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Chapter I

INTRODUCTION AND ORGANIZATION

The purpose of this dissertation is to examine the

proportional quadratic discriminant function (PQDF). The
PQDF is an optimal discriminant fuanction for the
tvo-population case with known k-variate normal

distributions when the population covariance matrices are
unequal, but proportiomal. The motivation for this research
lies in the belief that the PQDF often will perform better
than the 1linear discriminant function (LDF) and the
gquadratic discriminant function (QDF) when the populaticn
parameters must be estimated. The superiority of the
estimated PCDF over the estimated QDF 1is found to aold even
in regions of the parameter space where the QJDF 1is optinmal
and the PQDF is nonoptimal.

In this research, methods have been derived for
estimating the coefficients of the PQDF. Comparisons to the
LDF and QDF are made using analytic asymptotic methods and

Monte Carlo simulation.

1.1 Introduction

1. 1.1 Overvieyw

Since R. A. Fisher (1936) first developed the linear
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discriminant function (LDF), the problem of multivariate
discrimination has been of intense interest. The guestions
encountered in the study of discrimination functions are
basically of five different types. These @may be
characterized as follows: (1) What information is available
about the distribution of the discriminating variables? (2)
Which classification rule should be used? (3) How well does
the classification rule perform? (4) How robust is the rule
to departures from the assumptions that are made? (5) FKhat
variables should be selected for use in the classification
rule?

Various mnmultivariate discriminant Trules have been

proposed. Some are distribution-free rules, but most are
distribution-based in nature. Rules based on multivariate
normal distribution theory such as ¥Wald's (1944) and

Anderson's (1951, 1958) hnave received the most attention.
Two-group linear discrimination represeats the prototype of
a variety of discrimination problems and thus has been
extensively studied. The most often used version of the
linear classification rule for discriminating between two

multivariate normal populations is given by:<D

<1> Subscripts are denoted by an underscore throughout this
dissertation. Vectors and matrices are shown in
bold-face print except the coefficient of
proportionality, d. Other terms that will be used in
this research are defined in Appendix A.



(1.1 L(X) = X*'Vv-1(ul- u2) -1/2 ((ul+ u2)'v-2{ul- u2)}
+ log pliC(2§1)/p2C(1}2),

where L(X) is the optimal (assuming known parameters) linear
discriminant function, log is the matural logarithm, pl1 and
p2 are a _priori probabilities of populations 1 and 2, C{i]3J)
(i#j, i,j=1,2) 1is the cost of assigning an individual from
population j into population i, ul and u2 are the k X 1 mean
vectors, and V is the k X k common covariance matrix. It is
optimal to assign a randomly chosen individual X to
population 1 if L(X) 20, and to population 2 otherwise. (¥ald
1944, Anderson 1951, 1958)

Smith {(1947), Rao (1973), and Huberty (1975), among
others, suggested that if the covariance structure is not
constaat (i.e., Vi # V2 ), a nonlinear rule which is
typically the quadratic discriminant function (QDF) should
be the choice. However, the performance of nonlinear
discriminant functions has been frequently gquestioned.
Gilbert (1569), Dunn (1971), Marks and Dunn (1974),
Boullion, 0Odell, and Duran (1975), Van Ness and Simpson
(1976) , Wahl and Kronmal (1977), Huberty and Curry (1978),
and Van Ness (1979) studied the performance of either the
linear rule, the guadratic rule, or both. They reached
similar copclusions concerning estimated discriminant
functions, though in different ways. They concluded that

given that the k-component vector X is normally distributed
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with a_priori probabilities P1=p2=0.5, C{112)=C(2]11)=1,
mean vectors ul=(0,0,-...,0), u2'= (A/(14d)/2,0,.--,0),
covariance matrices VI1=I, v2=41, where A2 1is the
Mahalanobis's squared distance between the two means, I is a
kK X k identity matrix, and d is an arbitrary positive
constant, the expected probability of misclassification is,
in general, an increasing function of k (for fixed A2, 4,
and training sample size ), a decreasing function of A 2,
d, and n respectively (for other parameters being fixed).
However, the mixed effect of these parameters is still
ambiguous. Marks and Dunn ({1974) also showed that the
linear discriminant function is, in some instances, superior

to the quadratic one. They attributed this result to either

small n, small 4, or large k.
All the above researchers treated PQDF as a special
case of QDF. By assuming V2=dV1l, the QDF described in {1.2)

will, of course, become the PQDF in (1.3):

(1-2) o) = -1/2 X' (Vi1 = V2-1)X +X'(V1-1 ul - V2-1 u2)
-1/2 (ul' Vi-1 ul - w2' V2-! u2)
+1/2 1log |V2{/1V1] + log piC(2]1)/p2C(1]12) ,

where Q(X) is the optimal (assuming known parameters)
quadratic discriminant function and it 1is optimal to assign
a random individual X to population 1 if Q(X) 20, and to
population 2 otherwise (Cooper 1963, Lachenbruch 1975).

After replacing V2 with dvl, the QDF becomes the PQDF:
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(1.3) P(X) = -1/2 (1 =1,3)X*'V1-1X + (X'V1-1 (u] -1/4 u2))
-1/2 {ul +(1//3)u2}'Vi-t @ul - (1//d)u2}
+1/2 k(log d)+ log piC(2]1)/p2C(112) ,
where P (X) is the optimal (assuming kno¥n parameters)

proportional quadratic function and it is optimal to assign
a random 1individual X to population 1 if P(X) 20, and to
population 2 otherwise.

Consider the LDF, QDF and PQDF givean respectively by
Equations (1.1), (1.2), (1.3). The advantages of the PCLF
over the LDF and QDF are easily understood when pl, p2,
C(142), and C(2}1) are known and ul, u2, v¥1, and V2 must be
estimated from the training sample. While the LDF reguires
{k2+5k)/2 estimates for its parameters aul, uZ2, and VY
(V1=¥2=V), the QDF reguires k2+3k estimates for ul, u2, V1,
and Y2, and the PQDF requires (k2+5k)/2 +1 estimates for ul,
u2, v, and 4 (Vi=(1/4)Vv2=V).

Thus, by estimating one more parameter, d, than those
required by the LDF, the PQDF can be applied 1in the
situation of proportional covariances. Moreover, while both
the QDF and PQDF are quadratic in X, the coefficients of the
PODF can be estimated more efficiently than those of the QDF -
because these coefficients depend upon (k2+k)/2 -1 (fewer
parameters. The increased efficiency of these estimates
reduces the probable errors of misclassification to such an

extent that even when the assumptions of the PQDF are not
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met and those of the QDF are met, the PQDF estimated fronm
training data may outperform the QDF estimated from the sanme
data.

Han (1969, 1974) studied the distribution of the PCDF
under known and unknown population parameters. With unknown
parameters, he (1974) considered the case of tuwo
multivariate normal populations, N(ulil,V) and N(u2,dv), and
assumed that the mean vectors are unknown and the covariance
matrices are partially known, i.e., either d is known or V
is known. However, the performance of the PQDF compared to
the LDF and QDF has not yet been studied. Further detailed
investigation on the behavior of the PQDF will be conducted

in this research.

1. 1.2 The Problem of Discrimination

A discrimination probleam arises when one wants to
assign an element or observation of unknown origin to one of
several predetermined, mutually exclusive, and collectively
exhaustive <classes or groups. The observed element is
usually assumed to belong to exactly one of the several
groups. Although there are rules that permit the strategy
vhich leaves room for suspended judgment, these will not be
treated here.

Some statisticians differentiate between classification
and discrimination as the former is the identification of

the category or group to which an individual or object
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belongs on the basis of its observed characteristics, and
the latter is the assignment of the individual ipto groups.
That is, 1in discrimination, the existence of the groups is
given; 1in classification, 1t is a matter to be determined
(Kendall and Stuart 19795). More commonly, however, the
terms "discrimination" and "classification" are used
interchangeably. This practice will be followed here.

In discriminant analysis, one 1is uncertain of the
element?s true classification and can ascertain this true
classification only at a cost, or perhaps not at all. The
costs involved are of two kinds: one is the information cost
vhich is the expense of obtaining additional information
about the true classification, and another is the cost of
misclassification itself. The cost of misclassification is
the opportunity loss associated with assigning an element
from population j to population 1 by wusing a chosen
classification rule. This cost, denoted as C(i]lj), can be
measured in terms of either dollars or utils. However, the
cost of main concern 1is not the information cost but the
misclassification cost. Considering all the possible ways
of misclassification, one has the expected total
misclassification cost denoted as TC and given by the

following eguation.

(1.4) TIC =‘§1p:1 s £ (),
]:

where



(1.5) r{j) = §C(ilj) e P(1]13), J=1,2,0e22,9,
i=1
4]

(1.6) P(ilj) =j f{X{j) dX, for all i#j,
Ri

and

g = the number of groups,

r(j) = the expected cost of misclassifying an
element from population j 1into other
populations,

P{i}j) = the probapility of misclassifying an
observed vector X from population j into
population 1,

Ri = the region 1in which observations are
assigned to population i ([T11i),

Pl = the a_priori probability of a randomly
chosen individual belonging to population j,

f{X]j) = the conditiomal probability of observing a

vector X given that it is from population j.

The objective of discriminant analysis 1is to develop a
strategy which minimizes TC, the expected total opportunity
loss from misclassification (Anderson 1951, 1958), or,
alternatively, minimizes the wmaxiaum expected 1individual
misclassification costs given the others (Anderson 1977).

When the costs of misclassification are all equal to one,
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'both procedures are equivalent to wminimizing the total
probatility of wmisclassification (Welch 1939). The total
probability of misclassification, also known as the error

rate (ERR) (John 1961, Hills 1966), is denoted as T (R,f) and

given below.

(1.7) T(R,f) = g. P1 * P(J),

Jj=1
wvhere R refers to the classification regions, f refers to
the presumed distribution of the observations that will be

classified (Lachenbruch 1975), and

(1.8) P(J) = gP(ilj). J=1,24.--49,
i=1
i#j
where P{i]j) 1s defined as Equation (1.6).

Furthermore, the minimization of the maximum expected
individual misclassification costs under equal C(ijj)'s is
equivalent to minimizing the maximum probabilities of
misclassification. The discriminant function derived by
this procedure is also known as the "minimax rule® (Kendall
1957) .

The first step in discriminant analysis is to identify
a set of characteristics which will be used as variables in
the discriminant function. These characteristics can be

nuperical measurements {continuous variables), or attributes

{(discrete variables), or both. In the case of unknown
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population parameters, one needs to obtain samples with
known origins (often called "training samples™). Hith these
labeled ob jects and their observed characteristics,
discriminant functions, either linear or non-linear
composites of the variables, can be derived. Usually, the
population parameters in the discriminant function are
replaced by their corresponding estimates {Wald 1944, Day
1969) .

Subsequently, some insignificant variables often can be
eliminated using a variable selection procedure.
Alternative variable selection gprocedures are based on
either error rates (Habbema, et al. 1974, Hermans and
Habbema 1976) or the t-statistic {(Dixon and Massey 1957),
the F-criterion (Dixon 1970, 1975, Nie, et al. 1975), the
U-statistic derived from ¥ilks's Lambda {(McCabe 1975,
Rencher and Larsoa 1980), interdependence among the
variables (Beale, Kendall and Maan 1967, Jolliffe 1972,
1973). The choice of a variable selection procedure depends
upon what type of discrimination scheme has been used and
the nature of the populations under study. After retaining
those significant variables, the existing discrisminant
functions can be modified and applied to all the future
observations.

The performance of a discriminant function is usually
evaluated based upon the F-test (Rao 1946, 1950b, 1952,
1970), the chi-sgquare test (Bartlett 1947a, 1947b), and the

error rates (Toussaint 1974, Dillon 1979).
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1. 1.3 Geometric Interpretation of Two-group Discrimination

The geometric interpretation of discriminant analysis
can be seen in the case of two groups (or populations) and
two variates with the assistance of Figure 1. In this
figure, the two sets of concentric ellipses represent the

bivariate swarms for the two groups in an idealized form.

IT

IT

Figure 1: Two-dimensional Two-group Linear Discrimination

The two variates, X1 and X2, are moderately positively
correlated. Fach ellipse is the locus of poiats of egqual
density or fregueacy for a group. For instance, the outer
ellipse for Group I might define the region within which 95
percent of Group I lies, and the inner ellipse, concentric

with it, might define the region within which 80 percemt of
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Group I lies. These ellipses are called ‘*centours," for
centile coatours. The two points at which corresponding
centours intersect determine a straight line, R. A second
line, L, that goes through the origin is constructed
perpendicular to 1line Re If the poiats 1in the
two-dimensional space are projected onto L, the
corresponding histogram of the canonical variable £for the
two populations are readily obtained. The overlap between
the two groups will be smaller than for any other possible
projection onto a line nonparallel to line L.

The discriminant faaction therefore transforms the
individual observed values to a single discriminant score,
and that score is the individual®'s location along 1line L.
The point ¢ where R intersects L divides the one-dimensional
discriminant space into two regions, one indicating probable
membership in Group I and the other region for Group II.
The overlap of the two population distributions represents
the total probability of aisclassification. Notice that
this diagram depends upon the equality of the two group
dispersions. If either the variances or the covariances of
X1 and X2, or both, were different for the two groups, the
centours for the two groups would not have the same shape
and/or orientation, and the boundary (line R) would not be a
straight line. However, the sizes of the two populations do
not have to be the sane, only the dispersions of then

{Cooley and Lohnes 1971).



Another geometric represeantation of a two-group optimal
{known parameters) discriminant function Dt({X) with two
variables is shown in Figure 2. The boundary R is set up to
obtain a maximum separation of the two populations, or a
minirup expected total cost of misclassification. The ainm
of discrimination is to determine this boundary and classify
each point in the space into one of tvo regions that
correspond to the two populations. For the extemsion to the
problemr of multiple-group discrimination, one can treat the
multiclass assignment as a sequence of pairvise
discriminations when C{i}i)=0 and C(i}j)=1, for all i#j.

Figure 2 (a) shows the optimal linear discriaminant
boundary with 2-variate normal distributions and pl=p2=0.5,
C{1}2)=C(2§1)=1, ul*=(0,0), uw2'=(4,0), and Vi=v2=I, where 1
is a 2 X 2 identity matrix. Figure 2 {b) shows the optimal
quadratic discriminant boundary with the same conditions in
Pigure 2(a) except V2= 2v1= 2I. By substituting the above
parameter values into Eguatioas (1. 1) and {(1.2),
respectively, the boundaries R=f{ X:s LX) =0} for
Figure 2(a) and R ={ X: Q{X) = 0} for Figure 2(b) are

obtained.



(a) Llinear Discriminant Boundary
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(b) Quadratic Discriminant Boundary
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Figure 2: Linear and Quadratic Discriminant Boundaries
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1. 1.4 Historic Development of Discriminant Analysis

The idea of discriminating between multivariate
populations can be traced back to the 1920's, and its
development reflects the same broad phases as that of
general statistical inference, nasgely, a Pearsonian phase
followed by Fisherian, Neyman-Pearsonian, and Waldian phases
(Hodges, 1950).

In the early work, the discrimination problem was not
precisely formulated and it was often confounded with the
problem of testing the equality of two or more
distributions. Various test statistics which measured, in
some sense, the divergence between two populations were
proposed. Karl Pearson first proposed one such measure,
termed as the “coefficient of racial 1likeness (CRL)" and
denoted it by C2, about 1920. However, the £first work
published on this measure was Tildesley's (1921), on Burmese
skulls. Later, Pearson (1926) published a considerable
amount of theoretical work on this CRL and suggested the
following form for the coefficient when the variables are

dependent and the two population dispersions are egqual:

1 nln2 _ _ - —
(1.9) CBL = - {———— (X1- X2)°'S-1(X1- X2)} - 1,
k nl + n2

where 3; is the X X 1 sample mean vector pbased on a sawmple
of size ni from the population i, (i=1,2), and S is the
pooled k X k sample covariance matrix, i.€.,

S=(nl1+4n2-2)-1{(n1-1) S1+{n2-1)s2}, and



16

_ 1 ni
(1.10) Xi = — >'xij, i=1,2,
ni j=1
1 ni _ _
(1.11) si = 2 (Xij- Xi) (Xij- Xi)', i=1,2,
ni-1 j=1

where Xij is the jth k X 1 sample vector from the population
1 (TT1).

The coefficient of racial likeness for the case of
independent components was later modified by Morant (1928)
and Mahalanobis (1927, 1930). Mahalanobis called his

measure D2 and further suggested (1930) some measures of

divergence im variability, skewness, and kurtosis and
studied their distributions. Subsequently, Mahalanobis
{1936) gave the dependent variate versioas of his

D2-statistic with the same dispersion within two populations
in the classical and the studentized forms. Mahalanobis's
A2 and D2-statistics are given respectively ian equations

(1.12) and (1. 13):

1

(1.12) A2 = - {(ul- u2)'V-1(ul- u2},
k
1 — — - —-—
{(1.13) D2 = - {{Xi- X2)'S-(X1- X2)},
k
where A2 and D2 are, respectively, the generalized

Mahalanobis's distance with known and unknown parameters,

and



17

(1-14) V

]
~~
o
-d
-
~d
+
=]
N
-
N
~

{1.15) s (0l 51 +n2s2),

nl+ n2- 1

vhere Vi is the ith population covariance matrix and
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P-

1
(1.18) si = — (Xij- xi) (Xij- i)', i=1,2.
ni j

"
-t

These generalized distances have been successfully
applied to discrimination problems in many fields of study.
Their distributions were studied by Bose (1936a, 1936b),
Bose and Roy (1938), Bhattacharya and Narayam (1941), and
recently by Davies (1572).

Bhattacharya and Narayan {1941) @w@odified Mahalanobis's
generalized distance for populations with unegual

dispersions and gave the following different forms for S and

Si:
1
(1.17) s = { (rl- 1)S1 + (n2- 1)52 },
ni+ n2- 2
1 ni
(1.18) si =

(Xij- Xi) (Xij- Xi)’*, i=1,2.
ni- 1 j=1
After Mahalanobis proposed his D2-statistic, Hotelling
{1931) generalized Student's t-statistic and suggested a

test statistic T2 which is a constant multiple of the

studentized Mahalanobis's D2:
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(1.19) T2

The distributions of T2 and D2 in the null case are
equivalent to the null distribution of R2, l.€., the
quantity

ni+ n2- k- 1

(1-20) F = e T2
k{nl+ n2- 2)

has the variance ratio F distribution with k and
nl+ n2- k- 1 degrees of freedon. This T2 statistic was
further discussed by Hotelling (1951) and Holloway and Duan
(1967) .

The first clear statement of the problem of
discrimination, and the first proposed solution to that
problem were given by R. A. Fisher. In 1936, Fisher {1936)
worked on the problem of classifying iris plants into one of
the three species, 1iris setosa, 1iris versicolor, and iris
virginica, by four measurements: sepal length, sepal width,
petal length, and petal width. He reduced this 4-variate
problem to a wunivariate one by considering an ‘*“optimurn®
linear combination of the four components. For a givern
linear composite Y of the four components, Fisher considered
the ratio of the squared difference between the means of Y
in the three species to the variance of Y within species and
maximized this ratio in order to define the optimum linear

combination. The coefficients of this optimum linear
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‘composite were found to be proportional to a k x 1 vector B,

such that

(1.21) B = S-1 (X1- X2).

He then used his univariate discrimination method with

this linear composite as the random variable, 1.e.:

(1.22) Y = X'S-1 (X1 - X2),

and assigned the random variable Y to the population for
which Y- Y;; is a minimua, i=1,2,3.

The next stage of development was influenced by Neyman
and Pearson's fundamental works (1933a, 1933b, 1936) in the
theory of statistical ianference. Advancement proceeded with
the development of decision theory. Helch (1939) derived
the forms of Bayes rule and the minimax Bayes rule for
discriminating between two known multivariate normal
populations with the same covariance matrix. This case was
also considered by Wald (1944) vho followed a lemma of
Neyman and Pearson (1936) and obtained the optimal linear
classification rule given by Equation (1.1) above. He
further proposed some heuristic rules for replacing the
unknown parameters by their corresponding minimum variance
unbiased estimates. Von Mises (1945) obtained the rule
vhich maximizes the mininum probability of correct
classification. Theoretical results on the discrimination

problem in the framework of decision theory are given in the
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book by Wald (1950) and in the paper by wald and Wolfowitz
(1951) .

In a series of papers, Rao (1946, 1947a, 1947b, 1548,
1949%9a, 1949b, 1950a) examined the problem of discrimination
into two or more populations following Neyman-Pearson's and
Wald's approaches. He suggested a w@measure of distance
between two populations and considered the possibility of
withholding the decisions in the “doubtful" regions pending
the availability of additional ianformation. He 1later
(1951a, 1951b, 1952, 1953) applied his approach to some
classification problens.

The distribution of the LDF based on samples was
studied by Wald (1944), Smith (1947), Sitgreaves (1952,
1961), Anderson (1958), Bowker and Sitgreaves (1961),
Teichroew and Sitgreaves (1961), John (1959, 1960a, 1960k,
1962, 1964), Okamoto {1963, 1968), Kabe (1963), Menmon and
Okamoto (1970, 1971), and Anderson (1973). The distribution
of the QDF was derived by Okamoto {1961) and Gilbert (1969).
For the PQDF, ¢the distribution was studied by Han (19685,
1974).

The problem of variable selection was examined by
Cochran (1964), Dixon and Massey (1957), #einer and Dunn
(1966), Beale, Kendall and Mana (1967), Watanabe, et al.
(1967) , Urbakh (1971), Jolliffe (1972, 1973), Habbema, et
al. (1974), Moran (1974), McCabe (1975), Hermans and Habbena

{1976) , Rencher and Larson (1980).
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The problem of discrimination into two univariate
normal populations with different variances was investigated
by Cavalli (1945) and Penrose (1947). The multivariate
analog of this problem was first resolved by Smith (1947).
Smith (1947) suggested the use of the gquadratic discriminant
function obtained from the log likelihood ratio and compared
LDF with QDF. Later, Lubin (1950) extended Smith's (1947)
method to cases involving more than two populations.
Bartlett and Flease (1963) followed the work of Penrose
{1947) and Swmith (1947). They considered the case with
ul=u2=0 and V1= {1-P1)I +P1J, V2= 4{1-P2)I +P23, where 0 is
a k x k zero vector, J is a k X k matrix with all components
egqual to unity, 4 is some positive constant, and Pi is the
equal correlation amomng variables in population i. Cooper
(1963) employed Anderson's {1958) gquadratic form to extend
the discriminant problem into several large classes of
distributions. Bunke (1964) and Han {1968) follovwed
Bartlett and Please's (1963) study and treated the case with
unequal means. #an (1969, 1970, 1974) continued using the
likelihood ratio procedure to study the distribution of
discriminant functions when the covariance matrices are of
either the proportiomal or circular type.
Kullback (1952, 1959), Clunies-BRoss and Riffenourgh
(1960), BRiffenburgh and Clunies-Ross (1960), and Jennrich
(1962) derived rules based on a linear function of X.

Anderson and Bahadur (1962) obtainmed a "best linear"™ rule by
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using @a minimax procedure. Banerjee and Marcus (196)5),
following Anderson and Bahadur's (1962) work, gave the
bounds of this minimax rule. Chaddha and Marcus {1968)
analyzed, mainly by simulation, the behavior of some
estimates of a divergence measure defined as
2{ul-u2)' (Vi+VvV2)-1 (ul-u2). Recently, Eisenbeis and Avery
(1972) used Fisher's iris data and showed that although the
hypothesis of the eqguality of the dispersion matrices vwas
rejected bpeyond any measurable level of significance, the
use of the quadratic classification rule yielded identical
results to those using the linear rule. They attribute this
result to the large distance between group means.

Rao (1946, 1950b, 1952, 1970) provided an F-test and
Bartlett {1947a, 1947b) gave a chi-square test for the
significance of the discriminatory power. The estimation of
classification error rates was studied by Smith (1947),
Linhart (1959), Cochran and Hopkias (1961), John {1961),
Highleyman (1962), Brailovskiy (1964), Brailovskiy and Lunts
{1964) , Frank, Massy and Morrison (1965), Lachenbruch (1965,
1967, 1968), Dunn and Varady (1966), Hills (1966), Lunts and
Brailovskiy (1967), Lachenbruch and Mickey {1968), Toussaint
(1969), Toussaint and Donaldson (1970), Dunn {1971),
Fukunaga and Kessel (1971, 1972), Llainiotis and Park {1971),
Sedransk and Okamoto (1971), Das Gupta (1972), Sorum (1971,
1972a, 1972b), Lissack and Fu (1972), Duda and Hart (1973),

Lachenbruch, Sneeringer and BRevo (1973), Toussaint and
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Sharpe (1974) , MclLachlan (1974a, 1974b, 1975, 1976), Efron
(1975), O'Neill (1975, 1980), Glick (1978), Hora and Hanna
(1978) , Streit (1979), Hora and Wilcox (1981). The effect
of initial wmisclassification was examined by Lachenbruch

(1966, 1974, 1979), Press (1968), and McLaachlan (1972).

1. 1.5 Applications of Discrimination Technigues

It was R. A. Fisher (1936) who first applied the linear
discriainant function to a botanical problem in 1936. Since
then, various discriminaant functions have been derived and
employed in widely scattered fields such as taxonony,

botany, anthropology, archaeology, meteorology, geology,

biometrics, biology, signal detection, remote sensing
analysis, pattern recognition, medical diagnostics,
psychology, education, sociology, marketing, personnel
administration, accounting, banking, finance, etc. These

applications have ranged from separating ¢two species of
flovwers on the basis of petal 1length {(Fisher 1936), or two
series of Egyptian skulls on the bpasis of bpone dimension
(Barnard 1935), to distinguishing between good and poor
salesmen (Wallace and Travers 1938), or good and poor loan
risks in the consumer installment finance business {Durand
1941) .

The following examples may delineate the wide variety

of the applications of discrimination techaiques.
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(1) Consider three populatioas: the Brahmin, Artisan,

and Korwa Castes of India. It is assumed that each of these

three populations can be distinguished by four
characteristics --- stature, sitting height, nasal depth,
and nasal height --- of each member of the population.

Based on sample observations of these characteristics, the
problem is to classify an individual with observation vector
X into one of the three populations. Rather than look at
the characteristic observations individually, it may be
easier to combine the sample data in some way to get a
single score that <can be used to solve this problen.
Multiple-group linear discrimination <can be applied to
obtain the solution. (Rao 1948)

(2) A number of predictors are available at five
veather stations in an area. These‘ could 1include
visibility, height of ceiling, east-west wind component,
north-south wind component, total cloud coverage, changes in
pressure in the last three hours, etc. On the basis of
these measures, one wishes to predict what the ceiling will
be at an airfield 1in two hours. Whether the forecasted
condition of the field will be closed, low instrument, high
instrument, low open, or high opem, &@ust be stated. This
problem can be resolved by multiple-group discrimimation.
(Miller 1962)

(3) In the last year of secondary school, a student is

given three tests: ©English, arithmetic, aand form-relatioams.
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On the basis of these test scores, the student is to be
advised on a course of future study, and he has four choices
available: engineering, building, art, or commerce. A
multiple-group discriminant function can be used to classify
this student. (Porebski 1966)

(4) The trace of an electrocardiogram is divided into
5-maillisecond intervals, and a reading is made at these
points. In addition, the length between the beginning and
the ending of each peak, called the "“QRS coaplex," is
measured. On the basis of these measurements, a patient is
to be diagnosed as a normal or abnormal person. This
practice can be done by employing a polynomial discriminator
to assign the patient to one of the two groups. (Sprecht
1967)

{5) In developing a certain rural area, a developer
will consider the best strategy for this area to follow in
its development. This problen may be resolved by
determining which group the area falls into. For exanmple,
an area might be grouped as catering to recreation users, or
attracting industry. Possible variables to consider include
distance to the nearest city of population over 250,000,
distance to the nearest major airport, percentage of land
under forest, percentage of land under lakes, etc. (Broamley
1971)

(6) A study concerning the labor supply of wmarried

women teachers divides wvomen into three employment groups:
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full-time, part-time, and unemployed. Samples are taken and
responses to variables such as wage of husband, full-time

wage of wife, part-time wage of wife, household assets, ages

of children, etc., are recorded. The assignments can be
done by a multiple-group discriminant amalysis. {(Grasm
1973)

The aforementioned examples are only a small portion of
the widespread applications of discriminant analysis. More
references to the applications of these technigues are given
in Sheth (1970), Lacheabruch (1975), Crask and Perreault

(1977) , and Eisenbeis (1977).

