
- -- --- - ---

•

Journal of the Quality Assurance Institute

July 1989

-------~

Volume 3, Number 3 July 1989

EDITORIAL BOARD
BOARD CHAIRMAN: Peggy Myles, CQA, Contel Credit Corp.
Wayne Smith, CQA, Applied Information Nancie L. Sill, CQA, Contel Credit Corp.

Development, Inc. Linda T. Taylor, CQA, Taylor & Zeno Systems, Inc.
BOARD MEMBERS: Gary C. Vennes, CQA, Norwest Technical Services
James C. Badger, CQA, GTE Directories Service William E. Perry, CQA, Quality Assurance
Phillip N. Bentley, CQA, Kickstart Quality Systems Institute, Managing Editor
Ed Dreher, CQA, Pizza Hut, Inc. Donna Baum, Production Editor
Shirley Gordon, CQA, Consultant Martha Platt, Quality Assurance Institute,
Charles Hollocker, CQA, Northern Telecom, Inc. Assistant Editor
John W. Horch, CQA, Horch & Associates

COLUMN EDITORS
Auditing-Keagle W. Davis, CPA, QAI Audit Division Quality Assurance Surveys-William E. Perry, CQA,
Doing it Right the First Time-Jerome B. Quality Assurance Institute

Landsbaum, CQA, Monsanto Company Quality at Work-Rebecca Staton-Reinstein, CQA,
Education and Chapter News-William E. Perry, New York Life Insurance Co.

CQA, Quality Assurance Institute Questions and Answers-Phillip N. Bentley, CQA,
The Ughter Side of Quality Assurance-William H. Kickstart Quality Systems

Walraven, CQA, United Telecommunications Speaking Out on Quality-lrv Brownstein, Consultant
Quality Assurance Case Studies-Shirley Gordon, Standards-Kenneth J. Muth, Target Stores

CQA, Consultant Testing-Harry Kalmbach, CQA, McDonnell Douglas
Aerospace Information Services Co.

REGULAR CONTRIBUTORS TO
QUALITY DA TA PROCESSING
Robert Coull, CQA, GTE Data Services, Inc. Robert E. Nichols, Federal Home Loan Mortgage
Mark Duncan, Federal Reserve Bank, DaUas Corporation
Victor M. Guarnera, CQA, Blue Cross/Blue Shield Ron Rizza, CQA, Ford Aerospace
Jerome B. Landsbaum, CQA, Monsanto Company W. Charles Slaven, CQA, General Electric Company
Daniel W. Martin, Tultex Corporation Robert J. Walsh, CQA, Putnam Investment Services
Sara Messina, Manufacturers Hanover Trust Donald E. Willett, RCA Automated Systems Division
Leonard Muhs, CQA, New York State Department of Richard Zultner, CQA, Zultner and Company

Motor Vehicles

Pubtished 4 times per year by Quality Assurance Institute. Copyright e 1989. Quality Assurance Institute.

2 • Quality Data Processing

--

6

TI1ELE []f LIJ~TE~TE

QDP JOURNAL AWARDS GLAVIN, SCHERKENBACH
ARTICLES

Quality DATA PROCESSING again names winners of its
editorial achievement awards in appreciation of the many
distinguished contributions to the journal

TAKING QUALITY SERIOUSLY
Quality DATA PROCESSING shares with its readers
comments by Colby H. Chandler, chairman and CEO at
Eastman Kodak Company, on his company's pervasive effort
to improve quality and cut costs

TESTING
Harry Kalmbach, CQA, Editor
McDonnell Douglas Aerospace Information Services Co.

"Structured Testing In The System Development
Life Cycle"

Eldon Y. Li
Associate Professor and Coordinator
Management Information Systems
california Polytechnic State University
Defines structures testing, discusses its incorporation into the
System Development Lite Cycle, noting that the importance
of structured testing process can never be overemphasized

QAI FEDERATION OF QUALITY ASSURANCE
ASSOCIATIONS

A list of quality assurance associations currently in operation,
or being formed, for members wanting to contact them

INDEPENDENT TEST TEAMS
captain Rick Craig
U.S. Marine Corps
Offers independent test teams as a way to combat the
problem of companies fielding new software products with
countless undetected defects

CHARACTERIZATION OF SOFTWARE FOR TESTING
David M. Marks
Distinguished Member of Professional Staff
Bell Communications Research, Inc.
Presents the concept that software testing can be based
upon a small set of functions which the software performs.
The author discusses the determination of which software
functions comprise a complete set, and proposes seven
software functions

8

11

20

21

22

4 • Quality Data Processing
.. ~-----------

---- ---

•

TEET~~[j

Harry Kalmbach, CQA, Editor

McDonnell Douglas Aerospace Information Services Co.

STR·UCTURED TESTING IN THE

SYSTEM DEVELOPMENT

LIFE CYCLE

Eldon Y. Li

Associate Professor and Coordinator of

Management Information Systems

California Polytechnic State University

WHAT IS STRUCTURED TESTING?
The term Mstructured testing" has been defined by

various authors. T. G. Lewis [18, p. 23] defines it as the
process of top-down certification of software carried out
by the software development team while the software is
being developed. T. J. McCabe [20, p. iiij defines it as a
process that: 1) measures and limits the complexity of
program modules so they are more easily testable, 2)
gives a quantification for how much testing should be
done, and 3) contains a step-by-step procedure for
obtaining the test data.

