 971-April1988) ， Interface~， 20:3 , May-June 1990, 65-79.

17.EXPRESS, Information Resources Inc. , Walthan, MA

18.FOCUS, Information Builders, New York, NY

19. Geoffrion, A.M. , "Introduction to Structured Modeling ," Management Scienc~， 33 ,

1987, 547-588.

20.Hax, A. and N. Majluf "Organization Design: A Survey and An Approach,"
ooerations Research 29(3). 1981 May-June.

21.Hogue, Jack, "A Framework for the Examination of Management Involvement in

Decision Support Systems," 1ournal of Management Information Svstem~， 4 (1), 1987,
96-110

22.IFPS, Comshare Inc. , Ann Arbor, MI

23.Kim, Won and F. H. Lochovsky (eds.), Qbiect-Oriented Conceots. Databases ‘ and

物件導向決策支援系統之設計:以存貨管理為例 249

Aoolication~， ACM Press (1 989), New York.

24.King, David, "Intelligent Support Systems:A此， Augmentation, and Agents，"旦旦旦旦旦旦

Suooort Svstems: PuttinQ Theorv into Practic~， 3rd Edition (eds. R. Sprague and H.

Watson), Prentice Hall, 1993

25.Lockemann, Peter "Object-Oriented Information Management," 12ecision Suooort

益主旦旦旦旦 5 ， 1989, 79-102.

26.Lor峙， Raymond, W. Kim, D. McNabb, W. Ploutì缸， and A. Mei缸， "Supporting Complex

Objects in a Relational System for Engineering Databases," Querv Processing in

Database Svstem~， 1985, Springer Ver1ag, 145-155.

27.Martin, James , Qbiect凶Oriented Analvsis and DesiQ!!, Prentice Hall, 1992

28.McClain J. o. and L. J. Thomas, Qoerations Managemen1, 2nd edition, Prentice-Hall

(1985), New Jersey.

29.Mitchell, C. M. , "Design Strategies for Computer-Based Information Displays in

Real-Time Control Systems," Human Factor~，三三(1 983) pp. 353-369.

30.Myer, B. , Qbiect-oriented Software ConstructiQ!!, Prentice間Hall ， 1988.

31.Nunamaker J. F. , L. M. Applegate and B. R. Konsynski, "Computer-Aided Deliberation:

Model Management and Group Decision Support," Qoerations Researc11,

(November-December 1988) 849-863.

32.Qui11ian, R. "Semantic Memory," M. Minsky (editor), .semantic Information Processing,

MIT Press, (1970), Cambridge, MA.

33.Ranch-Hindin, Wendy B. , Artificial Inte1ligence in Business ‘ Science ‘ and Industry,

Fundamental~， Vo1. 1, Prentice-Hall, (1 986), New Jersey.

34.Rumbau訟， J. M. Blaha, W. Premer1ani, F. Eddy and W. Lorensen, Object-Oriented

Modeling and Design, Prentice Hall, 1991

35.Silver, E. A. and R. Peterson, 12ecision Svstems for Inventorv Management and

Production Plannin皂， 2nd edition, John Wiley (1 985), New York.

36.SIMPLAl呵， Simplan System Inc. , Chapel Hill, NC

37. Smalltalk-80, Eundamentals of the Smalltalk -80 LanQuag~. (1 980).

38.Sprague, R. H. and E. D. Car1son, ~uildinQ Effective Suooort Svstem~， Prentice-Hall,

(1 982), New Jersey.

39.Sprague, Ralp丸 "DSS in Context," 12ecision Support Svstem~， 3, 1987, pp.197-202

40.Sprague, Ralph and Hugh Watson, 12ecision_Suooort Svstems: Putting Theorv into

E旦旦控旦， 3rd ed. Prentice Hall, 1993

41.Stefik, Mark and Daniel Bobrow, "Object-Oriented Programming: Themes and

Variations," Ihe AI Magazin~， (Winter 1986) 40-62.

42. Turban, E. 12ecision Support and Exoert Svstem, 3rd ed. Macmi1lan, 1993

43.Yau, Stephen S. and Jeffery J. P. Ts缸， "A Survey of Software De