1.2 Statement of the Problem

The linear discriminant function (LDP) of Anderson
(1958) described in Equation {1.1) has been widely accepted
as a useful classification rule for discriminating between
two multivariate normal populations. When the two competing
populations are k-variate normal with known parameters and
egual covariance matrices, the LDF, PQDF, and QODF are known
to have the optimal property of a@inimizing the total
probability of misclassification. When the covariance
matrices are not egual and all the parameters are knowan, the
optimal decision rule is a guadratic discriminant function
(ODF). When all the parameters are known and the covariance
matrices are unequal but proportional, the proportional

quadratic discriminant function (PQODF) will also be an
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’optinal ruale other than the (QDF. The hierarchical
relationship among these three discriminant functions can be
expressed as LDF C PQDF C QDF.
In practice, the population parameters pi, p2, ul, u2,
vl, and V2 are usually unknown and must be estimated from a
training set, {(xXj,1), i=1,2, J=1,24e<<,n}, Where 1
indicates the population from which Xj comes. One common
practice due to Wald (1944) and Day (1969) is to rTeplace
the unknown parameters in the discriminant function with
their corresponding estimates: nil/N, n2/N, X1, X2, and Si,
and S2, vhere N= ni+ n2, ni is the sample size, Xi is the
k X 1 sample mean vector, and Si 1is the k X k¥ sanmgle
covariance matrix of population i (i=1, 2). However, the
optimal property, in the sense of ainimizing the total
probability of misclassification for these three types of
discriminant functions, will not necessarily hold when the
parameters are estimated. Several researchers have studied
and compared the performances of the LDF and (QDF, both
asymptotically and with finite sample sizes, but the
comparisons of the PQDF to the LDF and QDF have never been
made. In this dissertation, studies of the relative
efficiency among LDF, QODF, and PQDF are confined to the case
of +two multivariate normal distributions. Methods for
estimating the coefficient of proportionality in the PQDF
are derived. Comparisons to the LDF aad (QDF are made
through asymptotic amnalytic method and Monte Carlo

simulation.
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The primary problems imbedded in this research are
five-fold. First, a method for the estimation of the
coefficient of the proportionality, d, must be developed.
Without an estimator of d, the performance of the estimated
PQDF cannot be evaluated. Second, although the entire
distribution of the estimated coefficient of proportionality
is not needed £for this research, the variance of this
estimate has to be derived so as to derive the asymptotic
error rate of the PQDF. Third, the estimation of the error
rates using either the LDF, PQDF, or QDF plays an important
role in this research. The asymptotic error rates (AERR) of
these discriminant functiorns are to be calculated using
analytic methods and numerical integratioan. Fourth, the
performances of the LDF, QDF, and PQDF are to be compared.
The relative efficiency (RE) will be used as the criterion
for the comparisons of the performances among the three
discriminant functions. The measure of the relative
efficiency between two discriminant functions will Dbe
defined as the ratio of the deviations of. their
corresponding expected actual error rates from their optimal
error rates. Fifth, the identification of regions in the
parameter space where the PQDF outperforms the LDF and QDF
is to be made. If the boundaries of the regions are
ambiguous, this research will provide guidelines for

delimiting these regions.
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1.3 Purpose and Need for This Research

The reason for doing this research lies 1in the belief
that the PQDF performs better than the LDF and DDF in a wide
variety of situations, particularly wvhen the available
training sample sizes are small and the covariance matrices
are not proportional.

All in all, the purpose of this research is three-fold:
(1) to develop methods for estimating the coefficient of
proportionality, (2) to measure both the asymptotic and
small sample efficiency of the PQDF relative to the LDF and
ODF, and (3) to define a region or regions in the parameter
space where the PQDF outperforms, in the sense of minimizing
the total probability of misclassification, tae LDF and CDF.
In addition, this research will provide guidelines for
two~-group normal discrimination in selecting the best
discriminant function. Fromnm this, practitioners <can
accelerate the process of correct classification, use the
available data effectively, select the best number of
discriminating variables, and reduce the total probability
of misclassification.

The need for this research becomes evident when one
reviews the literature. Although several researchers have
compared the behaviors of the LDF and QDF and provided some
useful guidelines in assessing the likely agreement betveen
the linear and gquadratic rules, none have studied the

behavior of the PQODF and its performance relative to the LDF
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and QDF. The development o0f methods for estimating the
error rates of the PQDF and identifying or delimiting the
regions dominated by the PQDF will then begin to £ill this

void in the literature.

1.4 Summary and Dissertation Organization

In this chapter, the problem of discrimination was
discussed as well as the efficiency in parameter estimation
of the LDF, PQODF and QDF. The historical development of
discriminant analysis was briefly reviewed. The problen
studied in this research was explained, and fimally, the
purpose and need for this research was discussed.

A review of the pertiment 1literature is presented in
Chapter 1II. Chapter III contains the experimental desiga,
including the analytic method and the simulation study, for
this research. Included in Chapter IV is an application of
the method derived in this study. The £final chapter,
Chapter V, contains a suamary of the dissertation, the
conclusions derived from this research, and recommendations

for future researche.



Chapter II

REVIEW OF RELATED LITERATURE

2.1 The Linear Discriminant Punction

It wvas Fisher (1936) wvho first proposed the 1linear
function (LDF) to solve the problem of classifying 1iris
plants into one of the three species: iris setosa, iris
versicolor, and iris virginica, by four measurements: sepal
length, sepal width, petal length, and petal width.
However, the first person ®ho adapted the assumption of
normality and the likelihood ratio procedure was Abraham
wald {1944).

wald (1943) followed the Neyman-Pearson Fundamental
Lenma (Neyman and Pearson, 19386) and derived the LDF as
follows: Let the k-variate random vector X be distributed
as N{(ul,V) in population 1 and N{(u2,¥) in population 2, and
let L{X|u,V) denote the Jjoint probability density function
of all variates at the sample point X. 1f
L(Xjul,v)/L(X]ju2,V)21 holds, the optimal rule is to assign X
to population 1. After taking the logarithm, the left side

of the above inequality can be transformed into:

(2.1) W = X'V-t{ul- u2) -1/2 {(ul+ u2)'V-1(ul- u2)}.

31
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Anderson (1951) followed Wald‘'s (1944) study and
considered the effect of a_priori probabilities and
misclassification costs. He gave a new version of Wald®'s
inequality as follows: 1If
L(X}ul,V) C(112)p2

(2+2) 2
L{X}ju2,V) c(2iypa

holds, the optimal rule is to assign X to population 1.

This version can be transformed into the Eguation (1.1)
in Section 1.1.1 by taking the logarithr of both sides. He
further derived the distribution of Wald's #W-statistic and
extended the classification rule into the problem of more
than two groups. Recently, Anderson {1973) continued his
study and conducted an asymptotic extension of the

distribution of the ¥W-statistic.

2.2 The Quadratic Discrimimant Punction

Cavallil {(1945) and Penrose (1947) undertook the studies
in the problem of discrimination by considering two normal
populations with different dispersions. However, their
Studies vere limited to univariate problenms.

It was Smith (1847) who first applied the 1log
likelihood ratio procedure  to derive the quadratic
studentized fore of the nmnmultivariate discriminant function.
Later, Lubin (1950) extended Smith's (1947) wmethod to

multiple-group discriminant probleas.
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Following Penrose's (1947) concept and Smith's (1947)
method, Bartlett and Please (196 3) investigated the
discrimination problem with zero mean differences. However,
the most widely accepted version of the (QDF, given in
Equation (1.2), was not yet developed at that time.

The first version of the well-known gquadratic
discriminant function wvas given by Cooper (1963). Cooper
(1963) applied Anderson's (1958) guadratic form to derive an
optimal discriminant function for auanequal covariance
matrices. The decision rule for the multiple-jroup case was
defined as follows:

In terms of a quadratic formn

k k
(2-3) (X-@)*D(X-u) = > X dij(Xi-ui) (Xj-uj),
i=1 j=1
an unknown X is classified 1into one of g categories Ly
assigning it to the rth category for which Fr(X) 1is least,

where
(2.4) Fr(X) = (X-ug)*'Dr{X-ur) + Er (r=1,2,..+,9),

and where Dr is the covariance matrix of the rth group and
Er is a constant.

For two-group <classification, this discriminant

function reduces to:

(2.5) Q(X)=(X-u2) 'D2(X-u2)- (X-ul) 'D1(X-ul)+(E2-E1),
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where E1 and E2 are some constants and it is optimal to
assign a randomly selected individual X to population 1 if
Q{X)20 holds, and to population 2 otherwise.

By letting E1=|D1] and E2={D2}, this decision rule is
eguivalent to that of Equation (1.2) in Sectioa 1.1.1, apart

from a constant.

2.3 The Proportional Quadratic Discriminamnt Function

The proportional gquadratic discriminant function (PQDF)
vas first studied by Bartlett and Please (1963) for the case
of zero mean differences. Bunke (1964) and Han (1968)
followed Bartlett and Please's work and extended their
studies to cases involving different mean vectors. Hovwever,
the distribution of the PQDF was not studied until 1969.

Han (1969) derived the distribution of the discriminant
function with known proportional covariance structures, V
and d4v (d> 1), for the <case of tvo normal populations,
N{al, V) and N(u2, 4Vv). Using the 1likelihood ratio
procedure proposed by ¥Welch {1939), the discriminant
function he obtained, apart from some constant, is expressed

ass

{2.6) P(X) = (X- ul)'V-1(X- ul) - d-!(X- u2)'V-1(X- u2).

Then he derived the distribution of P{X) for both known and
unknown mean vectors. His procedure is briefly described as

follows.
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When ul and u2 are known, without loss of generality,
it can be assumed that ul=0 and u2=6, such that & is a k X 1

arbitrary vector. Then P{X) will become
(2.7) P{X) = X'V-1X - d-1 (X- 6) *V-1 (X- 6).

With some algebra, P(X) can be writtem, apart from some

constant, as
{2.8) P(X) = (X+ hé)'V-1(X+ hé),

wvhere h=1/(d-1). For the ©population in which X has a
k-variate N{(O,V) distribution, P(X) is distributed as a
anon-central chi-square, denoted as X'2, with k degrees of
freedom and non-centrality parameter h2/ 2, where A 2=6'V-16
is the Mahalanobis's squared distance. For the other
population in which X has a wmultivariate normal N ({6§,d4V)
distribution, P{X) is distributed as deX'2, where X2 is the
non-central chi-square with K degrees of freedom and
non-centrality parameter dh2/ 2.

When ul and u2 are unknown, they are replaced by their
corresponding maximum likelihood estimators il andAig. Thus

Equation (2.6) becomes

(2.9) P(X) = {X- X1)'V-1(X- X1) - d-1{X- X2)'V-1(X- X2)-

Han then used a linear transformation and Okamoto's
{1963) procedure to derive the distribution of the P (X)

given by Equation (2.9). Finally, the asymptotic expansicn
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for the cumulative distribution function {c.d.f.) of this
PQDF was given in terms of anl, n2, d, h, A2, and G(X), the
c.d.f. 0of a non-central chi-square variate X.

Recently, Han {1974) extended his study to the case of
anknown mean vectors and partially known covariance
matrices, i.e., either 4 or VvV is known. In the case of

known 4, the unknown parameters ul, u2, and V are estimated

respectively by:

- 1 ni
(2.10) X1 = — xii,
nl i=1
_ 1 n2
(2.11) X2 = — X224,
n2 j=1
and
1 1
(2.12) s = { A1 + - A2},
nl+ n2- 2 d
where
ni _ _
(2-13) Ai = (Xiji- Xi) (Xiji- Xi)*, i=1,2.

J

]
d

The estimators il, ig, and (n1+n2-2)S are 1independent
of each other and distributed as N(ul, V/nl), N{u2, 4dV/n2),
and W{ni+n2-2, V), the Wishart distribution with degrees of
freedom ni+n2-2 and covariance matrix V, respectively. With

V estimated by S, Han obtained the discriminant function:
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(2-14) P(X) = (X- X1+ h{X2- X1)}'S-t[X- X1+ h(X2- X1)}
- h(h+ 1) (X1- X2) *S-1(X1- X2),

where h=1/({d-1).

Then he employed a linear transformation and his {19689)
procedure to derive the asymptotic expansion for the c.d.f.
of the discriminant function in Equation (2.14), again, in
teres of nl, n2, 4, h, A2, and G(X). He showed that the
principal terms of the resulting cumulative distribaution
functions for both populations are of similar form, apart
from some constant, to those in his previous study (1969).

For the case of known V and unknown d, the covariance
matrix is completely specified under population N (0,V).
Estimators of ul, u2, and 4 are il, ig, and 3, respectively,

vhere

(S

n 1 n _ -
(2.15) 4 = (X2i- X2)*'V-1(X2i- X2).
kK(n2- 1) i

]
Y

“ -
The distribution of 4 is d{k(n2-1)}-1X2, where X2 is the
chi-square with k{(n2-1) degrees of freedon and independent
of X1 and X2. The analogous expression for the PQDF in

Equation (2. 14) is

(2.16) P(X) = (X- X1+ h(¥2- X1} 'v-1 @~ X1+ h(X2- X0}

- h(h+ 1) (T1- X2)'V-1(X1- X2),
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where £=1/(3-1).

Again, he applied the same method used in deriving the
asymptotic distribution of the discriminant fuanction given
by Equation (2.14) to this case. The asymptotic expansion
for the c.d.f. of P(X) defined in Egquation (2.16) was
derived in terams of nl, n2, 4, h, A2, and 5(X). It was
shown that the form of the asymptotic distribution of P (X)

for one population 1is similar to those for the other

population.

2.4 The Evaluation of Discriminant Functions

In the evaluation of a discriminant function five

questions may arise:

(1) Are the observed between-group differences
statistically significant?

(2) 1Is a subset of the variables sufficient for future
classification? High dimensionality can make a
discriminant function unwieldy and inefficient,
thus dimension reduction is desirable for any type
of analysis.

(3) Does the aggregate of the discriminant functions
contribute significant information to the
discrimination between any pair of groups?
Moreover, is there any insignificant discriminant

function that can be discarded?



39

(4) How well will the discriminant function perfors on
future samples? The performance of a discriminant
function 1s commonly measured by the error rates
(ERR). When the population parameters are
unknown, various technigues are available for
estimating the error rates.

{5) Is it possible to select the best discriminant
function without investigating its performance?
Several researchers have studied the relationship
between the performance of a discriminant function
and the parameters such as tne number of
variables, the training sample size, the distance
betveen group meané} etc. However, this research

has been distribution-dependent.

2.4.1 Tests of Between-group Differences

The first problem of Section 2.4 can be solved by the
Hotelling T2 test if there are two groups (Hotelling 1931,
1951) . This T2 test perforams the same functiom 1in
multivariate anmalysis as "Student's t" does in univariate

analysis. Consider the following composite hypothesis:

a

HO: u3l

ro

’

Hi: ul# u

[\)

The test statistic for this hypothesis test is:
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nl+ n2- k- 1
(nl1+ n2- 2)k

nl+ n2- k- 1 nl n2

{nl+ n2- 2)Kk nl+ n2

This guantity F has the variance ratio F distribution with
degrees of freedom k and nl+n2-k-1, thus the decision rule
for the regular F test can be applied here.

The tests of group differences in the two or more
groups are provided by Bartlett (1947a, 1947b) and Rao
(1946, 1950b, 1952, 1970) using functions of Wilks's A
criterion (Wilks 1932), as the test statistic. Wilks's A

is given by

jwi
(2.18) A = —
1T} ,

vhere T 1s the kX X k matrix of total-sample sums-of-squares
and cross-products (SSCP) and W 1is the k X k matrix of
within group SSCP.

To test the pertinent composite hypothesis:

H0: ul= @2=...= 8i=...= ug,

H1: Not all ui are equal,

Bartlett proposed a test statistic, v, wnich 1is a

logarithmic function of Wilks's A :

{(2.19) Vv = -{N- 1- (k+ g)/2}  log A,
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‘where k is the number of variables, g is the number of
groups, and N=nl+n2¢...+ng.

This function V vas shown to be distribuated
approximately as a chi-square random variable with k(g-1)
degrees of freedon, provided N-1-{k¢tg) /2 1is large
Schatzoff (1964, 1966) demonstrated that the chi-square
approximation to Bartlett's V is reasonably good for

moderately large sample sizes.

Another function of A, due to Rao (1946, 1950b, 1952,
1970), seems to offer a better approximate test than

Bartlett'!s V. This function 1is:

1/¢c
- N\ mc- kfg- 1) /2 + 1
{2.20) Ra = .
1/c k{(g- 1)
/\

svhere

m= N- 1- (k+ g)/2,

kZ(g- 12 -4
c = ’
k2+ (g- 1)2 -5

and c= 1 if k2+ (g- 1)2= 5.

This test statistic, Ra, was shown to have
approximately amn F distribution with degrees of freedom

k{g-1) and mc- k{g-1)/2 +1.
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2.4.2 Tests for Sufficiency of a Subset of Variables

Rao {1946, 1950b, 1952, 1970) developed procedures to
examnine the sufficiency of a subset of variables for
tvo-group discriminpnation. A specified subset,
{Xx1,X2,...,Xk'} for k'< k, is to be tested for sufficiency
as discriainators against the full set, {X1,12,...,Xk}. BRao

derived the statistic:

nil+ n2- k- 1 C{(D2k- D2k')

(2-21) F = ° 14
k- k!¢ 1+ CD2k'
where
nl n2
(2.22) C =

(R1+ n2) (n1+ B2- 2)

and D2k and D2k' are Mahalanobis's D2 statistics on the full
set and subset of variables, respectively. This quantity F
has a variance ratio F distribution with k-k' and nl#n2-k-1
degrees of freedon. If k'=k-1, in which it is to be
determined if a single specific variable has discriminating
power or not, this F statistic with 1 and nl#nl-k-1 degrees
of freedom is eguivalent to a t2 statistic. In this case,

Rao's F-test can be transformed into a t-test.

2.4.3 A Test for Discriminatory Power
Pisher (1938) developed a significance test for an
assigned discriminant function in the two-group case. If

the assigned function is:

Y = B1 X1+ B2 X2+...+ Bk Xk,
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then

(Y1- Y2)2
Dzl - v
V({Y)

where Y1 and Y2 are the mean values of Y for the two groups
and V(Y) is the variance of Y.

To test whether the assigned discriminant function
contributes significant discriminatory power, the following

hypothesis is of major interest:

HO: p1= B2=...= Bk= 0,

H1l: Not all Bj (3=1,2,.-.,k) equal O.

The test statistic is:

1+ n1 n2 D2/{(nl+n2) {nl+n2-2)}
(2.23) U = -1,
1+ 0l n2 D2y/ {(nl1+n2) (n1+n2-2)}

where D2 and D2y are the Mahalanobis's D2 statistics pased
on the variables X's and Y, respectively. For testing the
above composite hypothesis, the guantity

nl+ n2- k- 1

(2.24) Fi = e U
k- 1

can be used. The statistic Fi has the variance ratio F
distribution with X-1 and ni+n2-k-1 degrees of freedoam, if

HQ is true.
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For multiple-group probleas, the Bartlett's test,

described in Section 2.4.1 and given by Eguation (2.19), is
available (Bartlett 1947a).

By eguating the reciprocals of both sides of Equation

(2.18) and successively transforaming, it is seen that

(2.25) N-! IT{/1¥]

Ju-17|

|¥-1 (¥ + B)|

= JI + W-1Bj

(W + 21) (1 + X2)eee{1 + 2r),

vhere B is the k X k matrix of between group SSCP, T=%§ + B,
r< min {k,g-1), AL (i=1,2,+-.,I) is the nonzero eigeavalue of
¥-1B, and A1> A2>...> ). Consequently, Bartlett®'s V
statistic for testing the significance of an observed A

value, given in Equation (2.19), can be expressed as:

(2.26) Vv = —-{N- 1- (k+ g)/2} log A

]

{N= 1= (k+ g) /2}e log {(1+ A1) (1+ A2) e»e(1+ AD)}

I
= {N- 1= (k+ g)/2}* log 1_'[1 (1 + Ad)
J:

T
= {N- 1- (k+ g)/2}e 2 log (1 + A1),
j=1

where r< min{k,g-1) and N= nl+ n2+...+ ng.
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Because the successive discriminant functions are
uncorrelated, the successive ternms log (1¢xj) in the last
expression above are statistically independent (assuming
multivariate normality of the origional k variables). As a
result, the additive components of V are each approximately
distributed as a chi-square variate. More specifically, the
jth component of ¥, Vj = {(N- 1- (k¢ g)/2} log {1+ Ad) is
approximately a chi-square with k+g-2j degrees of freedou.

Thus this V can be partitioned as follows:

TABLE 1

Decomposition of Bartlett's V Statistic

Discriainant Chi-square Degrees of
Function Test Statistic Freedosn
First (j=1) {N- 1- (k+g) /2} log(1+ R1) (k+ g- 2)
Second (j=2) {8- 1- (k+g)/2} log{1+ A2) (k+ g- U)
Last (3=1) {N- 1- (ktg) /2} log(1+ ArL) (k+ g- 2r)

- G D G SIS G G TS GED I A GhD D A R TR i S G S W D e D SN WD i . i D S D Y A D D AR e - R T AP GED D P D S D WD S DD TR D S AR

The 1individual discriminant functions can now be
tested, using the decision rule based on the chi-square
distripution, for its contribution to the discriminatory
power. Notice that Rao's Ra statistic, defined by Equation

{2.20), does not have this decomposition feature.
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Alternatively, wvhen we cumulatively subtract V1, V2,
and so forth from V, the remainder each time is also a
chi-square variate. These successive remainders becone
appropriate statistics for testing whether the residual
discrimination, after partialing out the first discriminant
function, the first and the second discriminant functioas,
and so forth, is statistically significant. The successive
test statistics and their corresponding degrees of freedor

are summarized below:

TABLE 2

Bartlett?!s V Statistic for gesidual Discriminant Functions

Residual After Approximate Degrees of
Removing Chi-square Statistic Freedon
Pirst discriminant V- v1 k{g—1)- (k+g-2)
function = (k-1) (g-2)
First 2 discriminant V- V1- V2 (k=1 {(g-2)—-(k+g-4)
functions = (k-2) (g-3)
Pirst 3 discriminant V- V1- v2- V3 {k-2) {(g-3)-{k+g-b)
functions = {(k-3) {g-4)

A IS SN M WD G GNP D IR D W TS AED SN MED D S WIS D WD W WAL MNP WD D A AP WIS G D D SHDED G S TR WD G S W W SR T W . A D A A T e - " .

When the residual, after removing the first m discriminant
functions, becomes smaller than the prescribed fractile of
the appropriate chi-square distribution, it is concluded

that only the first m discriminant functions are significant
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at that prescribed centile confidence 1level (Bartlett

1947b) .

2.8.4 The Estimation of the Error Rates

In this section, for simplicity, only the case of
twvo-group linear normal classification errors will bLe
discussed. The error rates of interest, defined by Hills
(1966) and Lachenbruch (1975), are as follows:

(1) The optimal error rate, P1{(Dt) --- the error rate
obtained from the optimal discriminant function with known

pararmeters:

(2-27) T@,£) = p1 | £xi1)yax p2 [ fmizar,
R2 R1

where R refers to the optimal classification regions, £
refers to the presumed distribution of the observations that

will pe classified, pi (i=1,2) is the a_priori probability,

and f£({Xii) {(i=1,2) is the density function of X in
population 1i.
Consider the case of egual a_priori probabilities,

equal misclassification costs, and equal dispersions. The

optimal classificationr regions are
(2.28) R1 = {X: Dt(X) = (X -1/2 (ul+u2)) *'vV-1{al-ul) > 03},
R2 = {X: Dt (X) = (X -1/2 (ul+u2)) V-t (ui-u2) < 0j.

Alternatively, the optimal error rate cam be expressed as:
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(2.29) T(R,f) = pl PT({DE(X) < OJTT1} ¢+ p2 Pr{DL(X) > 0JT12}

= V2 a(-A/2) + 1/2 8(-A/2)

&(-A/2),

wvhere @ 1is the cumulative standard normal distribution
function and A 1is the Mahalanobis's distance.

(2) The actual error rate, P3(Ds) --- the error rate
for the sample discriminant function as it will perfornm in

future samples:

(2-30) T(R,£) = pl j £(X11) ax + p2 _f.\ £(X12) 4x
R2 R1

= pl Pr{Ds(X) < O0f{TT1} ¢ p2 Pr{Ds(X) > 0712}

1/2 &#{-Ds(ul)// V(D)} +1/2 & (Ds(u2)/v V(D)},

where

{(X: Ds(X) = (X -1/2 (X1+I2))'S-1(X1-X2) > 0},

-s} )
Py
]

(2-31)

B2 = {X: Ds{X) = (X -1/2 (X1+X2))'S-1(X1-X2) < 0},

and
(2.32) V(D) = (X1 - X2)°'S-1 V S-1(X1 - X2).

{3) The estimated actual error rate, P2{(Ds) -—-- the
plug-in estimate of the actual error rate obtained by
replacing the parameters in £(X}1) and £f({X{12) with their

corresponding sample estimates:
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(2-33) TR,f) = pl\fa £(XI1) aX + p2 JL £(X12) ax
R2 R 1

= pl Pr{Ds(X) < OITT1} + p2 Pr{Ds(X) > 0]T712}

1/2 &{-Ds(X1)// S(D)} +1/2 8{Ds{X2)/y S(D)},

where

(2-34) Ds(X1) = (X1 -1/2 (X1+X2))*'S-1(X1-X2)

b2/2,

Ds(X2) = (X2 -1/2 (X1+X2))'s-1(X1-X2)

-Dz/zl

and
(2-35) S{D) = (X1 - X2)'S-1 S S-1(X1 - X2)
= (X1 - X2)'S-1(¥1 - I2)

D2,

Thaus
{2- 36) T(§,g) = 1/2 a(-D/2) + 1/2 &(-D/2) = &(-D/2).

{4) The expected actual error rate, P4(Ds) --- the
expected value of the actual error rate calculated over all

possible training samples of size nl and n2:

n
(2.37) E(T(R,f)} = E{pj.]\ £(X]1) ax + pg\I} £(X12) 4Xj.
R2 R1
Several techniques are currently used to estimate
errors of sample discriminant functionmns. The alterpatives

are basically of three types: (1 those using samples to
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estimate error rates without any distributional information,
(2) those using the assumption of normality, and (3) those
using the holdout procedures. Each of several such methods,
in two-group and equal dispersions case, is briefly
described in what follows. The limitations and strengths of
each method are noted. In those methods using the
assumption of normality, egqual a_priori probabilities are

assumed. Notice that most of these methods estimate the
expected actual error rate.

(1) Resubstitution Method or the R Hethod: The
training sample is classified by the estimated discriminant
function. The P(1}2) and P(2]1) are then estimated by the
sample proportion of the misclassified observations, i.e.,
P(iyj)=nii/nj, where nij (i#j and i,j=1,2) is the number of
sample observations assigned to population i which actually
came from population j (Smith 1947). The estimate
{n12+021)/(nl+n2), often called apparent error rate
(APPERR), 1is consistent but may be badly biased and overly
optimistic for small samples in particular.

(2) Holdout Method or the H Method: The sample is
split into two mutually exclusive samples. One is used to
estimate {or train) discriminant functions which are then
employed to classify the other ({or holdout) sample and
estimate P(1}2) and P(2}1) with ni12/n2 and n2l1/n1,
respectively ({Highleymamn 1962, Kanal and Clhandrasekaran

1971) . These estimates are consistent and unbiased but
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require large samples. This method obviously suffers fronm
inefficiency in using the available data. Unlass the sanmple
size 1is large, the H method tends to give an overly
pessimistic estimate of performance of the DP estimated
using the entire sample.