W. E. Perry [25, pp. 29-30] further advocates that
application testing should be performed parallel to the
system development life cycle (SDLC). In other words,
when the system project starts. both the system develop
ment process and the application testing process begin
at the same time. This practice can aid in early detection
of requirements or design defects and allow timely cor
rections without ripple effects on the subsequent
activities.Therefore, structured testing includes all vali
dation, verification, and certification [15] activities. It is a
step-by-step procedure for assuring the quality of test
plans, designs, execution, controls. and documentation
throughout the entire system development process.

Software testing usually goes hand-in-hand with soft
ware debugging. One must not confuse software testing
with software debugging. The objective of software test
ing is to find errors in a software and to see not only if this
software does not do what it is supposed to do (a
deficiency), but if it does what it is not supposed to do (a
malfunction). In contrast. the objective of debugging is to
identify the type and the location of the "found" error and
subsequently remove it by a redefinition, redesign, or
recode, depending on the level of testing through which

the error was found. Thus, the former is destructive in
nature while the latter is constructive, and they should be
performed one right after another. In this paper, we shall
focus our discussion on software testing and briefly
describe the structured testing process in the context of
a system development life cycle.

THE SYSTEM DEVELOPMENT LIFE CYCLE
The concept of the system development life cycle

(SDLC) is similar to that of the product development life
cycle in the manufacturing industry. Thelatter life cycle
revolves around the six major functions: requirements,
design, prototype, test, release, and follow-up. To be
more specific, the process starts from analyzing consum
ers' requirements to determine product specification.
Then, two or three product designs are developed. Prod
uct prototypes are built according to these designs. If no
design can possibly meet the product specification or no
prototyping can possibly be built to meet the product
designs, the process would feed back and the product
specification or designs should be modified.

Once the prototypes are constructed, they are tested.
If a test failed,it may be due to errors in either the
prototype building process orthe product design, or even
the product specification. Consequently, errors need to
be corrected and the prototype needs to be rebuilt. If the
prototypes passed all the tests, the best prototype will be
selected and the final product design will be specified. If
the selected prototype needs to be modified before it
reaches the optimal conditions, it should be rebuilt and
retested. If no changes are needed, the product is re
leased and a new production process (developed in
conjunction with the product design process) is imple-

Continued

July 1989· 11
--~-~~ ~-------

TESTING Continued ___________________

mented to manufacture this product. While manufactur most applications were repetitive and well structured,
ing the product, a sales promotion is launched. After and the users' requirements were relatively unchanged
sales, the users' satisfaction toward the final product will and could be clearly and accurately specified. However,
be closely monitored. in today's ever-changing competitive environment,

Following a similar concept, the SOLe should revolve computer applications are not limited to the repetitive
around six states:requirements, design, programming, and well-structured activities.
test, implementation, and maintenance. In practice, these Users' requirements today are likely to be "fuzzy" .
six stages may be further subdivided into various phases. (cannot be well defined) or "volatile" (constantly chang
R.G. Murdick (1970) had an extensive survey on the ing) requirements. Such types of requirements are very
various approaches to such subdivision suggested in the likely to cause severe errors at the requirements stage
literature. However, most of the proposed SOLe proc and fail a system project that adopts the SOLe process.
esses are "cascading" in nature. That is, they require that This may be why 60 to 80 percent of all system errors
the current project phase be completed and/or signed off were found to originate in users' requirements definition
before the next phase is begun.This requirement was [6, pp. 17-18]. Such a high potential of misspecitying
very popular during the early years because at that time users' requirements anxiously calls for more flexible

FIGURE 1: THE OBJECTIVES OF THE SOLC PHASES

SOLC PHASES 	 PHASE OBJEC11VES SDLCSTAGES

Service RequeSV To initiate a project and conduct

Project Viability cost/benefit analysis as well as a

Assessment feasibility study. Requirements

System To define project scope, analyze

Requirements the existing system, and define

Definition information requirements, data

attributes, and system objectives.

System Design To identify and ·evaluate altemate

Alternatives system designs and prepare initial

project schedules.

System External To specify data flow, user/system

Specifications interface, system controls, and Design

manual supporting procedures.

System Intemal To specify processing logic, file

Specifications structure, module interfaces, and

system archHecture.

Program To transform programs' internal

Development specifications into program code Programming

using a computer language.

Testing 	 To verify and validate the system

being developed throughout the SDLC. Test

Conversion 	 To convert the data formats and

procedures for the new system.

Implementation 	 To install the hardware and Implementation

software for the new system, and

cut over the system into production.

Postimplementation To monitor and maintain the

ReviewlMaintenance quality and performance of the Maintenance

new system.

Continued
12 • QualitY Data Proces~----- -------- ------- ._-_.. --

•

TESTING Continued ___________________

alternate approaches such as "iterative" [4, 11), "heuris
tic" [5], "evolutionary" [12,13], "accelerated" [13], and
"prototype" [3,6,10,16,24] development processes. All
these alternate approaches allow feedback to the early
stages in the SOLC process, especially the requirements
definition. Without such feedback, the final product is
likely to require a major overhaul; otherwise, it is nothing
but a 'hrowaway" [9].