(3) Data Shuffling Method or the S Method: The sanple
is randomly partitioned into two mutually exclusive samples
of equal sizes for K times. The H method is applied here to
the each pair of samples and thus K different estimates of
error rate are obtained. These K estimates are then
averaged to give a final estimate for the expected estimate
of the error rate (Duda and Hart 1973). Although this
method uses the data more efficiently than the H method, it
still uses only half of the available data for training each
time. Conseguently, it also tends to give overly
pessimistic results.

(4) D2-estimate HMethod or the D Method: When the
populations are normal and the parameters are known with

egual covariamnces, P (1]2) and P{2]1) are given by

(2.38) P(112) = P(211) = Bd(-VA?2/2),

where @ is the cunmulative standard normal distribution
function and A2=(ul-u2)'¥-i(ul-u2) is the Mahalanobis's
sjuared distance. When the parameters are uaknown, this T

method replaces A2 with D2, vwhere

(2.39) D2 = (X1 - X2)'S-1(X1 - X2
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(Wald 1944, Anderson 1951, 1958, Sitgreaves 1952).

The estimates o0f D are consistent but are bpiased
upward. Hence the estimators of the P(1§2) and P(2]|1) are
consistent but may be badly biased dowaward, particularly
for small samples.

(5) Unbiased D2-estimate Method or the D* Bethod:

Tais metnod simply substitutes an unbiased estimate of A

for the biased estimate D in the D method. The unbiased
estimator of A2, based on D2, may Dbe obtained from the
non-central F distribution (Lachenbruch 1968) . This

estimate is given by

nl+ n2- k- 3 {nl+ n2)k
(2.40) D*2 = e D2 - -
nl+ n2- 2 nl .n2

This method gives a consistent estimate of the error rate.
Unfortunately, when nl and n2 are small relative to k and D?
is also small, D*2 is freguently negative which precludes
its use.
{6) The DS Method: Instead of using D*2, one may
construct an estimate of A2 using the gquantity
nl+ n2- k- 3

nl+ n2- 2

This estimator merely igmores the constant term in D¥*2 given

by Equation (2.40) above {Lachenbruch and Mickey 1968).
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The DS method appears to give consistency, but is
slightly optimistic of the error rate.

(7) The O Method: This method is based on a result of
Okamoto (1963) wvho gave an asymptotic approximation for
P(1}2) and P(2]1) in terms of nl, n2, k, and A?Z?. By using
D2 as an estimate of A2 in Okamoto's expansioas, this
method allows us to have different estimates for P(1{2) and
P(2}1), which we could not do with the D or DS methods.
When the groups are close together and the sample sizes are
small, this approximation is found to be poor. For large
values of D2, this method and the D method give similar
results because the <correction terms are proportional to
1/D2. However, if D2 1is mo&;rate {say, 1< D2< 10), it is
found to be better than the D methad.

(8) The 0S Method: Instead of substituting D2 for A?2
in the 0 method, this method uses Ds2 as an estimate of A 2.
It also makes it possible to estimate P(1}]2) and P(211),

separately, and generally performs better than the O method.

(9) Lleave-one-out Method or the U Hethod: In this
method, one observation at a time is held out. The
discriminant function is estimated using nl+n2-1

observations and the held out observation 1is then
classified. If a held out observation is misclassified, the
estimate of the error rate is set to be 1, amnd O otherwvise.
This procedure is repeated until all observations are

classified, thus nl+n2 binary scores are taken. The final
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estimate of the error rate 1is obtained by averaging the
values of the nl+n2 binary estimates (Lunts and Brailovskiy
1964, Lachenbruch 1965).

In order to reduce the number of 1inversions required
for the computations of the ni+n2 discriminant functions,
Lachenbruch (1965) developed a method which reguires only
one explicit inversion, naaely, the inversion of the sanmple
covariance matrix based on the entire sample. An identity
first given by Bartlett (1951) is used, i.e., if B= A+ carv?,
then B-1= A-1 —{(cA-luv'iA-1)/(1+ cv'A-1a)}, where B and A
are k X kX nonsingular matrices, u and v are k X 1 vectors,
and ¢ is an arbitrary scalar. Then the discriminant score

for Xj as computed without the sample point Xj is given by:
(2.42) Ds(Xi) = {Xj -1/2 (X1+ X2- (Xi- X@)/(n€ 1))}'sj-?

e [X1- X2+ (-1)®(Xj- X8)/(ng- O},
where 31, fg,are the total sample mean vectors, Xj is the
holdout observation from the €6th sample, ig is the mean

vector computed without Xj, n8 is the sample size of the eth

sample, and

nl+ n2- 3 ce s-1(Xj- 1) (Xji- xg)*s-1
(2.43) sj-t = {s-1 + = ——1,
nl+ n2- 2 1 - C8 (Xj- X8)'S-!(Xj- X8
vhere
ng
(2.44) co = ,

(ng- 1) (nl1+ n2- 2)
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and S is the pooled total sample covariance matrix.

This method gives almost unbiased estimates for the
expected actual error rate and the confidence intervals of
P(1i2) and P {211). The U method avoids the sample size
lipitation associated with the H and S methods because of
its efficient use of the available data. Furthermore, it
has been found to perfors better than the other methods
aforementioned wvwhen approximate normality is gquestionable
(e-g., wvhen a large number of dichotomies are used as
variables) and the sample size is small relative to the
number of variables. However, this method has tso
disadvantages: (1) it does not give a minimum variance
estimate, and (2) it requires excessive computation in the
distribution-free case, unless the sample size is small.

{10) The U Method: This method combines the features
of the U method and the use of the normal distribution. The
scores of nl+n2 sample discriminant functions using the U
method are found and then the mean and standard deviation,
u(Di) and s(Di) (i=1,2), of these discriminant scores within
each group are used to estimate P(2]1) by &{-u(Dl)/ s(D1)}
and P{1}2) by &{u({D2)/ s(D2)} (Lachenbruch and Mickey 1968).
These estimates are better than those obtained usiag the U
method when normality can be assumed. If D2 1s small, or
the training sample size is small relative to the number of

parameters, this method performs better than tae OS method.
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(11) The TT Method: Let h be an arbitrary integer
such that 1< h< § (N=nl+n2), h/N €172, and @m=N/h is an
integer. This method randomly partitions th2 whole sample
into m disjoint subsets of equal sizes, holds one subset out
at a time, estimates the discriminant function based on
nil+n2-h observations, and classifies the held out
observations. This procedure is repeated am times and each
time the proportion of misclassification is calculated. The
resulting estimate of the error rate 1is obtained by
averaging the values of m computed estimates (Toussaint
1969, Toussaint and Donaidson 1970). Notice that when h=1
and h=N/2, the TT m@method reduces to the U method and H
method. This method gives ‘less biased results than the H{
method (depending respectively on the values of g, n, and k)
and requires less computation than the U method. Because of
these results, it is a method vell suited to "medium-sized"
data sets.

In summary, none of the above methods is uniformly best
for all situations. The performances of these methods
depend heavily upon the number of parameters, the training
saaple size, the distance between dJroups, and the
distribution of the populations. Lachenbruch and Mickey
{(1968) , Cochran (1968), Toussaint {1974), and Dillon (1979)
have evaluated some or all of these methods. As night be
expected, the R method and D method perform poorly. The U

or U methods appear to be the best for small samples.
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Overall, the 0S method seems the best for normal data.
However, the U, TJ, R, and H methods are distribution-free
and most easily generalized to more than two group probleams
as well as the unequal dispersion cases (Eisenbeis and aAvery
1972, Fukunaga and Kessel 1972). In this respect then, the
U wmethod would appear to be superior based upon current
evidence. Other methods such as the triple cross-validation
method, the leave-tvo-out method, the F method, and the
posterior probability method, can be found in Norman (1965),
Mosteller and Tukey (1968), Lissack and Pu ({1972), Glick

{1978) , respectively.

2.4.5 The Relation of the
Performance

istribution Parameters to the

Dunn (1971) investigated some expected values for the
probabilities of correct classification in linear
discrieinant analysis. She used Monte Carlo simulation to
obtain estimates of the unconditional probability of correct
classification and the expected value of this estimate
based on the calculated Mahalanobis's distance. The
experimental variables were k= 2, 6, 10, 15, 20, 30, A/2=
0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, ul= (-A/2,0,-.-..,0),
u2= (A/2,0,.-..,0), V1=v2=I, and nl=n2=n= 25, 50, 100 with
corresponding replications r= 2000, 200, 200. Her results

are presented in Table 3.
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TABLE 3

Duan's Estimgtg of the Unconditional Probability of Correct
Classification Resulting from the Use of LDF#¥

0.25 0.50 1.00 1.50 2.00 2.50 3.00 3.50

k n P1= .5987 .6915 .8413 .9332 .9773 .9938 .9987 .9998

2 25 -5779 .6796 .8339 .9281 .9746 .9926 .9982 .999¢6
50 -5892 .6864 .8378 .9310 .9760 .9933 .9985 .9997
100 - 5946 .6892 .8395 .9321 .9766 .9935 .9986 .99357
6 25 - 5527 .6527 .8143 .9153 .9676 .9894 .9972 .99S3
50 <5690 .6713 .8281 .9249 .9730 .9921 .9982 .9996
10 25 «5828 .6302 .7940 .9000 .9586 .9853 .9955 .9988
50 «5576 .6558 .8177 .9177 .9694 .9906 .9976 .999%4
15 25 «5350 .6109 .7675 .8788 .9442 .9778 .9922 .9976
50 «5490 .6418 8045 .9102 .9644 .9884 .9968 .9993
20 25 -5282 .5943 .7427 .8566 .9283 .9182 .9870 .9952
50 - 5446 .6322 .7938 .9009 .9585 .9855 .9958 .9989
30 25 «5187 .5681 .6891 .7984 .8771 .9283 .9608 .9799
50 .5345 .6113 .7682 .8803 .9463 .9793 .9930 .9980
100 -5505 .6428 .8052 .9097 .9647 .9886 .9969 .9953

Source: Olive J. Dunn (1971).

* This estimate equals one minus the estimate of the
expected actual error rate.

It was shown that with other parameters being fixed,
the actual unconditionail probability of correct
classification, P34, is a decreasing function of k, an
increasing function of n, and an increasing fuanction of A.
The difference between P4 and the optimal probability P1 is

an increasing function of k. Dunn also compared her
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estimate with Lachenbruch's (1968) estimate P4. She found
that Lachenbruch's estimator P4 is a useful conservative
approximation to the unconditional probability of correct

classification. Lachenbruca's estimate is presented in

Table .

TABLE 4

Lachenbruch's Estimate of the Unconditioamal Probability
of Correct Classification Resulting froa the Use of LDF*

A2
0.25 0.50 1.00 1.50 2.00 2.50 3.00 3.50

k n P1= .5987 .6915 .8413 .9332 .9773 .9938 .9987 .9998

2 25 <5749 .6733 .8285 .9248 .9729 .9920 .9981 .9996

50 -5848 .6821 .8331 .9292 .9752 .9930 .9984 .9597

100 .5911 .6867 .8383 .9312 .9763 .9934 .9985 .9997

6 25 5537 .6476 .8082 .9112 .9654 .9888 .9970 .9993

50 -5683 .6673 .8252 .9231 .9721 .9917 .9980 .9996

10 25 <5425 . 6277 .7877 .8956 .9561 .9843 .9953 .9988
50 . 5580 .6546 .B153 .9165 .9686 .9902 .9975 .9995

15 25 -5336 .6078 .7616 .8735 .9412 .9762 .9917 .9975
50 «5493 .6410 .8029 .9077 .9636 .9880 .9967 .S59S3

20 25 «5272 .5911 .7349 .8479 .9216 .9641 .9854 .9947
50 <5430 .6292 .7904 .8983 .9579 .9853 .9957 .9989

30 25 .5179 .5626 .6807 .7808 .8608 .9174 .9544 .9765
50 .5341 .6095 .7653 .8774 .9442 .9780 .9925 .9978

100 -5495 . 6416 .8040 .9087 .9642 .9885 .9968 .9993

. D b AN AR SN WD WS A R A D D Gl S T G D W - — A A W W . - A A — - ——

Source: 0Olive J. Dunn (1971).

* This estimate equals one minus the estimate of the
expected actual error rate.
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Boullion, Odell and Duran (1975) studied the effect

of the number of variates on the expected apparent error

rate in linear discrimination. They used Monte Carlo

simulation with the experimental variables k= 3, 6, 9, 12,

nl= n2= n= 5, 10, 15, 20, 50, 100, r= 50, A= 1, 2, 3, 4,

6, 10, 12, 20, 25, wl= (0,0,...,0), u2= (A,0,0,0,), and
Y1=v2=I. Sonme of their results are presented in Table 5.

The relationship between the expected apparent error

rate and k, n, and A, respectively, was found to be similar

to Dunn's (1971) result. They concluded that for small

sample sizes, a subset of the variates can be chosen so as

to yield better classification results than those obtained

by using the full complement -of variates.
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TABLE 5

Estimates of the Expected Apparent Error Rates Using tae LCF
and the Resubstitution Method with 50 Replications

A2 k 5 10 15 20 50 100 Asynm.
3 .3960 .3672 .3568 .3432 .3200 .3110
1.0 6 4176 .3824 .3632 .3520 .3252 " .3150
9 .4192 .4052 .3775 .3556 .3350 .3208 .3085
12 24084 .3884 .3960 .3524 .3290
3 .3282 .2768 .2724 .2600 .2444 .2337
2.0 6 3324 .3228 .2940 .2796 .2552 .2860
9 .3416 .3304 .3176 .3000 .2572 .2670 .2389
12 -3584__.3224 _.3392 .2820 .2730
3 2732 .2336 .2344 .2116 .2040 .1875
3.0 6 .2792 .2763 .2428 .2300 .2072 .2020
9 22932 .2888B .2596 .2464 .2072 .2050 .1922
—_—___ 12 «3088 .2924 .2884 .2268 .2050
3 .2396 .2004 .1868 .1828 .1672 .1560
4.0 6 .2452 .2356 .2084 .1856 .1724 .1620
9 .2700 .2632 .2352 .2284 .1728 .1970 .1587
12 2780 .2490 .2552 .1916__.2048
3 .1872 .1472 .1364 .1228 .1080 .1040
6.0 6 .2276 .1652 .1520 .1440 .1224 .1102
9 .2352 .2156 .1824 .1572 .1268 .1290 .1110
12 22260 _.1884 _.1844 .1328 .1522
3 .1216 .0804 .0744 _0716 .0604 .0572
10.0 6 .1288 .1120 .0864 .0728 .0644 .0600
9 .1540 .1420 .1104 .1008 .0728 .0630 .0571
12 - 1752 .1352 .1100_ .0748 .0770
3 .0868 .0556 .0560 .0460 .0440 .0414
12.0 6 .0884 .0916 .0664 .0580 .0464 .0540
9 .1368 .119 .0844 .D656 .0584 .0540 .0418
e 12 -1580 .0968 _.0858 _.0516_ .0632 _
3 .046C .0212 .0192 .0188 .0156 .0120
20.0 6 .0528 .0428 .0268 .0188 .0156 .0124
9 .0768 .0596 .0308 .0300 .0176 .0140 .0126
12 -0784 .0332 .0420 .0196 .0171
3 .0272 .0140 .0132 .0104 .0064 .0040
25.0 6 .0336 .0248 .0140 .0112 .0072 .0054
9 .0588 .0u436 .0232 .0152 .0076 .0060 .0062
12 -0508 .02488 .0256 .0100 .0060
Source: T.lL. Boullion, P.L. Odell and B.S. Duran (1975).
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2.5 Asymptotic Distribution of Error Rates

Efron (1975) studied the efficiency of the logistic
regression discrimination relative to maximum likelihood
discrimination for the case of two multivariate normal
distributions with a common covariance matrix. He developed
asymptotic methods for both gprocedures based upon the
expected deviation of the error rate using an estimated
discriminant function from the error rate of the optizal
function. He used the ratio of the expected daviations fron
the optimal error rate for the two procedures as the measure
of the relative efficiency and concluded that the use of
logistic regression discrimination <could result in a
substantial loss in efficiency.

Following Efron's work, O'Neill {(19795) extended the
case to non-normal distributions. He developed the
asymptotic distribution of the error rates of classification
rules for a general exponential family with either linear or
quadratic exponents in variable I He showed that the
logistic regression estimates performed better than the
maximue likelihood estimates over ' the —range considered.
This result was attributed to the sensitivity of the maximum
likelihood estimates to the departure of the assumption of
underlying distribution.

Recently, O'Neill (1980) followed Layard's ({1972)
Theorem ({1.3) and generalized the asymptotic distribution of

the error rates of an estimated classification rule to the
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cases of arbitrary distributions. The general distribution
of the error rates is described below:

Let D(X,®) be the discriminant function with X, a kK X 1
vector of variables, and 8, a (k+1) X1 vector of
parameters. Let ERR (9) denote the error rate of the
classification rule with vector of known parameters 8, and
R={X: D(X,8)= 0} denote the discriminant boundary. Further,

let Vx be the vector partial differential operator with

respect to X, and ]Vx}2 be the sum of sguar2d elements in
vector'Vk. Now, suppose that t is an estimator of ® such
that
L
(2.45) ¢t =---> K (0, ¥/n)
n k+1

or, egquivalently,

L
(2.46) v/n (t - 8) ---> ¥ {0, V).
n k+1
Then
L
{(2.47) n {ERR{t) - ERR(®)} ---> z'Bz,
n

where z is distributed as N (0,V), and

k+1

]
(2.48) B = - J iV p(x,e) -t V D(X,9) V'oix,e) £(x) an ,
4 JrR x e 8 R

vhere m is a lebesgue measure on R and
R

(2.49) £(X)= pl £(Xi 1)+ p2 £(Xi2).
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The asymptotic error rate (AERR) of t is defined as:
(2.50) AERR({t) = E(z'B2) .

If the moments converge correctly then this is the limit of
the expected value of n{ERR{t)-ERR(®)}. Then
(2-51) AERR{t) = lim E{n (ERR(t) - ERR(9))}

n>00 n

= E(2'Bz) = tr {E(z'B2)}

tr (B E(z2z')} = tr(BV).

Thus, 1in order to obtain the asymptotic error rate, the
scalar B and matrix V must be calculated.

O'Neill then compared logistic regression to maximunm
likelihood discrimination for some arbitrary distributions
using

AERR(t ) tc(B Y )
M MM
{2.52) ARE = -=——====—= T memes——e————

AERR(t ) tc(B V )
L L L

as the measure of asymptotic relative efficiency (ARE).
Finally, he showed that the efficiency of 1logistic
regression classification in some non-normal cases is low
and suggested that maximum 1likelihood discrimination should

always be used whenever possible.
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2.6 Comparison of Limear amd Quadratic Discriminant Rules
Gilbert (1969) investigated the effect of unegual
covariance matrices on Fisher's linear discriminant function
(LDF). The behavior of this LDF was compared with the
optimal quadratic form assuming that the parameters of the
tvo populations were known and one covariance matrix was a
nultiple (d) of the other. The calculations were carried
out for = 0.1, 0.2, 0.5, 1, 2, 5, 10, A= 0,1,2,4,8 k=

1,2,6,10, and a_priori probabilities pil= 1/2, 2/3, 5/6. The

results shovwed that the QDF is theoretically no worse than
the LDF and the reductiomn in optimal error rate is an
increasing fanction of 4 (d>2 1), an increasing function of
k, and a decreasing dunction of AZ2. Her results are

presented in Tables 6 and 7.

TABLE 6

The Optimal Error Rate Obtained by Using Fisher's ;ipear
Discriminant Function with Egual A_Priori Probabilities

S D WD W D A A SRR VS WS AP SRS TSR WAL b WD G WD D A G- A S S D D A D SRS DA G S D G S SR D W D W S < AL T W S < S -

For all values of k

d A 2= 0 1 2 4 8
-1 .50 .23 .18 .11 .05
.2 .50 .26 .20 .13 . 06
.5 .50 .30 .23 .15 .08
1.0 .50 -31 .24 .16 .08
2.0 .50 .30 .23 .15 .08
5.0 .50 .26 .20 .13 .06
10. 0 .50 .23 .18 .11 .05

Source: Ethel S. Gilbert (1969).
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TABLE 7

The Reduction in Optimal Error Rate Obtained by Using the
QDF Rather Than Pisher's LDF

k = 1 k = 2
d A2= 0 1 2 g 8 0 1 2 4 g
e .25 .03 .01 .02 .01 .35 .10 .07 .04 .03
-2 .18 .01 .01 .01 .01 .26 .07 .05 .03 .02
5 .08 .00 .00 .00 .01 .12 .07 .01 .01 .01
1.0 .00 .00 .00 .00 .0O .00 .00 .00 .00 .0OO
2.0 008 .00 .00 .00 001 .12 007 .01 .00 001
5.0 .18 .01 .01 .01 .0% .26 .07 .05 .03 .02
10.0 .25 .03 .0v .02 .01 .35 .10 .07 .04 .03
k =6 k = 10
d A2= 0 1 2 4 8 0 1 2 4 8
-1 47 .20 .16 .09 . .04 49 .22 .18 .11 .05
-2 41 218 .13 .09 .04 46 .23 17 .11 .05
5 <22 .07 .05 .03 .02 .26 .12 .08 .05 .03
1.0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
2.0 .22 .07 .05 .03 .02 -26 .12 .08 .05 .03
5.0 41 .18 .13 .09 .04 <46 .23 .17 .11 .05
10.0 47 .20 .16 .09 .04 49 .22 .18 .11 .05

A A D D G — A G P S W AT D WD G S S G e ISR D DD Gl D M S A D S A S G S S A ST Y-S A S D S A I W S ——— -

Source: Ethel S. Gilbert (1969).

Marks and Dunn (1974) conducted a study of the
efficiency of the (QDF relative to the LDF with small
samples. They used Monte Carlo simulation with parameters

= 2,4,6,8,10, 4= 1,2,4,8,16,32,64, nl1=n2=25, replications
r=100, pl= 0.25, 0.5, 0.75, A/2= 0.5, 1, 1.5, 2, ul=
(0,0,ee<,0), u2= (61,62,...,6k), v1=I, and V2=D where D was
a k X k diagonal matrix. Figures 4, 5, and 6 show the
ratio of the error rate of the QDF to the LDF in terms
of the expected actual error rate P4 and the optimal error

rate P1 assuming that Fl=p2=0.5, ug=(13(1+/5)/2,0,...,0),
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and V2=4vi. It wvas shown that the LDF is superior to the

QDF when k=2, A=3.5, d< 4; or k=10, A> 1, d=2; or k> 10,
N=3-5, d=4.

Wahl and Kronmal (1977) continued the work of Marks and
Dunn (1974) and studied the effect of training sample size
on the relative efficiency of the QDF to the LDP. They used
k= 1,2,3,4,6,10,12, 0.25 € A/2 £ 2 with an increment of
0.25, nil= n2= 100, 5< r< 25, and d= 2,5,10 as the values
of parameters. Their results assuming 1= (0,eea-,0),
ng=(43y7775773,o,..-,0), Vi= I, and V2= dI are presented in
Pigures 9 and 10.

It wvas shown that the QDF was superior to the LDF in
all cases studied. They attributed this outcome to the
increase in training sample size from 25 to 100. Thus, they
concluded that wvhen the dimension and the covariance
differences are small, it makes little difference whether
Pisher's linear or the gquadratic function is used. However,
when the dimension and the covariance differeaces are large,
the OQDF performs much better than the LDF provided the

sample size is sufficiently large.
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(a) k=2, &=2, p1=p2=0.5, nl=n2=25

Ratios
1.2 4

— 5,(Q) /P, (L)

- - = pl(Q)/pl(L)

-l 1 =1 -l
L] v L

L] L L] L : %A
.25 .50 .75 1.0 1.25 1.5 1.75 2.0

{b) k=10, 4=2, pl=p2=0.5, nli1=n2=25
Ratios

1.8 + A A
- PA(Q)/P4(L)

- - = pl(Q)/pl(L)

+ - : + ' — ———— A

.25 .50 .75 1.0 1.25 1.5 1.75 2.0

Figure 3: Ratios of Quadratic to Fisher's Error Rgtes with
Different Group Distance (Small Sample Size)



(c)

(d)

k=2, d4=8, pi1=p2=0.5, nl=n2=25
Ratios
0.8 +
0.6 + — 3
0.4 + . ” ~
— »,(Q)/p, (L) -
0.2 ¢ - = = p;(Q)/p, (L)
0 1 4 : -+ : : : : %4
.25 .50 .75 1.0 1.25 1.5 1.75 2.0
k=10, d=8, pl1=p2=0.5, nl1=n2=25
Ratios
0.8 4

—— 7, (Q)/p, (L)

0.4 -
0.2 +
- ---0-“‘"“3---0---0---0
0 & - - - : + : ———— %A
.25 .50 .75 1.0 1.25 1.5 1.75 2.0

Figure 3: (Continued)
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(a) d=4, A=3.5, pl=p2=0.5, nl=n2=25

Ratios
1.2 4 . - -
—— p,(Q)/p, (L)
1.0 "}' > - -
Pl(Q)/pl(L)
0.8 +
o
0.6 T \\
\“‘
0.4 + "~‘.\
0.2 T \‘x.
— : : ’ + k
0 2 4 6 8 10

(b) d=9, A=3.5, pl1=p2=0.5, n1=n2=25

Ratios
0.8 4 ~ ( )/“ (L)

0.6 + - - = Pl(Q)/Pl(L)

0.4 +

FPigure 4: Ratios of Quadratic to PFisher's Error Rates gith
Different Nuamber of Variables (Small Sample Size)
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{a) k=2, A=3.5, pl=p2=0.5, nl=n2=25

Ratios
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- - - pl(Q)/pl(L)

- 4
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(b) k=10, A=3.5, pl=p2=0.5, n1=n2=25

Ratios
1.8 '{" A A
—_— PA(Q)/pa(L)
1.6 + N
1.4 ¢
1.2 ¢4
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\ AN
0.8 4 \ \
\
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~
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Figure 5: Ratios of guadratic to Fisher's Errorl Ra;es with
Dif ferent Proportionality (Small Sample Size)



(a) k=10, d=2, p1=p2=0.5, nl1=n2=100

Ratios
1.0 4
—e
4’ @
0.8 +
7 S -
0.6 + /p"'
P4
' 4 R R
0-47 —— p,(Q)/p, (L)
0.2 + - - - Pl(Q)/pl(L)
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{b) k=10, @=10, pi1=p2=0.5, n1=n2=100
Ratios
1.0 +
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0.4 -
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—e
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Figure 6: Ratios of Quadratic to Pisher's Error Rates with

Different Group Distance (Large Sample Size)
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(a) d=2, A2=§, pl=p2=0.5, nl=n2=100

Ratios
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(b) a=5, A2=8, p1=p2=0.5, n1=n2=100

Ratios

—— ,(Q)/p, (L)

- - = pl(Q)/pl(L)
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Figure 7: Ratios of Quadratic to Fisher's Error Rates with
Dif ferent Number of Variables (Large Sample Size)
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2.7 Discriminant Apalysis in Business Literature

The adoption of discriminant analysis (DA) in business
research has been rapid because investigators frequently are
concerned with the nature and strength of the relationship
between group membership (for example, different brand
choices, or different market segments) and individual
characteristics (such as demographic measures, or style
measures). The wvwidespread availability of easy-to-use
discriminant analysis computer prograas has greatly
faciliated implementation of these DA technigues (Dixon
1970, 1975, Nie, et al. 1975). Prom the vast literature on
business applications of - discriminant analysisz the
marketing and finance literature will be reviewed.

Applications of the DA techniques in marketing area can
be found in Wallace and Travers (1938), Bamks (1950), Harvey
(1953) , Evans {1959), King {1963), Claycamp (1965), Massy
{(1965), Pessenmier, Burger and Tigert {1967, brody and
Cunningham {1968), Robertson and Kennedy {1968), Churchill,
Ford and Ozanne {(1970), Sheth {(1970), Uhl, Aandrus and
Poulsen (1970), wind (1970), Lessig and Tollefson (1971),
Simkowitz and Monroe (1971), Frank and Talarzyk (1972),
Ostlund (1972, 1974), Hustad and Pessemier (1973), Bao
{1973), Darden and Reynolds (1974), Robertson and Rossiter
{1974) , Montgomery (1975), Shuchman and Riesz (1975),
Utterback (1975), Etgar (1976), Riordan, Oliver and Donnelly

(1977), Gitlow (1979), Huber and Holbrook (1979) , etc.
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In finance literature, the DA techniques were employed
by Durand (1941), Tintaner (1946), Blood and Baker (1958),
Walter (1959), Beranek (1963), Myers and Forgy (1963),
Mosteller and Wallace (1963), Peterson {1963), smith (1965),
Beaver (1966), Adelman and Morris (1968), Altman (1968,
1973), Carleton and Lerner (1969), Pogue and Soldofsky
{(1969) , Hortom (1970), Johnson (1970), Meyer and Pifer
(1570), Orgler (1970), Haslen and Longbrake (1971),
Simkowitz and Monroe (1971), Williams and Goodman (1871,
Dake (1872), Dince and Portson (1972), Edmister (1972),
Eisenbeis and McCall (1972), Lame (1972), Bates (1973),
Klemkosky and Petty (1973), Pinches and Mingo {1973, 197595),
Awh and Waters (1974), Eisenbeis and Murphy (1974), Gilbert
(1974, 1975), £Katz (1974), Norgaard and Norgaard (1974),
Stuhr and Wicklen ({1974), Joy and Tollefson (1975, 1978),
Schick and Verbrugge (1975), Sinkey (1975), Zumwalt {(1975),
Altman and Katz (197e), Eisenbeis (1977), Eisenbeis and
Altman (1978), Scott (1978), Wigintomn (1980), estc.

Among the extensive articles listed above, five out of
those showed particularly effective use of discriminant
analysis for the exploration of business phenomena. These
five articles are surveyed here.

Evans {1959) considered three different factor sets and
used the LDF to predict an automobile buyer's brand choice
between Ford and Chevrolet. For the personality factors of

the buyer, the variables he used vere: achievenment,
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deference, exhibition, autonomy, affiliation, intraception,
dominance, abasement, change, aggression, and
heterosexuality. For the demographic and objective factors,
the variables were: age of car, used over 10,000 miles per
year, shopped before buying, owner smokes, homeowner or
renter, three or more children at homé, Catholic or not,
Protestant or not, attend church more than once a moath,
Republican or not, Democrat or not, age, £five or more years
vith same fira, and income. The combined psychological and
objective factors were: owner smokes, homeownership, three
or more children at home, <Catholic or not, Protestant or
not, Republican or not, Democrat or not, five or more years
with sane firm, deferepce, exhibition, autonony,
affiliation, and dominance.

He applied a linear discriminant function in this study
and showed that the objective factors, overall, did a
somevhat better job of discriminating between Ford and
Chevrolet buyers than the other factors. Therefore, bhe
concluded that the objective variables possess
discriminatory power, a clain which is refuted by many
maotivation researchers, and pointed out that brand images
may narrow the car market unnecessarily.

King (1963) treated a market expansion decision as a
classification probleu. The decision wunder study was to
determine if a particular area should be classified as a

penetrable or impenetrable market. King employed an
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essentially classical approach and used test market data as
sample information to estimate a linear discriminant
function vhich minimizes the expected cost of error. The
aeasurements which he deemed relevant were per capita sales
of the product, rate of change of per capita personal income
over tinme, market share of @major competing secondary
product, and total market share of all primary products.
Montgomery (1975) studied the factors or
characteristics of a new product which had been accepted or
rejected by supermarkets. He interviewed buyers and
attendants at buying committee meetings to identify a list
of potentially important variables considered in the

decision to accept or reject a new product for distribution

in a supermarket. This 1list was then used to develop a
structured personal interview.  The variables he selected
were: promotion, company reputation, gquality, newness,
introductory allowances, competition, packaging, gross

margin, advertising, private label, guarantee, distribution,
broker, sales presentation, category volume, category
growth, shelf space, aad cost. Linear discriminaat analysis
vas employed to discriminate between the groups that
accepted and rejected the product. He further suggested
that a large scale analysis would prove fruitful to
ranufacturers in reducing new product failure rates and to
supermarkets in understanding the criteria which buyers seen

to use in evaluating proposed new products.
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Beranek (1963) considered the decision of vhether or
not credit should be granted to an applicant. The two
relevant populations are composed of those who will default
on a credit contract and those who will not. Beranek
suggested that a linear discriminant function be used to
classify credit applicants as acceptable or uhacceptable.
The lines of business which were identified by Beranek for
potential application included major gasoline distributors,
large department stores, finance and small loan companies,
commercial and mutual savings banks, savings and loan
associations, and life insurance companies. The
measurements which he proposed as useful include the
customer's past credit record, current asset position,

leverage, magnitude and variability of gross proceed streas,

future cash proceeds, length of time in curreant business,
age of proprietor, wvhether renting or owning existing
premises, length of time since 1last delinquent, and
proportion of bills the customer discounted. Each line of
business will, of course, have 1its wunigue set of
measurempents which are germane to the existing

classification problen.

Klemkosky and Petty (1973) applied discriminant
analysis to a study of the firm-unigue factors responsible
for affecting stock price variability. A random sample of
160 common stocks was selected and measures of variability

(coefficients of variation) were computed for each stock.
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Firp-unique investment data were collected on the stocks
ranked in the upper and lower quartiles. The variables
chosen to derive a linear discriminant function were
dept/eguity ratio, fixed charge coverge, percentage chamnge
in price of 1last 42 months, percentage change in price of
last 6 months, earnings per share volatility, earnings per
share growth, average price-earnings ratio, average dividend
yield, average price per share, average shares outstanding,
and annual turnover.

This discriminant function was then adjusted by the
standard deviation of the associated variables so as té
deternine the relative contributions of each variable to the
discriminatory power. He found that the two variables best
able to differentiate between high and low volatility stocks
vere annual turnover and average price. It was concluded
that the model has discriminatory power and is able to
differentiate between high and low volatility stocks.

\

2.8 Contribution of This Research to the lLiterature

A review of the related literature reveals that several
areas of the literature are severely lacking, especially in
the behavior of the PQDF. In the research presented here,
the coefficient of proportionality is estimated, the
variance of the estimated coefficient of proportionality is
derived, and the performance of the PQDF is examined. The

comparisons of the PQDF to the LDF and the QDF are performed
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‘using relative efficiency as the criterion. ’Guidelines for
selecting the regions in the parameter space where the P(QLF
performs at least as well as the LDF and the QDF are
provided.

Consequently, the major contribution of this research
is the thorough investigation of the properties of the P(QDF.
Although Han {1974) studied the distribution of the PCDF
with partially known covariance matrices, none of his
studies treated both covariance matrices as raandon
variables. No literature was found that studied the
performance of the PQDF and compared it to those of the LDF
and the QDF. Several authors have studied the relative
performances between the LDF and the QDF. These include
Gilbert (1969), Marks and Dumn (1974), Boullioam, 0Odell, and
Duran (1975), Van Ness and Siapson (1976), Wahl and Kronmal
{1977), Huberty and curry (1978), and Vam Ness (1979) . None
of these authors, however, compared the performance of the
PQDF to those of the LDF¥ and QDF, nor did they examine the
behavior of the PQDF.

A second contribution to the literature is the
identification of the regions in the parameter space where
the PQDF outperforms the LDF and OQDF. A review of the
related literature shows a void of this subject. The
researchers noted above have provided some guidelines for
practitioners in selecting the dominant rule between the LDF

and the QDF accordimg to the parameters of tneir owan data
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set. However, none of them has given any information about

the domains in which the PQDF outperforms the others. This

study will f£fill this void by delimiting the regions

dominated by the PQDF and by providing some measures of the

efficiency of the PQDF relative to the LDF and the QDF.



Chapter IIIX

METHODOLOGY AND EXPERIMENTAL DESIGHN

3.1 Experimental Design

The design of this research can be divided into two
parts: the analytic wmethod and the sinulation study.
Analytic method is used to investigate the properties of the
PQDF and to compare, asymptotically, 1its performance to
those of the LDF and QDF. Simulation is used to investigate
and compare the three discriminant functions when the sample
size 1is finite.

The problems studied were confined to two-group normal
discrimination in which the costs of misclassification were
equal {i.e., C({112)=C(2]1)=1). Modifications for umegual
misclassification costs are trivial and the extemsion to
multiple-group discrimination is straightforwvard. Further,

the a_priori probabilities were assumed to be equal in the

simulation study to reduce the size of the experimental

design.

3.1.1 Analytic Method

When the population parameters are known, the

comparisons of the LDE, QDF, and PQDF can be made

82
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analytically without much effort. Unfortunately, these
parameters are usually unknown in practice and, therefore,
must be estimated. It is necessary, then, to examine both
the procedures for estimation and the properties of the
estimator.

The estimation of the «coefficient of proportionality
was done using the maximum 1likelihood procedure under the
assumption of unknown but proportional covariance matrices.
The variance of this estimator was obtained from the inverse
of Pisher's information matrix {(Press 1972, Rao 1973,
Kendall and Stuart 1979).

The asymptotic error rates of the estimated LDF, QDF,
and PQDF were calculated using a procedure derived by Efron
(1975) and O0'Neill (1980). The performance of the estimated
PODF relative to the estimated LDF and (QDF was compared
using asymptotic relative efficiency (ARE), defined by
Equation (2. 52) in Sectiom 2.5, as the criterion. The
computed ARE's of PQDF to the LDF and the QDF were then
tabulated and plotted against the population parameters.
Plotted results are exhibited by Figures 8 through 21 in
Appendix E.

The ARE is the limit of the ratio of the deviatioms of
the actual error rate obtained by using each of tuo
estimated discriminant functions from the optimal error
rate. Thus if the optimal error rate 1is P1(Dt) and P4 (L)
and P4 {P) are the expected actual error rates of the LDF and

PQDF, the ARE of the PQDF relative to the LDF is given by



g4

E(P4{L) - PI(Dt)]
ARE(P/L) = lim ===m==—--——="--Z__

n>co E{P4(P) - PIA(Dt)}

Alternatively, the ARE can be interpreted as a measure of
the ratio of sample sizes required for each of the twxo
procedures being compared to obtain the same expected error
rate.

It is vell-known in two-group normal discrimination
that a random sample X can be assumed to be distributed as
N{ul,V1) in population 1 and N{u2,V2) in population 2. If
ulsu2 and V13I#V2, this sample X can always be transformed
linearly, without loss of generality, into a sample with
ul'=(61,62,...,6k), uvw2'=(0,0,...,0), vi=I, and V2=D, where
6i {(i=1,2,...,k) is an arbitrary constant, I is a k X kK
identity matrix and D a k X k diagonal matrix with diagoanal
elements d4'=(d1,d2,...,dk) where di is a positive constant.
The data which have been linearly transformed are invariant
in terms of the probabilities of misclassification. The

latter condition will be hereafter referred to as the

"quadratic covariance structure® (QCS). When all the
diagonal elements in d are equal, iec€e, A'={d,d,---04),
the mean vector ul can be  further reduced to

(A/(1+d4) /2,0,...,0) and the covariance matrix VZ can be
expressed as v2=d4I. This condition is called the
"proportional covariance structure® (PCS) here. Purther, 1if

d=1, then it is called the "linear covariance structare"

(LCS).
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Due to the conditions necessary for Theorea {1.3) of
Layard (1972) and thus Theorem {1 of O0O'Neill (1980) to
hold, studies cannot be conducted analytically using the
QCS. To make comparisons, it 1is necessary that both
estimated discriminant functions converge to that of the
optimal discriminant function. Thus, in order to compare
asymptotically the LDF and PQDF, the LCS nmust hold.
However, the comparison of the PQDF and QDF may be made when
either the LCS or PCS holds.

For simplicity, tractability, and understandability,
only one-variate and two-variate cases vere examined

analytically in this stady.

3.1.2 Simulation Stady

In each experiment of the simulation study, a small
sample wvas first generated. The size of the saaple vas
determined by the training sample size n.

From each small training sample, the maximum likelihood
estimates of ul, u2, V1, and V2 were computed, and thus the
estimated LDF, QDF, and PQDF can be obtained along with the
optimal DF. Based on each sample, tvo generalized
likelihood ratio tests (HQ: V2=V1 against HI: V2=4¥1 and
HO: Vv2=dVl against H1: V2#dV1) were conducted in order to
obtain the critical level, also called the "p-value," for
both tests. These p-values can be a helpful clue for

exploring the relationship betvween the covariance structures
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and the performances of the discriminant functions. It
should be apparent that the p-values are influeaced by n,
the training sample size, just as the estimates of the
covariance matrices are affected by their corresponding
sample sizes ni (i=1,23.

Subsequently, the coefficients of the optimal DF were
obtained using the known covariance structure and those of
the estinmated DF were computed wusing the training sample.
The optimal DF and the estimated LDF, PQDF, and QDF were
applied individually to classify the small training sample.
With the estimated DP, the percemntage of misclassificatioas
from classifying the small training sample 1is called the
"apparent error rate." Moreover, the optimal DF and the
estimated LDF, PQDPFP, and QDF were then used to classify a
second very large sample, called "evaluation sample." The
percentage of misclassifications fron classifying the
evaluation sawmple is called the "estimated actual error
rate.” With the optimal DF, the percentage of
aisclassifications from classifying the aggregate saaple is
called the "estimated optimal error rate.” Experimental
replication was performed to obtain the average of each
error rate. These averages were then regarded as the
"estimated expected error rates" and used to compare the
performances of the LDF, QDF, and PQDF and to develop a
procedure for the selection of the best discriainant

function estimated from the training sample.
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Finally, the estimated expected error rates vere
tabulated against the nuaber of variables Kk, the
Mahalanobis's squared distance between the two mean vectors
A2, the training sample size n {(nl=n2=n), and the
covariance structures. The estimated relative efficiencies
of the PQDF to the LDF and the QDF were used to compare the
performance of the PQDF relative to the LDF and QDF. The
regions dominated by the PQDF were found to be ambiguous.
Therefore, guidelines rather than rules have been provided

for the selection of a best DF.

3.2 Estimation of the Coefficient of Proportionality

Let the k-component random sample of size N (N=nl+tn2)

be distributed as N(uil,¥) in population 1 and N(u2,dvV) in

population 2. The likelihood function of this sample is
given by

-(nl+n2)k/2 -(nl+n2)/2 -n2k/2
(3.1) L(ul,u2,v,d) = (2717) 1 Vi d

nl
-1/2 {2 (Xi- ul)'V-1(Xi- ul)}
e e i=1

n2
-1/2{1/4 2 (Xj-u2) 'v-1(Xj-u2)}
e e j=1 -
After taking the logarithm, this functioan can be
transformed into the log likelihood function {(log L) shoun

below:
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(3-.2) log L{X}ul,u2,Y,d) = - k(nl+n2) /2 log (2TT7)

- (nl1+n2)/2 log}V] - kn2/2 log d
n1

- 1/2 {2 (Xi-ul)'V-1(Xi-ul)
i=1

n2
+ 1/8 2 (Xj-u2) ' V-t (Xj-u2)}-
j=1
It i1s well-known that the 1log L maximized with respect

to ul and w2 is

(3.3) log L(X|X31,X2,V,d) = - k(nl+n2) /2 log(2TT)

- (nl1+n2)/2 log)V] - kn2/2 log d

nl _ _
- 1/2 {2 {Xi-X1)'V-1(Xi-X1)
i=1

n2

+ 1/7a 2 (X3-X2) 'V-1(Xj-X2)}
j=1

= - k{nl+n2) /2 log (277)

{(n1+n2) /2 loglVi - kn2/2 log d

- 172 { tC(V-1241) + 1/d tr(V-1a2)}

k(nl+n2) /2 log (2TT)
- (nl+n2)/2 loglV{ - kn2/2 log d
- 172 tr{v-1 (A1 +1/d A2)},

where X1, X2, A1, and A2 vwere defined in Eguations (1.10)
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and (2.13).
Differentiating 1log L with respect to Vv and 4, and
solving for the maximum likelihood estimates (MLE) generates

the equations:

>

S = (n1+n2)-1 (a1 +(1/d) A2},

(3.4) Vv

[ ) "
(3.5) kn2d = tr(Vv-1A2) = tr(S-1A2).
Substituting (3.4) into {3.5) yields the eguation:

(3.6) kn2/(n1+n2) = tr{(d A1 A2-1+ I)-1}.

[}
¥hile amn explicit solution for d is not possible, numerical
evaluation using the Newton-Ra phson procedure is
straightforward.

N
The recurrence relation for the estimation of 4 is

" " X "
(3.7) 4 =d + (26 (8 ) - kn /(n +n )}
i+ i =13 i 2 1 2

K .
/L2 8@ )},
=13 3 i

where A1j, j3=1,2,.-,k is the jth eigenvalue of Al1A2-1, éj(a)=
(akj +1)~1 and 3; is the ith iterative estimate of d.1/kA
convenient initial estimate is provided by 31=(11g1/;11;) -
The MLE of V is then found immediately froa Equation (3.4),
once a satisfactory solution to Equation (3.6) is obtained.

A - I3 a
The variance of 4 can be obtained using the inverse of
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'Pisher's information wmatrix, Id. When all the other

population parameters are known, it is given that

{3.8) Var(a) = I4-1,

vhere
dlog Lq2 2log L d2log L
(3-9) Ig = E[-—-——-] = =% —-——} = -[——_]"
dd 9d2 9dz le=¢

(Rao 1973, Kendall and Stuart 1979).

After differentiating log L with respect to d, ome has

dlog L kn2 1
(3.10) ———— = = — 4+ — tr(Vv-112),
od 24 242

d2log L  kn2 2

{3.11) = - tr(v-1a2),
0dz 242 243
2]log kn2 1
{3.12) ——————E]“ T = = — tr(Vv-ip24vV),
ddz2 8=8 242 a3

kn2/2d2 - 1,33 tr (n2dl)
= kn2/2d2 - kn2/@2

= - kn2/2dz2.

Y "N
Thus, the variance of 4 is Var({(d) = 242/kn2. Moreover,

if the other parameters are unknovn, the 1last expression
in (3.12) is one of the elements of Fisher's information

n
matrix. The procedure of deriving two-variate Var(d) 1is
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presented in Appendix B.

3.3 Asymptotic Comparisons of the three Discriminant
Functions

In this section, the asymptotic relative efficiency of
the PQDF to the LDF and the (QDF will be discussed.
Derivation for the covariance matrix of the coefficients of
the estimated PQDF with the PCS is presented in Appendix BE.
For the variance matrices of the coefficients of an
estimated DF with other covariance structures, derivations
are straightforvard if one follows the procedure shown in
Appendix B. Detailed calculations for the asymptotic error
rates (AERR) of the estimqted LDF, PODF, amd QDF with

two-variate LCS or PCS are given in Appendix C.

3.3.1 One-variate Asymptotic Relative Efficiency

3-3.1.1 §ith Linear Covariance Structure
The asymptotic error rates {(AERR) of the LDF, PQDF, and
the QDF with k=1 and a 1linear covariance structure (LCS)

were found to be respectively as follows:

{3.13) AERR{L) (1/2p2A) B8{A/2 + AMA)

]

o {1 +A2/4 +)2,A2 (142p1p2A2)+A(2p2-1)1},

(3.14) AERR (P) (1/2p2A) B{A/2 + A/A)

e { 372 +22/A2 ( 3/2/2 +2p2A -k )
tA2/4 (A2/8 +2p2X X ) +3R%/4 },
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and AERR(Q)= AERR(P) where & is the cumulative standard

normal distribution and )= log(pl/p2).

The asymptotic relative efficiency (ARE) of the PQDF to

the LDF, ARE(P/L), is defined below:

{3.15) ARE (P/L)

AERR (L) /AERR (P)

(1 +A2/4 #22/A2 (1 +2p1p2A2)+X(2p2 - 1)}
/ 1372 Q2/A2 (22722 +2p2R -1 )
*tAZ/4% (AZ%/78 +2p2X -X ) +3)2/4 3,

and ARE(U/P)= AERR(P)/AERBR(Q)= 1.

The greater ARE(P/L), the better +the PQDF perforsas

relative to the LDF, and vice versa. However, since the
linear covariance structure (LCS) 1is assumed here, the
ARE{P/L) will be less than one. This means that the PQDF

performs worse than the LDF. The resulting plot is shown by

Figure 8 in Appendix E.

3.3.1.2 With Proportiomal Covariance Structure

The necessary conditions of O'Neill's (1980) Theoren
{1) preclude the derivation of AERR(I) with proportional
covariance structure (PCS). The AERR(P) and tae AERRB(Q) are
equal when k=1. The AERR(P) and the AERR({Q) are given

below:

(3.16) AERR(P) AERR{Q)

(2p2/ C)-1{E11{3/2 +p2A *(1+d)2/8}
~E12 (p2A* (1+&)/(1+Q) /2}
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*E22 {3p2A 2 (1+4) /2}
~E23 (2p2A /(1+d) /2}
*E33 ((p2+ p1/d2)/2},

where
(3-17) C = A2(1+4d)/2d +(2) +log d) (1- 1/74)

and E1j is the ijth element of the 3 X 3 nmatrix E, where

E11 E12 E13
(3.18) E [Egl Egg_Eg%]
E31 E32 E3

vV B{{A/(1+4) /2 -4/ C}/(1-d)}

+ wi' B {A/(1+0) /2 +d/ C}/(1-2)}

and where

1

(3.19) v = { (A/(1+4)/2 -/ C)/(1- 1/73)

{(A2(1+4d) /2 +C -2AY/C(1+d3) /2} /(1 -1/4)2
and

]
(3.200 v = [ (A/(+2) /2 v/ C)/(1- 1/8)

{A2(1+d)/2 +C +2AY/C{14d) /2} /(1 -1/@)2 4.

O0f course the ARE(Q/P) 1is wequal to omne since the tuwo

discriminant functions are equivalent.
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3.3.2 Iwo-variate Asymptotic Relative Efficiency

3.3.2.1 With Linear Covariance Structure
The AERR's of the LDF, PQDF, and QDF with LCS were

found respectively to be as follows:

(3-21) AERR(L) = (1/2p2A) B(A/2 + A/A)

e {2 +A2/4(1+ 4plp2)
*A2/A2% (1 +2p1p2A2) +A(2p2 1)},

(3.22) AERR (P) (1/2p2A) (A /2 + X/A)

o {11/4 +X2/2A 2 (1+Q2/2/A2 +#2p2X -k )
+A2/8 (1+A2/8 +2p2X -2 )
+pIp2{A2+R2) +A(3A/8 +p2 -1/2)}.,

and

(1/2p2A) 8(A/2 + /D)

(3.23) AERR(Q)

o { 172 +Q2/A2 (HA2/2/A2% +2p2X -R )
tA2/4 (1+A2/8 +2p2R -R )
*A(3A/4 +2p2 -1)}-

Thus

(3.24) ARE(P/L) = [2 +A2/4{1+ 4plp2)
+A2/A2 (1 +2p1p2A2) +A(2p2 -1)}

/ (14 #2722 (1322/2A2 +2p2X - )
*tA2/8 (1+A2/8 +2p2R -k )
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*P1p2 (A 2+AX2) +2(3A/8 +p2 -1/2)}

and

(3-25) ARE(Q/P) = [11/4 +Q2/2A 2 (14}32/2A2 +2p2d -A )
*tA2/8 (1+A2/8 +2p24 -A )
+p1p2 (A 2¢32) +2(3&/8 +p2 -1/2)}

/ {172 ¥}2/A2 (1+Q2/2/A2 +2p2) -4 )
*AZ/4 (14A2/8 +2p2% -} )
+A (3A/4 +2p2 -1)}.

Three resulting plots are shown by Figures 9, 10, and
11 in Appendix E. It is seen that the plot shape of the
twvo-variate ARE{(P/L) with LCS 1is similar to that of the

one-variate ARE(P/L) with LCS.

3.3.2.2 With Proportiomal Covariance Structure
The AERR's of +the PQDF and QDFP with PCTS are given

below.

(3.26) AERR(P) = 1/2p2/ C e

{ E11{32 +(1+d)2A*p2(1+p1) }/16
~E12 {A 3 (1#d) p2(1+p1)/(1+2) /2} /2

+E15({A 2 (1+d) p2(3+3p1- pl/d)/4}

+E16 [A2(1+4d) p2(1+p1+ pl/d) /4]

-E25 (A/(1+d) /2 p2(1+p1- p1/d)}
~E34{2p1(1- 1/4) +(p2+ p1/A)}p2AV(1+d)/2

+ (2E44+ES5+EB6) [p2+ plsdz+plip2 (1-1/d)2}/4}




and
(3.27) AERR(Q) = 1/2p2/ C e

{ E1102 +p2A* (1+4d) 2/8}
- E12{p2A 3 (1+4)/(1+d) /2}
+ (3E15¢E16) {p2A2(1+d)/2}
- (E25+E34) {p2A/2(1+4)}
+ (2EL4+4E55+E66) (p2+ plrd2)/23,

where
(3.28) C = A2(1+d)/24d +2{log d+}) (1- 1/4)

and Eij is the ijth elemenf of the 6 X 6 matrix E, where

rE11 E12 . . . E16;

E21 E22 . . . E256|

{(3.29) E = - - - |
- - -« - 1

L E61 E62 - - . E66

AV (1+d) / -dy Cx
j\ vv' &
X

- )y &{X )ax
1-d 2 2
2
A,/(1+d)/2 +dy Cx
. I Y ) & (X )ax
X 1-d 2 2

2

and where

(3.30) ¢x = ¢ - (1- 1/4)2x22,
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_1 1
AV (+a)y/2 -/ cx) /(- 1/4)
(3.31) v = |x2 ]
AV (1+d) 72 =/ Cx) X2/ (1- 1/4) |
[AZ2(1+4)/2 +Cx -2AV/Cx(144d) /2} /(1 -1/d) 2 |
L x22 ]

and

1 7
[t45/7773773 s Cx) /(- 1) |
(3.32) w = |x2
Y/ (1+a)/2 v/ Cnx2/(1+ 1/3) 1
{A2(1+d) /2 +Cx +2AVCx(1+4d) /2} /(1 -1/d) 2

LX22 4o

It is required for a real solution that Cx2 0, thus the
integral 1limits are restricted by X22< C(1 -1/4)-2. 1f
Cx< 0, the AEERR is set to one. The exact solution for the E
matrix is intractable, thus the Simpson's approximation rule
and Newton's 378 rule vsere employed to evaluate E
numerically using 21 computed data points. Notice that both
AERR(P) and AERR{Q) reguire only 9 elements of the E matrix
to be evaluated.

The ARE (Q/P) with PCS in this <case 1is equal to
AERR (P) /AERR(Q). Since the PQDF is the optimal discriminant

function with the PCS, the ARE{Q/P) w¥ill be less than one.
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Two selected tables of ARE's with the PCS and the LCS
are shown in Tables 8 and 9. Various selected plots are
shown by Figures 12 through 21 in Appendix E. Notice that
in order to prevent blocking of the shape on these plots,
the ARE in the region where Cx< 0 was set to zero while it
is actually one. The reason that the ARE goes to one is
attributed to the fact that one of their probability
distributions is dominated by the other and the optimal rule
is to classify every observation iato one of the
populations. Under this circumstance, one DF is as good as

the other.

3.3.3 Interpretation and Conclusions

By reviewing the resulting tables amnd plots, the
following conclusions can be made:
(1) With linear covariance structure:
(1) The ABE plots are all symmetric to pl=p2=0.5
along the axis of pl1 (see Figures 8 through 11
in Appendix E).
(ii) Both ARE(P/1) and ARE{Q/P) are decreasing
functions of A, if A2i.
(iii) ARE{Q/P) is an increasing function of
min{pl,p2) -
(iv) The regions of the largest ARE (P/L) and ARE{(Q/P)
are all delimited by 2<A <i. These regions are

of particular interest since differences in



(2)
{1)

(i1)

(2i1)

{iv)

59

performances of the three estimated DF's are
small enough that selection of the best DPF is

difficult and requires scrutiny.

With proportiomal covariance structure:

Group distance and a_priori probability tend to
have more influence on ARE{Q/P) than the
proportionality, d. This can be verified by the
differences in the plot shapes (see Pigures 12
through 21 in Appendix E).