Recent advancement in fourth generation languages,

"AFTER SALES, THE USERS' SATISFAC
TION TOWARD THE FINAL PRODUCT WILL
BE CLOSELY MONITORED."

computer-aided software engineering tools, automated
code generators, and automated document manage
ment systems, among others, allows easy modifications
to the system in progress and thus makes such feed
backs not only possible but also real. It is this feedback
loop which closes the gap between the end user and the
system builder, and makes the SOLC process resemble
the product development process.

To facilitate our discussion, we shall subdivide the six
SOLC stages into ten phases. These ten phases follow
the SOM170 methodology which was developed by At
lantic Software, Inc. in conjunction with Katch & Associ
ates. Figure 1 shows the objectives of these ten phases
within the six-stage SOLC framework. Depending on the
project schedule and the characteristics of users' re
quirements, these ten phases may be tailored to a
particular application development project. For example,
aproject with a short time frame could replace the system
external specifications, system internal specifications,and
program development phases with a software acquisi
tion phase or, alternatively, replace the system require
ments definition, system design alternatives, system
external specifications. system internal specifications,and
program development phases with a prototyping proc
ess. Likewise, a project with "fuzzy" users' requirements
could use an iterative prototyping process to develop its
system requirements definition [6, 16] while a project with
"volatile" requirements could use a similar prototyping
process to develop a working, operational system [3, 10,
24]. In this paper, we shall discuss the structured testing
process using the full ten phases of the SOLC.

STRUCTURED TESTING IN THE SYSTEM
DEVELOPMENT LIFE CYCLE

As alluded earlier, structured testing should start as
soon as the project is launched (i.e., at the beginning of
the SOLC process). At the first five phases of the SOLC
(before any module coding is completed), manual testing
techniques such as structured walk throughs [27], desk
checking, reviews [14], and inspections [2, 17] are used
to verify that the end products of the current SOLC phase
are correct based upon the output of the prior phases. For

example, at the end of the system requirement definition
(SRO) phase, the SRO document should be verified by
comparing it to the service request and users' current
opinions. If any mistakes or necessary changes have
been discovered, they will be fed back to the SRO
process. Otherwise, the SRO documents will be ap
proved or signed off by the user and the system deSign
alternatives phase is then begun. Such manual testing
can be applied to any project document throughout the
entire life cycle.

Once the program development phase is begun,
computer-based testing will soon come into play in addi
tion to manual testing. Computer-based testing requires
the program code to be compiled and executed by a
computer; therefore, it cannot be performed until at least
one program module has been completely coded. Ac
cording to the testing objectives, computer-based testing
can be classified into seven levels: 1) module (unit)
testing, 2) integration (interface) testing, 3) system test
ing, 4) software acceptance testing, 5) conversion test
ing, 6) installation testing, and 7) final acceptance testing,
each of which focuses on a particular class of errors.
These seven levels of testing and their corresponding
test objectives are exhibited in Table 1.

"WITHOUT SUCH FEEDBACK, THE FINAL
PRODUCT IS LIKELY TO REQUIRE A MA
JOR OVERHAUL; OTHERWISE, IT IS NOTH
ING BUT A 'THROWAWAY'."

THE FUNDAMENTAL STRUCTURED
TESTING PROCESS

Each and every level of computer-based testing entails
a tour-stage fundamental structured testing process. The
stages and the purposes of this process are discussed in
sequence.

1. Develop a test plan. To provide a guideline for the
project team to plan for the test sequence/phases,
test criteria, test schedule, and the required sup
porting resources such as personnel, hardware,
software, test data, test techniques, test tools, and
budget support.

2. Derive test cases (or test scripts) and test data.
To derive a set of test cases (or test scripts) that
cover as many test conditions or test paths in the
program or system as possible, and to derive the
input data and their corresponding expected output
for each test case or script.

3. Execute the tests. To compile and execute the
intended program or system on a computer using
the derived test data as the input, and to compare
the resulted output with the expected output speci
fied in Step 2.

4. Document and control the testing process. To
document and summarize the test plan, the test
cases/scripts, the test data, and the test results in

Continued

July 1989· 13

•

TESTING Continued ___________________

TABLE 1: THE LEVELS OF COMPUTER-BASED TESTING

AND THEIR CORRESPONDING OBJECTIVES.

LEVEL OF TESTING 	 OBJECTIVES OF TESTING

Module (Unit) 	 To test a module (I.e., a subprogram, a subroutine, or a Testing procedure) in a program
to see if the module contradicts the system internal specs.

Integration To merge and test program modules to see if they can work correctly as a whole without
(Interface) contradicting the system's intemal and external specifications.
Testing

System Testing 	 To verify that the system as a whole is structurally and functionally sound and meets the
system requirements definition, the system design alternatives, and the system external specs.

Software To ensure that the software system meets the previously defined system extemal
Acceptance specifications acceptance criteria and system requirements definition before it is installed,
Testing integrated, and checked out in the operational environment.

Conversion To test the fDe conversion program to see that Its program logic meets the specification, that the
Testing program contains all necessary control procedures, and that the conversion process yields the

expected results.