When p1=p2=0.5 and A2 &, the ARE (Q/P) is a
decreasing function of A (see Figure 13 1in
Appendix E). This finding is in agreement with
the conclusions drawn from the case using the
LCS.

It cﬁn be seen from Figures 12, 13, and 14 in
Appendix E that the region of the largest
ARE{(Q/P) 1is delimited by 25/ <4 This result
suggests that further investigatioa on the
estimated DP should pe made within this regiocn
using finite samples.

The ARE{Q/P) is a decreasing function of 4 if
p1=p2=0.5 and 2SA <4 (see Figure 13 in Appendix
E). This suggests that only a small regiomn, say

d<4, needs to be considered in the study usiag a

finite sample.
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TABLE 8

Asymptotic Relative Efficiency of the QDF to tane PQDF
with the PCS

Prior Probability One

d A 0. 10 0.25 0.50 0.75 0.90
0.5 .508225 .571867 .798082 .571867 .508225
1.0 .615490 .768164  .B30579 .768164 .615490
1.5 .783658  .B854199  .870199 .854199 .783658
2.0 .864807  .896202 .900000 .896202 .864807
2.5 .890594  .907403 .907833 .907403 .890594
5.0 .683945  .725486 _ .7487599  .725u86 _ .683945
0.0___.538912  .560972_ __.576246__ _-560972 __.534912
0.5 1.000000 1.000000 .783208 .667615  .586926
1.0 1.000000 .818808 .846751 .794695 .715274
1.5  .756964  .862577 .872136 .866905 .828028
2.0 .856969  .887213  .896991 .906821 .885975
2.5 .878814  .890189 .903029 .918080 .905021
5.0 .681711  .735168  .773870_ _ .756984 __.705458
0.5 1.000000 1.000000 .746785 .691487 .644969
1.0 1.000000 .797010 .B826425 .819069 .777201
1.5  .716927 .879513 .877042 .883660 .862177
2.0  .874167  .884124  .892792 .915180  .903905
2.5 .875029 .873880 .894710  .922453 .915078
5.0 .658224  .703109  .732135  .735713 _ .594524
0.5 1.000000  .965464  .752068 .733099 .711464
1.0 1.000000 .820834 .772575 .807581 .813060
1.5  .849262 .806168 .B36388  .886485 .895730
2.0 .838417  .850949 .B876968  .923767 .828737
2.5 .866772 .843978  .878587  .925375 .928285
5.0  .639464 __.687172 __.734657__ .735360 _ .69345]
0.5 1.000000  .909161 .757671 .766194 .760396
1.0 1.000000 .B09626 .763591  .807846  .B823465
1.5  .892737 .772309 .801902  .869099  .893592
5.0 .B806032 .796282  .846597  .914591  .933835
5.5  .g22442 .807654  .860248  .921924  .933713
5.0  .626384 .676182  .728723  .733462 _.690789
0.5 1.000000  .830150 .763430 .805125 .821919
1.0 1.000000 .774370 .762195 .821132  .845799
1.5 .g78162 .739432 .777151  .853067  .884228
.0 .775826 .738639 .B805005 .888348  .919382
5.5  _750054  .748771  .824323  .902961 .925925
5.0 .609659  .662050 __.720246  .729382 __.68551%
0.5  .879194  .722075 .768550  .854959  .905137
1.0  .814215 .704191  .763u61  .852265 .897798
1.5  .737613 .686533  .760234  .851502  .B892202
2.0 .680488 .676076 .761353  .852984  .888311
o5 . e47660 -672711  .764590  .851856 . 878084
5.0 .581987 .638026 __.704054  .719353 __.673084
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TABLE 9

Asymptotic Relative Efficiency of the PQDF to the LDF
with the LCS

Prior Probability One

0.10 0.25 0-50

A k= 1 2 1 2 1 2
0.1 .004174 008330 .016843 .033387 .668332 .728098
0.3 .039848 .077911 .168766 .300108 .681552 .734567
0.5 .123691 .227785 .509340 .675200 .707412 .746996
1.0 .658484 .772837 .998196 .876013 .816327 .796020
1.5 .999564 .889306 .951787 .861450 .942285 .850838
2.0 .938577 .864633 .986293 .884725 1.000000 888889
2.5 .964744 .880375 .992060 .904400 .941852 .898476
5.0 .491139 .715658 .389739 677401 .344725 .662364
10.0 .091960 .219917 .D86050 248464 .082803 .264631

3.4 Comparisons through Honte Carlo Simulation

3.8.1 Selection of Experimental Variables

The Monte Carlo simulation technique was applied to the
finite sample investigation. The values of the parameters
for the simulation study were selected using the analytic
results and eight pilot rumns. The asymptotic results
suggest that the region delimited by 2SA < and d<4 should
be investigated under small sample condition. The pilot
runs vere made using A=2,4 and d=4 as the values of the
parameters. While the training sample size was 30, four
different combinatiouns of evaluation sample size
(N=500,1000) and experiment replication {r=200,100) were
used. It was found that N=500 and r=200 give the smallest

standard error of estimate.
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The CPU time of each simulation run with k=2 took
approximately eight minutes on the ITEL AS/6 computer. For
k=4, it took almost sixteen w®minutes. Thus, higher
dimensions will require more CPU time for each run. The
required CPU time can be approximated by CPU=0. 15r+0.0045N
vhen k=2.

The covariance structure used in the simulation study
vas parameterized to generate either the LCS, PQCS or the
QCS. A matrix, Sk, was constructed to generate these three

covariance structures. The Sk matrix is givem by :

- k-k 1 -

(— /) i

1+s k-1 2 .

{(—) 0
2

(3.33) Sk= - 4

- ]

) k-2 1 1

(— -=/)
1+s k-1 2
(—)
2
k-1 1 |
(— -/)
1+s k-1 2 |
0 (—)

! 2 Sy

vhere s is a skevness parasaeter.

The covariance matrix of the second population is then

obtained from the following egquation:

(3.34) v= sk d4I sk,
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wvhere I is a k X k identity matrix. The mean vector of
population 1 was assumed to have egual elements for all
experiments.

The flowchart of the computer simulation procedure is
provided in Appendix F. The parameter values used were
k=2,4, n=15, 30, A=1,4, 4=1,2,4, and s=1,2,3. The
evaluation sample size and the experiment replication were
500 and 200, respectively. The assumptions of equal samnple

size and equal a_priori probabilities were made here so as

to reduce the number of experimental combinations.

3.4.2 Generalized Likelihood Ratio Test of Proportionality

Based on the training saaple, tvo generalized
likelihood ratio tests were conducted. A p-value for each
test was recorded. The generalized 1likelihood test is
defined below.

To test

HO: V1=¥2 (LCS)

Hi: Vi=(174)V2 (PCS)
and

HO

(2]

V1= {1/4)V2 (PCS)

i1

Vi# (1/d)V2 (QCS),

the test statistics are respectively as follows:

(3.35) t(L/P)= -2 log A (L/P)

and
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(3-36) t(P/Q)= -2 log X (B/Q),

wvhere
L(X1,X2,S)
A(L/P) = —
L(xllxglsid)
and
- - [ Y
L(x1,x2,s,4)
AB/Q) = —— ’
L(xi1,x2,s1,s2)

and where L(il,ig,S), L(il,ig,s,a), and L(ig,ig,sl,sg) are
defined by Equations (D.5), (D.11), and {D.16) in Appendix
D, respectively.

For the first test, the test statistic t(L/P) has a
chi-square distribution with one degree of freedonm. The
test statistic t{P/Q), however, has a chi-square
distribution with kx{k+1)/2 -1 degrees of freedon. The two
p-values were found to have poor correlation with the error

rates {less than 0.3).

3.4.3 Delimitation of the Dominant Regioans

The estimated expected error rates resulting from each
sinulation run are provided in Appendix G. The variables
shown in these tables should be interpreted as follows:

MEAN = Estimated expected value of the error rate,

STDERR Standard error of estimate,

"

APPERL = Apparent error rate of the LDF,

APPERP = Apparent error rate of the PQDF,



APPEKQ
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Apparent error rate of the QDP,

ACTERL = Estimated actual error rate of the LDF,

ACTERP

Estimated actual error rate of the PQDF,

ACTERQ = Estimated actual error rate of the QDF,

P(L/P) = The p-value obtained from the GLR test for

P(P/Q)

LCS vs. PCS,

The p-value obtained from the GLR test for

PCS vs. QCS,

DELTAH = Computed group distance,

ALPHAH

Estimate of coefficient of proportionality,

d.

It can be seen from Appendix G that:

(M

(2)

(3)

Wwhen d=1, the LDF.is the best DF except one case
where k=4, n=30, skewness=3, and A =1 wvhere the
QDF is the best. This means that the QDF will
outperform the LDF and the PQDF vwhem the group
distance is small, the skewness is high, and the
sample size is large relative to the number of
variables.

When d4=2, A=4, and n=15, the LDF is nmore
efficient than the QDF. This implies that the LDF
will outperform the QDF if the sample size is
small and the group distance is large, even when
the population covariances are unegual.

If d#1 and skewness<2, the PQDF is the best DF

except vhen k=2, 2=30, A=1, and 4=2,4 where QODF



(4)

(5)

{(6)
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is best. This indicates that the QDF will
outperform the PQDF with sufficiently large sazple
and small group distance.

Wwhen k=4 and d#1, the PQDF is the best DF among
the three. This verifies the belief that high
dimensionality will increase the efficieacy of the
PODF relative to the LDF and the QDF. However, if
k=2, skewness=3, and d#1, the QDF is the best ©LF
except vhen n=15, A =4, and d=2 vhere the LDF is
the best. This suggests that when the sample size
and the coefficient of proportionality are small
but the group distance is 1large, the LDF may
outperform the PQDF and the QDPF even if the
population <covariances are nonproportional and
highly skewed.

If d#1, the PQDF outperforms the LDF except when
k=2, A=4, n=15, skewness=3, and d=2 where the LDF
is the best DF. This indicates that with small k
and n, but large A, the LDF nay outperforé the
PQDF and the QDF even if the population
covariances are unegual and nonproportional.

The PQDF is the dominant DF when k=4 and d#1.
This finding suggests that the PQDF should be the
chosen rule if the dimensionality is not small

relative to the sample size, and the populaticn

covariances are unequal.
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The number of times that either the LDF, the PQDF, or
the QDF outperformed the others during 200 replications was
recorded and tabulated in Table 10. It was found that the
dominant regions are similar to those delimited apove except
that (1) when k=2, n=15, A=1, d=4, and skewness=1,3, the
dominant DF is the QDF, and (2) when k=2, n=15, A=4, d=2,
and skewness=2,3, the dominant DF is the LDF.

According to the estimated expected actual error rates
provided in Appendix G, the relations of these error rates
to an increasing population parameter cam be summarized as

follows:

{1) The rate of change of the estimated expected error
rates resulting from the cha;ge of A 1is much higher than
those from the changes of k, n, 4d, and the skewness
parameter, s, in all cases examined.

(2) The actual error rates of all these tharee DF's are
decreasing with n or A in all cases examined.

(3) The ACTERL is increasing with k in all cases, and
(i) decreasing with 4 if k=2, except the cases where A =1,
s=3, and A=4, 1a=15, s=3, (i1) increasing with 4@ in all
cases if k=d.

(4) The ACTERP is {1i) decreasing with k if A =1 and
d#1, (ii) dincreasing with k in all cases if d=1, or if s=1,
A=4, and n=15, (iii) increasing with k if s=1, A=4, and
n=30, except one case where d=4, (iv) decreasing with d

except one case where k=2, n=30, A=4, and s=3.
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TABLE 10

Occurrence of Best Discriminant Function during 200 Runs

1 2 4
Skewness
k A n Best 1 2 3 1 2 3 1 2 3
LDF 131 110 81* 41 36 16 2 0 1
15 PCDF 48 52 44 113 95 69 146 116 70
ODF 21 38 75 46 69 115 52 84 129
1 - S T S = . — Y - S AU S > G G W W W i S S A A U A T D G AW D S A S S S S . Y S S . -
LDF 120 98 78 30 16 6 0 0 0
30 PQDF 49 58 36 115 79 53 147 94 56
ODF 31 44 86 55 105 141 53 106 141
2 D S D R D S Y D Y " D A W D W S S W W " — S — ——— -
LDF 136 125 117 81 89 179 34 22 37
15 PCDF 39 49 32 83 76 77 121 126 97
ODF 25 26 51 36 35 44 45 52 66
i‘ D —— - S — < - S S5 P i D GED W D W W IR W G M D A G S T W A A D S w—
LDF 117 116 120 58 58 68 18 15 11
30 PCDF 45 44 37 104 104 78 138 131 113
QDF 38 40 43 38 38 5Su 44 54 76
LDF 125 127 92 7 4 8 0 0 0
15 PCDF 63 54 45 180 162 132 193 180 161
QDF 12 19 63 13 34 60 7 20 39
1 ....................................................
LDF 131 108 69 1 2 1 0 0 0
30 PQDF 58 58 23 181 164 104 186 149 120
ODF 11 34 108 18 38 95 14 51 80
Q - e — —— — - - — — —— - ——— ——— A P D W D A - . — —— D S i YD W AP W P R - T - - —— . -
LDF 139 128 135 63 56 63 27 25 27
15 PQDF 33 50 33 114 122 104 143 132 136
QDF 28 22 32 23 22 33 30 43 37
f ————mmmmmee = e e e e e e o e e o e e
LDF 125 121 107 44 45 52 7 7
30 PQODF 46 47 41 120 113 101 154 142 133

QDF 29 32 52 36 42 47 39 49 60

* The number underscored indicates the best discriminant
function among the three within each cell.




examined,

(5)

(11)

The ACTERQ is decreasing

but (i) 4increasing

increasing with k if A =4,

n=30, d=4, and s+#1l.

(6)

The relations of these three error

shown in Table 11, are complicated.

except two cases

A=1, the ACTERQ is decreasing with s.

TABLE 11

with 4 ia

with k if d4=1

However,

all
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cases

in all cases,

Yhere
rates to s,
with d=4% and

The Relation of the Estimated Expected Actual' Error Rates

to the Skewnes

S

e —————— o ——————————— SO R L |
l d ] d i d |

1 | § l

n | 1 2 L | 1 2 4 | 1 2 4 |

P ———————— T e bt ————————— i

15 ] A \'f + | A - - i - - - }
30 | v + + i Vv A - ] - - - 4
—————— $mmm—— e e, e e pr—— e ——————— |
15 | + A A | + A v | A A v |
30 ) A A - ] A + + ] A A A i
P ——————————— P ——— e c———— e ]

15 ] A + v ] A A A ] - - - ]
30 | a A F:\ | A A + | - - - i
----- —pm——— e ————————d————————- - ————f e ————————— = ]
15 ] - A A | v ' + i A \'/ + i
30 | + Vv - | + + + | A - v |

the ACTERR is increasing with increasing skewness
the ACTEBR is decreasing with increasing skewness
the ACTERR goes up and then down with skewness
the ACTERR goes down and then up with skewness
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3.4.4 Relative Efficiency with Pinite Sample Sizes

The relative efficiency of the PQDF to the LDF and QDF
is defined as the ratio of the deviations of the expected
actual error rates from the optimal error rate. Therefore,
the relative efficiencies of the PQDF to the LDF and the QDF

are defined, respectively, by:

E{ACTERL) - OPTERR

(3.37) RE(P/L)
E (ACTERP) - OPTERR

and

E(ACTERQ) - OPTERR
(3.38) RE{P/Q)

E (ACTERP) - OPTERR.

Since the expected actual error rates and the optimal
error rate are not available here, their estimates presented
in Appendix G vere used to compare the relative efficiency
{(RE) cof the PQDP to the LDF and QDF. The resulting
estimated RE's are given in Table 12. Plots of estimated RE
with skewness=1,3 are shown by Figures 22 tarough 37 1in
Appendix E. Notice that in these figures, "49” denotes a
value of 1 for @, "x" a value of 2, and "*" a value of 4.
The dominant regions delimited by these two RE's are
identical to those delimited by the estimated expected
actual error rates discussed in Section 3.4.3. The
relations of the RE{P/L) and the BRE{(P/Q) to an increasing
population parameter are exhibited by Tables 13 through 17.

It can be seen from Table 12 that:
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TABLE 12

The Relative Efficiency of the PQDF to the LDF and the QDF
with Finite Sample Sizes

- D D D S D D G D D D D D D D D A S VI N G D D G D D R A D S S G S S G D G - e S G D S SIS G SED SR D S W S

1 2 4
Skewness
k A n R.E. 1 2 3 1 2 3 1 2 3

15 (P/L) 0.68 0.71 0.69 1.54 1.62 1.66 3.86 3.55 3.22
(PrQ) l.44 1.24 0.9% 1.32 1.15 0.89 1.39 1.13 0.87

1 D D R D WD GED DR WED VD TERED QD G SED R SR S D SR WD S S G S e D TS WD A G D D A i S A S G G A S W D D CER WD S A S W .
30 (p/L) 0.66 0.77 0.79 2.72 2.36 2.01 7.56 6.04 4.50
(P/Q) 1.59 1.33 0.79 1.43 0.95 0.65 1.37 0.94 (.62

D e e e
15 (P/L) 0.56 0.66 0.77 1.26 1.17 0.95 3.20 3.33 2.14
{(Pro) 1.31 1.27 1.11 1.32 1.22 1.11 1.41 1.32 0.99

} m—mmrrrr s r e r e c e e r e e e, e — - - — - ————
30 (/L) 0.83 0.88 0.72 2.36 1.66 1.15 6.54 U4.56 3.93
{(p/Q) 1.20 1.33 1.09 - 1.51 1.10 0.86 1.29 1.12 0.88

15 (P/L) 0.89 0.87 0.91 1.98 1.86 1.74 4.271 3.79 3.53
(Ps/Q) 1.70 1.42 1.09 1.82 1.50 1.30 1.93 1.68 1.47

I e et e St
30 {p/L) 0.80 0.50 0.90 3.60 2.74 2.32 B8.68 6.85 5.98
{P/Q) 2.02 1.35 0.85 2.15 1.52 1.03 1.96 1.47 1.18

] e e e m e e ————— o = = o e e
15 (P/L) 0.80 0.87 0.82 1.31 1.41 1.25 2.95 2.55 2.26

(P/Q) 1.77 2.01 1.63 1.84 1.81 1.68 2.01 1.75 1.65

f —mmm—e e ———————— e —— —————_——— —— = ———— —— e ——— — —
30 (P/L) 0.92 0.93 0.88 2.19 1.95 1.74 6.88 5.22 4.92
(?/Q) 1.71 1.62 1.17 1.60 1.44 1248 1.94 1.50 1.33

(1) When d=1, the RE(P/L) 1is 1less than one in every

case examined. If skewness=1, the RE{P/Q) 1is greater than

one in every case. Both the RE(P/L) and the RE{P/Q) are
greater than one in every case if k=4 and d#1.
{2) When skewness=1 and other parameters being fixed,

the RE(P/L) is (i) increasing with 4 im all cases examined,
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(i) increasing with n if A#1, (iii) decreasing with A
if n=15, and (iv) increasing with X except two cases where
n=15, d4=4, A=4 and n=30, d=2, A=4. The RE(P/Q) |is
(i) 1increasing with k in all cases examined,
(1i) 1increasing with A if n=15 and k#2, (iii) decreasing
with A if n=30, except one case vhere k=2 and =2,
(iv) iuncreasing with n if A =1, except one case where k=2
and d=4, (v) decreasing with n if A =4, except one case
where k=2 and d4=2, and (vi) increasing with d if n=15,
except one case where k=2 and A =1.

(3) When skewness=2 and other parameters being fixed,
the RE (P/L) is (i) increasing with either 4 or n in all
cases examined, (Li) increasing with k except the case
vhere n=15, A =4, and d=4, and (iii) decreasing with A if
d#1. The RE (P/Q) is (i) increasing with X in all cases
examined, (ii) 4increasing with A except the case where
n=30, k=4, and d=2, (iii) decreasing with d4 if k=2 and
A=1, and (iv) decreasing with n except three cases where
k=4, A=1, d=2 and k=2, A=1,4, d=1.

(4) When skewness=3 and other parameters being fixed,
the RE{P/L) is (i) increasing with either k or 4 in all
cases examined, {ii) increasing with 1n if d#1, and
(iii) decreasing. with A except the case where n=15, k=2,
and d=1. The RE(P/Q) is (i) increasing with either k or A
and decreasing with n, in all cases examined,
(ii) increasing with 4 if k=4, A#4%, and 1#15, and

(iii) decreasing with d if k=2, n#30, and A #4.
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The relations of the two RE's to the population

parameters can be summarized as follows:

(1) The RE{P/L) is, most often, increasing with the
number of variables, k, if the group distance is not large
relative to the covariance structure. The RE (P/Q) is

increasing with kX in all cases examinead. (See Table 13)

TABLE 13

The Relation of the Finite Sample Relative Efficiency
to the Number of Variables

r—-—-—---‘ D S S T A . . — e S D S A S D SR S D G T G S G A D G G A D GNP SEE W U I S D A

1
} } Proportionality d |
] Relation | 1 2 4 )
e e it
: of* | Skewness |
§ ] A n 1 2 3 1 2 3 1 2 3]
= e e e e e e e e e !
] ] v 15 + + + + + + + + + |
|} RE(P/L) } 30 + + + + + + + + + i
i | = e e e
| to k ] 4 15 + + + + + + - - + )
i { 30 + + + - + + + + + ]
J=mm———mm ety !
i ] 1 15 + + + + + + + + + |
| RE(P/Q) { 30 + + + + + + + + + :
} to k : 4 15 + + + + + + + + + |
} 1 30 + + + + + + + + +

L- A D I S SN W D W WD S WD W AR SR AR S WED AN W S S P W A Y G AN G DGR T S A D e G SR S I G - i~ — - —---------.‘

¥ "#" denotes that the RE is increasing with @ncreas@ng k
"-n Jenotes that the RE is decreasing with increasing k

(2) The RE(P/L) is, 1in general, decreasing ¥ith the
group distance, A, if the covariance structure is unegual
and/or proportional. The RE{P/Q) is increasing with the
group distance if the sample size is not large relative to

the number of variables. {(See Table 14)
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TABLE 114

The Relation of the Finite Sample Relative Efficiency
to the Group Distaace

A . D A D W - S S A W A P S i W G S S G G CED S A S LA G e G e D b . T SR A W D MED e D S M W
-— e -

r
!

| Relation | 1 2 4 J
] | === T T T T T T T T ST TS TS s s e e e

i of* | Skewvwness :
J | k n 1 2 3 1 2 3 1 2 3 1
j=========- it !
{ | 2 15 - - + - - - - - -
| RE(P/L) | 30 0+ 0+ - - - - - - =
| | === T s T T T ST T T T TS T T T

| to A 1 & 15 - + - - - - - - - :
] I 30 + + = - - - - - =1
|=======—== P e T T T S T ST TS TS ST e ===
] { 2 15 - + + + + + + + + |
| RE(B\Q) | 30 - -+ R -+ 4y
l | T s ST ST ST T T T T S ST T TS T T T T

| to A | 4 15 + + + + + + + + + ;
i ] 30 - + + - - + - + +
lem e e e c— e — e m - ————————————————— = m—— == = =]
*

"s+n denotes that the RE is increasing with increasing A
n-n denotes that the RE is decreasing with increasing A

(3) The RE(P/L) is increasing with the sample size, n,
if the coefficient of proportionality is close to unity.
The RE{P/Q) is decreasing with the sample size if the
covariance structure is nonproportional and highly skewed.

{(See Table 15)
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TABLE 15

The Relation of the Finite Sample Relative Efficiency
to the Sample Size

r
} _ ] Proportionality d ;
] Relation | 1 2 4 }
| |==— e e

} ofx | Skewness i
| ] X A 1 2 3 1 2 3 1 2 3}
j=—m————— MOttt bt B it |
} | 2 1 - + + + + + + + + ]
| RE(P/L) ] 4 + + - + + + + + + ]
| | === e e e -

| to n ] 4 1 - + - + + + + + + :
] ] 4 + + » + + + + + + |
e ittt ettt |
| ] 2 1 + + - + - - - - - |
i RE(P/Q) 1 4 - + - + - - - - -1
| | === s s s s e e

] ton | 4 1 + - - + o+ - +t - - ;
1 | 6 - - - - - === =]

* n4n denotes that the RE is increasing with iacreasing n
"-1" denotes that the RE is decreasing with increasing n

(4) The BRE{P/L) is increasing with the coefficient of
proportionality, d, in all cases examined. The relationship
between the RE(P/Q) and 4 1is vague. However, when the
covariance structure is highly skewed, the RE(P/Q) seems to
be decreasing (increasing) with d if the number of variables
is small (large). (See Table 16)

{(5) The RE(P/L) is decreasing with the skewness, s, if
d is not near one andsor the sample size is pot small
relative to the number of variables. The RE(P/Q) is
decreasing with s if the group distaace is not large

relative to the covariance structure. (See Table 17)
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However, the combined effects of kX, A, n, 4, and s are

complex and interrelated. A simple conclusion about these

effects cannot be dravan.

TABLE 16

The Relation of the Finite Sample Relative Efficiency
to the Coefficient of Proportiomality

3
| Relation ] Skewness |
| | !
] of* 1 k A n 1 2 3 ]
| Bttt abetedeiedeteebeint b S intnintatetb etk bbbt abeletaiadet et bt
| { 1 15 + + + |
) i 30 + + + ]
i I 2 e e e — e —— ===
| ] 4 15 + + + !
i | 30 + + + i
| RE(P/L) to d {-=-———————-———c-—-—-- - —scm——s——————— - |
i ] 1 15 + + + i
H | 30 + + + I
] ] 4 s s s s sses s s |
! 1 4 15 + + + i
| ] 30 + + + i
jom——m—mm e e e m s s mm e ms s —m s — s ———m e |
] i 1 15 \') - - i
! ] 30 - - - 1
| ] 2 2 =mmmmemm—es———ms oo —sos—sssss !
| ] 4 15 + v - i
] ] 30 A y v :
RE (P £o @ |-—-=-=m==——mme—— s e—m—e————————-——e———————-
: (F/0) | 1 15 + + + i
| i 30 A A + |
{ ] U ————— e m e — e — e —m e ————— e —=—]
] ] 4 15 + - A ]
] l 30 v v + i
i o o o e e e A — " = > S S T — ——— = 2% S e J

* nen Jenotes that the RE is increasing with increasing d
n-n denotes that the RE is decreasing with increasing d
"A" Jenotes that the BE goes up and then down with d
nyn 3denotes that the BRE goes down and then up with d
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TABLE 17

The Relation of the Finite Sample Relative Efficiency
to the Skewness

F 1
i Relation | Proportionality d ]
] | i
] of* I k A 1 2 4 ]
et it |
| ] 1 15 A + - |
| i 30 + - - i
| i 2 D ettt |
] ] 4 15 + - A l
| ! 30 A - - 1
| RE{P/L) t0 § |-—————————m e e ]
i | 1 15 v - - {
} ] 30 + - - }
i ! 4 e kbbbt bttt |
| i 4 15 A A - |
{ ! 30 A - - i
|=————mmmm P e e S eSS e eSS Sm eSS TS ]
| | 1 15 - - - {
i ] 30 - - - {
| oo —sosTs s ——————=——se-= i
] ] 4 15 - - - |
| | 30 A - - i
{ RE(P/Q) tO0 § |===—===———————=-s—————-—-—o-oosssss———oses |
| | 1 15 - - - !
] { 30 - - - }
! | 4 e g |
] ] 4 15 A - - ]
i | 30 - - - ]
L

b 3

wsn denotes that the RE is increasing with increas@ng s
n-n Jenotes that the RE is decreasing with increasing s
na% denotes that the RE goes up and then down u%th S
wyn jenotes that the RE goes down and then up with s

3.5 Assumptions and Limitations

Assumptions are necessary in research to reduce the
complexity of the probleas encountered and thus enable the
research to be carried out. Limitations are always incurred

by those assumptions which, in turn, cause a loss of

generality.
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The main assumptions upon which this reseacrch rests are

listed below under three categories.

(1)
(1)

(i1)

(2)
(1)

(i1)

{1ii)

(3)
(1)

(ii)

(iii)

(iv)

Initial assumptionms:

There are only two populations from which the
observed sample vectors coae.
The costs of misclassification are all egqual to

one, i.e., C(1}2)=C{2] 1) =1.

Distributional assumptioas:

The distributions of the two populations are
multivariate normal.

The a_priori probabilities, p1 and p2, are known
and equal in the simulation study, i.e.,
pl=p2=1/2. -

The mean vector of population one contains egual

elements in the simulation study.

Sampling assuaptioas:

The sample vectors are independent, identically
distributed, and conditional on the population.
The sample sizes are egual, i.e., nl=n2.

It is known fror which population a sample
vector comes, i.e., every sample vector 1is
initially correctly classified.

There are no missing values within any observed

sample vector.

The limitations of this study are stated as follows:
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(1) The aforementioned assumptions are made for the
sake of research tractability. The two initial assumptions

and the assumptions of equal a_priori probabilities and

equal-element mean vector can bDe Telaxed with 1little
additional effort required to demonstrate the applicability
of this study. However, the violation of the other
assumptions may cause the modification of the proposed study
to be an arduous and elusive work.

{2) The performance of a discriminant function depends
on the values of the underlyiny parameters, thus the regions
dominated by the PQDF in the parameter space depend on the
points or intervals of the parameters. In the simulaticn
study, the parameters under consideration are: the number of
variables k, the Mahalanobis's distance between the two mean
vectors A, the training sample size n (ni=n2=n), the
coefficient of proportionality d, and the skewness of the
second population covariance. Other parameters, such as

a_priori probability pi (i1=1,2), the ratio of the

misclassification costs C{112)/C(2}1), etc., which may have
some effects on the performance of the discriminant
functions under study are assumed constant. The effects of
these latter parameters remain uaknown throughout the entire
research.

(3) The boundaries of the regions dominated
differently by the LDF, QDF and the PQODF were found to be

ambiguous. Many researchers have made every effort to find
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clear-cut boundaries for regions of the LDF and QDF without
any success. This drawback, which may be attributed to the

increased complexity of the combined parameter effects,

cannot be rectified by this research.



Chapter 1V

AN APPLICATION

In order to demonstrate the applicability of this
research, an analysis of the pre-admission and acadenmic
achievement data of the medical doctoral program at Texas
Tech University Health Sciences Center was conducted.

The data provided in Appendix H contains 130 sasmple
points of medical studenté who will graduate in 1982 and
1983. Each sample observation was characterized by five
numerical measurements: BCPM, OTHER, MCATBIO, MCATAVGV and

CUMAVGE. These five variables are defined as follows:

BCPHM = Weighted average of the course grades of
Biology, Chemistry, Physics, and
Mathematics,

weighted average of all the course grades

OTHER
other than the BCPHM,

MCATBIO = Score of the Biology section in the Medical
College Admission Test (HCAT),

MCATALVG = Average score of all the section tests in
the MCAT,

CUMAVG = Cumulative grade poiat average of the
student's first four semesters at Texas

Tech University Health Sciences Center.

121
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The objective of the following analysis is to develop
the best discriminaant function (DF) so as to classify these
students into two groups: high-performance and
low-performance. This estimated DF can then be used as the
future admission criterion.

The performance of each student was measured by the
CUMAVG. The cutoff point was set to be CUMAVG=81.78 so as
to divide students into two groups of equal sample sizes.
Students who have CUMAVG<81.78 were assigned to group 1,
otherwise, to group 2. Three discriminant functions, the
LDF, PQDF, and the QDF, were then derived using the

variables BCPM, OTHER, MCATBIO, and MCATAVG. The a priori

probabilities were assumed to be equal. Both the apparent
error rates and the almost unbiased estimate of expected
actual error rates given by the U-method were calculated.
Some resulting statistics of this analysis are presented in
Table 18.

Without knowing the resulting error rates, one might
foresee the performance of the three DF's by examining
Tables 10 and 12, and Figures 22 through 37. In this case,
the number of variables and the training sample size are
large, the computed distance is small, and the estimated
coefficient of proportiomality is less thaa one. Since it
is invariant in terms of error rates to treat d as d-!, the
estimated d can pe set to (0.700073)-1=1.4284 here. It can

be seen from Table 10 that the PQDF, under these conditions,
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TABLE 18

An Application of the Three Discriminant Functions
To Medical School Data (Four-variate)

o T T T TTTT T
1 % Error Rates { Other Statistics |

———— e e — e ———————]
] DF | Apparent § Error Rate |JD=DELTAH = 0.524671]
| JError Rate|from U-method|,. !
==t t-————e——e———-1d=ALPHAH = 0.700073]
JLDF | .384615 | .415385 } i
jm——t—————————- e bt b {P(L/P) = 0.005850 |
{PQDF] .361538 | .392308 | |
j~———t e —————— tm——————————— {P{(P/Q) = 0.194534 |
JODF | .384615 | .446154 ) ]
fr e e e i e - s > = - ——— > = s S o e o e o ]

outperforrs the LDF and the QDF in at least 52% (104/200) of
the cases studied when d>1. Further, referring to Table 12
and Figures 24, 28, 32, ai& 36, it can be found that the
PQDF has, in general, RE(P/L)>1.0 and RE (P/Q)>1.0 regardless
the skevness.

The computed error rates showed that the PODF 1is the
best DF since it gives the lowest apparent error rate and
estimated expected actual error. This finding 1is in
agreement with the previous prediction. Ta2 conclusions
drawn from the GLR tests also indicate that the PCS 1is the
domipnant covariance structure. However, the p-values of the
GLR tests for LCS vs. PCS and PCS vs. QCS were found to be
unreliaple measures of the degree of proportionality im the
simulation study. Thus, based upon only the two p-values,

it cannot be absolutely certain that the  PQODF will

outperform the others. However, these GLR tests show that
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the covariance structure is not the LCS but thas PCS and thus
they improve the accuracy of the above prediction.
Furthermore, the two most significant variables, BCPM
and MCATBIO, vere retained based upon the P-criterion {(Dixon
1970, 1975, Nie, et al. 1975). A discriminant analysis
using these tvo variables was then performed. It was found
that the estimated PQDF remains the best estimated DF among
the three according to the computed error rates exhibited in

Table 19.

TABLE 19

An Application of the Three Discriminant FPunctions
To Medical School Data (Two-variate)

3
{ ] Error Ratesx | Other Statistics |
H I--—-——— e b - -
} DF | Apparent | Error Rate |D=DELTAH = 0.471526]}
b JError Ratelfrom U-methodj. |
|————#-mm—m—— e - ——————eee—e--|d=ALPHAH = 0.835062]
JLDF | .376923 | 4392308 H ]
| —==——#—— e eee—e—$mm———c—————=——|P(L/P) = 0.304811 |
{PODF| .346154 | .361538 } 1
===t em === (P {P/Q) = 0.913599 j
JQDF | .366231 1 .407692 | |
L e e e o e e e s e e o ———— — — ——————— J

* Only BCPM and MCATIBIO were used as the
discriminating variables

The conclusion of this amalysis is that the PQDP is the
best discriminant function for this particular data set in
terms of the error rate given by the U-aethod. This

demonstration also shows the usefulness of tae guidelines
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provided by this research for Predicting the best

discriminant function.



Chapter Vv

SUMBMARY, CONCLUSIONS, AND RECOBMENDATIONS

5.1 Summary and Conclusioas

The purpose of this research is to examine the
proportional quadratic discriminant function (PQDF) and to
compare its performance with those of the linear
discriminant function (LDF) and the gquadratic discriainant
function (QDF). The belief was verified that high
dimensionality will increase the efficiency of the P(UDF over
the QDF and enable it to outperform the LDF and the QDF when
the population parameters must be estimated.

The design of this research was divided into two parts:
the analytic method and the simulation stuady. The amalytic
method used tke ma Ximum likelihood procedure and
Newton—-Raphson method to estimate d. The asymptotic error
rates (AERR) of the estimated LDF, QDF, and PQDF were
calculated in two-variate linmear or proportional covariance
structures (LCS or PCS). Then, the performances of the
estimated PQDF relative to the estimated LDF and (QDF were

compared using the asymptotic relative efficiency (ARE). It

was shown that:
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(2)

(3)

(4)

(3

(6)
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For the LCS, the ARE({P/L) and ARE {Q/P) are

decreasing functions of the group distance (A)
for A 24 (see Figures 8 through 11 in Appendix E).
For the PCS, the ARE(Q/P) is a decreasing function
of A 1if pi=p2=0.5 and A2 4 (see Pigure 13 in
Appendix E).

The regions of the 1largest ARE{P/L) and ARE (Q/P)
are all delimited by 2< A< 4 for both covariance
structures.

The ARE(P/L) and the ARE{Q/P) are always less than
one for both structures.

For equal a priori probabilities and 2$A <4, the

ARE (Q/P) with the PCS is a decreasing function of
d.
When k=1 and A =2, the ARE{(P/L) and ARE(Q/P) is

1. 0.

The simulation study used k=2,4, nl1=n2=15,30, A=1,4,

d=1,2,4, and skewness=1,2,3 as the values of the parameters.

Estimated actual error rates (ACTERR) were computed using

500 sample observations. Expected values of estimated

ACTERR

vere calculated using the average of 200

replications. Two generalized likelihood ratio tests (LCS

vs. PCS, and PCS vs. QCS) were conducted so as to obtain the

p-value for both tests. The PQDF was found to outperform

both the LDF and the QDF, according to Table 12, vwhen k=4

and d#1.

This finding suggests that the PQDF is superior to
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the QDF if the number of discriminating variables to be used
is not small relative to the sample size. However, the LDF
performed better than the PQDF in all cases when d=1. This
result suggests that if the estimated coefficient of

proportionality is near one, the LDP should be used rather

than the PQDF.

5.2 Recommendations

This research has investigated the properties and
performance of the PQDF relative to the LDF and the QDF.
The estimated PQDF was found to be a very useful DF since it
outperforms the estimated QDF with finite sample sizes under
Brany circuastances. -

In practice, the population parameters are usually
gonknown and thus anrn estimated DP must be used. The findings
aforementioned suggest that the PQDF should be considered as
an alternmative to the QDF when the population dispersions
are fouid to be unegual.

Finally, the recomnmendations from this research are
stated as follows:

(1) With high dimensionality, the difference in the
performance of the PQDF and the QDF will be substantial if
the training sample size 1is small. Unless the training
sample is sufficiently large, the PQDF should wusually ke
chosen when the population dispersions are unegual and the

number of variables is large {k2%4).
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(2) 1Increasing the training sample size or the group
distance improves the performance of any one of the three
discriminant functions discussed in this research. The
relative efficieacy of the PODF to the LDF and the QLF
relative to the PQDF will increase {decrease) along with
increasing samgle size (group distance) when the covariance
structure is nonproportional and highly skewed. In other
words, the performance of the PQDF (QDF) improves faster
than that of the LDF (PQDF) with the sample size but slower
with the group distance. The rates of change of an
estimated DF's performance relative to the training sample
size and the group distance should be investigated.

(3) It is recommended -to practitioners that a method
that gives an unbiased estimate of the expected actual error
rate such as the U method should always be used. In this
research, it was found that the QDF often gives a lower
expected apparent error rate than the LDF and the PQDF since
the apparent error rate is a biased estimate. This means
that the QDF often fits the sample data better than the LDF
and PQDF.

{8) Simple conclusions cannot be drawn about the
relationship between the relative efficiency of the PQDF to
the ODF and the coefficient of proportionality d. This
fiading confirms the result of the generalized likelihood
ratio test which showed that the p-value of the test of the

PCS vs. the QCS is not a good indicator of the relative
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efficiency. Thus, the relation of the p-value to the
covariance structure (d and skewness) should be further
explored. Nevertheless, this research provides useful

guidelines for practitioners in selecting the best estimated
DF according to the number of variables, the traianiang sample

size, the group distance, and the covariance structure.
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APPERDIX A

Glossary of Teras

Ternm

(Xiji-Xi) (Xij-Xi)°
1

-
19
i

it VI

A?= (ul-ug) 'V-1(ul-u2)

D2= (X1-X2)*S-1(X1-X2)

Definition

Coefficient of Proportionality,
Number of populatioas,

Numper of variables,

Wilk's Lambda measure,

Natural logarithn,

Sample size from population i,

Training sample size for all
populations (nl=n2=...=ng=n),

Skewness parameter of a
covariance structure,

k X 1 random vector element,

K X 1 randor vector element
from population i,

Population i,
k X 1 mean vector in TT3i,
k X 1 sample mean vector im 7Jli,
k X k cross-product matrix of
X in TTi,
Xk X k covariance matrix in T7i,

k X k sample covariance matrix

in TJ1i,
Coefficient of correlation,

Mahalanobis's A2 distance
(parameters Xknown),

Mahalanobis's D2 distance
{parameters unknowa),
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Dt (X) Optimal discriminant function or
Score (parameters knowa),

Ds (X) Sample discriminant function or
score (parameters uoknown),

Lt (X) {X-1/2 (ul+u2)}*'v-1(al-u2)=
Optimal linear discriminant
function or score
(parameters know¥n),

Ls (X) {X-1/2 (X1+X2)} *s-1(X1-X2)=
Sample 1linear discriminant
function or score
{parameters unknown),

P {X) Proportional guadratic
discrimrinant function or score,

Q (X) Quadratic discriminant fuanction
or score,

Bi Coefficient of a discriminant
function,

Vx Vector partial differential
operator with respect to X,

iVxj2 Sum of squared elements in
vector Vi,

pi A_priori probability that an
observation comes from TJ]i,

Ri The region of the random
vectors assigned to TTi,

f(X]1) Density function of X in TT3i,

r{j) Expected cost of misclassifying
an observation from T73],

C(1i3) Cost of misclassifyimg an .
observation from T7j imto TT1i,

P (3j) probability of misclassifying
an observation from TTi,

P(i]3) Probapility of misclassifying
an observation from TT]
into TIJi,

P1(Dt) optimal error rate,



P2 (Ds)
P3 (Ds)
P4 (D)

P35 (Ds)

P6 (Ds)

N{u,V)

X2 (k)

X*2 (k)

W(k,V)
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Estimated actual error rate,
Actual error rate,
Expected actual error rate,

Expected value of estimated
actual error rate,

Apparent error rate,

Cumulative normal distribution
function with mean vector u
and covariance matrix Vv,

Cumulative standard normal
distribution function,

Chi-square distribution function
with k degrees of freedon,

Non-central chi-square
distribution function with
k degrees of freedoa,

Wishart distribution function
with k degrees of freedoan
and covariance matrix VY,
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APPENDIX B

The Variance Hatrix of the Coefficients of the PQDF
with Proportional Covariance Structure

Consider the two-variate normal case, 1let ux{1) and

ux {2) be the means of variable 1 and 2 in population 1,

uy {1) and uy (2) be the two nmeans in population 2,
[V(11), V(12)]

d be the coefficient of proportionality, V = Lv(21), V(22)4,

and W = Det (V) = V(11)V{22) - V(12)V(21). The likelihood

function of the sample with known parameters 1is given by
(B-1) L(ux(1),ux(2),uy(1),uy(2),v{1Y),V(12),V(22),4)

nl -2n1/2 -nl/2
pl  (27T7) AL

nil
-1/2 { 2 (Xi- ul)*'¥-1 (Xi- ul)}
e e i=1

n2 -2n2/2 -n2/2
e p2 (211 jav]

n2
-1/2 {3 (Xj- u2)*'(dv)-1(Xj- u2)}
e e j=1

nl n2 -(nl+n2) - {nl+n2)/2 -nZ2
= pl p2 (2T1) 1V} d

nl
-1,2 [ S (Xi- ul)'V-1(Xi- ul)}
s e i=1

n2
172 (172 S (X3 u2) *V-1(Xi- u2)}-
. e j=1
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W{(l1l), W (12)
Let V-1 = [ W{21), W (22) ], then

(B-2) L(ux(1),ux{2),uy (1) ,uy(2),v(11),V(12),v(22),4)

nl n2 -(nl+n2) -n2
= Bl p2 (2T d
-{(nl+n2) /2
o (W)
Dl X1-ux (1) '¢W(11) W{12)4 ,X1-ux(1)
-172 ¢ ¥ Gkz-ux )] Goan wiez)d Gxz-ux(2)]
e e i=1
N2 eY2-uy{2)7'¢W(11) ¥H(12) Y2-uy(2)
+ {174 Sp[yg-ux(z)] [w(21) a(zz)][zg—uz(z)]}.
j=1

The log likelihood function can be written as

(B.3) 1log L = 21 log pl + n2 log p2
- {(n1+n2) log 27T - n2 log d

- {(nl+n2) /2 log (%)

n1
ST L(x1-ux (1) )2W(11) +(X2-ux(2))2¥(22)
1i=1

N | -

+ 2(X1-ux(1)) (X2-ux(2))¥(12)}

2d =1

1 n2
S [{¥l-uy{1))2W{11) +(¥2-uy (2))2¥(22)

+ 2(Y3-uy (1)) (Y2-uy(2))¥(12)}-

Since

W({l11l) = V(22) -1,
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W{22) = v(11)u-2,
W({12) = W(21) = -2 V(12) N-1
= -2 V(21) w-1,
therefore,

{B-4) 1log 1 nl log pl + n2 log p2
= (ni+n2) log 27T - n2 log 4

= (nl+n2) /2 log W

1 n1
- - {({X1-ux(1))2v(22)w-1
2 1i=1
+(X2-ux {2)) 2V (11) §-2
+ 2{X3-ux{1)) (X2-ux{2))
°(~2) V(12)¥-1}
1 n2
- — 2 {(Y1-uy{1))2av{22) u-1
2d j=1

+{¥2-uy(2))2v(11) w-1
t 2(Y1l-uy(1)) (Y2-uy(2))
»{-2)V(12) -1} .

After partially differentiating the 1log 1likelihood
function, one has the following results which had been
simplified by using the setup conditions in the PCS, i.e.,
N((45/q71377§,0)',1) in population 1 and N((0,0)°?,dI) in
population 2.

02log L n1 n2 nlp22 +n2p12

(.5) ——m— = - - = - .
opl2 plz  (1-pl1)2 pl2p22




(B.5)

(B-7)

(B-8)

(B.9)

(B. 10)

(B. 11)
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d02log L

S0z (1) 2 nl wW(11) ,
2.4

02log L

dux (2) 2 1w

02log L n2
- =- — ") ,
duy (1) 2

(=]

02log L
—_— w{22) ,

'b
(=TI | §)

duy (2) 2

d2log L (nl+nl) V(22)2

ov{11)2 2 W2

nl n2
- {2 (X1-ux(1))2 + 142 3 (¥l-uy(1))2}

i=1 j=1

oV (22) 3W-3

nl 7 n2
+2{_S:(X1-uz(1))(Xz-u;(2))+; ,S:(u-ux(mu;-uuzm

1= 3=

eV (12) V(22)2W-3

ni n2
- {3 (X2-ux(2))2 + 1/a X (¥2-uy(2))2}
i=1 j=1

oV {12) V{21)V (22) W-3 ,

d2log 1L -(nl+n1) V(12)V(22)

ovV(11)0V(12) W2

nil n2
20 ST (X3-ux(1))2 + 1,4 D (Y1-uy(1))2}
i=1 j=1
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oV (12)V(22)24-3

nl 1 n2
- {_2:(111-11;(1))(xz-uz(2)>+- 2 (Yi-uy (1)) (Y2-uy(2))}
i= da j=1

e (3V (12)2+¢V(11) V(22))V{22) ¥-3

2
1(Yz-uz(Z))z}

nl
+ {2 (X2-ux(2))z + 174

n
i=1 J=

oV {12) (V(11)V(22)+V(12)2) W-3 ,

02log 1L (ni+nl) V(12) V(21)
(B. 12) =
ov{(11) oV (22) 2 W2

n1 n2
- (S (x1-ux(M)2 + 1,4 > (Y1-uy(1))2}
i=1 - §=1

oV (22) V(12) 2H-3

nl 1 n2
+ {3 (X1-ux(1)) {X2-ux(2))+- (Yi-uy (1)) (¥2-uy(2))}
i=1 a j=1

oV (12) {V(11) V(22)+V(12)2) ¥-3

2
(¥2-uy(2)) 2}

n
=1

nl
- (S (x2-ux(2))2 + 174
i= 1 j

oV {11) V({12}V (21) ¥-3 ,

02log L (n1+n1) (V(11)V(22)+V(12) V(27))

(B« 13) —m— =
ov{12)2 W2
nit n2
- (ST (x1ux()2 + 174 X (¥Y1-uy(1))?}
i=1 j=1

oV {22) (V(11)V(22)+3V{(12) 2)u-3
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n 1 1 n2
+2( ZZ(XA-u;(m (X2-ux(2))+- 2 (Y1-uy(1)) (¥2-uy(2))}
i= d j=1

oV (12) (V{12)2+3V (11) V{22)) ¥-3

nl n2
- {2 (X2-ux(2))2 + 178 3 (¥2-uy(2))?2}
i=1 =1

oV (11) (V(11)V(22)+3V(12)2) -3 ,

02log L -(n1+n1) V(1) V{12)
(B. 14) =
ov{12) 0V (22) W2
ni n2
+ { S (x1-ux(N)2 + 14 > (Y1-uy(1))2}
i=1 j=1
oV (12) (V(11)V{22)+V(12)2) W-3
n1 1 n2
- ¢ ST (x1-ux (1)) (X2-ux(2) ) +- 2 (Yi-uy(1)) (Y2-uy(2))}
i=1 a j=1
e (3V(12)2+4V(11)V(22))V(11) ¥-3
ni n2
+2( S (x2-ux(2))2 + 178 2 (12-uy(2))2}
i=1 =1

oV (11)2V{12)¥-3 ,

82109 L (ﬂl#ﬁ_l)V(11)2

{B.15) — =
ov{22)2 2 W2
nl n2
- (ST (x1mux(M)2 + 1,4 2 (¥1-uy(1))2)}
i=1 §=1

oV (11)V(12)2W-3
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nl 1 n2
+2{_Z:<X1—uz(1))(xz-u_x<2n+- 2 (11-uy(1)) (12-uy(2))}
i= d j=1
eV (11)2V(12) -3
n 1 n2
- I.E';(Xg'us(Z))z + 1738 2 (¥2-uy(2))2)
i= j=1

oV (11) 3y-3 ,

02log 1 1
(B~ 16) =
dvV(11) dd 242 w2

n2
{ - (2 (¥l-uy(1))2 } ev{22)2
j=1

n2 -

+2 {_S:(Yl-ul(l)) (Y2-uy(2))} «v(12)v(22)
J:

n2 ,
- {_2:112-111(2))2} *V(12)V(21) } ,
j:

d2log 1 1

L

{B. 17) =
oV (12) 0d 42 w2

n2
{ {2 (Yl-uy(1))2} »v(12)Vv{22)
i=1
n2
- {2 (Yi-uy (1)) (¥2-uy (2))}
j=1
'(V(11)V(22)+V(12)2)
nz

+ (2 (Y2-uy{2))2} eV(11)V(12) } ,
j=1
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d02log 1 1
(B. 18) = .
ov(22) 9d 242 w2

n2
{ - {_EZ(YJ-HZ(1))2} *V(12)V(21)
J:

n2

+2 {_ZZ(YJ-UI(1))(12-01(2))} *V(11)V(12)
J:

n2
- {.EZ(Yz-UX(Z))Z} V(12 3} ,
3:

d2log L  n2 1
{B. 19) = - .
ddz2 dz 33 «

n2
{_EZ(YJ-uz(w))z } eV (22)
]:

~

n2
-2 I_EZ(Y1°HI(1))(Yz-ux(Z))} *V(12)
J::

n2
+ [ 2 (¥2-uy(2))2} ev(11) } .

3=1
The results of the above second partial
differentiations are then evaluated at the point where the
estimated parameters equal their corresponding true

parameters. One thus has

2log L nlp22 +n2pl2
(B.20) ———-———]. = - ;
oplz de=e p12p22




1€3

{azlog L
dux (1) 24e=9

= =l wW(11) ,
d2log L
(B~ 22) [———ja = - 81 W(22) ,
Jux(2) 246=06
rd2log I, n2
{B.23) = Q = - — W{(11) ,
Lduy (1) 248=0 a
Zlog ng
(B.24) j = - — W{22) ,
duy(2) 2d8=6 a
d2log :] - (nl+nl1)v(22) 2
(B-ZS) [———— " =
av (11) 2 W2
- {(n1+n2)V(11)} eV{22)3§-3
+2{(n1+n2)V(12)} eV{12)V(22)2§-3
- {(n1+n2) V(22)} *V(12)V(21)V(22) -3 ,
02log L -(a1+n ) V{12)V(22)
(B. 26) [ ] -
ov(11) ov(12)de=e W2
+2{(n1+n2)V(11)} =V (12) V{22)24-3
- {{(n1+n2)V(12)} *(3V(12)2+V(11)V(22))V(22)¥-3
+ {((n1+n2)V(22)} *V(12) (V(11)V(22)+V(12)2)®-3 ,
02log L (n1+n1)V (12)V (21)
(B. 27) [ ] -
ov (11) OV (22) 8 2 W2

- {((n1+n2)V(11)} eV (22)V{(12)2u-3



+ {(m1+n2)V(12)] eV (12) (V(11) V(22)+V{12)2) §-3

- {(n1+n2)V{22)} V{11 V(12)V (21) w-3 ,

02 log :] (n1+n1) (V(11)V(22) +V(12)V(21))
(B« 28) {——————-—

ov (12) W2

= {(ni+n2)V(11)} eV{22) {(V{11) V(22)+3V (12)2)§-3

+$2{(n1+n2)V(12)} eV{12) (V{12)2+3V(11)V{22))W-3

= {{(0l+n2)V(22)] oV{(11) (V{11) V(22)+3V (12)2)¥4H-3

d2log L -{nl1+n])V(11)V(12)
(B 29) [ }a

av (12) 0V (22) We

+ {(1+n2)V (1) ] oV (12) (V(11) V(22)+V(12)2) W3

- {((n1+02)V(12)} o(3V{(12)2+V(11)V{22))V(11) ¥-3

+2{(n1+n2)V (22)} »V(11)2V(12) W-3 ,

2]log (ni+nl)VvV(11) 2
{B.30) :] =
dvV {22) 24 =86 2 w2

- {(n1+n2)V(11)} *V{11)V(12)2%-3

#2[(01402)V{12)} *V(11)2V(12) -3

- {{n1+n2)V(22)} V(11 3W-3 ,

d2log L 1
(B.31) {a ]a - .
V{11) ddle=e 242 W2

{ - (2 dv(11)} <V (22)2
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+2 {02 AV(12)} eV (12)V(22)

- {n2 AV(22)} «V(12)v{(21)}

7

d2log L 1

(B.32) [ ]. -
oV (12) ddde=s dz w2

{ {02 dav(11)} ev(12)Vv(22)
= {02 dV{12)} & {V(11)V(22)+V(12) 2)
* o {n2 AV(22)} eVv(1YV(12) } ,

d2log L 1

(B.33) [

oV (22) ad]3=e B 2d2 §2
{ = (02 aV{11)} eV(12)V (27

+2 (02 AV{12)} eV {11)V{12)

- 2 av(22)} ev(11)2 3 ,

d2log I] n2 1

6= az a3 W
{ {n2 dV{11)} eV{22)
-2 {n2 av{12)} v({12)
+ (n2 dV(22)} ev{11) } .

Substituting ux (1) =Av{1+d) /2, ux {2)=uy (1) =uy (2)=0,
V{11)=v(22)=1, V(12)=V(21)=0, and W=1 into Eguations (B.20)

through (B.34) yields the following results.