Installation 	 To ensure that: 1) a compatible set of system options has been selected by the user,
Testing 	 2) all parts of the system exist, 3) all programs have been properly interconnected,

4) all files have been created and have the necessary contents, and 5) the hardware configuration
(Including any new installation) is appropriate.

Final Acceptance 	 To ensure that the system meets its initial requirements, system objedives, test criteria,
Testing 	 and the current needs of its end users:

- Adapted from Myers [23].

order to provide sufficient information for project . test plan and a set of carefully derived test cases and
management and control, and to monitor and com data, computer-based testing will not be effective.
municate any changes in the test plan, test cases/ As an example, Figure 2 depicts the structured proc
scripts, test data, and test resources. The activities esses for module testing and integration testing. The test
in this step actually intersperse throughout the en plans of these two levels of testing should be developed
tire structured testing procedure. at the same time, long before one starts to derive test

Note that the first two stages are preparatory in nature cases and test data (usually in the system internal
but are of paramount importance. Without a well-defined 	 specifications phase in which the programs' internal

specifications are completed). The module test plan
should take into account the integration strategy (eitherFIGURE 2: THE STRUCTURED PROCESSES FOR
top-down or bottom-up, or amixture of both) laid out in theMODULE TESTING AND INTEGRATION TESTING
integration test plan because the strategy may require
that some modules be tested before others. Once bothDerive module test cases/data
test plans are in place, the test cases and test data for an
intended program module are then derived from itsConduct module testing
internal specification. While the test cases and test data
are being derived, the module is being coded. Once theDerive integration
module coding is completed, it is tested on a computertest cases/data
with the derived test data as the input. The test results are
subsequently documented. In most cases, the testingDevelop
process for one program module overlaps those for theintegration &
others. That 'is, when a module test is being executed,module test plans Conduct integration testing
other programmers might be testing or deriving the test
cases and test data for the other program modules. By
the same token, the structured testing steps for integra

SYSTEM INTERNAL PROGRAM DEVELOPMENT tion testing usually overlap. Nevertheless, the test exe-
SPECIFICATIONS Continued

14 • Quality Data Processing
--~-~--------~--

TESTING Continued ___________________

FIGURE 3: A STRUCTURED PROCESS FOR COMPUTER-BASED
TESTING IN THE SYSTEM DEVELOPMENT LIFE CYCLE

Develop Projed Test Plan

SYSTEM REOUIREMENTS DEFINITION

Develop system
test plan and

acceptance criteria

SYSTEM EXTERNAL SPECIFICATIONS

Derive module test cases/data

Conduct module testing

Derive integration Derive system
test cases/data test cases/data

Condud integration testing

PROGRAM DEVELOPMENT

Conduct user training

Code conver-
Define sicn programs
conversion & derive con- Conduct
program version test conversion
logic cases/data testing

CONVERSION

cution must wait until the modules to be integrated are all
independently tested. Both the module testing and the
integration testing are carried out within the program
development phase, therefore, they are also known as
the "development testing" [28}.

Similarly, many test execution and documentation
(steps 3 and 4) adivities at one level of computer-based
testing may overlap the test planning and test case
design (steps 1and 2) adivities of the subsequent levels.
Figure 3 shows a Gantt chart depicting a possible struc
tured process for all levels of computer-based testing in
the context of the system development life cycle. This

•

SYSTEM DESIGN ALTERNATIVES

Develop
integration &

module test plans

SYSTEM INTERNAL SPECIFICATIONS

Develop user
Develop Develop training prog.

conversion acceptance & installation
test plan test plan test plan

Conduct software
acceptance

testin

Parallel processing

TEST

Parallel processing

Conduct
installation

Derive testing & derive Condud
installation acceptance final
test cases test cases acceptance

& data & data testing

I
IMPLEMENTATION

figure provides a valuable road map of computer based

structured testing in a system project.

STRUCTURED TECHNIQUES FOR

DERIVING TEST CASES

There are several structured techniques for deriving

test cases at each level of computer-based testing.

These techniques may be classified into two categories:

the white-box techniques, and the black-box techniques

[23].White-box techniques (also called strudural, code

based, or logic-driven techniques) require the tester to

Continued

July 1989 • 15

•

TESTING Continued ___________________

examine the internal structure of the program and derive THE ROLES OF TEST PARTICIPANTS
the test cases and test data from the program logic The participants of computer-based testing usually
described in the system internal specifications or the vary with the size of the system project. The larger the
program source code. On the contrary, black-box tech project, the larger the project team, and the more partici
niques (also called functional, specification based, data pants in the project. As suggested by Freedman and
driven, or input/output-driven techniques) do not require Weinberg [14], the user, regardless of project size, should
the tester to know the internal structure of the program. not be required to know technical details and thus should
The test cases and test data are derived solely from the participate in only three levels of testing: system testing,
system requirements definition or the system external software acceptance testing, and final acceptance
specifications. The existing white-box techniques in test.Typically, in a small project with a size of less than
clude: 1) statement coverage, 2) decision coverage, 3) five persons, the entire project team is responsible for all
condition coverage, 4) decision/condition coverage, 5) levels of testing except the two acceptance testings. For
multiple condition coverage, and 6)complexity-based a medium or large project, the participants of each level
coverage. The black-box techniques include: 1) equiva of computer-based testing are somewhat different. The
lence partitioning, 2) design-based equivalence parti lowest level of testing should be conducted by each
tioning, 3) cause-effect graphing, 4) boundary value individual programmer. As the level elevates. individual
analysis, and 5) error guessing. A review of each of these programmers are left out of sight so as to keep the size
techniques can be found in Adrion, et al. [1], Li [19], and of the test team manageable. All participants in a com-
Myers [23].

FIGURE 4: MAJOR PARTICIPANTS IN EACH LEVEL
OF COMPUTER-BASED TESTING

LEVEL OF TESTING: Module Tests

ProgramlSubsystem Integration Tests

System Integration Test

System Test

Software Acceptance Test

Conversion Tests

Installation Tests

MAJOR PARTICIPANTS: Acceptance Test

Individual Programmer E E E

Peer Programmers E

Programming Team Leaders L L E E M E

Programming Team Supervisors S S L L M L L "M

Systems Analysts M M M M M

Project Manager S S L S S L

Quality Assurance (CA) M M M M M M M M

Representatives

Test Data Administrator D D D D D D D D

Test Specialists E E L,E E E L,E

Users/Users' Representatives M S,E S,E

LEGEND: Role of Testing: D - Test Data Administrator

E - Test Executioner

L - Test Team Leader

M - Test Team Member

S - Test Supervisor/Coordinator

Continued

16 • Quality Data Processing

TESTING Continued ___________________

TABLE 2: RECOMMENDED ALLOCATION OF TESTING AND
DEBUGGING EFFORT IN THE SOLe

ESTIMATED
PERCENT OF

PROJECT
SDLC STAGES EFFORT*

Requ irements 15%

Design 30%

Programming 15%

Test 30%···

Implementation 10%

·Total Effort 100%

PROJECT

EFFORT

ALLOCATED

TO TESTING

& DEBUGGING

3.0%

9.0%

7.5%

6.0%

4.5%

30.0%···

PERCENT OF

ALLOCATED

TESTING

DEBUGGING

EFFORT

10%

30%

25%

20%

15%

100%

PERTINENT

TEST ACTIVITIES··

Manual tests

Manual tests

Manual tests,

Module tests, and

Integration tests

Manual tests,

System test, and

Software accep
tance test

Manual tests,

Conversion tests,

Installation tests,

and Final acceptance

test

• Documentation effort is included in the estimates .
•• Manual tests include walkthroughs, reviews, and inspections .
••• This estimate includes all manual and computer-based testing and debugging activities throughout the system
development life cyde. It also includes test planning, designs, executions, controls, and documentation.

puter-based testing can be classified into five different
roles. These five roles and their responsibilities are:

1.Test data administrator: Controls file structure
and data base contents; maintains availability and
recoverability of data; assists in developing and im
plementing the strategy of test data requirements.

2.Test executioner: Prepares test-case specifica
tions; creates or requests test data and files; per
forms desk checking and test run; prepares test
results and discrepancy (error) report.

3.Test team leader: PartiCipates 	in test planning;
directs test preparation, execution, and evaluation;
creates test plan and test case summary; requests
testing supports; reviews the activities of test team;
provides technical assistance to test team; attends
quality assurance reviews and inspections.

4.Test team member: Participates in defining test
conditions for test case designs and reviewing test
case specifications and test results.

5.Test supervisor/coordinator: Assigns tests to

test teams; reviews and approves all the relevant
test materials.

The possible participants in a system project and their
roles of testing in each level of computer-based testing
are shown in Figure 4. Typically, in a medium or large
project, each participant would play only one role except
the test specialist and the user. Yet, in a small project, any
participant may play more than one role.

ALLOCATION OF TESTING AND
DEBUGGING EFFORT

A system project may spend between 30 to 50 percent
of its total development effort in testing and debugging [7,
23, 28]. The actual allocation may depend on the risk
level of an application being developed. One plausible
way of determining the risk level of an application is to
assess the size, the structure, and the technology that
application entails [21,26]. A higher degree ottesting and
debugging effort should be allocated to an application

Continued

July 1989· 17

•

TESTING Continued ___________________

that involved high risk than one that involved low risk. In
general, the more complex the application, the higherthe
percentage of the development effort that should be
allocated to testing and debugging.

Table 2 shows the recommended allocation of the
testing and debugging effort for the first five stages of the
system development life cycle. This recommendation
was based on the concept that software quality must be
built in, not added on, and that the quality building
process should start from careful requirements analysis
followed by effective system design and programming
practice. As indicated in Table 2, the percent of project
effort allocated to the first three stages may amount to 60
percent. If effort is effectively spent on these three
stages, one can expect that less testing and debugging
effort will be needed. Therefore, only 30 percent of the
project effort is recommended for all testing and debug
ging activities. This allocation includes all the test-related
activities, namely, test planning,designs, executions,
controls, and documentation.

Traditionally, the effort allocated to the manualtesting
activities such as walk throughs, reviews, and inspec
tions was almost nil. Ironically, these manual activities
are the only suitable testing activities for the first two
SOLC stages (Le., requirements and design). A reason
able proportion (about 40 percent) of the allocated test
effort should be directed to the walk throughs, reviews,
and inspections of system requirements and designs. As
indicated in Table 2, about 15 percent of the total project
effort should be allocated to requirements analysis and
definition, and 30 percent to system design. It is recom
mended that 10 percent of the total testing and debug-'
ging effort (or3 percent of the total development effort) be
assigned to the requirements stage, and 30 percent (or
9 percent of the total development effort) to the design
stage.