[ azlog L

ovV{11) 9V(12)

[ azlog L

av{11) Ov({22)

d02log z]
[av (12) 2l o=0

02log L
[BV(12) oV {22)

d2log L
[aV(zz)z]Sce

]
9=08

]
0=8

-{ni+n2) ,

]
=06

n1p2? +n2pl2

pl2p22

a R

lb
(~ T I [ )

(nl+¢n2)

]
o

’

]
Q
-

=0,

—{nl+n2)

2
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d2log L -n2
[AV(H) ad]3=e ) 24 ’
[ d2loq9 1L
" =0,
av{(12) ad]e=e

[ d2log L

v (22) ad]e';:e 24

2log L -n2
—], ==,
d0dz2 0=6 d2

Following Layard's (1972) Theorea (1.3) and Efron's
(1975) Lemma {2), the joint 1limiting covariance matrix of
[ " n " [ o " [ N [ ) [

(pl,ux (1) ,ux (2),uy (1) ,uy(2),V(11),V(12),V(22),4) can be
found by multiplying the above equations with - {(nl#n2)-1,
evaluating them at nl/(nl¢n2)=pl and n2/(nl+n2)=p2, and then
taking inverse of the matrix. The resulting covariance

matrix of the estimated parameters is given below:

{B.35) V{8)=V{pl,ux{1) ,ux{2),uy(1) AY(2) ,V{11),v{12),V{22),4)

plp2 0 O 0 O 0 0 0 0
0o i/p1 0 0 O 0 0 o0 0
0O ©01/p1 0 O 0 0 © 0
= | 0 0 0 d/p2 O 0 0 0 0
o o0 0 0d/p2 0 0 0 0
0 0 0 0 0 (1+p1/pl1 0 p2/p1 -d/p1
o o0 O 0 © 0 1 0 0
6 0o o0 o0 0 p2/pl 0 (1+pl)/pl -d/pl
. 0 o0 o0 0 O -d/p1 0 -d/pi d2/pip2i.
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The procedure of finding M matrix in Equation (3.8) of
Efron's (1975) Lemma (2) is demonstrated belou.

The optimal discriminant function with two-variate PCS
is given by

(B.36) Dt(X)= B +B X +B X +B X X +B X2 +B xz2 ,
0 11 2 2 3 12 4 1 5 2

where

0 1 2
1 1 1
-/ {2 (1) =/u2 (1)) V(22)W-1+(u2 (2)-/u2(2)) V(17 w-1
2 x d vy X dy

1
-2(u {HYu (2)-/u (Yu (2))V(12)8-1},
X X dy Y

1 1
B= {u (1)-/u (1N}V(22)u-1-fu (2)-/u (2} V(12) -1,
1 X d y X d y
1 1
B = {u {2)-ru (2}V(1yH¥-1-{u (H-s/u (H}V(2) -1,
2 X dy b 4 dy

1
B = (‘]— ‘)V(12) i-1,
3 d

1 1

- {(1- =)V {(22)%-2,
4 2 d
1

1
- (1- =)V {(11) %=1,
5 2 d



wvhere W=V (11)V(22)-v(12)Vv(21).

After partially differentiating B0,

B1,

respect to pi1, ux(1), ux(2), uy (1), uy(2),

V(22), and 4, one has

165

e maeay, Bé Hith

vi(1y, v(12),

0B0 JBO0 3B 90 30 3B0 3B
19p1 dux (1) Jux(2) ST dV(11) 3v(12) 3V {22) 34
o1 dp1 oB1 981 dg1 o1 o1
dpl Jdux (1) dux(2) ST dV(11) 3v(12) 3Jv(22) dd
{B.37) m= | . . . . . . . -
dB5 OJB5 dB5 9B5 oS B>  OBS
13p1 Bux (1) aug(z)’; T T 3v(11) dv{12) 3v(22) da .

r 1 ux{1)V(22) ux(2)V(11) uy(1)V{22) uy{2)Vv{11)

|pip2 -W® -W dw aw
0 V{22)W-1 -V(12)W-1 -V (22)W-1/d V{12)W-1,/4
=] 0 =-v(12)8-1 V(11)¥-1 V(12)u-1/4 -V(11)W-1,4
0 0 0 0 0
0 0 0 0 0
L0 0 0 0 0

ux (1)2-uy{(2/4 ux(NHux({2)-uy(Nuy(2)/d

2V(22)-2¥2 (R+2V (12)V(21)) 1542

uy (1) /4 —ux(1) uy(2) /d -ux(2)

V(22)-24§2 (W+2V (12)2)-1§42

uy (2) /4 -ux(2) uy{1) /da -ux (1)

V(12)-2W2 (W#2V {12)2) -1W2



V(12)V{22)

(1/d =-1)-142

(1- 1/Q)V(22)2
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We2V(12)V(21)

(1-1/d) -1§2

(1

/8 -1)V(12)V(22)

2W2

(1- 174)v(12)2

(1

2

/a -1 V(1) V(12)

2%W2

(ux (2)2 -uy(2)2/4d)

2V(11)-1§2

{uy (1) /74 -ux(1)

(V(12)V (21))-1w2

uy (2)/d -ux(2)

V{(11) -2W2

(174 -1)V{11)7V(12)

1
/4
d

uy {

2

uy (1) 2V(22)+uy (2) 2V (11);

~-242¥%

1)V (22)

uy (

d2w

2)V(11)

d2w

V(1

2)

wa

{1- 1/8)V (12)V{21)

a2 W

-v{

22)

2¥2

{(1- 1/a)v(1y 2

22

where W= V{11)V(22)-V({12)V(21).

Substituting the parameter

242

..V(

242

va lues

W

11)

¥ J

into (B.37) yields the following H matrix.

with two-variate PCS
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1 -A/1+4d (1+4) 1 1
-_— - 0 0 0 0 0 -
plp2 2 4pN-2 d
=1 ~A/1+d
0 1 00— 0 — 0 0 0
(B-38) M= d 2

{ O 0 0O 0 0 0 1- - 0 0
« d
1 1 -1
0 0 0 0 0 -{1-,) 0 0 _
| 2 d 242
1 1 -1
0 0 0 0 O 0 0 -{1-/) — ]

- 2 a 242 4.

Once both V(8) and M matrices have been found, the
covariance matrix of the coefficients of an estimated P(CLF,
V(P), can be obtained immediately from the following
equation:

{(B.39) V(P)= V = M V(8) M
E

-V11 V12 V13 Vig V15 Vie6,

V21 V22 V23 V24 V25 V26

"
=
W
——t
<
W
(&
)
fw
i
<t
w
L
-l
w
U

V36

v

«3
&~
i
3
&
[\
«3
=
W
<3
&
&
-3
&
W

&
jor

3
(8
W

lvs1 vs2 v53 vss V56

8]

Lyl V62 Vb3 V64 Vb5 V654,

where



Vi

-3
I

«d
-t
N

-t
I

1]

(1+d)2 A *p2(1+p1)
16

2+

P1 A2
(P2+—) +—— (1+d) p2 (1+p1),
a 2

P1 Az
(p2+—) +—— (1+4d) p1p2,
a 2

1
P1P2(1‘ /)20
d

1 pl 1
V6 = - {(p2+—)+p1p2(1-/) 2},
4 dz d
-A3 1+4
val = (1+d) p2(1+p1) v
4 2
1 A2 pl pl
=V31 = - {——(1+4) p2 (1+pil- —)-(p2+—)},
2 & d d
1 A2 pl
Vel = = [—— (1+4d) p2-1} (p2+—),
2 4 d
_pZA 1+4d P_’_
V52 = (1+p1- —),
2 2 d
-p2A  [1+d 1
Ve2 = {(p2+—),

2 2 d
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1 14
V34 = vu3 = -p.lplﬂ-/)A/-—_—.
d 2
1 pl 1
V26 = VES = -{(p2+—)-p1p2(1-/) 2},
I az d

and the rest of the elements in V(P) are all egual to zero.
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APPENDIX C

Derivation of Asymptotic Error Rates
with Two-variate LCS and PCS

Following Theorem {1) of 0'Neill (1980) , the asymptotic

error rate of t is defined as:

{C.1) RERR(t) = lim E{n (ERR{t) -~ ERR(8))}
n

E{(z'"Bz) = tr{E(z'Bz2)}

= tr (B E(zz')} = tr(BV).

where z is distributed as N {0,V , and
k+1
]
{(C.2) B = - J‘ IV p(x,8) |-vV Dp(x,8) V'pD(X,9) £(X) dn ,
4 R p' 8 8 R

vhere m is a lebesgue measure on R and
R

(C.3) £(X)= p1 £(X]1)+ p2 £(X]2).

The derivation of the O!'Neill's B matrix in two-variate case

is shown as belovw.

{1) With Linear Covariance Structure (LCS) : The

optimal discriminant function with two-variate LCS can be

written as
(C.4) DE(X) =1L{X) = X'I-' {(A,0)' -2 {((A/0NI-1{(A.,0) "'}
+log(pl/p2)

= AX1-1/2 A2 #4,
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vhere A log {p1/p2). Ther O'Neill's B matrix using an

estimated LDF is given by

aad

{(C.5) B

e el

©V (P ¢B X 4B X )V (B +p X +B X )f(X)dnm
B 0O 11 22 B 0 11 22 R

)

1
f A“{xl](hx X ) {p £E(X]1)+p £(X]2)}dm
R X2 1 2 1 2 R

1
1 1 X1 X2 Pl ~/[(X -A)2+%X2 )}
Nl 2| i e 2
R

= ——- | |11 x12 xix2|{— e 1 2
4 12 X1X2 X22 217
B 1
p2 -/ (X2 +X2 )
¢ — e 2 1 2 }dm ,
271 R

where BR={X§Dt (X)=0}. Thus on the discriminant boundary
R={X]AX1-1/2 A2+#2=0}, the value of X1 is X1=A/2- X/A -

Substituting X1 into {C.5), one has

1 A R
1 1 X1 X2 pl ~=/{{— - — -A)2+X%}
(C.6) B = ——-\r {xl X12 x1xz]{—- e 2 2 A 2
L 4, ¥X LX2 X1X2 x22 27T
2
1 A 2
p2 =/{(=— - —)2+X2}d4dX .
+ — e 2 2 PAN 2 2
217
1 1T A R 1 A -k
1 1 -/%2 -/(—+—) 2 =/ (—+—)2
= — —ec 22 fpe 2 2A tpe2 2A } dx
A ¥ X 27T 1 2 2

2
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Thus, with some algebra, one has

1 A A X A 1 X1 X2
(C.7) B = — G(—+t—) (1 +e e ) [xl x12 xlxg]a(x )dx .
L 4A 2 A x Lx2 xi1x2 222 2 2

2

With X1 being constant, the value of the integral with
respect to X2 can be regarded as the expected value of the

3 X 3 cross-product nmatrix of X2 where X2 has a standard

normal distribution. Thus

1 (A 72-A/A) O
P1 A A
(Ca8) B = —— &(— +—) 1 {(A72-AA) (A/2-A/A)2 0

Los 24 0 0 1

Since the discriminant boundary of the estimated PQDF
vith LCS will converge asymptotically to R={I]A X1- 1/2 A2+
A=0}, the B matrice using estimated PQDF and LDF are

different only in the cross-product matrix of X2, i.e.,

A S R

P1. A A X1 X1
{C.9) B = ad(—+—) X2 X2 @{x )dx .
P 2A 2 A X X1X2 X1X2 2 2
2 X112 X312
Lx22 4 Lx22 U

The present problem is to compute the third and the
fourth moments for X2 which is a standard normal random
variable. Following Kendall and Stuart {(1977), the first
and the third moment are both zero, the second moament is

one, and the fourth moment is given by:



(C-10) M)

Thus, Equation (C.9) can be writtenp

E(X*)

177

1

22

as
¢ 1 xi 0 0 x3z 1 |
P1 A A |x1 x12 0 o0 x33 x1
(C.11) B = §(— +—)} 0 0 1x1 0 0O
P 2A 2 A0 0 x1x312 0 0
12 X13 0 0 X1 x32
L7 X1 0 0 x32 3.
where X1 = A/2 - A/A -
The B matrix using an estimated QDF, B , is identical
Q
to B .
|
Let B=B =B , the AERR(L), AERR(P), and AERR (Q) are then
P Q -
given by
(C-12) AERR(L) = tr(B Vv ),
L 1L
(C.13) AERR(P) = tr{BV ),
P
and
(C.14) AERR{(Q) =tr (BVY ),
Q
where V , V , and Y are the <covariance matrices of the
L P Q .
coefficients of the LDF, PQDF and the (QDF, respectively.

The procedure

Appendix B.

of deriving these matrices was discussed in
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(2) Witk Proportiomal Covariance Structure (PCS) : The

optimal discriminant boundary with the PCS is

(C.15) R = (XIDL(X)= BO+B1X1+B2X2+B3X1X2+P4X12¢B5%22=0}
= {XIDLt(X)= log d +X -A2(1+4d) /4 tAv{1+d) /2 X1
+{1-d)X12/24 +(1-4d) x12/24d =0}.
Thus

BO= 1log d +)x -A2(1+4) /4,

Bl= Av (1+d) /2,

Bi= B3= (1-4) /24,

and

()
X = [-B + /B?— 4p (B +B X2)} / 2B .
1 4 0 5 2 4

After substituting X1 into {C.15) and following the
previous procedure, the B matrix using an estimated PQDF is

then given by the following:

1 1 = 1 1 '
-1/2 X__ 4 Xl d
(C.16) B {{B *ZB X )2*(23 X )2} X2 X2
4 2 xixz| {x1x2
xl X12
X p .Xzz .

o {p £(X]1)+p £(X}|2)}dn .
1 2 R
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Let Xcp denote the cross-product matrix, then

]

(C.17) B = - f (B2-4B B ~4p B x2+upaye)
P 4 X 1 0 4 § 5 2 5 2
2

-1/2

* Xcpi{p £(X|1)+p f£f(Xj2)}ax
] 2 2

1 -1/2
= - J‘ ($2-48 B ) Xcp{p f£(X{1)+p £ (Xi2)}dx
sdx 1 o4 1 2 2
2

1 -1,2
= ;(Bz-ua B ) J\ Xcp{p f(XIW)+p £(X]2)}dx .
' X 1

0 4 2 2
2

Let C= $i12- 4BOB4, then -

(+)

1 -1/2 {(+) p1 -1,2{(X -B )2+x2}
(C.18) B = - ¢ Lr {Xcp {(— e 1 1 2+
P 4 X 277
2
1 (+)
p2 - — {{(X )2+X2}
e 2d 1 2}
21T d
(-)
(=) P1 -1/2{(X -B )2+X2}
+ Xgcp{— e 11 2 ¢
277
1 {-)
p2 - — {{(X )2#Xx2}
e 24 1 21}
277 a

(%) . . (1)
where Xcp is the Xcp resulted by substituting X1 into the

cross-product matrix.
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With some algebra, Equation {C.18) can be reduced to

the following:

-8 VC (1+42B )+
1 x

(C.19) B = —¢ Xcp {—e 1 4

p1 -1/2 (4) 1 -1,2(p2-2p p
{ J\ 0 4
P 2 X 271

2

2B2B (148 )}
14 4 }ax
2

{-) 1 -1/2{p2-28 B
+ J‘ Xcp {—e 1 0
X 217

+B /T {142 )+
1 x

4 y

2p23 (1+B )}
14 4 }adx j,
2

vhere

(C.20) C = Ba2-up (B +B X2) = C-4p B Xx2.
X 1 4 0 5 2 4 5 2

Thils eguation can be written alternatively as:

pl1 -1/2 Bi-dy Cx
(C.21) B = —C {Lf ve! &( ) &(X )ax
P 2 X 1-d 2 2

2

) &(X )dXx },
1-d 2 2

pl+dy Cx
+ J1 ww' D
X
2

wvhere
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-1
| (-B1+y Cx) /2B4
J
X2

(Ca22) v

{ (=B1+/ Cx)X2/2B4
(= Bi+y Cx) 2/2p42

Lx22 )

and

1 w
(=B1-v Cx) /2B4
X2

(C.23) w
(-31-y Cx) X2/2B4 |

I
(-B1-V Cx)2/2B42 -

- X 22 F

The problem of evaluating this B matrix is intractable,
thus numerical integration methods such as Simpson's rule
and Newton's method were applied here, using 21 data points.

The B matrix is equal to B here since both DF's have
the sanme cgoss-product matrices igp. Thus tae AERR(P) and
AERR(Q) can be found using identical B Matrix (B=B_=B ) »

P Q
l.e.:

(Ca24) AERR(P) = tr(BV )
and

{(C.25) AERR(Q) = tr{(BV )
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where V and V are the covariance
P Q
coefficients of the PQDF and the QDF.

matrices of the
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APPENDIX D

Derivations of Maximunm Likelihood Punctioas

(1) Wwith Linear Covariance Structure (LCS), i.e., V1=V2=V:
The 1likelihood function of the sample with koown

parameters is given by

-nlk/2 -nl/2
(D-1) L(ui,u2,vV) = (277) 1V}

n1
=1/2 { 2 (Xi- u1) *V-1(Xi- ul)}
* e i=1

-n2k/2 -n2/2
* (2TT) 1V

n2
=172 { 2 (Xji- u2)*'V-t (Xj- u2)]

o o J:]
- (n1+n2)k/2 - (n14n2) /2
= (217) SV
nl
-1/2 { 2 (Xi- ul)'V-1 (Xi- ul)}
e g i=1
n2
-1/2 ( 2 {Xi- u2)'v-t (Xj- u2)}
. e j=1 .

It is well known that the maximum likelihood estimates
(MLE) of ul, u2, and V with LCS are given by

"

]
(D.2) wuwi = Xi = — 2 Xij, i=1,2,
n j=1
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1

A
(D-3) V=85 =8i = ———— (A1+ A2, i=1,2,
(l+n2)

where Xij is the jth k X 1 sample vector from the population

i (T7i), and

ni _ _
(D-4) AL = X (Xij- Xi) (Xij- Xi)*, i=1,2.
3=1
Thus the maximum likelihood function derived from the
sample can be writtenm as

- = ~{ni+n2)k /2 = (nl+n2) /2
(D-35) L{X1,X2,S) = (271) 1Si

nl _ _
1,2 { 2 {Xi- X1)'s-1(Xi- X1)}
i=1

* e
n2 _ _
-1/2 { 2 (Xj- X2)'S-1(Xj- X2)}
® o j:‘] -
Since
n1 _ _ n2 _ _
-1/2 { 2 (Xi-X1)'S-1(Xi-X1) + X (Xj-X2) 'S-1(X3i-X2)}
{(D.6) e i=1 j=1

-1/2 {tr(S-iAl1) + tr(s-1a2)}
= e

-1/2 trace(S-1A1+ S-1A2)
= e

-1/2 tracefS-t(Al+ A2)}
= e
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=1/2 trace{(nl+n2) (A1+ A2)-1(A1+ A2)}

= e
-1/2 trace{(nl+n2) =1}
= e
-1/2 k(nl+n2)
= e ’
thus
- - -(nl+n2)k/2 -{nl+a2) /2
{b-7) L(X1,X2,S) = (2T7) 1S]

-1/2 k(nl+n2)
e p -
{2) With Proportional Covariance Structure, PCS, V1=V2/4=V:
The 1likelihood function of the saample with Kknown
parameters 1s given by

-nlk/2 -nl/2
(D.8) L{ul,u2,v,d) = (2T7) iVl

n1
-1/2 { 2 (Xi-ul)'V-1 (Xi-ul)}
o e i=1

-n2k/2 -n2/2
e {2T1) 14dv]

n2
172 (S (xj-u2) ' (@V)-1(Xi-u2)}
e e j=1

- {nl1+n2)k/2 ~(nl+n2) /2 -n2k/2
= (2T1) 1V d
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n1

=1/2 {27 (Xi- ul)'V-1 (Xi- ul)}
s p i=1

n2
-1/2{1/8 X {Xj-u2) 'V-1(Xj-u2)}
L I} j=1

The MLE's of ul and u2 are the same as those in LCS.
As for V and 4, their MLE's were derived in Section 3.2 and

given by Equations (3.4) and (3-.5) . Thus one can write the

likelihood function maximized with respect to ul, w2, v, and

d as
- n -{n1+n2)k/2 - (n1+n2) /2 .-n2k/2
(D-9) L(X1,X2,5,d) = {277) 1S] d
ni _ _
-1/2 { 2 (Xi-X1)*S-1 (Xi-X1)}
e o i=1
a D2 - -
-1/2 {1/d 2 (Xj-X2) 'S-1(Xj-X2)}
s o j=1 -
Since
ni - A ng - T ,
-1/2( 27 (Xi-X1)*S-1(Xi-X1) +1/d 27 (X3-X2) 'S-1 (X-X2)}
(D.10) e i=1 j=1

-1/2 {tr(s-1d1) +1/4 tr(S-1A2)}
= e

"N
-1/2 trace{S-1a1 +1,d (S-1A42)}
= &

-1/2 trace{S-1(A1 +1/4 A2)}
= e
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-1/2 trace{(nl+n2) (Aj+1/3 Ag)-l(11+1/a A2)}
:e -

-1/2 trace{(nl+n2) eI}
= €

=-1/2 k{nl+n2)
e

’

thus

- - " -{nl+n2)k/2 -(ni+n2) /2 ,-n2k/2
(b.11) L(x1,X2,5,d4d) = (2TT) 1S} d

-1/2 k (n1+n2)
® o -

(3) With Quadratic Covariamce Structure (QCS), V1#(1/4d)V2:
The 1likelihood function of the sample with known
parameters is given by

-ni1k/2 -n1/2
(D.12) L{ul,u2,v1i,Vv2) = (277) 1Va]

n1
-1/2 {2 (Xi-ul)'V1-1(Xi-u1)}
s e 1=1

-n2k /2 -n2/2
o (2T1) 1V2]

n2
1,2 {3 (Xj-u2)'v2-t(Xi-u2)}
e e j=1

-{nl1+n2)k/2 -nl/2 -n2/2
= {2T71) R AR iv2]
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ni
-1/2 { 27 (Xi-ul)'V1-1 (Xi-ul)}
e ¢ i=1

n2
-1/2 { 2 (Xj-u2)'v2-1(Xj-u2)}
° e 3= 1

The MLE's of ul and u2 are the same as those in LCS.

The MLE's of V] and V2 are defined as follows:

(D.13) Vi = Si = l— Ai, i=1,2,
a1
where A1 was defined in Equation (D.4) and Xij 4is the 4th
k X 1 sample vector from the population i.
Thus the maximum likelihood function derived from the
sample can be written as

- — -(ri+n2)k/2 -nl/2 -n2/2
{D.14) L(x1,X2,s1,52) = (2T1) isi} 1S2]

n1 _
-1/2 {2 (Xi-X1)'S1-1(Xi-X1)}
s e i=1

n2 _ _
-1/2 { 2 (Xj-X2)'s2-1(X3-X2)}

Since
nl _ _ n2 _ o
“1y2 {3 (Xi-X1)'s1-t (Xi-XD)+ X (X1-X2) 'S2-1 (X1-12)}
(D-15) e i=1 j=1

-1/2 ({tr(S1-1Al) + tr(S2-1'A2)}
= e
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=1/2 trace(si-ta1+ S2-112)
e

-1/2 trace{nlAl-ta] + R2A2-1A2}
€

-1/2 trace(nlel =+ n2eX}

-1/2 trace{ (nl+n2) I}

]
m

-1/2 k{ni+n2)

]
n

thus

- - ={(ni+n2)k/2 -nl/2 -n2/2
(b.%6) L(x1,x2,51,S2) = (2T7) §S1] 1S21

=-1/2 k (n1+n2)
® £ -
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APPENDIX E

Plots of Asymptotic amd Finite Sample Relative Efficiency
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ASYMPTOTIC RELATIVE EFFICIENCY
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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Figure 24: BRelative Efficiency of the PQDF to the LDF with
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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LATIVE EFFICIENCY WITH FINITE SAMPLE
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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Figure 30: Relative Efficiency of the PQDF to the LDF with
Skewness=3, nl=n2=15, and Distance=1
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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Figure 31: Relative Efficiency of the PQDF to the LDF with
Skewness=3, nl=n2=15, and Distance=4
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RELATIVE EFFICIENCY WITH FINITE SAMPLE
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Figure 32: Relative Efficiency of the PQDF to the LDF with
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Figure 33: Relative Efficiency of the PQDF to the LDP with
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Figure 34: Relative Efficiency of the PQDF to the QDF with
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Figure 35: Relative Efficiency of the PQDF to the QDF with
Skewness=3, ni1=n2=15, and Distance=4§
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APPENDIX F

Flowchart for Monte Carlo Simulation

\J/ Input k, Ngs
Lula u2, 219 22-
/2@ Ry (548 T® Ky

(2) Generate a pair of samples of size n .

(1) Compute

(3) Compute estimates of Hps Ms Iys I, and a.
(4) Conduct GLR test to obtain p-value.

(5) Compute the coefficients of optimal and estimated DF
for each of the LDF, QDF, and PQDF.

(6) Calculate discriminant scores, classify obs., and
obtain apparent ER, p6(*), and estimated optimal ER,

ﬁl(*)’ using each of the LDF, QDF, and PQDF. (*=L,Q,P)

(1) Generate 500 new obs.

(2) Calculate discriminant scores, classify obs., and
obtain estimated actual ER, p3(*), *={ Q,P.

(3) Compute E[pg(*)- p3(*)]2.

No Run>2007?

Yes

(1) Average ﬁ](*)'s, 53(*)'5, and p6(*)'s to obtain E[B;(*)],
By(*), and E[pg(*)].
(2) Calculate RE among LDF, QODF, and PQDF.