Recently, there is a trend of using a code generator to
replace human programmers for the program coding
activities. Such practice may very well reduce human
errors in translating the design specifications into com
puter language code. Yet, it does not reduce any design
error which might arise in the earlier phases. Often, many
design errors can only be detected by testing the pro
gram code on a computer. Therefore, the use of a code
generator does not exempt the program code from being
subjected to computer-based testing. However, one can
expect that the testing and debugging effort allocated to
the programming stage will be dramatically reduced
since no human errors will occur in the program coding
process that will need to be detected and removed.

SUMMARY
The importance of the structured testing process can

never be overemphasized. First, it advocates that an
application testing process should start as soon as the
development process begins. This practice can bring

18 • Quality Data Processing

forth early detection of errors in requirements to avoid
"ripple" effects on the subsequent project phases. Sec
ond, it provides a set of well-defined steps to control
software quality. By following these steps, one can dra
matically reduce the risk of letting system errors go
undetected and thus ensure the quality and on-time
delivery of a system development project. Third, the
structured testing process demands high standards in
the controls and documentation of a system project.
Such standards may, in effect, result in a reduction in
future maintenance cost.

Although the structured testing process is most suit
able to a large and complex system project having well
defined requirements, it can also be applied to a project
with "fuzzy" (unclear) or "volatile" (changing) users' re
quirements. The development of the latter types of proj
ects requires that a prototyping process be incorporated
into the SOLC process. Yet, to test a prototype, one can
still apply the structured testing process.

To close our discussion, we have compiled below a list
of test principles based on the existing literature, [1 ,8, 22,
23] and the author's experience.

Principles of Structured Testing ,
• 	Plan a testing effort under the assumption that some

errors will be found.
• A programming group should not test their own

programs alone. They should be accompanied by an
independent agent such as a quality assurance (QA)
representative and/or test specialist.

• 	One who performs software coding should test his!
her own code before someone else does' it;

• 	Generatetest data at all stages and, in particular, the
early stages.

• 	Inspect requirements, design, and. code ror errors
and for consistency.

• 	Be systematic in your approach to testing. Stan
dards, guidelines, and procedures shQuld beestab
lished.

• 	Test cases must be written for invalid and unex
pected, as well as valid. and expected, inpuVoutput
conditions. .

• A necessary part of every test case is a description
of the expected output or results. "

• 	Each program must have an .error-free compilation
before it is formally tested. '

• 	Avoid nonreproducible or on-the-fly testing. Docu
ment your test sequence ~nd input stream.

• 	Test pieces and then aggregates.
• 	Save, organize, and annotate test runs.
• Thoroughly in$pect ttle results of each test.
• 	The probability of thft existence of more errors in a

section of a program is proportional to the number of
errors already found in that section.Thus, one should
concentrate testing on modules that exhibit the most

Continued

--~------ --- --- - -- ---- --~-

--

------------ ---------- ---- --- -----

•

TESTING Continued

errors and on their interfaces.
• Retest (through regression testing) when modifica

tions are made.
• Discover and use available tools on your system.
• Never alter the program to make testing easier.
• Ensure that testability is 	a key objective in your

software design.
• The design of a system should be such that each

module is integrated into the system only once.
• Testing is 	an extremely creative and intellectually

challenging task.Thus, one should assign his/her
most creative programmers to do the tests.

REFERENCES
1. 	Adrion. W. R.• Branstad. M. A.. and Chemiavsky. J. C. "Valida

tion. Verification. and Testing of Computer Software," ACM
Computing Surveys. Vol. 14. No.2 (June 1982). pp. 159-192.

2. Ascoly. J .• Cafferty. M .• Gruen. S .• and Kohli. O. "Code Inspec
tion Specification," TR-21.630. Kingston, NY. IBM System
Communications Division, 1976.

3. 	 Bally. L, Brittan, J., and Wagner. K. H. "A Prototype Approach
to Information Systems Design and Development." Informa
tion and Management, Vol. 1, No.1 (November 1977). pp. 21
26.

4. 	 Basili, V. R., and Turner. A. H. "Iterative Enhancement: A
Practical Technique for Software Development. " IEEE Tuto
rial: Structured Programming. #75ch1049-6. Sept. 1975.

5. 	 Berrisford, T. R.. and Wetherbe. J. C. "Heuristic Development:
A Redesign of Systems Design: MIS Quarterly. Vol. 3. No.1
(March 1979). pp. 11-19.

6. 	 Boar. B. H. Application Prototyping: A Requirements Definition
Strategy for the 80s. New York. Wiley-Interscience. 1984.

7. 	 Boehm. B. W. "The High Cost of Software," In Practical
Strategies tor Developing Large Software Systems. E. Horow
itz. editor, Reading. MA. Addison-Wesley, 1975. pp. 3-14.

8. 	 Branstad. M. A .• Chemiavsky. J. C.• and Adrion. W. R. "Valida
tion. Verification. and Testing for the Individual Programmer:
Computer, Vo1.13. No. 12 (December 1980). pp. 24-30.