(3) Compute SD for pi(*), 53(*), and pg(*), *=L,Q.,P-

Yes Repeat?
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APPENDIX G

Tables of Results froam Monte Carlo Simulation
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Simulation Results Using 200 Replications and Skewness=1

-— e e e——
. —— . A T W Y A D W W D A WS A S R S S D i - D R S D D G Y D . S - S T T — G =

G G A A D WD D GRS AR G D G DD S S G G AR S DD GED D R GED GUD D NER G D D W A S

k n A SUBJECT MEAN STDERR MEAN STDERR MEAN STDERR
APPERL 0.3008 0.0062 0.2757 0.0061 0.2633 0.0058
APPERF 0.2908 0.0060 0.2432 0.0054 0.1900 0.0050
APPERQ 0.2827 0.0058 0.2313 0.0055 0.1812 0.0051
ACTERL 0.3267 0.0023 0.3183 0.0022 0.2954 0.0020
ACTERP 0.3359 0.0026 0.3037 0.0023 0.2316 0.0018
ACTERGC 0.3486 0.0027 0.3124 0.0023 0.2403 0.0019
OPTERR 0.3068 0.0014 0.2766 0.0015 0.2092 0.0013
P(L/P) 0-%4837 0.0211 0.1695 0.0172 0.0114 0.0038
P(P/Q) 0.4934 0.0211 0.4663 0.0211 0.4632 0.0208
DELTAH 1.0746 0.0307 1.1710 0.0288 1.1299 0.0280

15 __ ALPHAH 1.0973 0.0306__2.1876 0.0609 4.4994 0.1286
APPERL 0.0192 0.0019 0.0230 0.0018 0.0220 0.0018
APPERP 0.0178 0.0019 0.0182 0.0017 0.0112 0.0014
APPERQ 0.0163 0.0017 0.0173 0.0017 0.0093 0.0013
ACTERL 0.0256 0.0006 0.0290 0.0008 0.0330 0.0009
ACTERP 0.0286 0.0007 0.0272 0.0007 0.0203 0.0007
ACTERC 0.0308 0.0008 0.0295 0.0009 0.0226 0.0009
OPTERR 0.0217 0.0005 0.0201 0.0004 0.0145 0.0004
P(L/P) 0.4943 0.0218 0.1783 0.0176 0.0115 0.0025
P(P/Q) 0.4504 0.0198 0.4685 0.0202 0.4683 0.0215
DELTAH 4.2139 0.0513 4.1650 0.0454 4.3325 0.0550

2 ALPHAH 1.0788 0.0350 _2.2036 0.0637 4.2809 0.1237
APPERL 0.3023 0.0038 0.2960 0.0042 0.2693 0.0044
APPERP 0.3005 0.0037 0.2673 0.0040 0.2025 0.0036
APPERQ 0.2962 0.0037 0.2643 0.0039 0.1993 0.0036
ACTERL 0.3160 0.0017 0.3101 0.0018 0.2926 0.0020
ACTERP 0.3198 0.0017 0.2892 0.0015 0.2219 0.0014
AGTERG 0.3264 0.0021 0.2945 0.0018 0.2259 0.0014
OPTERR 0.3085 0.0014 0.2771 0.0013 0.2111 0.0012
P(L/P) 0.5098 0.0203 0.0435 0.0066 0.0003 0.0002
p(Br0) 0.5069 0.0206 0.5034 0.0216 0.4764 0.0207
DELTAH 1.0459 0.0185 1.0499 0.0220 1.0680 0.0226

30  ALPHAE 1.0302 0.0192 _2.1064 0.0360 4.1066 0.0733
APPERL 0.0222 0.0014 0.0242 0.0013 0.0258 0.0013
APPERF 0.0215 0.0014 0.0194 0.0013 0.0125 0.0010
APPERQ 0.0216 0.0014 0.0191 0.0013 0.0120 0.0010
ACTERL 0.0248 0.0005 0.0267 0.0006 0.0308 0.0007
AGTERP 0.0251 0.0005 0.0230 0.0005 0.0167 0.0005
ACTERGC 0.0256 0.0006 0.0244 0.0006 0.0174 0.0005
OPTERR 0.0228 0.0005 0.0202 0.0004 0.0141 0.0004
p(L/P) 0.5443 0.0206 0.0646 0.0100 0.0002 0.0001
p(bsQ) 0.5124 0.0204 0.4125 0.0200 0.5018 0.0208
CELTAH 4.0729 0.0356 4.0740 0.0344 4.1354 0.0377
ALDHAH 1.0020 D.0176__2.0731 0-0418 3.3643 0.0716
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TABLE 20
{Continued)
Proportionality 4= 2

X n SUBJECT MEAN STDERR  MEAN STDERR MEAN STDERR
APPERL 0.2U432 0.0059 0.2468 0.0055 0.2362 0.0056
APPERP 0.2378 0.0055 0.1968 0.0052 G6.1087 0.0041
APPERC 0.1962 0.0052 0.1603 0.0048 0.0848 0.0039
ACTERL 0.3501 0.0033 0.3376 0.0027 0.3254 0.0031
ACTERF 0.3558 0.0032 0.2919 0.0025 0.1863 0.0018
ACTERQ 0.3912 0.0032 0.3304 0.0029 0.2266 0.0027
OPTERR 0.3052 0.0014 0.2452 0.0013 0.1430 0.0010
P(L/P) 0.5053 0.0212 0.0860 0.0119 0.0004 0.0001
P(P/Q) 0.3277 0.0191 0.3722 0.0195 0.3649 0.0210
DELTAH 1.3566 0.0309 1.3234 0.0291 1.3623 0.0286

15 ALPHAH 1.0587 0.0226__2.0522 0.0422 4.2380 0.0538
APPERL 0.0162 0.0018 0.0143 0.0016 0.0182 0.0017
APPERP 0.0162 0.0018 0.0102 0.0013 0.0068 0.0011
APPERC 0.0113 0.0013 0.0070 0.0011 0.0055 0.0009
ACTERL 0.0342 0.0009 0.0357 0.0011 0.0409 0.0012
ACTERP 0.0370 0.0010 0.0317 0.0009 0.0210 0.0008
ACTERQ 0.0479 0.0015 0.0426 0.0018 0.0313 0.0015
OPTERR 0.0229 0.0005 0.0187 0.0004 ©0.0108 0.0003
P{L/P) 0.4882 0.0219 0.0863 0.0134 D0.0010 0.0006
P(P/Q) 0.3791 0.0205 0.361% 0.0203 0.3978 0.0209
DELTAH 4.3609 0.0502 4.5836 0.0532 4.5334 0.0628

4 ALPHAH 1.0341 0.0226 _2.0654 0.0410 _4.0413_0.0809
APPERL 0.2819 0.0039 0.2776 0.0039 0.2597 0.0039
APPERP 0.2801 0.0038 0.2224 0.0040 0.1277 0.0033
APPERC 0.2540 0.0037 0.2013 0.0035 0.1178 0.0032
ACTERL 0.3304 0.0021 0.3224 0.0018 0.3032 0.0021
ACTERP 0.3355 0.0020 0.2672 0.0017 0.1618 0.0013
ACTERQ 0.3620 0.0025 0.2916 0.0020 0.1795 0.0016
OPTERR 0.3097 0.0015 0.2459 0.0013 0.1433 0.0011
P(L/P) 0.4643 0.0207 0.0112 0.0026 0.0000 0.0000
p(P/Q) 0.4429 0.0193 0.4385 0.0207 0.4585 0.0207
DELTAH 1.1423 0.0189 1.1491 0.0130 1.1413 0.0202

30 ALPHAH 1.0123 0.0148__2.0292 0.0299 _4.1532 0.0630
APPERI 0.0172 0.0012 0.0210 0.0013 0.0244 0.0013
APPERP 0.0169 0.0012 0.0173 0.0012 0.0095 0.0008
APPERC 0.0147 0.0012 0.0158 0.0012 0.0085 0.0008
ACTERL 0.0265 0.0006 0.0296 0.0006 0.0352 0.0008
ACTERP 0.0269 0.0006 0.0236 0.0005 0.0144 0.000%
ACTERQ 0.0306 0.0007 0.0266 0.0006 0.0177 0.0006
OPTERR 0.0218 0.0004 0.0185 0.0004 0.0108 0.0003
P(L/P) 0.5404 0.0200 0.0126 0.0035 0.0000 0.0000
P{P/Q) 0.4236 0.0216 0.4099 0.0204 0.4253 0.0210
DELTAH 4.2224 0.0347 4.2073 0.0362 4.1805 0.0377
ALPHAH 1-.0198 0.0136__2.0432 0.0283 4.0969_0.0608
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Simulation Results Using 200 Replications and Skewness=2

Proportionality d= 2

k n A SUBJECT MEAN STDERR MEAN STDERR MEAN STDEER
APPERL 0.2863 0.0061 0.2843 0.0059 0.2602 0.0059
APPERP 0.2797 0.0060 0.2505 0.0055 0.1813 0.0045
APPERC 0.2588 0.0056 0.2358 0.0054 0.1703 0.0047
ACTERL 0.3306 0.0028 0.3178 0.0023 0.3039 0.0021
ACTERF 0.3396 0.0030 0.2989 0.0022 0.2322 0.0018
ACTERQ 0.3472 0.0029 0.3033 0.0023 0.2357 0.0020
OPTERR 0.3083 0.0014 0.2685 0.0015 0.2040 0.0012
P{L/P) 0.4831 0.0204 0.1853 0.0181 0.0069 0.0026
P(P/Q) 0.3178 0.0199 0.3171 0.0202 0.3272 0.0203
DELTAH 1.1248 0.0301 1.1310 0.0274 1.1921 0.0315

15 ALPHAH 1.1547 0.0354 2.1953 0.0644 4.5710 0.1236
APPERL D0.0163 0.0016 0.0212 0.0018 0.0207 0.0018
APPERP 0.0145 0.0015 0.0155 0.0016 0.0095 0.0012
APPERC 0.0137 0.0015 0.0148 0.0016 0.0091 0.0012
ACTERL 0.0267 0.0006 0.0293 0.0008 0.0331 0.0009
ACTERP 0.0293 0.0007 0.0281 0.0007 0.0199 0.0008
ACTERQ 0.0313 0.0009 0.0297 0.0008 0.0217 0.0009
OPTERE 0.0217 0.0005 0.0208 0.0004 0.0142 0.0003
P{(L/P) 0.4963 0.0205 0.1838 0.0169 0.0134 0.0034
P(P/Q) 0.3666 0.0214 0.3833 0.0210 0.3564 0.0201
DELTAH 4.2356 0.0457 4.1567 0.0524 4.2275 0.0506

2 ALPHAH 1.0443 0.0323_ _2.1795 0.0662 _4.1514_0.1330
APPERL 0.2974 0.0042 0.2936 0.0038 0.2878 0.0040
APPERP 0.2951 0.0040 0.2628 0.0035 0.2008 0.0036
APPERC 0.2837 0.0037 0.2550 0.0037 0.1958 0.0037
ACTERL 0.3154 0.0016 0.3138 0.0017 0.3000 0.0020
ACTEREF 0.3182 0.0016 0.2899 0.0017 0.2214 0.0014
ACTERQ 0.3221 0.0017 0.2890 0.0017 0.2205 0.0014
OPTERR 0.3061 0.0013 0.2724 0.0013 0.2058 0.0012
p(L/P) 0.4941 0.0206 0.0612 0.0094% 0.0002 0.0001

P (P/Q) 0.2378 0.0186 0.2279 0.0187 0.2794 0.0201
DELTAH 1.0726 0.0199 1.0591 0.0185 1.0353 0.0197

30 ALPHAH 1.0472 0.0207 _2.1058 0.0402 _4.1430 0.0800
APPERL 0.0216 0.0013 0.0223 0.0015 0.0228 0.0012
APPERP 0.0212 0.0013 0.0193 0.0013 0.0129 0.0010
APPERG 0.0203 0.0013 0.0178 0.0013 0.0119 0.0010
ACTERL 0.0255 0.0006 0.0271 0.0006 0.0292 0.0006
ACTERP 0.0259 0.0006 0.0244 0.0006 0.0177 0.0005
ACTERQ 0.0269 0.0006 0.0248 0.0006 0.0181 0.0005
OPTERR 0.0226 0.0004 0.0204 0.0004 0.0144 0.0003
p(L/P) 0.5383 0.0192 0.0521 0.0071 0.0004 0.0002
p(P/Q) 0.2534 0.0191 0.2791 0.0200 0.2624 0.0183
DELTAH 4.0858 0.0333 4.1300 0.0355 4.1600 0.0351
ALPHAH 0.9838 0.0162 _2.0487 0.0368 4.1607 0.0856
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TABLE 21
(Continued)
Proportionality d= 2 4

k n SBBJECT HMEAN STDERR MEAN STDERR MEAN STDEER
APPERL 0.2630 0.0053 0.2480 0.0056 0.2455 0. 0058
APPERP 0.2510 0.0052 0.1903 0.0055 0.1180 0.0042
APPERC 0.1870 0.0049 0.1503 0.0047 0.0848 0.0037
ACTERL 0.3502 0.0026 0.3425 0.0028 0.3253 0.0028
ACTERF 0.3579 0.0028 0.2939 0.0025 0.1886 0.0020
ACTERQ 0.3817 0.0027 0.3219 0.0028 0.2217 0.0027
OPTERR 0.3007 0.0013 0.2375 0.0013 0.1396 0.0011
P(L/P) 0.5104 0.0197 0.0892 0-0134 0.0003 0.0001
P(P/Q) 0.2651 0.0179 0.3158 0.0197 0.3062 0.0157
DELTAH 1.3083 0.0282 1.3625 0.0324 1.3077 0.0319
15 ALPHAH 1.0528 0.0201_ _2.1168_0.0456 _4.1123 0.0828
APPERL 0.0165 0.0018 0.0173 0.0018 0.0185 0.0016
APPERP 0.0153 0.0018 0.0120 0.0016 0.0062 0.0009
APPERC 0.0117 0.0014 0.0102 0.0014 0.0057 0.0009
ACTERL 0.0337 0.0009 0.0367 0.0010 0.0408 0.0012
ACTERP 0.0353 0.0070 0.0314 0.0010 0.0226 0.0009
ACTERQ 0.0484 0.0015 0.0418 0.0014 0.0314 0.0015
OPTERR 0.0223 0.0005 0.0188 0.0004 0.0109 0.0003
P(L/P) 0.4929 0.0203 0.1020 0.0130 0.0013 0.0006
P(P/Q) 0.3249 0.0206 ©0.2952 0.0182 0.3337 0.0195
DELTAH 4.3698 0.0562 4.4142 0.0570 4.5540 0.0693
4 ALPHAH 1.0236 0.0212 _1.9866_0.0397 _4.3120_ 0.0948
APPERL 0.2790 0.0040 0.2802 0.0041 0.2603 0.0042
APPERP 0.2713 0.0040 0.2264 0.0037 0.1252 0.0030
APPERQ 0.2349 0.0038 0.2000 0.0037 0.1111 0.0031
ACTERL 0.3350 0.0019 0.3273 0.0019 0.3065 0.0021
ACTERP 0.3389 0.0021 0.2714 0.0016 0.1640 0.0012
ACTERQ 0.3521 0.0022 0.2881 0.0019 0.175% 0.0015
OPTERR 0.3011 0.0013 0.2393 0.0012 0.1396 0.0010
P(L/P) 0.5118 0.0206 0.0072 0.0016 0.0000 0.0000
P(P/Q) 0.3051 0.0195 0.3073 0.0194 0.3250 0.0199
DELTAH 1.1708 0.0204 1.1245 0.0203 1.1794 0.0206
30 ALPHAH 1.0060 0.0143 _2.0439 0.0292 4.0740_0.0570
APPERL 0.0180 0.0012 0.0166 0.0011 0.0215 0.0012
APPERP 0.0179 0.0012 0.0129 0.0011 0.0081 0.0007
APPERC 0.0162 0.0011 0.011S 0.0011 0.06073 0.0008
ACTERL 0.0274 0.0006 0.0295 0.0006 0.0347 0.0008
ACTERP 0.0277 0.0006 0.0241 0.0005 0.0151 0.0005
ACTERQ 0.0309 0.0007 0.0266 0.0006 0.0175 0.0006
OPTERR 0.0226 0.0005 0.0185 0.0004 0.0105 0.0003
p(L/P) 0.5126 0.0200 0.0156 0.0053 0.0000 0.0000
p(P/Q) 0.3120 0.0200 0.3345 0.0209 0.3090 0.0201
41 4.2927 0.0372 4.2762 0.0356

DELTAH 4.2321 0.03
ALPHAH 1.0092 0.0133 _2.0449 0.0308 4.1187 0.0561
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Simulation Results Using 200 Replications and Skewness=3
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Proportionality d= 2

k n A SUBJECT MEAN STDERR MEAN STDERR MEAN STDEER
APPERL 0.2860 0.0056 0.2905 0.0052 0.2845 0.0056
APPERP 0.2738 0.0055 0.2490 0.0053 0.1992 0.0052
APPERQ 0.2500 0.0054 0.2292 0.0054 0.1790 0.0047
ACTERL 0.3216 0.0021 0.3220 0.0021 0.3067 0.0022
ACTERF 0.3318 0.0028 0.2967 0.0022 0.2310 0.0017
ACTERQ 0.3298 0.0025 0.2924 D.0024 0.2265 0.0019
OPTERR 0.2984 0.0014 0.2582 0.0013 0.1970 0.0011
P(L/P) 0.5062 0.0214 0.1881 0.0169 0.0099 0.0020
P(P/Q) 0.1884 0.0160 0.1776 0.0171 0.2031 0.0180
DELTAH 1.1155 0.0280 1.1327 0.0278 1.0918 0.0275
15 ALPHAH 1.0563_0.0309__2.2234_0.0680 _4.2165_0.1200
APPERL 0.0185 0.0016 0.0177 0.0017 0.0240 0.0019
APPERP 0.0178 0.0017 0.0155 0.0016 0.0120 0.0016
APPERQ 0.0153 0.0017 0.0128 0.0016 0.0085 0.0013
ACTERL 0.0282 0.0007 0.0268 0.0006 0.0305 0.0010
ACTERP 0.0300 0.0009 0.0272 0.0007 0.0223 0.0008
ACTERQ 0.0309 0.0009 0.0280 0.0008 0.0222 0.0008
OPTERR 0.0223 0.0005 0.0199 0.0004 0.0150 0.0004
P(L/P) 0.5119 0.0191 0.1765 0.0171 0.0142 0.0035
P(P/Q) 0.1720 0.0159 0.1718 0.0157 0.2028 0.0180
DELTAE 4.2174 0.0463 4.2821 0.0543 4.1659 0.0515
2 ALPHAH 1.0775_0.0307_ _2.2890 0.0684_ _4.4891 0.1344
APPERL 0.2990 0.0038 0.2956 0.0044 0.2842 0.0040
APPERP 0.2953 0.0040 0.2666 0.0042 0.2017 0.0037
APPERC 0.2760 0.0037 0.2432 0.0041 0.1857 0.0032
ACTERL 0.3155 0.0016 0.3160 0.0020 0.3016 0.0017
ACTERP 0.3202 0.0018 0.2879 0.0017 0.2212 0.0015
ACTERQ 0.3155 0.0018 0.2781 0.0017 0.2124 0.0015
OPTERR 0.2981 0.0014 0.2601 0.0014 0.1983 0.0612
P(L/P) 0.5079 0.0193 0.0699 0.0105 0.0002 0.0001
P(P/Q) 0.0734 0.0096 0.0767 0.0110 0.0870 0.C118
DELTAH 1.0560 0.0197 1.0638 0.0210 1.0774 0.0204
30 ALPHAH 1.0309 0.0192 2.0642 0.0395 _4.0613 0.07C7
APPERL 0.0224 0.0014 0.0198 0.0013 0.0232 0.0013
APPERP 0.0224 0.0014% 0.0182 0.0012 0.0135 0.0011
APPERQ 0.0210 0.0013 0.0170 0.0012 0.0125 0.0010
ACTERL 0.0244 0.0005 0.0262 0.0006 0.0279 0.0006
ACTERF 0.0253 0.0006 0.0255 0.0006 0.0184 0.0005
ACTERQ 0.0256 0.0005 0.0247 0.0006 0.0181 0.0005
OPTERR 0.0219 0.0004 0.0208 0.0004 0.0152 0.0004
p(L/P) 0.5040 0.0193 0.0836 0.0107 0.0004 0.0002
0096 0.0983 0.0126 0.0871 0.0123

P{p/Q) 0.0736 0.
DELTAH 4.0646 0.0322 4.1639 0.0353 4.1110 0.0353
ALPHAH 1.0794% 0.0209_ _2.0481 0.0448 4.1374 0.0772
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TABLE 22
{Continued)
Proportionality 4= 1 2

-E“n- SUBJECT ' MEAN STDERR MEAN STDERR MEAN STDEER
APPERL 0.2550 0.0057 0.2560 0.0056 0.2398 0.0055
APPERP 0.2458 0.0056 0.2028 0.0056 0.1080 0.0040
APPERQ 0.1833 0.0050 0. 1457 0.0046 0.0782 0.0035
ACTERL 0.3497 0.0026 0.3477 0.0025 0.3265 00029
ACTERF 0.3564 0.0029 0.2938 0.0024 0.1881 0.0020
ACTERQ 0.3629 0.0028 0.3146 0.00371 0.2135 0.0027
OPTERR 0.2837 0.0015 0.2247 0.0013 0.1334 0.001C
P(L/P) 0.50672 0.0203 0.0875 0.0115 0.0004 0.0002
P(P/Q) 0.1967 0.0156 0.1891 0.0158 0. 1826 D.6152
DELTAH 1.3204 0.0309 1.2754 0.0272 1.3440 0.0332
15 ALPHAH 1.0706 0.0220_ _2.0483 0.0401 _4.1916_0.0835
APPERL 0.0153 0.0016 0.0157 0.0017 0.0180 0.0017
APPERP 0.07148 0.0016 0.0100 0.0013 0.0052 0.0009
APPERC 0.0105 0.0014 0.0075 0.0012 0.0047 0.00CC9
ACTERL 0.0333 0.0008 0.036% 0.0010 0.0392 0.0010
ACTERP 0.0358 0.0009 0.0325 0.0010 0.0232 0.0009
ACTERQ 0.0447 0.0014 0.0422 0.0014 0.0315 0.0016
OPTERR 0.0217 0.0004 0.0182 0.0004 0.0104 0.0003
P(L/P) 0.5021 0.0205 ©0.1099 0.0138 0.0003 0.0001
P(P/Q) 0.2053 0.0171 0.1935 0.0152 0.2183 0.0169
DELTAH 4.3995 0.0572 4.4032 0.0565 4.3915 0.0561
4 ALPHAH 1.0272 0.0227 2.0432 0.0457  4.2657 0.0898
APPERL 0.2851 0.0042 0.2848 0.0045 0.2645 0.0041
APPERP 0.2844 0.0043 0.2278 0.0038 0.1356 0.0035
APPERQ 0.2289 0.0038 0.1876 0.0034 0.1120 0.003¢C
ACTERL 0.3304 0.0018 0.3225 0.0018 0.3037 0.0020
ACTERP 0.3356 0.0019 0.2688 0.0017 0.1641 0.D012
ACTERQ 0.3277 0.0021 0.26098 0.0019 0.1690 0.0014
OPTERE 0.2812 0.0013 0.2280 0.0013 0.1361 0.0CCS
P{(L/P) 0.4964 0.0213 0.0172 0.0047 0.00600 0.00O0C
P(P/Q) 0.1238 0.0130 0.1337 0.0122 0.1247 0.0129
DELTAH 1.1222 0.0198 1.1213 0.0207 1.1607 0.0191
30 ALPHAH 1.0188 0.0146 2.0392 0.0303 _4.005S 0.0513
APPERL 0.0173 0.0012 0.0184 0.0013 0.0216 0.0013
APPERP 0.0168 0.0011 0.0160 0.0012 0.0093 0.0009
APPERC 0.01748 0.0011 0.0136 0.0011 0.0073 0.00C8
ACTERL 0.0281 0.0006 0.0296 0.0007 0.0343 0.0007
ACTERP 0.02%90 0.0006 0.0248 ©.0006 0.0160 0.0004%
ACTERQ 0.0304 0.0007 0.0264 0.0007 0.0176 0.0005
OPTERR 0.0212 0.0004 0.0183 0.0004 0.07174 0.0003
P(L/P) 0.4625 0.0209 0.0125 0.0040 0.0000 0.0000
P(P/Q) O0.1484 0.0132 0.1238 06.0135 0.1399 Q.0145
DFELTAH 4.2281 0.0380 4.2702 0.0397 4.2444 0.0369
ALPHAH 1.0340 0.0158 2.0501 0.0278 3.9855 0.0518
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APPENDIX H

Pre-admission and Academic Achievement Data of

the Nedical Doctoral Program at Texas Tech
University Health Science Center

0BS BCPM OTHER BCATBIO MCATAVG CUMAVG GRCUE

1 3. 49 3.80 10 8.33 71. 34 1

2 3.76 3. 80 9 767 72 51 1

3 3.50 3.62 7 7.67 74. 08 1

4 2. 86 3. 40 9 9. 33 74.09 1

5 2.40 2. 85 7 7.83 74. 83 1

6 3.95 3.91 7 6.50 74. 84 1

7 3. 34 3.30 7 6.50 748.94 1

8 2.59 3. 31 7 b33 75. 36 1

S 3. 68 6. 90 6 7.67 76. 76 1
10 3. 16 3.91 11 9.50 76. 86 1
11 3. 13 3.74 7 6. 83 77.01 1
12 2.53 3. 22 6 5. 33 77.08 1
13 3.44 3.73 6 8.00 77. 14 1
14 3. 32 3.79 7 6.67 77. 29 1
15 3.94 3.73 107 7.83 77.59 1
16 2.69 3.52 10 9. 33 77.72 1
17 3.08 3.70 7 7.33 77. 84 1
18 3. 66 3.25 10 8«67 78. 31 1
i9 3. 31 3.20 9 9.33 78.58 ]
20 3. 82 3.47 9 9.00 78. 58 1
21 3.53 3.87 6 8.00 78.61 ]
22 3.52 4. 00 8 7. 17 78. 61 1
23 3.57 3.74 9 7.67 78.62 ]
24 3.48 3.91 11 8.67 78. 64 1
25 3.90 3.74 6 8.83 78. 68 1
26 3.49 3.85 9 8. 17 78. 68 1
27 3. 26 3.50 9 9. 17 78. 86 1
28 3. 21 3.90 10 8. 17 78« 90 1
29 3. 31 3.65 11 883 78.96 1
30 3.20 2.98 11 9.67 79. 12 1
31 3. 49 3.92 8 9.33 79.12 1
32 3. 40 3.52 7 8. 33 79. 16 1
33 3.71 3.78 9 7.33 79. 28 1
34 2.90 3. 19 9 9. 00 79. 29 1
35 3.23 3.39 12 9.83 79. 36 1
36 3.46 3. 24 9 8. 67 79. 37 1
37 3. 46 3.90 7 8.50 79.43 1
38 3. 27 3. 08 10 8.67 79.53 1
39 3. 38 3. b4 7 8. 00 79.53 1
40 2.87 3.58 10 8. 83 79.80 1
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OBS

BCPH

OTHER

MCATBIO

MCATAVG

CUMAVG

41
42
43
4y
45
4o
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
9
80
81
82
83
84

3.06
3.06
2.98
3.47
3. 22
2.98
3. 51
2.87
3.05
2.90
3.05
4.00
3. 48
3.38
3. 17
3. 84
2.92
3.80
3.03
3. 91
3.7¢6
3.37
3.40
2. 84
3.22
3.28
3. 51
3. 13
3. 17
3.76
3.80
2.57
3. 23
3. 40
3. 29
3.01
3. 06
3.53
3. 62
3. 47
3. 10
3.83
3.30
2.91

3.54
3. 36
3. 14
2. 86
3.40
3.71
3.62
3. 17
3.75
3. 38
3.50
4.00
3.55
3.85
3.33
4. 00
2.87
4.00
3.23
3.89
4.00
3.64
3.13
2.92
3.65
3.72
3.94
3. 74
3.82
3.56
3.94
2.91
3.53
3. 54
3. 51
3. 84
2.91
3.77
2.65
3.66
3.51
3.95
3.865
2.00
3.84

WO W NN O

9.67
7.83
6.67
8.67
8.50
7. 17
7.67
9.50
9.83
7.67
7.50
9.83
8«17
7.83
8.67
8.50
10.67
7.50
8.83
10. 00
8.67
7.67
7.50
10.00
8. 17
8.50
8.33
8.50
8.33
7.83
8. 17
9.00
9.00
6.50
8.17
8. 17
10.67
7.50
9.67
9.00
10.67
8. 17
8.50
6. 17

79.91
79.92
79.96
80. 16
80.22
80. 22
80.22
80. 26
80.42
80. 57
80.58
80.61
80.61
80. 82
81. 09
81.13
81.18
81. 21
81. 26
81. 34
81. 39
81. 46
81.55
81. 72
81.74
81.96
81.97
82.08
82.20
82. 20
82. 29
B2« 56
82.68
82. 68
82.70
82.75
82.82
82.83
82.95
83.00
83.03
83.05
83. 16
83. 16
83. 26
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0BS

BCPM

OTHER

MCATBIOD

MCATAVG

CUMAYVG

GROUP
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3.47
3. 25
3.76
3.29
3. 26
3.77
3.15
3.77
3.75
3.33
3. 17
2.57
3.56
3.78
3.00
3.00
2.96
2.95
3.51
3.59
3.01
3. 47
3.75
3.57
3.05
3.96
3.26
3.73
3.37
3.67
3. 24
3.56
3.15
3.63
3.62
3.87
3.74
3.93
3.41
2.90
3.04
3.90
3.52
3.00

2.92
3. 47
3. 84
3.92
3.08
3.16
3.54
3.70
4.00
3. 68
3. 17
2.96
4.00
3.7
3.69
3.73
2.96
3.50
3.62
3.18
3. 31
3.58
3. 38
3.83
3.29
3.46
3.75
3.53
3.95
3.88
3.08
4.00
3.70
3.55
4. 00
3.75
3.94
4. 00
3. 42
2.88
3.82
4.00
3. 29
3.65

10
7
9

IR

11

1"
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and
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b ombd web
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-d b apd oud

12

8. 67
8.67
S5.67
8. 83
11. 17
9.17
10.67
9.00
7.67
9.50
8. 00
9.00
B. 17
8. 00
7.00
8.67
10. 00
8.33
3.00
8.67
9.50
8.33
8. 83
8.33
8. 33
8. 50
8. 43
5.83
7. 17
8.83
10. 17
9.00
8. 33
8.33
7. 17
9.17
7.83
8. 50
8. 83
10.00
9. 33
12.17
8« 50
9.00
8.50

83. 29
83. 30
83. 41
83.50
83. 58
83.74
83. 76
83.79
83.95
84.12
84. 18
84.21
84. 39
84.47
84. 91
84.92
84.96
85.00
85. 16
85. 16
85. 29
85. 33
85. 47
85.70
85. 80
86.08
86. 36
86.80
87. 08
87. 21
87. 36
88.08
88. 54
88.57
88. 58
89. 17
89. 33
89.92
89. 96
90. 05
91.00
91. 74
91.79
92.03
92.55
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