9. 	 Brooks. F. The Mythical Man-Month: Essays on Software En
gineering. Reading. MA. Addison-Wesley. 1975.

10. Canning. 	R. G. "Developing Systems by Prototyping," EDP
Analyzer. Vo1.19. NO.9 (September 1981). pp. 1-14.

11. Davis. 	G. B. and Olson. M. H. Management Information
Systems: Conceptual Foundations. Structure. and Develop
ment. New York. McGraw-Hili. 1985.

12. Edelman, 	F. "The Management of Information Resources:
Challenge forAmerican Business: MIS Quarterly, Vol. 5. No.
1 (March 1981). pp. 17-27.

13. Edelman. 	F. "Position Paper NO.2: Evolutionary Develop
ment-An Efficient Strategy for Systems Design.' unpublished
paper. October. 1981.

14. Freedman. 	 D. P. and Weinberg. G. M. Handbook of
Walkthroughs, Inspections, and Technical Reviews. Boston.
MA. unle. Brown. 1982.

15. Jensen. R. W.• and Tonies. C. C. Software Engineering. Engle
wood Cliffs. NJ, Prentice-Hall. 1979. pp. 553-567.

16. Lantz. K. E. The Prototyping Methodology, Englewood Cliffs.
NJ. Prentice Hall. 1986.

17. Larson. R. R. "Test Plan and Test Case Inspection Specifica
tions." TR 21.586. Kingston. NY. IBM System Development Di
vision. 1975.

18. Lewis. T. J. Software Engineering: Analysis and Verification.
Reston.VA. Reston Publishing. 1982.

19. Li. E. Y. "Software Testing Techniques for the Information Sys

tems Professional: A Curriculum Perspective." Proceeding of
the 9th Annual International Conference on Information Sys
tems (ICIS '88). Minneapolis.MN 1988.

20. McCabe. T. J .• editor. Structured Testing. Silver Spring. MD.
IEEE Computer Society Press. 1983.

21. McFarlan. F. W. "Portfolio Approach to Information Systems:
Harvard Business Review. (September-October 1981). pp.
142-150.

22. Myers. G. J. Software Reliability: Principles and Practices,
New York.Wiley-lnterscience, 1976.

23. Myers. G. J. The Art of Software Testing. New York. Wiley
Interscience.1979.

24. Naumann. J. D., and Jenkins. A. M. 'Prototyping: The New
Paradigm for Systems Development," MIS Quarterly. Vol. 6.
No.3 (September 1982). pp.29-44.

25. Perry. W ..E. A Structured Approach to Systems Testing. Welle
sley. MA. QED Information Sciences, 1983.

26. Perry. W. 	E. A Standard for Testing Application Software.
Boston. MA, Auerbach Publishers. 1987.

27. Waldstein. N. S. "The Walk-Thru: A Method of Specification.
Design. and Code Review: TR-oO-2536, Poughkeepsie. NY.
IBM System Development Division, 1974.

28. Wolverton. R. W. "The Cost of Developing Large-Scale Soft
ware." IEEE Transactions on Computers, Vol. C23-No. 6 _Xl
1974). pp. 615-636.

~ ~,,- ._- -"_. .

ELDON Y. LI
Eldon Y. U is an Associate Professor and the

Coordinator of Management Information Systems Pro
gram at the School of Business, California Polytechnic
State University, San Luis Obispo. He received his
Ph.D. from Texas Tech University. He has provided
consulting services to many firms including Bechtel
and IBM, and to the clientele of the U.S. Small Busi
ness Administration. His current research interests
include systems analYSis and design, software engi
neering, human factors in information systems, expert
systems, and information management. He is a Cer
tified Data Educator (CDE), a certified professional in
production and inventory management (CPIM). and a
member of IEEE-Computer, ACM, AAAI, DSI. and
TIMS.

-QAI MOTTO
liThe bitterness

of poor quality

remains long after

the sweetness of

meeting the schedule

has been forgotten."

July 1989· 19

http:Minneapolis.MN
http:Reston.VA

Best Paper 6i8nificant Contribution
1989 1989

•

\-' .".\. .~

Eldon
Y.
Li

QUALITY DATA PROCESSING 1989

WRITING AWARD WINNERS

EXEMPLIFY VARIED

APPROACHES TO QUALITY

Articles with varied approaches to quality, one stress
ing the importance of structured testing and one dealing
with the psychological impact of change, were named
winners of the Quality Data Processing 1989 writing
awards.

"Structured Testing in the System Development Life
Cycle" (July 1989), by Eldon Y. Li, was named "Best
Paper 1989," while "Managing Change: How to Sell
Users on Innovation" (April 1989). by Alice E. Fugate,
won the designation of "Significant Contribution 1989."

Li's article defines structured testing and discusses its
incorporation into the systems development life cycle. It
stresses the importance of the structured testing proc
ess.

Fugate's article takes a look at the psychological im
pact of change and what it means for those faced with
managing the process. Fugate offers techniques manag
ers can use to help staff members cope with technical
innovation.

The awards were announced by Quality Data Process
ing Editorial Board Chairman Wayne Smith, CQA, at the
1990 International Conference on Information Systems
Quality Assurance in Orlando, Florida, Thursday, April
26,1990.

Li, an associate professor and former coordinator of
management information programs at the School of'
Business, California Polytechnic State University, has a
Ph.D. in business administration from Texas TeCh. A
former management consultant to clientele of the U.S.
Smali Business Administration and software quality
consultant for Bechtel Corporation. as well as a visiting
software scientist for IBM Corporation, Li's current re
search interests include planning and control of informa

26 • Quality Data Processing

tion systems, software quality engineering. systems
analysis and design, human factors in IS, expert sys
tems, and information management.

Fugate is a self-employed writer and editor based in St.
Louis. Her experience includes working on college text
books and corporate communications in the areas of
business, information systems, science, and the humani
ties. Formerly with The Center for the Study of Data
Processing at Washington University, Fugate has also
worked as a developmental editor for Mosby Publishing.
She is a member of the steering committee for St. Louis
Women's Commerce Association, a group that named
her 1989 Woman of· Recognition.

Presentation of the awards marked the third year that
Quality Data Processing, the journal of the Quality Assur
ance Institute, gave awards to the outstanding contribu
tors to the quarterly publication.

1988 winners were William F. Glavin, whose article,
"Quality, the Path to Customer Satisfaction and Leader
ship" (July 1988). was named "Best Article 1988," and
William W. Scherkenbach, whose article, "The Meaning
of Competitiveness" (January 1988), was named "Sig
nificant Contribution 1988."

1987 winners were Patrick L. Townsend and Barbara
K. Kimball. coauthors of "A Quality Compound" (October
1987), named "Best Article 1987," and Jerome B.
Landsbaum, author of "Using Measurement to Improve
Productivity" (January 1987), named "Significant Contri
bution 1987."

While naming the 1989 award winners. Smith cited
several other articles pliiblished in 1989 that he consid
ered important articles, important enough to be read
again and to be useful in the workplace. Ten additional

Continued

._--- --,-----

articles considered to be serious candidates for awards
were given the designation of "Honorable Mention."

Those articles, in order of date of publication are:
"Measuring Software Defect Removal" (January 1989),
by Capers Jones; "MIS Ouality Survey" (January 1989),
prepared by John Diebold and Associates and submitted
by Fred Knotek; "Systems Excellence by Design" (April
1989), by Anthony W. Crawford; "Automated Change
Contro!-8uy Versus Build" (April 1989), by Thor Hoff;
"Achieving A Total Commitment to Ouality Within the
Software Development Environmenr (April 1989), by
Barbara Hirsh; "Characterization of Software for Testing"
(July, 1989), by David M. Marks; "Testing for Usability"
(July, 1989), by Kathleen M. Potosnak and Richard P.
Koffler; "'Customer Ouality Assessment Visits" (October
1989), by Robert W. Shillato;"A Guide to Understanding
the Requirements Definition Process" (October, 1989),
by Beverly B. Madron; and "00 You Know if Your Col
leagues Like Your Standards?" (October 1989), by Val
erie J. Alt.

Articles were judged by the 1989 QualityData Process
ing Editorial Board using the same criteria by which it
selects articles for publication in the journal. Those
criteria include: advancing the practice of quality assur
ance, representing a balance between management
disciplines, organizational strategies, technical method
ologies, and administrative procedures. In screening

•

articles, the board looks for those that are suitably di
verse, offering fresh insights, and relevant to the man
agement information systems situation, sensitive to its
practicalities and constraints, and having a format. struc
ture, and presentation that exemplify a high level of
professionalism.

Editorial board members review all articles for publica
tion in the journal. The 1990 board includes Smith,
Shirley Gordon, COA, Charles Hollocker, COA, John
Horch, COA, Harry Kalmbach, COA, Eldon Y.Li, Ph.D.,
DPIM, COE, Peggy Myles, COA, Nancie L. Sill, COA,
Rebecca Staton-Reinstein, CQA, and Linda T. Taylor,
COA.

Smith noted that the journal consistently receives arti
cles of high quality as well as a high volume of articles.
"The diversity of the 1989 winning articles reflects a prin
ciple that we promote in the journal, that of a need for
cross-disciplinary skills and approaches. These articles
exemplify the need for the quality assurance function to
ernphasize human factions as well as technical skills," he
said.

"The journal is amost effective way for data proceSSing
practitioners to share quality techniques. We encourage
people to submit their ideas, and will again recognize top
contributions next year," said William E. Perry, editor of
Quality Data Processing and executive director of the
Quality Assurance Institute. iii!

QUALITY ASSURANCE SPECIALIST

Job Opening

Come to the Pacific Northwest!

Job Responsibilities:

• Standardizing our Systems Develop
ment Life Cycle. including Feasibility
Studies. RFP's. Project Plans, etc.

• Policy Development
• User satisfaction metrics.
• Request and time tracking systems.
• Documentation standards.
• Security Officer

Qualifications:

• Several years experience as a QA analyst.
• Preference will be given to analysts with a

Certified Quality Assurance certificate.
• Preference given to candidates with mini

computer background in a hospital environ
ment

Salary to $4OK+

Legacy is a multi-hospital organization with over 9,000 employees.

Send resumes to :

Legacy Health System, Human Resources, 500 NE Multnomah, Portland OR, 97232

or call 503-225-4370 for more infonnation.

An Equal Opportunity Employer

July 1990 • 27

